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ABSTRACT
Background  An electronic medical record (EMR) has 
the potential to improve completeness and reporting 
of notifiable diseases. We developed and assessed the 
validity of an HIV case detection algorithm and deployed 
the final algorithm in a national automated HIV case 
reporting system in Thailand.
Methods  The HIV case detection algorithms leveraged a 
combination of standard laboratory codes, prescriptions 
and International Classification of Diseases, 10th Revision 
diagnostic codes to identify potential cases. The initial 
algorithm was applied to the national EMR from 2014 
to June 2020 to identify HIV-infected subjects to build 
the national HIV case reporting system (Epidemiological 
Intelligence Information System (EIIS)). A subset of potential 
positives identified by the initial algorithm were then 
validated and reviewed by infectious disease specialists. 
This review identified that a proportion of the false positives 
were due to pre-exposure prophylaxis/postexposure 
prophylaxis (PrEP/PEP) antiretrovirals, and so the algorithm 
was refined into a ‘Final Algorithm’ to address this.
Results  Positive predictive value of identifying HIV cases 
was 90% overall for the initial algorithm. Individuals 
misclassified as HIV-positive were HIV-negative patients 
with incorrect diagnostic codes, prescription records for 
PrEP, PEP and hepatitis B treatment. Additional revision 
to the algorithm included triple drug regimen to avoid 
further misclassification. The final HIV case detection 
algorithm was applied to national EMR between 2014 and 
2020 with 449 088 HIV-infected subjects identified from 
1496 hospitals. EIIS was designed by applying the final 
algorithm to automated extract HIV cases from the national 
EMR, analysing them and then transmitting the results to 
the Ministry of Public Health.
Conclusions  EMR data can complement traditional 
provider-based and laboratory-based disease reports. An 
automated algorithm incorporating laboratory, diagnosis 
codes and prescriptions have the potential to improve 
completeness and timeliness of HIV reporting, leading 
to the implementation of a national HIV case reporting 
system.

BACKGROUND
Electronic medical record (EMR) has the 
potential to improve completeness and 

reporting of notifiable diseases beyond 
traditional clinician-initiated and laboratory-
based disease reporting systems.1 Traditional 
passive surveillance is burdensome to clini-
cians, and it is often incomplete and delayed 
as it may lack information needed for public 
health purposes (eg, patient signs and symp-
toms, prescribed treatments and pregnancy 
status).2 3 EMR, however, contains this infor-
mation and stores it in a form that can be 
used for electronic analysis and reporting. 
Consequently, EMR-based reporting has the 
potential to provide active notifiable disease 
surveillance that is more timely, complete 
and clinically detailed that enables longitu-
dinal disease reporting and analysis. With the 
advent and adoption of EMR, researchers are 
now able to rapidly identify potential disease 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Traditional passive surveillance is burdensome to 
clinicians, and it is often incomplete and delayed 
as it may lack information needed for public health 
purposes.

	⇒ Electronic medical record (EMR) is capable of accu-
rately reporting and monitoring notifiable diseases.

WHAT THIS STUDY ADDS
	⇒ This study developed HIV case detection algorithms 
using the national EMR database which validated 
using National AIDS Programme data and reviewed 
by infectious disease specialists.

	⇒ Our novel algorithm to identify HIV infection in the 
EMR system contributed to the development of an 
automated HIV case reporting system in Thailand.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ HIV case detection algorithms have the potential to 
improve completeness and timeliness of HIV report-
ing system compared to the traditional system.

	⇒ Much effort should be concentrated on improving 
data quality of national EMR data.
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cases for clinical studies. Disease detection algorithms 
are needed to search across billing data, laboratory data 
and clinical documentation to perform case detection. 
These disease detection algorithms can be conceived 
in a manner that has high sensitivity and specificity for 
identifying individual’s true disease status using methods 
borrowed from routine clinical care.4

The first case of HIV/AIDS in Thailand was officially 
reported in July 1984.5 Shortly after, HIV/AIDS was 
declared a highly infectious disease requiring mandatory 
notification in 1985. In the past, physicians were required 
to report all patients with HIV infection, including asymp-
tomatic cases in Report 506/1 to the provincial health 
office, who forwarded the information to the Ministry of 
Public Health (MoPH). This passive surveillance relies on 
physicians to report new cases of HIV infection or AIDS 
directly to the MoPH. Data from passive surveillance are 
often slow to accrue and incomplete and may not support 
a timely and well-aimed public health purpose. To address 
the problem MoPH stopped mandating asymptomatic 
HIV case reporting using Report 506/1 in 2014 and clas-
sified HIV as a notifiable condition and mandated health-
care providers and laboratories to report HIV cases to 
provincial health officials in the Communicable Disease 
Act BE 2558 (2015).6

HIV infection is a disease that lends itself to an 
algorithm-based case detection, given the reliance on 
laboratory-based testing. Previous studies have attempted 
to identify HIV-infected patients in selected popula-
tion or selected hospitals in developed countries.7–10 
However, there is no validated procedure for using data 
from medical records to identify diagnosed HIV-infected 
patients for national HIV/AIDS surveillance purposes. In 
order to maximise use of EMR for automated HIV/AIDS 
reporting system, we developed and assessed the validity 
an HIV case detection algorithm and estimated the posi-
tive predictive value (PPV) of the algorithm to detect new 
diagnosed HIV cases and develop a national automated 
HIV case reporting system in Thailand.

EMR database
Since 2007, Thailand MoPH has established a national 
electronic health system to house the central and provin-
cial health data centres (HDC) for management of 
EMR. All levels of health facilities under the MoPH are 
required to upload and transfer disaggregated, individu-
alised data to a central database using cloud technology 
at least once a month. In 2021, the MoPH HDC plat-
form received EMR data (ie, patient demographics, vital 
signs, test orders, test results, prescriptions, diagnostic 
codes and healthcare provider details) from 947 MoPH 
public hospitals, 55 non-MoPH public hospitals and 9760 
subdistrict health promotion hospitals. Thai healthcare is 
dominated by public health facilities accounting for 79% 
of hospital beds11 and with 21% of total beds in private 
hospitals. Specialised HIV treatment and care services 
are mainly provided in public health facilities under the 

management of universal coverage (UC) to ensure equi-
table access.

The standard patient-level data collected at each health 
facility includes demographics and health services.12 
Data are subsequently managed and summarised for key 
performance indicators. The visualised report is acces-
sible for health management and disease control on the 
web-based HDC dashboard (http://hdcservice.moph.go.​
th)

METHODS
Initial algorithm development
HIV infection was identified by applying the surveillance 
case definition of HIV/AIDS from the 2015 national 
guidelines for reporting notifiable communicable disease 
in Thailand.13 In order to maximise the utility and perfor-
mance characteristics of the algorithm, six separate 
conditions using complementary approaches to HIV case 
detection were created. A panel of physicians, including 
experts in the diagnosis and treatment of HIV infection, 
provided recommendations for the development of these 
conditions. The HIV case detection algorithm combined 
national laboratory testing codes and results, Thai Medi-
cine Terminology prescriptions14 and International Clas-
sification of Diseases, 10th Revision (ICD-10) diagnostic 
codes. A list of laboratory tests, ICD-10 and antiretroviral 
(ARV) medication can be found in online supplemental 
appendix 1.

We identified six conditions under which a classifica-
tion of HIV positive would be a reasonable conclusion 
and ordered them based on the panel’s likelihood of false 
positivity. The initial algorithm classified an individual as 
positive if any one of the six conditions (A, B1, B2, C1, 
C2 and D1) were met. Condition A is met if laboratory 
test (anti-HIV, HIVDNA PCR or viral load) identified the 
individual as HIV infected. For HIV antibody testing, only 
a ‘positive’ result was defined as positive, whereas ‘nega-
tive’ and ‘inconclusive’ results were defined as negative. 
The presence of detectable viral load was defined as HIV-
positive regardless of test result. Conditions B1, B2, C1 
and C2 were based on clinical evidence and designed to 
detect those patients not identified by condition A due 
to incomplete HIV testing results in EMR. As a result 
of confidentiality concerns with sharing HIV laboratory 
results, the laboratory information system not linked to 
the hospital information system (HIS), and in other cases 
formatting issues when transferring data from hospital 
HIS to MoPH HDC prevent HIV laboratory results from 
being represented in the EMR. Condition B1 was consid-
ered met if an individual had three or more HIV-related 
ICD10 events as well as ARV drug use for at least three 
visits. Condition B2 was considered satisfied if there were 
one or two HIV-related ICD10 events and a CD4 test 
result of <200. C1 is a weaker condition that is satisfied 
with the presence of any HIV-related ICD10 event in the 
patient history. C2 and D1 are satisfied based solely on 
ARV use with C1 triggered when ARVs are reported on 

http://hdcservice.moph.go.th
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two visits >60 days apart and D1 is triggered if they are ≤60 
days apart. The initial algorithm distinguishes four levels 
of confidence in a determination of a positive, ranging 
from laboratory confirmed to possible clinical evidence. 
Our algorithm criteria are summarised in table 1.

Assessing validity
We assessed the validity the initial algorithm by applying 
it to the MoPH EMR from 31 hospitals that were inter-
ested in participating from 3 high HIV burden provinces 
in 2017. HIV positive patients from 31 hospitals were 
extracted from 460,575 HIV positives cases in the MoPH 
HDC platform to assess algorithm performance. To verify 
that subjects were HIV-infected, we used national AIDS 
programme (NAP) data for ‘true HIV-positive’ and cross-
matched with individuals identified through the HIV case 
detection algorithm. The NAP is National Health Security 
Office’s electronic database used for recording clinical 
and laboratory services for HIV monitoring and reim-
bursement.15 Identification of an HIV-infected patient 
by the NAP occurs at the hospital, where local health-
care providers register all HIV patients into the NAP 
for HIV test, CD4, and viral load test reimbursement for 
all Thai citizens regardless of health insurance scheme. 
This helps ensure that patients identified by the NAP are 
truly infected with HIV. Charts of patients who were not 
identified by NAP were further reviewed by infectious 
disease specialists from that hospital. The PPV of iden-
tifying HIV/AIDS cases was used to measure accuracy 
of the algorithm. We also reviewed the distribution of 
subjects by number of diagnostic codes and confirmatory 

evidence of HIV infection using HIV viral load and ARV 
therapy results.

