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a b s t r a c t

Introduction: The extremely low accident rate for U.S air carriers relative to that of general aviation (�1
and �60/million flight hours respectively) partly reflects advanced airman certification, more demanding
recurrency training and stringent operational regulations. However, whether such skillset/training/regu-
lations translate into improved safety for airline pilots operating in the general aviation environment is
unknown and the aim of this study. Methods: Accidents (1998–2017) involving airline pilots and
instrument-rated private pilots (PPL-IFR) operating non-revenue light aircraft were identified from the
NTSB accident database. An online survey informed general aviation flight exposure for both pilot
cohorts. Statistics used proportion testing and Mann-Whitney U tests. Results: In degraded visibility, 0
and 40% (v2 p = 0.043) of fatal accidents involving airline and PPL-IFR airmen were due to in-flight
loss-of-control, respectively. For landing accidents, airline pilots were under-represented for mishaps
related to airspeed mismanagement (p = 0.036) relative to PPL-IFR but showed a dis-proportionate count
(2X) of ground loss-of-directional control accidents (p = 0.009) the latter likely reflecting a preference for
tail-wheel aircraft. The proportion of FAA rule violation-related mishaps by airline pilots was >2X (7 vs.
3%) that for PPL-IFR airmen. Moreover, airline pilots showed a disproportionate (v2 p = 0.021) count of
flights below legal minimum altitudes. Not performing an official preflight weather briefing or intention-
ally operating in instrument conditions without an IFR flight plan represented 43% of airline pilot acci-
dents involving FAA rule infractions. Conclusions: These findings inform safety deficiencies for: (a)
airline pilots, landing/ground operations in tail-wheel aircraft and lack of 14CFR 91 familiarization regu-
lations regarding minimum operating altitudes and (b) PPL-IFR airmen in-flight loss-of-control and poor
landing speed management. Practical Applications: For PPL-IFR airmen, training/recurrency should focus
on unusual attitude recovery and managing approach speeds. Airline pilots should seek additional
instructional time regarding landing tail-wheel aircraft and become familiar with 14CFR 91 rules cover-
ing minimum altitudes.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Civil aviation can be arbitrarily divided into (a) revenue-based
transportation comprised mainly of air carrier operations utilizing
transport-category aircraft (>12,500 lbs.) and (b) general aviation
employing light aircraft (�12,500 lbs.) (Boyd, 2017). While air car-
rier operations have, over the last few decades, boasted a stellar
safety record (Boyd, 2017), alas general aviation, despite a modest
decrease in accident rate over most recent years, still shows a lack-
luster record with a >60 times higher accident (herein also referred
to as mishaps) rate (Boyd, 2017; Li & Baker, 2007).

The discrepancy in safety between airline and general aviation
operations probably reflects multiple factors. First is the advanced
certification and recurrency training requirements for airline air-
crews. Presently, to exercise flying privileges for an air carrier,
pilots must be air-transport pilot (ATP) certificated (Electronic
Code of Federal Regulation, 2020) whereas for general aviation
operations the majority of general aviation airmen (Federal
Aviation Administration, 2015) hold a private pilot (PPL) certifi-
cate. In this regard, greater precision in regard to both instrument
flight (i.e., operating the aircraft by sole reference to flight instru-
ments) (Federal Aviation Administration, 2019, 2018) and landing
operations are demanded for the ATP certificate. Specifically for
instrument flight, a one quarter versus a three quarter scale lateral
deflection of the course deviation indicator is allowed for the ATP
(Federal Aviation Administration, 2019) and private pilot instru-
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ment ratings (Federal Aviation Administration, 2018) respectively.
Similarly, landing operations have tighter tolerances for ATP certi-
fication (a 100 vs. 200 foot margin for spot landings). Transport-
category aircraft spot landings (to mitigate against the possibility
of a runway overrun) require precise energy-management
(Federal Aviation Administration, 2016, 2008) due to greater land-
ing distances required than a light aircraft. Recurrency training for
air carrier pilots is also more frequent and demanding compared
with general aviation (Electronic Code of Federal Regulation,
2015). Crews have to undertake such training every 6 (Captain)
or 12 months (first officer) whereas a flight review for general avi-
ation airmen operating light aircraft for non-revenue is only
required once every 24 months (Electronic Code of Federal
Regulation, 2018). Moreover, recurrency programs for airline pilots
are more extensive typically consisting of a multi-day program
(comprised of maneuvers, abnormal procedures, upset recoveries
and line-oriented flight training (Electronic Code of Federal
Regulation, 2015). In contrast a flight review for a PPL requires only
1 hour of flight and tasks are at the sole discretion of the instructor
‘‘as necessary for safe flight” (Electronic Code of Federal Regulation,
2018). A second reason for the superior safety of the air carriers is
the more stringent regulations (14CFR 121) (Electronic Code of
Federal Regulation, 2017) governing their operations (relative to
the corresponding rules (14CFR 91) governing general aviation
(Electronic Code of Federal Regulation, 2015) as well as the use
of standard operating procedures (Administration, 2014) the latter
absent from general aviation. For instance, while airport minimum
visibility requirements apply to departing air carrier flights (14CFR
121.637), no such restrictions limit general aviation (14CFR 91)
operations (Electronic Code of Federal Regulation, 2017). Third,
although not mandatory, many U.S. carriers have adopted safety
management systems (SMS) and threat and error management
training per Federal Aviation Administration recommendations
(Federal Aviation Administration, 2012, 2016). Lastly, aircraft
employed for air carrier operations are certificated (14CFR 25) to
a higher safety standard (Electronic Code of Federal Regulation,
2017) with a greater level of equipment redundancy than airplanes
(14 CFR 23) (Electronic Code of Federal Regulation, 2012) used in
general aviation.