Final algorithm development
The expert reviews for the false positives found in the 
validation step were then analysed to determine whether 
any refinement to the algorithm conditions could be 
made. Frequencies were calculated for the expert deter-
mined reason for the misclassification and each reason 
was assessed to investigate whether there were additional 
constraints to the conditions that could be added to 
reduce the false positive likelihood. The resulting algo-
rithm was labelled the final algorithm and was applied 
to the MoPH EMR from 2014 to 2020 to identify HIV-
infected subjects for HIV case reporting system.

Automated HIV case reporting system development
The final algorithm was used to build the new HIV case 
reporting system called Epidemiological Intelligence 
Information System (EIIS). Data were integrated, stored, 
managed and analysed in the MoPH HDC cloud-based 
warehouse. EIIS Data warehouse security measures were 
strictly enforced to ensure data integrity at all levels. 
The system limited access to different level of autho-
rised users. The data warehouse was set up to be read-
only by default to prevent any threatening from being 
executed on the data. National identification number 
was encrypted applying the customised Hash Algorithm. 
Specifically, only the hashed version of national ID was 
stored in a database, which was decrypted to only autho-
rised users.

Table 1  Summary of criteria included in the initial HIV case detection algorithm

Surveillance 
criteria Condition Laboratory Diagnosis Pharmacy

Laboratory-
confirmed evidence

A Presence of positive HIV antibody 
or HIV DNA PCR (in children <12 
months) or result of detectable viral 
load

Presumptive clinical 
evidence

B1 Presence of at least 
three HIV-related ICD-10 
events

Report of antiretroviral 
drugs for at least three 
visits

B2 Result of CD4 test result <200 cell 
count

Presence of one or two 
HIV-related ICD-10 event

Probable clinical 
evidence

C1 Presence of at least one 
HIV-related ICD-10 event

C2 Report of antiretroviral 
drugs for at least two 
clinic visits, dated more 
than 60 days apart

Possible clinical 
evidence

D1 Report of antiretroviral 
drugs for two clinic visits, 
dated less than or equal to 
60 days apart

ICD-10, International Classification of Diseases, 10th Revision.
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RESULTS
Application of the initial HIV case detection algorithm
We applied the initial algorithm to the MoPH EMR data. 
All patients who were seen at hospitals under the MoPH 
HDC platform between 2014 and 2020 were included in 
this study. The HIV case detection algorithm identified 

a total of 4 60 575 cases among all patients receiving HIV 
services in 947 MoPH hospitals, 2243 subdistrict health 
promotion hospitals and 55 non-MoPH public hospitals. 
Twelve per cent of the cases were reported to have died. 
Table  2 shows unduplicated counts of patient who met 
the case detection criteria for each condition. Individuals 

Table 2  Demographic characteristics of identified HIV cases by condition, 2014–2020

A B1 B2 C1 C2 D1

N % N % N % N % N % N %

Total individuals 11 487 337 453 838 91 256 6543 12 998

Sex

 � Male 6572 57.2 186 215 55.2 574 68.5 54 780 60 3270 50 3658 28.1

 � Female 4915 42.8 151 238 44.8 264 31.5 36 475 40 3273 50 9340 71.9

Health insurance

 � UC 7881 68.6 237 534 70.4 509 60.7 51 762 56.7 3048 46.6 6046 46.5

 � CSMBS 447 3.9 11 228 3.3 29 3.5 5133 5.6 1200 18.3 1922 14.8

 � SSS 2010 17.5 58 418 17.3 200 23.9 14 157 15.5 1445 22.1 2344 18

 � Migrant 271 2.4 10 975 3.3 22 2.6 6451 7.1 167 2.6 843 6.5

 � Self-paid 878 7.6 19 298 5.6 78 9.3 13 753 14.8 683 10.2 1843 13.9

Age

 � 0–15 years 136 1.2 3360 1 5 0.6 6044 6.6 231 3.5 4269 32.8

 � 16–20 years 360 3.1 7702 2.3 22 2.6 4102 4.5 134 2.1 1221 9.4

 � 21–25 years 765 6.7 18 340 5.4 99 11.8 8877 9.7 873 13.3 2617 20.1

 � 26–30 years 889 7.7 23 776 7.1 101 12.1 9901 10.9 888 13.6 1663 12.8

 � 31–35 years 1047 9.1 29 300 8.7 120 14.3 10 675 11.7 526 8 1000 7.7

 � 36–40 years 1453 12.7 42 831 12.7 125 14.9 11 575 12.7 520 8 750 5.8

 � 41–45 years 2013 17.5 61 388 18.2 131 15.6 10 995 12.1 556 8.5 537 4.1

 � 46–50 years 1662 14.5 52 204 15.5 82 9.8 7598 8.3 483 7.4 283 2.2

 � >50 years 3162 27.5 98 552 29.2 153 18.3 21 489 23.6 2332 35.6 658 5.1

Nationality

 � Thai 11 151 97.1 327 273 97 803 95.8 83 559 91.6 6450 98.6 12 687 97.6

 � Cambodia 14 0.1 916 0.3 1 0.1 879 1 12 0.2 37 0.3

 � Laos 21 0.2 1132 0.3 2 0.2 896 1 10 0.2 20 0.2

 � Myanmar 168 1.5 4858 1.4 15 1.8 3964 4.3 35 0.5 106 0.8

 � Others 133 1.2 3274 1 17 2 1958 2.2 36 0.6 148 1.1

Year of registration in EIIS

 � 2014 0 0 129 267 38.3 0 0 11 887 13 987 15.1 837 6.4

 � 2015 0 0 70 436 20.9 0 0 13 267 14.5 979 15 1228 9.5

 � 2016 0 0 41 094 12.2 0 0 10 798 11.8 1163 17.8 1586 12.2

 � 2017 177 1.5 30 704 9.1 8 1 13 140 14.4 1262 19.3 2085 16

 � 2018 2766 24.1 30 923 9.2 157 18.7 14 070 15.4 1045 16 2487 19.1

 � 2019 4785 41.7 21 148 6.3 330 39.4 13 818 15.1 749 11.5 2736 21.1

 � 2020 3759 32.7 13 881 4.1 343 40.9 14 276 15.6 358 5.5 2039 15.7

A1: Laboratory-confirmed evidence: HIV-positive test result or VL result; B1: Presumptive clinical evidence: at least 3 HIV-related ICD-10 
events and report of ARV; B2: Presumptive clinical evidence: CD4 <200 and one or two HIV-related ICD-10 event; C1: Probable clinical 
evidence: at least one HIV-related ICD-10 event; C2: Probable clinical evidence: ARV use dated more than 60 days apart; D1: Possible clinical 
evidence: ARV use dated less than 60 days apart.
ARV, antiretroviral; CSMBS, Civil Servants' Medical Benefit Scheme; EIIS, Epidemiological Intelligence Information System; ICD-10, 
International Classification of Diseases, 10th Revision; SSS, social security scheme; UC, universal coverage.
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were assigned to the highest evidence level for which they 
qualified. Seventy percent of cases were identified by both 
diagnosis and prescription (condition B1). Four percent 
of identified cases had strong evidence of HIV laboratory 
results (condition A) because HIV laboratory codes were 
included in the standard 43 files later on in 2017.

Accuracy of the initial algorithm
We identified 26 138 individual patients who met the HIV-
infected case detection algorithms at 31 participating 
hospitals. After matching individual data with NAP, we 
found 18 647 records (71%) registered in NAP and an 
additional 7491 patients not identified by NAP. Patient 
charts of 7491 (100%) were reviewed by infectious disease 
specialists from their respective hospitals. Of these 7491, 
4924 (66%) were correctly classified as HIV positive by 
our case-detection algorithms, 2120 (28%) were misclas-
sified as HIV-positive (false positive) and 447 (6%) were 
not found in the hospital database. Positive cases who 
were not registered in NAP were mainly non-Thai citizens, 
covered under non-UC health insurance schemes or self-
paid patients. PPV of identifying HIV cases based on the 
algorithm was (18 647+4924)/26 138=90% overall and 
98% (16741+3481)/20701 among individuals receiving 
services in the past year.

Generating a final algorithm
Of the 2120 false positives identified by the review, the 
experts noted incorrect ICD10 code as the reason in 71% 
of cases where a reason was given (see table 3). This indi-
cates that condition C1 might reduce the false positivity 
rate considerably; however, this would not be desirable as it 
also accounts for a large proportion of the individuals the 
algorithm classifies as positive (see table 2). As such, we felt 
that the cost in terms of the introduction of false negatives 
would be too high.

Postexposure prophylaxis (PEP) and pre-exposure 
prophylaxis (PrEP) accounted for 28% of false positives 
where a reason was given and Hepatitis B for an additional 
1%. Recognising that (1) some medications used to treat 
HIV infection are also used for hepatitis B; (2) monotherapy 
of ARV drugs is not considered an effective HIV medica-
tion unless prescribed in combination with an additional 
drug and (3) dual therapy with emtricitabine and tenofovir 
are prescribed for PrEP and PEP, we further refined the 

algorithm to include triple drug regimen for HIV medica-
tion to avoid misclassification.

Figure 1 summarises development and validity assessment 
of the HIV case detection algorithms. The final algorithm 
replaces conditions B1, C2 and D1 by B1F, C2F and D1F, 
where the only difference is that the conditions for the final 
algorithm require triple drug ARV therapy to be triggered. 
Applying it to the MoPH EMR data found that the final 
algorithm classified 449 088 individuals as HIV positive, vs 
460 575 for the initial algorithm. The similarity of volume 
of classified cases indicates that the restriction of the condi-
tions to triple therapy was not overly restrictive.

The final algorithm experienced a large reduction in the 
number of hospitals, going from 3245 in the initial algo-
rithm to 1496 in the final. Around 70% of hospitals are 
subdistrict health promoting hospitals providing primary 
care and health promotion services, but not ART. Triple 
drug regimen requirement reduced number of cases from 
these hospitals. Thus it is unsurprising that most cases in 
the EMR system should come from a more limited number 
of hospitals, whereas PrEP and PEP regimens would be 
present in a wider array of facilities.

DISCUSSION
To our knowledge, this is the first description of an algo-
rithm using EMR data to identify patients with HIV posi-
tive status in Thailand. Our findings are consistent with the 
NAP. In June 2021, the final algorithm as implemented in 
the EIIS identified a total of 5 17 503 cases compared with 
535 286 HIV infected individuals registered in NAP.16 This 
provides confidence in the robustness of the algorithm to 
develop a case report system. Approximately 96% of cases 
were detected by the algorithm using clinical evidence and 
only 4% were detected by laboratory information.

Figure 1  Development and validity assessment of the HIV 
case detection algorithms. ARV, antiretroviral; HDC, health 
data centres; ICD-10, International Classification of Diseases, 
10th Revision; NAP, National AIDS Programme.

Table 3  Reasons given for false positivity by specialist 
review

Count %

PEP 415 26

PrEP 27 2

Hepatitis B 20 1

Incorrect ICD-10 1152 71

No information 506

ICD-10, International Classification of Diseases, 10th Revision; PEP, 
postexposure prophylaxis; PrEP, pre-exposure prophylaxis.
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The widespread adoption of EMRs for clinical documen-
tation in Thailand has led to unprecedented opportunities 
for national communicable disease notification and moni-
toring system. In the past, reporting of notifiable diseases 
took a considerable amount of time and was performed 
by aggregating large amount of paper-based information 
from distant service delivery points up to the programme 
management level. This process was also prone to errors, 
loss of information, under-report and duplication when data 
from all service providers were combined.17 The time taken 
in compiling information hindered the ability to respond 
to HIV situations in a timely manner. Previous studies have 
revealed considerable under-reporting in the national 
reporting system, limiting its ability to quantify prevalence 
or provide reliable estimates of future trends.18 19

Our novel algorithmic approach to the identification of 
HIV infection in the EMR system contributed to the devel-
opment of an HIV case reporting system in Thailand. In 
October 2018, Thailand MoPH developed the EIIS to report 
HIV infection and monitor HIV/AIDS situation at national 
and subnational levels in Thailand. Figure 2 illustrates the 
diagram flow of the EIIS system. EMR included demo-
graphics, lab, prescription and diagnosis transfer from the 
HIS to provincial HDC and subsequently to MoPH HDC at 
least once a month. HDC also received death registry from 
the Ministry of Interior. EIIS applied the final algorithm to 
select patients who met the HIV case detection algorithm 
and transferred these cases to the EIIS data warehouse 
and case report DataMart for authorised surveillance staff 

at each health facility to review and confirm HIV infection 
status via a secured internet Web browser. According to the 
Disease Control Law and the MoPH regulation on data 
security, restricted access to the dataset was applied for only 
authorised HIV/AIDS disease control staff. Accessing the 
EIIS dataset required an online registration through the 
EIIS website and approval from the Department of Disease 
Control. In addition, EIIS data extraction was modified and 
further used for other purposes such as HIV morbidity and 
mortality monitoring system, and data quality improvement 
programme to track loss to follow-up patients.

Three years after implementation from 1 October 2018 
to 30 June 2021, final algorithm as implemented in the EIIS 
detected and stored 518 684 cases in the EIIS data ware-
house. Of those, 238 067 or 46% of cases were eventually 
reviewed by authorised healthcare workers at health facil-
ities. Of those reviewed, 0.5% (1240 cases) were misclassi-
fied as HIV-infected when they were actually HIV-negative. 
EIIS can improve the reporting system through early noti-
fication and provision of detailed contact information; 
however, it may be limited in capturing information critical 
for risk factors and exposures. These data elements are vari-
ably documented by clinicians and typically only recorded 
as free-text rather than structured data. Natural-language 
processing techniques may improve capacity to report these 
risks in the future.

There are important limitations to what can be expected 
of EMR-based reporting systems. The ability of an HIV case 
detection algorithm relies on quality and completeness 

Figure 2  Diagram flow of the EIIS system. API, application programming interface; DQI, data quality improvement; HDC, 
health data centres; HIS, hospital information system; MoPH, Ministry of Public Health; OLAP, online analytical processing;  
SQL, structured query language.
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of data. Ongoing efforts to improve EMR data quality are 
necessary. This system may not be able to capture patients 
receiving services from private hospitals. However, majority 
of HIV patients received HIV treatment in public facili-
ties under UC where they submit EMR to MoPH HDC, 
accounting for 79% of all inpatient beds nationwide. The 
algorithms detect cases by searching for laboratory tests, 
prescriptions, and diagnosis codes that in combination 
are suggestive of HIV infection. The algorithms, there-
fore, need to be updated when new tests or new drugs are 
introduced, and new coding systems are implemented (eg, 
ICD-10). Periodic evaluation and system-wide update to 
continually calibrate algorithms will ensure efficacy of the 
HIV reporting system.20Only 4% of cases were detected by 
the laboratory-confirmed evidence and 96% of cases were 
detected by the algorithm using diagnosis and prescrip-
tion criteria. The HIV case reporting may be delayed as 
cases who do not meet laboratory criteria will need to wait 
for HIV diagnosis and treatment data to determine their 
HIV status. The time and effort required to complete this 
process vary widely depending on the quality of records of 
reportable cases and the availability of clinical staff to review 
cases flagged by the EIIS system for accuracy. Additional 
resources and efforts are needed to strengthen the system.

CONCLUSIONS
This national automated case reporting system initiative 
developed in this study is a model for how EMR can automat-
ically identify HIV-infected subjects. Algorithms incorpo-
rating laboratory, standard diagnosis codes and medication 
prescriptions have the potential to improve completeness 
and timeliness of HIV reporting system compared with the 
traditional system. Much effort should be concentrated on 
improving data quality of national EMR data.
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The BMJ Health & Care Informatics 
presented two editors’ choice papers exam-
ining two different, but related papers, 
focused on health professional’s perspec-
tives on if and how technology can improve 
care processes and delivery. The empirical 
study of Bowden et al 1 explored clinicians’ 
perceptions of digital access to patients’ 
past medical history (PMH) as a basis for 
justifying significant investment into shared 
electronic health records (SEHR). Bates 
et al 2 work reported a roundtable expert 
discussion on the challenges and future 
direction in smart medication management.

Bowden et al surveyed clinicians from the 
front line, those in emergency departments 
and providing urgent care. In these time 
critical environments, clinicians reported 
that access to PMH is imperative to be 
able provide a response that accounts for 
heath status, current treatment regime and 
other health data related to the immediate 
presentation. Clinician’s valued and wanted 
to obtain information from a trusted SEHR; 
there is a high level of technology accep-
tance. Five major suggested improvements 
were identified: increasing the number of 
patient records available; standardisation of 
information presentation; increased system 
reliability; expanded access to information 
and validation by authoritative/trusted 
sources. Two policy implications were iden-
tified: the need to focus on higher levels of 
patient participation; and, to ensure patient 
record curation and stewardship increasing 
the breadth and depth of information and 
processes.

Bates et al work records an expert discus-
sion on the challenges and future direc-
tion in smart medication management. 
The key focus of the discussion was to 
reconsider the critical question: how can 
the original goal of improved healthcare 
quality and medication safety through elec-
tronic medical records be achieved? The 
challenges identified relate to established 

individual behaviours and beliefs, defined 
care delivery systems, and inflexible service 
requirements. They suggest that improve-
ments are to be found through addressing 
simultaneously four interrelated issues: 
digital and information technology systems; 
safe prescribing; communication and 
education of both clinicians and patients; 
and medication adherence.

Individually, and together, Bowden et al 
and Bates et al highlight the need for a whole 
of systems approach that encompasses all 
healthcare providers to develop, imple-
ment, evaluate and improve technology to 
enhance care processes and delivery. They 
bring to attention, once again, that end-
user involvement, including the pressing 
need for increased patient involvement, 
will likely raise the uptake and success of 
technology driven improvements.3 4 Each 
work promotes renewed recognition that 
addressing usability and human factors are 
critical to building safe and effective health 
systems and care delivery processes.5–7

Twitter Yu-Chuan (Jack) Li @jaak88

Contributors  Initial conception design and drafting of the 
manuscript: DG, UI and Y-CL. Drafting the manuscript: DG and UI. 
Critical revision of the paper: DG, UI and Y-CL.

Funding  The authors have not declared a specific grant for this 
research from any funding agency in the public, commercial or 
not-for-profit sectors.

Competing interests  None declared.

Patient consent for publication  Not applicable.

Provenance and peer review  Commissioned; internally peer 
reviewed.

Open access  This is an open access article distributed 
in accordance with the Creative Commons Attribution Non 
Commercial (CC BY-NC 4.0) license, which permits others to 
distribute, remix, adapt, build upon this work non-commercially, 
and license their derivative works on different terms, provided 
the original work is properly cited, appropriate credit is given, 
any changes made indicated, and the use is non-commercial. 
See: http://creativecommons.org/licenses/by-nc/4.0/.