Nevertheless, for the airline pilot operating light aircraft under
14CFR 91, certain aspects of air carrier operations could potentially
offset the safety-promoting factors cited above. For example,
automation, more prevalent for transport-category aircraft, has
raised concern as to the erosion of manual flying skills with one
research study demonstrating degraded Boeing 747 pilot perfor-
mance when tasked with manual flying (Casner, Geven, Recker, &
Schooler, 2014). In addition, the typical general aviation light air-
craft requires more control inputs of the primary flight control sur-
faces for any given wind conditions than a much heavier transport-
category airplane subjected to identical conditions. Lastly, virtually
all transport-category aircraft employed by air-carriers require two
person crews (14CFR 25 certification (Electronic Code of Federal
Regulation, 2017) allowing for a prescriptive division of tasks for
the pilot flying and pilot monitoring (14CFR 121.542-545
(Electronic Code of Federal Regulation, 2017)). In contrast, the vast
majority of light aircraft are operationally approved for, and
piloted, by a single crew member (Electronic Code of Federal
Regulation, 2017) with an attendant increase in workload
(Electronic Code of Federal Regulation, 2017).

Thus, whether more rigorous airman certification/recurrency
training/stringent operational rules for airline pilots translates into
improved safety in the general aviation environment or conversely,
whether lesser automation coupled with lighter aircraft perfor-
mance (more subject to winds) offsets such safety benefits has
yet to be determined. Accordingly, we undertook a study to deter-
mine the level of safety of airline pilots flying non-revenue, light

aircraft in operational areas where their professional training/exp
erience/regulations, as described above, would be expected to
impact. Specifically, the following question was posed: are airline
pilots superior to their instrument-rated private pilot (PPL-IFR)
counterparts as evidenced by a reduced proportion of: (a) acci-
dents attributed to an in-flight loss-of-control in degraded
visibility- an event (International Air Transport Association,
2018) previously cited on the NTSB ‘‘Most Wanted List” (National
Transportation Safety Board, 2016); (b) landing accidents ascribed
to deficient pilot technique; and (c) mishaps involving violation of
the general aviation operations regulations (14CFR 91).

2. Materials and methods

2.1. Procedure

Accidents were identified from a retrospective search of the
downloaded NTSB Microsoft Access database (2018 Oct release)
(National Transportation Safety Board, 2015) involving: (a) airline
pilots the latter defined as an ATP-certificated professional airman
holding a Class 1 medical, a type rating in a transport-category air-
craft (or employed by an air carrier) and 65 years or younger; and
(b) as a control group, instrument-rated PPLs holding a Class 3
medical. It should be noted that the PPL population was deliber-
ately restricted to those airmen concurrently holding an IFR rating
(hereafter referred to as PPL-IFR pilots) to afford a comparison for
airman performance in degraded visibility – instrument flying pro-
ficiency representing a core element of the ATP certificate (Federal
Aviation Administration, 2019).

The database was queried for accidents occurring over the per-
iod spanning 1998–2017 involving piston engine-powered air-
planes (�12,500 lbs.) in which flights were conducted under
general operating flight rules (14CFR 91 (Electronic Code of
Federal Regulation, 2015)) for personal missions. Accidents in
Alaska were excluded from the query strategy. Data were exported
to Excel and checked for duplicates (which were deleted). Accident
causes were per the NTSB final report. Airline pilot type rating data
was obtained from a variety of publicly available resources
(Aviation DB, 2019; Federal Aviation Administration, 2019) and
by the FAA Office of Accident Investigation and Prevention.

High-energy landings were defined as those for which the NTSB
final report cited porpoising, multiple bounces or floating of the
accident airplane (Boyd, 2019; Goode, O’Bryan, Yenni, Cannaday,
& Mayo, 1976). Conversely, landings with inadequate airspeed
(low-energy) were those cited as such or for which an aerodynamic
stall occurred above the runway again per the NTSB final report
(Boyd, 2019).

An anonymous online survey as to non-revenue, 14CFR 91 oper-
ations of light aircraft by PPL-IFR and airline pilots (approved by
the Embry Riddle Aeronautical University Institutional Review
Board) to inform flight times and ambient conditions was con-
structed in SurveyMonkeyR (www.surveymonkey.com) and pre-
tested by four FAA Safety Team general aviation pilots as well as
co-authors MS and DC. Responses from the airline and PPL-IFR
pilot populations at large were collected over the period spanning
Feb 14-April 05, 2020.