ORCID iDs
Usman Iqbal http://orcid.org/0000-0002-0614-123X
Yu-Chuan (Jack) Li http://orcid.org/0000-0001-6497-4232

http://bmjopen.bmj.com/
http://orcid.org/0000-0002-0614-123X
http://orcid.org/0000-0001-6497-4232
http://crossmark.crossref.org/dialog/?doi=10.1136/bmjhci-2022-100673&domain=pdf&date_stamp=2022-09-27
https://twitter.com/jaak88
http://creativecommons.org/licenses/by-nc/4.0/
http://orcid.org/0000-0002-0614-123X
http://orcid.org/0000-0001-6497-4232


2 Greenfield D, et al. BMJ Health Care Inform 2022;29:e100673. doi:10.1136/bmjhci-2022-100673

Open access�

REFERENCES
	1	 Bowden TC, Lyell D, Coiera E. Emergency department and urgent care 

clinician perspectives on digital access to past medical histories. BMJ 
Health Care Inform 2022;29:e100567.

	2	 Bates DW, Cheng H-Y, Cheung NT, et al. 'Improving smart medication 
management': an online expert discussion. BMJ Health Care Inform 
2022;29:e100540.

	3	 Jacobsohn GC, Leaf M, Liao F, et al. Collaborative design and 
implementation of a clinical decision support system for automated 
fall-risk identification and referrals in emergency departments. Healthc 
2022;10:100598.

	4	 Poncette A-S, Mosch LK, Stablo L, et al. A remote patient-monitoring 
system for intensive care medicine: mixed methods Human-Centered 
design and usability evaluation. JMIR Hum Factors 2022;9:e30655.

	5	 Carayon P, Hoonakker P. Human factors and usability for health 
information technology: old and new challenges. Yearb Med Inform 
2019;28:071–7.

	6	 Di Pelino S, Lamarche L, Carr T, et al. Lessons learned through two 
phases of developing and implementing a technology supporting 
integrated care: case study. JMIR Form Res 2022;6:e34899.

	7	 Turner P, Kushniruk A, Nohr C. Are we there yet? Human factors 
knowledge and health information technology - the challenges of 
implementation and impact. Yearb Med Inform 2017;26:84–91.

http://dx.doi.org/10.1136/bmjhci-2022-100567
http://dx.doi.org/10.1136/bmjhci-2022-100567
http://dx.doi.org/10.1136/bmjhci-2021-100540
http://dx.doi.org/10.1016/j.hjdsi.2021.100598
http://dx.doi.org/10.2196/30655
http://dx.doi.org/10.1055/s-0039-1677907
http://dx.doi.org/10.2196/34899
http://dx.doi.org/10.15265/IY-2017-014


© 2022 Author(s) (or their employer(s)) 2022. Re-use permitted under CC
BY-NC. No commercial re-use. See rights and permissions. Published by

BMJ. http://creativecommons.org/licenses/by-nc/4.0/This is an open access
article distributed in accordance with the Creative Commons Attribution Non

Commercial (CC BY-NC 4.0) license, which permits others to distribute,
remix, adapt, build upon this work non-commercially, and license their

derivative works on different terms, provided the original work is properly
cited, appropriate credit is given, any changes made indicated, and the use is

non-commercial. See:  http://creativecommons.org/licenses/by-nc/4.0/.
Notwithstanding the ProQuest Terms and Conditions, you may use this

content in accordance with the terms of the License.



  1Chen Y-H, et al. BMJ Health Care Inform 2022;29:e100544. doi:10.1136/bmjhci-2022-100544

Open access�

Early detection of autism spectrum 
disorder in young children with machine 
learning using medical claims data

Yu-Hsin Chen  ‍ ‍ ,1 Qiushi Chen  ‍ ‍ ,1 Lan Kong  ‍ ‍ ,2 Guodong Liu  ‍ ‍ 2,3,4,5

To cite: Chen Y-H, Chen Q, 
Kong L, et al.  Early detection 
of autism spectrum disorder in 
young children with machine 
learning using medical claims 
data. BMJ Health Care Inform 
2022;29:e100544. doi:10.1136/
bmjhci-2022-100544

	► Additional supplemental 
material is published online only. 
To view, please visit the journal 
online (http://​dx.​doi.​org/​10.​
1136/​bmjhci-​2022-​100544).

Received 06 January 2022
Accepted 19 August 2022

For numbered affiliations see 
end of article.

Correspondence to
Dr Qiushi Chen;  
​q.​chen@​psu.​edu

Original research

© Author(s) (or their 
employer(s)) 2022. Re-use 
permitted under CC BY-NC. No 
commercial re-use. See rights 
and permissions. Published by 
BMJ.

ABSTRACT
Objectives  Early diagnosis and intervention are keys for 
improving long-term outcomes of children with autism 
spectrum disorder (ASD). However, existing screening 
tools have shown insufficient accuracy. Our objective is 
to predict the risk of ASD in young children between 18 
months and 30 months based on their medical histories 
using real-world health claims data.
Methods  Using the MarketScan Health Claims Database 
2005–2016, we identified 12 743 children with ASD and 
a random sample of 25 833 children without ASD as 
our study cohort. We developed logistic regression (LR) 
with least absolute shrinkage and selection operator and 
random forest (RF) models for predicting ASD diagnosis 
at ages of 18–30 months, using demographics, medical 
diagnoses and healthcare service procedures extracted 
from individual’s medical claims during early years 
postbirth as predictor variables.
Results  For predicting ASD diagnosis at age of 24 
months, the LR and RF models achieved the area under 
the receiver operating characteristic curve (AUROC) of 
0.758 and 0.775, respectively. Prediction accuracy further 
increased with age. With predictor variables separated by 
outpatient and inpatient visits, the RF model for prediction 
at age of 24 months achieved an AUROC of 0.834, with 
96.4% specificity and 20.5% positive predictive value at 
40% sensitivity, representing a promising improvement 
over the existing screening tool in practice.
Conclusions  Our study demonstrates the feasibility of 
using machine learning models and health claims data 
to identify children with ASD at a very young age. It is 
deemed a promising approach for monitoring ASD risk 
in the general children population and early detection of 
high-risk children for targeted screening.

INTRODUCTION
Autism spectrum disorder (ASD) is a devel-
opmental disorder that involves persistent 
challenges in social interaction, speech and 
nonverbal communication, and restricted 
and repetitive behaviours.1 In the USA, the 
prevalence of ASD has increased substantially 
in the past two decades, with an estimate of 
every 1 in 44 children to be identified with 
ASD by age 8 in 2016.2 Although there exist 
evidence-based interventions which improve 
core symptoms in children with ASD, many 
children with ASD still experience long-term 

challenges with daily life, education and 
employment.3

Early diagnosis is the key to early interven-
tion for improving the long-term outcomes 
of children with ASD. However, despite the 
growing evidence shows that accurate and 
stable diagnoses can be made by 2 years,4 in 
real-world settings, the median age of ASD 
diagnosis is 50 months.2 To improve early 
diagnosis, the American Academy of Pedi-
atrics (AAP) has recommended universal 
screening among all children at 18-month 
and 24-month well-child visits in the primary 
care settings using the Modified Checklist 
for Autism in Toddlers (M-CHAT),5 a ques-
tionnaire that assesses children’s behaviour 
for toddlers.6 However, growing evidence 
has shown that using M-CHAT alone may 

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ Growing evidence has shown that existing autism 
spectrum disorder (ASD)-specific screening tools 
(eg, Modified Checklist for Autism in Toddlers) may 
not yield sufficient accuracy for early detection of 
children with ASD in clinical practice.

	⇒ Previous clinical and health service research has 
identified clinical risk factors associated with ASD, 
but the clinical factors from an individual’s prior 
medical history have not been used comprehen-
sively to assess the risk of ASD in young children.

WHAT THIS STUDY ADDS
	⇒ This study demonstrated the feasibility of predicting 
ASD diagnosis with promising accuracy based on an 
individual’s medical record from health claims data 
using machine learning models.

	⇒ Our prediction models were clinically interpretable, 
which systematically identified key predictors in line 
with known risk factors and symptoms among ASD 
children in the literature.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This study may serve as a basis for integrating pre-
dictive modelling into the health information system 
and the clinical workflow to enhance the current 
ASD screening practice.
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not yield sufficient accuracy in detecting ASD cases, with 
a sensitivity below 40% and a positive predictive value 
(PPV) under 20%.7 8

In addition to ASD-specific behavioural questionnaires, 
general clinical and healthcare records may also contain 
meaningful signals to differentiate the ASD risks among 
very young children. Studies have found that children 
with ASD are oftentimes accompanied by certain symp-
toms and medical issues such as gastrointestinal prob-
lems,9 infections10 11 and feeding problems.12 This implies 
that past diagnosis and healthcare encounter informa-
tion, commonly available from health insurance claims or 
Electronic Healthcare Record (EHR), could potentially 
be used for ASD risk prediction. In fact, medical claims 
and EHR data have been widely used in the health infor-
matics literature for identifying disease-specific early 
phenotypes even before the hallmark symptoms start to 
manifest, such as for chronic diseases like heart failures,13 
diabetes14 and Alzheimer’s disease.15 In the context of 
ASD, health record data has been used to identify the ASD 
subtypes16 17 and to predict the suicidal risk in adolescents 
with ASD18; however, its use for predicting ASD diagnosis 
in young children has remained limited. To fill this gap, 
the objective of this study is to examine the feasibility of 
using large-scale real-world medical claims data to develop 
a prediction model for ASD diagnosis in young children, 
which can be used to support effective ASD screening 
strategies and facilitate early detection.

METHODS
Data source
We used the deidentified individual-level longitu-
dinal healthcare claims data from the IBM MarketScan 
Commercial Claims and Encounters Database from 
2005 to 2016. This database includes over 273 million 
unique individuals for both privately and publicly insured 
people in the USA.19 The claims data include baseline 

demographics (eg, sex, birth year, postal region), service 
providers, insurance plans, medical diagnoses (in inter-
national Classification of Diseases (ICD)-9/10 codes) and 
procedures (in Healthcare Common Procedure Coding 
System (HCPCS) and Current Procedural Terminology-4 
codes) at each encounter of healthcare services.

Study population
We constructed an initial cohort consisting of young 
children with and without ASD (figure 1). The inclusion 
criteria of the ASD cohort are as follows: (1) having at 
least 2 outpatient or 1 inpatient ASD diagnosis encoun-
ters (299 for ICD-9 and F84 for ICD-10) throughout 
the existing records20 21; and (2) having continuous 
enrolment from 4 months to 30 months to ensure the 
completeness of health records from the claims data that 
can be used for diagnosis prediction at up to 30 months 
(online supplemental figure S1). To create the non-ASD 
cohort, we first identified individuals without any ASD 
diagnosis throughout their health records, then downs-
ampled 5% of the population to obtain a computation-
ally manageable yet sufficiently large subset of samples. 
To ensure patients had adequate follow-up time to receive 
confirmed ASD diagnosis in the database, we restricted 
our selection of non-ASD patients by requiring a full 
enrolment period from 4 months to 60 months (online 
supplemental table S1).

Predictor variables for ASD diagnosis
We examined all diagnosis and procedure codes of a 
child’s medical encounters available from as early as 
within 4 months after birth up to the age for prediction 
of ASD. We applied the Clinical Classifications Software 
(CCS),22 a commonly used tool in health informatics 
research, to aggregate the large number of distinct diag-
nosis and procedure codes into clinically meaningful 
groups (figure  1). The single-level CCS maps the ICD-
9/10 and HCPCS codes to a substantially smaller yet 

Figure 1  Overview of study design for the predictive analysis. ASD, autism spectrum disorder; AUROC, area under receiver 
operating characteristic curve; AUPRC, area under precision-recall curve; LASSO, least absolute shrinkage and selection 
operator; PPV, positive predictive value.

https://dx.doi.org/10.1136/bmjhci-2022-100544
https://dx.doi.org/10.1136/bmjhci-2022-100544
https://dx.doi.org/10.1136/bmjhci-2022-100544


3Chen Y-H, et al. BMJ Health Care Inform 2022;29:e100544. doi:10.1136/bmjhci-2022-100544

Open access

practical set that includes 285 diagnosis and 231 proce-
dure categories.22 We further removed the same-day 
duplications of CCS codes after the mapping by counting 
at most one encounter of a specific CCS category for each 
person on each day.

To predict the ASD diagnosis at the age of 24 months in 
our base case model, in line with the age when a diagnosis 
can possibly be made by an experienced professional,4 
we defined the predictor variables as the total number 
of encounters for each CCS category up to the age for 
prediction of 24 months. We also included sex and the 
encounters of emergency department visits, which are 
well-known clinically relevant factors associated with the 
autism population.23 Variables that were present in <1% 
of both ASD and non-ASD cohorts were excluded.24 A 
total of 170 input predictor variables were included for 
prediction at the age of 24 months. Having considered 
that the course of clinical events may be following a 
different pattern after an encounter with ASD diagnosis, 
we excluded any children who had at least one encounter 
with ASD diagnosis code prior to the age for prediction 
in our analysis.

Prediction model development and validation
We employed two machine learning methods, logistic 
regression (LR) and random forest (RF), which have 
been widely used for developing risk prediction models 
in various clinical settings. LR assumes that the indepen-
dent variables are linearly related to the log odds and that 
the effects of multiple variables are additive, whereas RF 
is particularly suitable for exploiting nonlinear interac-
tive effects in high-dimensional data. For the LR model, 
we also applied the least absolute shrinkage and selec-
tion operator (LASSO) as a feature selection technique 
to enforce the coefficients of weak predictors to be zero. 
The RF model was limited to up to 100 decision trees 
in the base case setting (other choices of the maximum 
number of trees were tested in sensitivity analysis).

To train our model, we sampled 10 000 ASD and 10 000 
non-ASD subjects (N=20 000) from the initial cohort to 
build a large balanced training sample for maximising the 
discriminatory power learnt by the prediction model. To 
evaluate the model prediction performance, we created 
an independent imbalanced testing set (N=16 201) 
comprised of ASD and non-ASD patients from the 
remaining cohort that were mutually exclusive from the 
training set. The testing set resembled the real-world esti-
mates for ASD prevalence of 2.3% (ie, 1 in every 44) in 
the general population.2

We measured the prediction performance with sensi-
tivity (also known as true positive rate or recall), speci-
ficity (or true negative rate) and PPV (or precision)25 
at various selected risk thresholds. The model’s overall 
discrimination ability was measured using the area under 
the receiver operating characteristic curve (AUROC). We 
also calculated the area under the precision-recall curve 
(AUPRC) where the precision-recall curve represents the 
relationship between PPV and sensitivity, and F1 score 

is defined as the harmonic mean of PPV and sensitivity, 
which are suited for evaluating the prediction perfor-
mance for the imbalanced testing sample.26 27 To assess 
the stability and the uncertainty of prediction perfor-
mance, we repeated the training and testing set sampling, 
model training, testing and performance evaluation with 
50 independent replications. The 95% CIs of all perfor-
mance measures were reported.

Predicting ASD diagnosis at different ages
In addition to the base case prediction model where the 
risk of ASD diagnosis was assessed based on clinical infor-
mation up to 24 months, we compared the accuracy of 
ASD prediction with varying lengths of available medical 
history at (1) a younger age, 18 months, considering 
that the universal ASD screening is recommended for 
children at both 18 months and 24 months5; and (2) an 
older age, 30 months, which is still a critical time point for 
monitoring the developmental delays and consideration 
of early intervention.28 We followed the same approach 
in the base case to exclude predictor variables of low 
frequency (resulting in 150 and 180 predictor variables 
in total for prediction at 18 and 30 months, respectively) 
and the children with ASD diagnosis prior to the age for 
prediction.

Identifying key predictor variables
We further explored how many and which key predictive 
variables had the most impact on the prediction perfor-
mance using the Gini importance index from the RF 
model. We added variables incrementally following the 
order of Gini Index (ie, starting with the most important 
variable) and evaluated how the prediction accuracy 
changed as more variables were included. Selected key 
predictive variables were then compared with those iden-
tified by alternative strategies using (1) the absolute value 
of coefficients from the LASSO LR model and (2) the 
prevalence of each variable in the identified ASD cohort.

Separating inpatient and outpatient visits
Considering that the underlying severity of the symp-
toms could potentially differ by inpatient hospitalisations 
and outpatient visits,29 we split the number of encoun-
ters for each diagnosis and procedure by inpatient and 
outpatient visit separately and augmented the predic-
tion model with more detailed encounter variables. We 
compared the prediction performance of the models 
using the augmented variables with our base case models.

Sensitivity analysis
We performed sensitivity analysis on several modelling 
assumptions to assess the robustness of our prediction 
models. Specifically, we strengthened the inclusion 
criteria for non-ASD subjects by requiring one additional 
year of enrollment, that is, increased from 4–60 months 
to 4–72 months. Furthermore, we assessed the potential 
loss of information due to excluding variables with <1% 
prevalence, to verify that such a variable prescreening 
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procedure would not miss out on rare but crucial predic-
tive information.

RESULTS
Predicting ASD diagnosis at age of 24 months
We identified the study cohort consisting of 12 743 ASD 
subjects and 25 833 non-ASD subjects (more details in 
online supplemental table S1). When predicting the ASD 
diagnosis at the age of 24 months in independent testing 
samples, the LR and RF models achieved the AUROC of 
0.758 (95% CI 0.755 to 0.762) and 0.775 (95% CI 0.771 
to 0.779), respectively (table 1, figure 2). Compared with 
the LR model, RF model also showed a higher AUPRC 
(LR 0.101 (95% CI 0.098 to 0.104); RF 0.143 (95% CI 
0.138 to 0.148)) and F1 score (LR 0.193 (95% CI 0.188 
to 0.197); RF: 0.246 (95% CI 0.240 to 0.251)). The limit 
of up to 100 trees in the RF model was deemed sufficient 
to achieve stable performance. Further increasing the 
model complexity did not translate to an improvement in 
prediction accuracy (online supplemental table S2).

Predicting ASD diagnosis at different ages
Comparing the prediction models at the ages of 18, 24 and 
30 months, we found that the prediction performance 
increased substantially with the age. Specifically for the 
RF model, the AUROC increased from 0.717 (0.714–
0.721) at age of 18 months to 0.832 (0.828–0.835) at 30 
months (table 1). Similarly, the AUPRC increased from 
0.067 (0.065–0.069) to 0.234 (0.227–0.240) (figure  3), 
and F1 score increased from 0.130 (0.125–0.134) to 0.326 
(0.322–0.331) from age of 18–30 months. The LR model, 
although with a lower prediction accuracy compared 
with the RF model in general, also showed a consistently 
increasing prediction performance as the age increased.

Identifying key predictive variables
As the RF model included more variables following the 
importance order by the Gini index, it showed higher 
AUROC (online supplemental figure S2). For predic-
tion at age of 24 and 30 months, 30–40 most important 
variables were sufficient to achieve stable prediction 
performance with AUROC, whereas for an earlier age of 
18 months, the top 50 important variables contributed 
to most of the prediction performance, while including 
additional variables could continue to marginally improve 
the prediction performance. We closely examined the 50 
most important variables of the RF model (ranked by 
Gini index) and the LR model (ranked by the median 
absolute value of the coefficient) for prediction at age of 
24 months (online supplemental figure S3). The identi-
fied important variables included sex, developmental and 
nervous system disorders, psychological and psychiatric 
services, respiratory system infections and symptoms, 
gastrointestinal-related diagnosis, ear and eye infections, 
perinatal conditions, and ED visits, which have also been 
seen as separate risk factors associated with ASD cases in 
the clinical literature. The key predictors of the RF model Ta
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were also highly consistent with high prevalence variables, 
sharing 47 out of 50 most common variables in the ASD 
cohort (online supplemental figure S4).

Prediction using separated inpatient and outpatient data
Separating inpatient and outpatient encounters further 
increased the AUROC for prediction at the age of 24 
months to 0.766 (95% CI 0.762 to 0.769) in the LR model 
and 0.834 (95% CI 0.831 to 0.837) in the RF model. At 
the target sensitivity of 40%, the RF model achieved a 
higher specificity of 96.4% (95% CI 96.2% to 96.5%) with 
a PPV of 20.5% (95% CI 19.8% to 21.1%), outperforming 
the existing screening tool M-CHAT/F (with a sensitivity 
of 38.8%, specificity of 94.9% and PPV of 14.6%). We 
found that using claims data separated by inpatient and 
outpatient visits improved the prediction performance 
consistently across all ages (figure 4).

Robustness check and sensitivity analysis
With a more stringent inclusion criterion for non-ASD 
subjects by requiring a longer full enrollment period up 
to 72 months (vs 60 months in our base case), we found 
that the prediction performance had modest improve-
ment (online supplemental table S3). It could be partially 
attributed to the fact that with longer years to ascertain 

the non-ASD cohort, children would be less likely to be 
misclassified. We also verified that including the low-
prevalence variables would not result in substantial differ-
ences but only marginal changes of AUROC within 0.01 
across all model specifications.

DISCUSSION
Early identification is vital for children with ASD to ensure 
their access to timely intervention and to optimise long-
term outcomes. In this study, we demonstrated the feasi-
bility of predicting ASD diagnosis at early ages using health 
claims data and machine learning models. We found that 
LASSO LR and RF models achieved an overall AUROC 
above 0.75 when predicting ASD diagnosis at age of 24 
months. Our results also showed that prediction perfor-
mance increased with age at the time of prediction. This 
is reasonable because more clinical information accumu-
lated over a longer follow-up period since birth may contain 
more distinctive patterns to effectively differentiate chil-
dren with ASD. The prediction models developed in our 
study are clinically interpretable. Key predictors, such as sex 
(male), developmental delays, gastrointestinal disorders, 
respiratory system infections and otitis media have shown 
strong predictive values for ASD diagnosis, which are in line 
with previous clinical studies that have shown these symp-
toms being associated with ASD children. Finally, our study 
showed that separating inpatient and outpatient claims as 
predictors could further improve the prediction accuracy.

In our study, both LASSO LR and RF models showed 
promising accuracy in predicting ASD diagnosis based on 
an individual’s medical claims data. This robust finding 
implies that there may exist distinct patterns in health 
conditions and health service needs among young chil-
dren with ASD, well before the onset of most hallmark 
ASD behavioural symptoms. Such predictive signals can 

Figure 2  Receiver operating characteristic curves (A) and 
precision-recall (PR) curves (B) for prediction of autism 
spectrum disorder (ASD) diagnosis at age of 24 months. The 
prevalence stands for the baseline 2.27% (ie, 1 in 44) ASD 
prevalence in the general population. AUC, area under curve; 
LR, logistic regression; RF, random forest.

Figure 3  Receiver operating characteristic curves (A) and 
precision-recall curves (B) for prediction of autism spectrum 
disorder at ages of 18, 24 and 30 months, respectively, by the 
random forest model. AUC, area under curve.

Figure 4  Comparison of area under the receiver operating 
characteristic curve (AUROC) with combined versus 
separated inpatient and outpatient encounters by LASSO 
logistic regression (LR) and random forest (RF) models, at 
the age of 18, 24 and 30 months, respectively. Error bars 
in the figure represent the 95% CIs based on results from 
50 replications of independent runs. LASSO, least absolute 
shrinkage and selection operator.

https://dx.doi.org/10.1136/bmjhci-2022-100544
https://dx.doi.org/10.1136/bmjhci-2022-100544
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be easily extracted from the electronic health records or 
medical claims administrative data, and used for the early 
identification of ASD cases. We also observed differences in 
the performance between the two models. The RF model 
outperformed the LASSO LR model in general, likely 
because, with its tree-based model structure, the RF model 
is better at capturing complex interactive effects among 
the predictor variables to distinguish between the ASD 
and non-ASD cases, whereas the LR model synthesises the 
effects of multiple variables additively. The advantage of the 
RF model became more salient when input variables were 
separated by inpatient and outpatient claims into a more 
granular level.

Our study has made an important contribution to 
applying health informatics in the field of ASD. Although 
there exists a plethora of literature identifying individual 
risk factors of ASD, using large healthcare service data and 
machine learning models to systematically predict ASD 
diagnosis has remained much less explored. Unlike existing 
clinical informatics studies that focused on detecting ASD 
subtypes,16 17 we aim to detect ASD cases among the general 
children population, that is, the early detection. This could 
be particularly challenging due to the low prevalence of 
ASD in the general population (ie, a highly imbalanced 
dataset), and the scarcity of information available at such 
a young age. Nevertheless, our model showed promising 
prediction performance. The RF model with separated 
inpatient and outpatient encounters achieved a specificity 
of 96.4% at a sensitivity of 40% for the ASD prediction at 
the age of 24 months, outperforming the accuracy of the 
existing ASD-specific screening tool (sensitivity: 38.8%; 
specificity: 94.9%) from a clinical observational study.7 It is 
worth noting that under a similar ASD prevalence (2.2%), 
our model showed a higher PPV (20.5% vs 14.6%).

Our prediction model for ASD diagnosis could lead to 
a significant impact on the screening strategies for ASD in 
young children. Although the AAP guidelines recommend 
universal screening in all children, it has been debated that, 
without the perfect screening tool, universal screening may 
result in overburdened diagnostic services in the health-
care system as these clinical resources are in extremely 
short supply.30 Our prediction models have demonstrated 
promising improvement over the existing ASD screening 
tool by using clinical information, which could potentially 
serve as a ‘triaging tool’ for identifying high-risk patients for 
diagnostic evaluation. Moreover, the models only based on 
health claims data makes it practically feasible to integrate 
into an EHR system or insurance claims database. It could 
further enable an automatic screening tool, which can 
continuously monitor an individual’s risk as new diagnosis 
and procedure information emerges, and send reminders 
to patients or providers for a timely clinical assessment if 
necessary. On the other hand, it is possible that some diag-
nosis and procedure information appear after a concern 
that the child had autism has already existed, such as 
following a positive screening event, which could alter the 
course of subsequent clinical events. As such, our prediction 
model is not designed to direct the screening decisions, but 

rather a tool to enhance the screening accuracy. If more 
detailed electronic health record data were available, the 
proposed risk prediction model could be further extended 
by incorporating screening results with clinical informa-
tion, or by differentiating the clinical information before 
versus after the screening events, to further improve the 
accuracy of identifying high-risk ASD cases for further diag-
nostic evaluation.

Our study has several limitations. First, diagnosis of ASD 
established only based on existing diagnosis codes from 
claims data could be inaccurate and unreliable sometimes 
in practice. We followed a validated approach in ASD 
health service research literature to identify the ASD cohort 
in our study.31 Second, the absence of ASD diagnosis codes 
in one’s health record may not necessarily indicate an indi-
vidual not having ASD, especially for children born in later 
years, due to limited follow-up time prior to the cut-off date 
in the database. Thus, we required full enrollment up to 
60 months without ASD diagnoses to identify the non-ASD 
cohort, and verified the robustness of our base case results 
in a sensitivity analysis requiring full enrolment up to 72 
months. Third, as autistic children are likely to have a wide 
range of comorbid conditions with various frequencies, for 
individuals who do not present comorbid conditions from 
the past healthcare encounter data, our model may provide 
limited value. Our risk prediction model can be further 
augmented by additional information other than informa-
tion from the health claims database, such as ASD/develop-
mental screening results and behaviour-related information 
from a more comprehensive EHR dataset in future studies. 
Lastly, the diagnosis and procedure codes in insurance 
claims data may be subject to variabilities and irregulari-
ties. Instead of the original detailed clinical codes, we used 
aggregated CCS categories for diagnoses and procedures 
for more robust clinical measures.

CONCLUSIONS
Using real-world health claims data and machine learning 
methods, we developed a prediction model that can success-
fully predict ASD diagnosis for children under 30 months 
with promising prediction accuracy. Our model also identi-
fied the important predictors for the diagnosis prediction, 
which showed meaningful clinical relevance and intuition. 
Our predictive modelling approach could potentially be 
generalised to broader clinical settings for predicting the 
diseases that may show early signals from past healthcare 
service encounters in claims or EHR data. Future studies 
could explore the prediction of ASD diagnosis dynamically 
over time as new healthcare encounter occurs, and inves-
tigate how validated risk prediction models could be inte-
grated and used to inform ASD screening strategies.
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ABSTRACT
Objective  Early and accurate prediction of hospital 
surgical-unit occupancy is critical for improving 
scheduling, staffing and resource planning. Previous 
studies on occupancy prediction have focused primarily on 
adult healthcare settings, we sought to develop occupancy 
prediction models specifically tailored to the needs and 
characteristics of paediatric surgical settings.
Materials and methods  We conducted a single-centre 
retrospective cohort study at a surgical unit in a tertiary-
care paediatric hospital in Boston, Massachusetts, USA. We 
developed a hierarchical modelling framework for predicting 
next-day census using multiple types of data—from bottom-
up patient-specific orders and procedures to top-down 
temporal variables and departmental admission statistics.
Results  The model predicted upcoming admissions and 
discharges with a median error of 17%–21% (2–3 patients 
per day), and next-day census with a median error of 7% 
(n=3). The primary factors driving these predictions included 
day of week and scheduled surgeries, as well as procedure 
duration, procedure type and days since admission. We 
found that paediatric surgical procedure duration was highly 
predictive of postoperative length of stay.
Discussion  Our hierarchical modelling framework provides 
an overview of the factors driving capacity issues in the 
paediatric surgical unit, highlighting the importance of both 
top-down temporal features (eg, day of week) as well as 
bottom-up electronic health records (EHR)derived features 
(eg, orders for patient) for predicting next-day census. In the 
practice, this framework can be implemented stepwise, from 
top to bottom, making it easier to adopt.
Conclusion  Modelling frameworks combining top-down 
and bottom-up features can provide accurate predictions 
of next-day census in a paediatric surgical setting.

INTRODUCTION
Substantial fluctuations in surgical-unit occu-
pancy present a major and ongoing challenge 
for healthcare providers. Many tasks that 
depend on future bed availability, including 
staffing, scheduling and patient transfer 
management, are directly impacted by these 
uncertainties. Failure to accurately predict 
surgical department census and the resulting 

lack of bed availability are among the leading 
causes of planned surgery cancellations.1 2 
Last-minute cancellations can lead to great 
frustration for the patient, the patient’s 
family and the clinical team.3 Lastly, delays 
in surgery can also result in grave medical 
complications and increased morbidity and 
mortality.4

In recent years, a growing body of work 
has focused on clinical occupancy prediction 
in adult healthcare settings,5–13 yet very few 
studies have focused on predicting capacity 
in paediatric hospitals or paediatric surgical 
departments.14 15 Yet while inpatient beds for 
adult patients are projected to increase over 
time, the number of paediatric inpatient beds 
has been dropping,16 increasing the pressure 
on inpatient resources devoted to paediatric 
services and highlighting the importance of 
focusing specifically on this subpopulation.

WHAT IS ALREADY KNOWN ON THIS TOPIC
	⇒ A shortage of surgical beds and frequent fluctua-
tions in surgical-unit occupancy present major chal-
lenges for hospitals, and often result in last-minute 
surgical cancellations. Forecasting bed occupancy 
can mitigate this problem and has been shown to be 
feasible in adult settings.

WHAT THIS STUDY ADDS
	⇒ This study demonstrates that accurate occupancy 
prediction is also feasible in paediatric settings and 
highlights the main features driving these predic-
tions. We present a hierarchical modelling frame-
work, combining top-down departmental variables 
with bottom-up patient-level data.

HOW THIS STUDY MIGHT AFFECT RESEARCH, 
PRACTICE OR POLICY

	⇒ This framework can improve resource utilisation in 
paediatric surgical units as well as guide the devel-
opment of other practical clinical prediction models.

http://bmjopen.bmj.com/
http://orcid.org/0000-0002-9603-4728
http://dx.doi.org/10.1136/bmjhci-2021-100498
http://dx.doi.org/10.1136/bmjhci-2021-100498
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In this study, we develop an occupancy prediction 
model for a surgical unit in a tertiary-care paediatric 
hospital. We apply an integrated hierarchical modelling 
framework that incorporates both top-down population-
level data and bottom-up individual-level data. In addi-
tion to this main modelling framework, we also develop 
a separate smaller model focused on postsurgical length 
of stay (LOS), in order to study the key risk factors associ-
ated with long postoperative stays.

METHODS
Setting
We analysed data from a surgical unit in a tertiary-care 
paediatric hospital in Boston, Massachusetts, USA. The 
data included all clinical and administrative orders, 
surgical procedures and procedure durations for patients 
admitted to the surgical unit from September 2015 to 
March 2020 (4.5 years). The data also included the 
daily census of the top three admitting departments, 
comprising 90% of all admissions to the surgical unit: 

emergency department (ED), postanaesthesia care unit 
(PACU) and surgical intensive care unit (ICU). Data 
from the first 3.5 years of the study period (1 September 
2015–28 February 2019) were used for model training, 
while data from the last year (1 March 2019–29 February 
2020) were used for model validation.

Census prediction
The daily census was calculated based on the number of 
patients in the surgical unit each day at 8:00 hours. To 
predict next-day census, the following formula was used:

	
‍Predicted census = Current census + Expected admissions − Expected discharges ‍
�

An overview of the modelling framework is presented 
in figure 1. This figure may serve as a useful guide to the 
description of the multipart model in the following para-
graphs. We applied a hierarchical modelling approach that 
fused both population-level temporal trends (top-down) 
together with individual-patient-specific factors (bottom-up). 

Figure 1  Overview of hierarchical modelling framework. Next-day surgical unit census is modelled as a function of the current 
census, the inflow of patients (ie, expected admissions) and the outflow of patients (ie, expected discharges). Patient inflow is 
predicted by a random forest model that uses the census data from the top three admitting departments (PACU, SICU, ED), as 
well as the schedule of planned surgeries, combined with temporal data on current weekday and nearby holidays. Discharge 
prediction for each individual patient is based on a random forest model that incorporates features extracted by natural 
language processing (NLP) tools from the orders and procedures datasets. These predictions also incorporate temporal effects 
related to the day of week and nearby holidays. All individual-patient discharge predictions are aggregated within a generalised 
linear model (GLM) to predict the overall number of expected discharges. ED, emergency department; PACU, post-anaesthesia 
care unit; SICU, surgical intensive care unit.
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The top-down features included information on variations 
in occupancy associated with day of week, month of year and 
holidays, as well as the overall census in the top admitting 
departments. The bottom-up features included individual 
patient orders and procedures data.

Both prediction of expected admissions and prediction 
of expected discharges were based on a random forest 
model using the randomForest package in R.17 18 The input 
features for the admission prediction model included the 
census in the top three admitting departments, the schedule 
of planned surgeries for the next day, as well as additional 
temporal information (month in year, day of week and 
nearby holidays). The input features for the discharge 
prediction model included the current day of admission, 
data on procedures and orders, and the temporal informa-
tion described above. Further description of the features 
extracted from the procedures and orders data is provided 
in online supplemental appendix A.

Predictions for individual-patient discharges, based 
on both bottom-up and top-down features, were incor-
porated into a generalised linear model that took into 
account summary statistics on the total number of patients 
with a likelihood of discharge of over 80%, 90% and 95% 
within 24-hours to predict the total number of expected 
discharges (figure 1).

Model validation and performance evaluation
The model, developed using the training set, was validated 
on the testing set. Model performance was measured 
using median absolute error (MAE) and median absolute 
percentage error (MAPE). To evaluate model perfor-
mance for binary predictions (such as the prediction 
of discharge within 24 hours for a given patient), we 
measured sensitivity, specificity, positive predictive value 
(PPV) and negative predictive value (NPV). To measure 
the contribution of each of the three main features of the 
model (temporal features, number of predicted admis-
sions and number of predicted discharges) to the overall 
prediction, a linear regression, with each variable sepa-
rately and with all variables combined, was used. Then, 
the adjusted R2 was measured for each variable and for all 
variables combined.

Secondary analysis: procedure duration and LOS
Alongside the main census prediction modelling frame-
work described above, which aimed to predict census 
within the next 24 hours, we also developed a separate 
LOS prediction model in order to study the factors 
affecting a patient’s LOS in the surgery unit. Specifically, 
we aimed to study the relationship between different 
surgical procedures and the LOS in the surgical unit 
following the procedure. For this analysis, we focused 
only on patients who underwent a surgical procedure 
prior to their admission.

First, we calculated the median LOS and IQR for 
each individual procedure, for all procedures of a given 
department and for each key-term extracted from the 
procedure’s description. In addition, we calculated the 

Spearman’s r correlation coefficient between procedure 
duration and LOS. We used the Spearman correlation 
since the distribution of the variables was not found to 
be normal according to the Shapiro-Wilk normality test. 
Finally, to assess the ability of these different factors to 
predict a patient’s total LOS, a random forest model 
was developed. The model was based only on procedure 
related data (online supplemental appendix A), using the 
same training/validation sets as before. The accuracy of 
the prediction was measured in terms of MAPE and MAE.

RESULTS
Variations in current census
There were 19 642 encounters in the surgical unit during 
the study period. Of these, 15 260 were used for training 
(78%) and 4382 used for validation (22%). The median 
number of patients in the surgical unit each day at 8:00 
hours was 33 (IQR 28–40). The daily census varied from a 
minimum of 12 patients to a maximum of 58 patients per 
day, and the daily change in number of patients varied 
between a decrease of 20 patients to an increase of 17 
patients.

Occupancy did not vary significantly from month to 
month (p=1), though weekday-to-weekend variations 
were more pronounced (p<0.001). On Sundays, the 
median number of patients was 27 while on Thursdays 
the median was 36 (figure 2). Variations in census were 
also noted around major US holidays. In all holidays 
but Columbus day, there was a decrease in the number 
of patients on both the day before and the day of the 
holiday. For most holidays, there was an overall decrease 
in the number of patients during the week surrounding 
the holiday (ie, no immediate compensatory increase in 
patients was observed after the holiday for the decrease 
in patients before the holiday). The holidays with 
the greatest decrease in the number of patients were 
Christmas Day (−8.4 patients), Thanksgiving Day (−8.2 
patients) and Memorial Day (−6 patients). A detailed 

Figure 2  Occupancy of surgical department by day of 
week. This box-plot shows the median number of patients in 
the surgical unit at 8:00 hours each day, by day of week.

https://dx.doi.org/10.1136/bmjhci-2021-100498
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4 Barak Corren Y, et al. BMJ Health Care Inform 2022;29:e100498. doi:10.1136/bmjhci-2021-100498

Open access�

summary of the effect of each holiday on occupancy is 
presented in online supplemental appendix B.

Predicting admissions
The median rate of admissions to the surgical unit was 
12 patients per day (IQR 9–15). Ninety per cent of the 
patients came from three departments: PACU with 53% 
of admissions, ED with 31% of admissions and the surgical 
ICU with 6% of admissions. The admission prediction 
model was able to predict the number of new admissions 
to the surgical department with a MAPE of 16.7% and a 
MAE of two patients per day. The most significant factors 
identified by the model were the schedule of planned 
surgeries, the number of patients in the PACU and the 
day of the week.

Predicting discharges
The median rate of discharges from the surgical unit was 
12 patients per day (IQR 9–15). The discharge prediction 
model was able to predict next-day discharge for individuals 
with an AUC of 0.84. At 90% specificity, the model was able 
to identify 57% of discharges with a PPV of 81% and NPV 
of 73% (online supplemental appendix C). The top factors 
associated with discharge timing included the number of 
days since admission (also representing the time since proce-
dure), duration of the surgical procedure prior to admission 
and whether the procedure was planned or not.

As expected, ‘discharge summary’ orders were highly 
predictive of discharge with an OR of 13.4 for next-day 
discharge. Other less-intuitive orders associated with 
next-day discharge included those with descriptions 
containing the terms ‘XR elbow’ (OR of 5.6 (4.0–7.7)) 
and orders including the terms ‘soft diet’ (OR of 5.9 
(4.9–7.0)). In contrast, patients receiving total parenteral 
nutrition, or any intravenous medications were unlikely 
to be discharged within 24 hours (OR <0.01). A summary 
of the top 40 orders to predict discharge (or lack of) can 
be found in online supplemental appendix C. Incorpo-
rating these individual-patient discharge predictions into 
a prediction of the overall discharges from the surgical 
unit, the generalised linear model was able to provide 
predictions with an error rate of 21.4% (MAPE) or a 
median of three patients per day (MAE).

Predicting next-day census
Integrating all of the above information into the census 
prediction formula (next-day census = current census + 
expected admissions − expected discharges), we were 
able to predict the next-day census in the validation set 
with a median error rate of 7% or three patients per day 
(IQR 1–5 patients per day) (figure 3). A prediction of an 
increase in the census was correct 85% of the time, while 
a prediction of a decrease in the census was only correct 
60% of the time. The model was able to explain about 
60% of the daily variability in census (R2=0.58), with most 
of the variability explained by the day of week and nearby 
holidays (R2=0.35), followed by the number of predicted 

admissions (R2=0.26) and the number of predicted 
discharges (R2=0.08).

Secondary analysis: surgery duration and LOS
As described in the methods section, alongside the main 
analysis of census prediction, we also developed a sepa-
rate model in order to examine the factors affecting the 
overall LOS among patients who underwent a surgical 
procedure prior to their admission. Of all included 
surgical-unit patients, 68% (13 439/19 642) underwent a 
surgical procedure prior to their hospitalisation. Of these, 
47% were for orthopaedics, 21% were for general surgery, 
17% orofacial surgery, 9% plastic surgery, 2% gastroin-
testinal (GI) surgery and 2% genitourinary procedures 
(GU). Sixteen patients underwent more than one proce-
dure. The 6229 admissions (32%) that were not preceded 
by a surgical procedure were either followed by a surgical 
procedure later during the hospitalisation (6.5%) or 
were without any documentation of a surgical procedure 
during the specific hospital encounter (25.5%).

Patients stayed in the surgical unit for a median of 
1.7 days (IQR 0.9–3.3). LOS varied by the type and dura-
tion of the preadmission procedure. For example, the 
median LOS for patients undergoing ‘medical’ proce-
dures (eg, placement of a central line) was 5.8 days, 
compared with only 1 day for those undergoing ophthal-
mology procedures (p<0.001). Patients undergoing spine 
halo application stayed for a median of 21 days (IQR 
10–34), while patients undergoing tympanomastoidec-
tomy stayed for a median 17 hours (IQR 12–22 hours, 
p<0.001). Procedures with descriptions that included 
terms such as ‘exploratory’ (eg, ‘exploratory laparotomy’) 
were associated with longer stays (median 6.1 days, IQR 
2–10) while those that included terms such as ‘percuta-
neous’ (eg, ‘elbow closed reduction with percutaneous 
pinning’) were associated with shorter stays (22 hours 

Figure 3  Predicted versus actual daily change in census 
during the validation time period. Observations to the left 
of the vertical dotted line (x=0) are days in which the model 
predicted a decrease in census. Observations to the right of 
the line are days in which the model predicted an increase 
in census. Days in which the actual census decreased are 
shown in blue (below y=0), while days in which the actual 
census increased are shown in red (above y=0).

https://dx.doi.org/10.1136/bmjhci-2021-100498
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on median, IQR 19–38, p<0.001). Further details can be 
found in online supplemental appendix D.

Procedure duration was more predictive of total LOS 
than procedure type or procedure description text: 
Patients who underwent a procedure that took over 12 
hours stayed on average 6 days longer than patients who 
underwent a procedure that took less than 2 hours (LOS 
of 8.4 days (95% CI 6.4 to 10.5) vs 2.3 days (95% CI 2.1 to 
2.4) (figure 4)). Similarly, within a specific procedure type 
(eg, appendectomy), patients undergoing shorter proce-
dures were likely to stay for a shorter time than those 
who underwent longer procedures (21 hours stay when 
the appendectomy took less than 1 hour vs 2 days when 
the appendectomy took longer than 1 hour, p<0.001). 
A detailed review of the correlation between procedure 
duration and the LOS can be found in online supple-
mental appendix D.

In online supplemental appendix E, we provide 
summary statistics for this separate model that predicts 
overall LOS based on procedure data. This model, sepa-
rate from the main modelling framework, was able to 
predict LOS with a MAPE of 36% and MAE of 0.8 days, 
with the procedure duration serving by far as the most 
important factor for the prediction.

DISCUSSION
In this study, we developed and validated a model to predict 
next-day census in the surgical unit of a large tertiary paedi-
atric hospital. We used a hierarchical modelling framework 
in order to isolate and evaluate the importance of indi-
vidual prediction components (temporal, current census, 
discharges, admissions) and to evaluate which predictive 
factors best predict each of the components. This model 
was able to predict admissions with a median error of 16.7% 
(two patients per day), predict discharges with a median 
error of 21% (three patients per day) and predict next-day 
census with a median error of 7% (three patients per day). 
The factors found to be of most significance in predicting 

next-day census were the day of the week, followed by the 
number of predicted admissions, and finally the number of 
predicted discharges.

In addition to the prediction of next-day census, a partic-
ular focus was given for the prediction and analysis of the 
LOS after surgery. Based only on procedure-related data, 
a separate random forest model was able to predict LOS 
with a median error of 36% or 0.8 days per patient. By far 
the most significant factor for this prediction of LOS was 
the procedure duration. Longer procedures were associ-
ated with longer hospital stays, both when comparing all 
procedures only by their duration and when comparing 
the same procedure for different durations. These results 
are consistent with prior studies that have shown an asso-
ciation between procedure duration and total LOS,10 19 20 
yet these other studies were all carried out in an adult 
population where different factors drive procedure dura-
tion.21 The association between procedure duration and 
LOS is not surprising, as major procedures are expected 
to take longer than minor procedures and to require 
longer in-hospital recovery time. Studies also suggest that 
prolonged procedures are associated with an increased 
risk for perioperative surgical-site infections, thus contrib-
uting even more to the overall LOS.10

The hierarchical modelling framework used in this 
study enables better understanding of the factors driving 
capacity issues and prediction accuracy. This approach 
also lends itself well to stepwise model implementation, 
from basic top-down temporal features such as day-of-
week and holidays to bottom-up features extracted from 
detailed order sets using advanced natural language 
processing tools. In this study, we show the contribution 
of these different ‘building blocks’ and highlight the 
importance of easy-to-obtain temporal information to 
the overall prediction. In addition, we provide a system-
atic investigation of paediatric surgical procedures with 
respect to postoperative hospital LOS. We show that 
the LOS can be predicted with good accuracy based on 
procedures data alone, and that procedure duration is 
highly predictive of the total LOS for most, but not for 
all paediatric procedures. Since paediatric surgical proce-
dures differ greatly from adult procedures, and since 
previous studies have focused on the adult population, 
our results can provide an important contribution to the 
field of paediatric capacity planning.

This study has several limitations. First, it is a single-
centre retrospective study of a tertiary paediatric hospital, 
and thus, the findings may not be applicable to other 
settings. Second, while the present model was developed 
to predict next-day census, other settings may require 
different timescales for prediction—from the prediction 
of hourly changes in census, to long-term prediction 
of the census in the next week, month or year. These 
different timescales will require retraining of the model 
according to the desired outcomes. Third, only proce-
dures completed prior to the surgical-unit admission 
were included in the models, possibly omitting valuable 
information from the prediction. Nevertheless, we would 

Figure 4  Length of stay (LOS) in the surgical unit by 
duration of surgical procedure. Boxplot showing the median 
LOS in days by the procedure duration in hours.
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expect the models to only improve if this information 
would be added in future implementations. Fourth, as in 
any prediction model, the census prediction model is not 
100% accurate. When used in clinical practice, clinicians 
and administrators can incorporate its predictions as 
one of several inputs in their decision-making processes. 
Lastly, our data included only data recorded prior to the 
COVID-19 pandemic, and thus may not be representative 
of data collected during the pandemic.

As the cost of building inpatient bed spaces continues to 
rise and financial pressure on paediatric hospitals increases, 
efficient utilisation of existing inpatient spaces becomes 
increasingly vital for healthcare sustainability. Predictive 
tools make the smoothing of elective procedures feasible 
and enable proactive planning to align staffing and other 
expensive resources. Similarly, in facilities with excess 
capacity, predictive tools help minimise waste of resources 
during periods of low occupancy. Facility planning and 
long-range staffing strategies will be more accurate with the 
help of high-performance system-wide prediction models. 
As healthcare resources are not stretched too much, quality 
and patient safety can be improved greatly.

We have shown that surgery occupancy prediction in a 
paediatric setting is plausible. We have further shown that 
surgical unit occupancy is dependent on both top-down 
temporal factors as well as bottom-up individual-patient 
information, including data on surgical procedures 
planned and performed, occupancy in other related 
departments, and clinical and administrative orders given 
to admitted patients. A hierarchical modelling framework 
that combines both types of factors has the potential to 
be better suited for predicting future surgical-unit occu-
pancy, supporting decision-makers in their quest for 
improved scheduling, staffing and resource planning, 
reducing overcrowding and cancellations of surgeries in 
paediatric healthcare settings.
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