2.2. Statistical analysis

Proportion testing used contingency tables and a Pearson Chi-
Square or Fisher’s Exact (2-sided) tests to determine where there
were statistical differences (Agresti, 2012; Field, 2009). The contri-
bution of individual cells in proportion tests was determined using
standardized residuals (Z-scores) in post-hoc testing. Differences in
median values for non-normally distributed data (determined
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using a ShapiroWilks test) were tested using a Mann-Whitney test.
All statistical analyses were performed using SPSS (v24) software.

3. Results

3.1. Accident pilot population

In the retrospective analysis, a query of the NTSB Access data-
base for general aviation accidents in the United States involving
light aircraft occurring over the period spanning 1998–2017
returned 124 and 934 airline and PPL-IFR pilots with median ages
of 49 and 54 years, respectively. These two airman cohorts had
accrued a median total flight experience of 12,917 and 1,042 hours
in all aircraft, respectively.

3.2. In-flight loss-of-control accidents in degraded visibility

We argued, that with the greater precision required for instru-
ment flight per ATP certification (Federal Aviation Administration,
2019, 2018) and an increased exposure to degraded visibility con-
comitant with their professional occupation a reduced proportion
of in-flight loss-of-control accidents in such visibility would be evi-
dent for airline pilots. Herein, degraded visibility was operationally
defined as less than visual flight rules (i.e. cloud ceiling of �3,000
feet (AGL)) and/or ambient night lighting (Federal Aviation
Administration, 2018).

While 27% of instrument-rated private pilot (PPL-IFR) accidents
occurred in degraded visibility (Fig. 1), airline pilots showed a
lower proportion (11%) of such mishaps, a difference which was
statistically significant (v2 p < 0.001). Loss-of-control accidents
often have a fatal outcome (National Transportation Safety Board,
2018) and indeed, this cause was previously cited on the NTSB
‘‘most wanted” list (National Transportation Safety Board, 2016).
Perhaps not surprisingly, 40% of fatal accidents in degraded visibil-
ity involving PPL-IFR airmen were ascribed to this event (Fig. 2). In
contrast, for airline pilots, there were no accidents in degraded vis-
ibility attributed to in-flight loss-of-control. Again, this difference
in proportions between the two pilot groups was statistically sig-
nificant (v2 p = 0.043).

To determine if this absence of in-flight loss-of-control acci-
dents incurred by airline pilots was due to diminished general avi-

ation flying in degraded visibility, the air carrier and PPL-IFR pilot
populations at large were, in a prospective online survey, queried
for their flight times and environmental conditions whilst operat-
ing light aircraft under 14CFR 91. Of 913 respondents, 295 airline
and 618 PPL-IFR airmen completed the survey (Table 1). While
indeed, the latter airmen showed an approximately 3 fold increase
in annual IMC/night flight times compared with air carrier pilots,
this difference unlikely accounts for the complete lack of in-flight
loss-of-control accidents involving airline pilots operating in
degraded visibility.

3.3. Landing accidents

Landing a transport category aircraft requires a higher degree of
precision than a comparable operation with a light aircraft due to
the greater weight and physical dimensions. Specifically, a sub-
stantially higher weight (e.g., maximum landing weight of a Boeing
737–800 is 146,275 lbs. (Modern Airliners, 2020)) 57 fold higher
than that of a Cessna 172S (2,550 lbs.) (Cessna, 2020) necessitates
a faster landing speed that must be closely adhered to in order to
avoid a runway overrun. Likewise, the greater lateral spacing of
the main landing gear wheels also demands precision in direc-
tional control of a transport-category aircraft after touchdown. In
contrast, operating a light aircraft at the majority of U.S. civil avia-
tion airports (Federal Aviation Administration, 2017) with their
relatively long and wide runways allow for deficiencies in the
aforementioned skills with a reduced risk of a runway excursion.
To determine if the airline pilot landing skillset transferred to the
operations of light aircraft, landing accidents were compared for
the two pilot cohorts.

Across all phases of flight operations, landing accidents were
the most frequent for both airline and PPL-IFR pilots accounting
for 39% (n = 22) and 27% (n = 259) of mishaps, respectively.
Although the elevated proportion for air carrier airmen relative
to the PPL-IFR cohort was not statistically different (v2 p = 0.069),
nevertheless, it contravenes the notion that landing proficiency
skills in transport-category aircraft transfers to light aircraft
operations.

Landing accidents ascribed to deficiencies in pilot stick and rud-
der skills were then categorized as to cause. Airline pilots were
superior to their PPL-IFR counterparts in energy management with
zero landing mishaps ascribed to either excessive (High-energy
Approach) or insufficient speed (Low-Energy Approach) (Fig. 3).
On the other hand, approximately 26% of landing mishaps by

Fig. 1. Accidents in degraded visibility. The proportion of light aircraft accidents in
degraded visibility is shown for each pilot cohort. Degraded visibility was
operationally defined as a cloud ceiling of equal to or less than 3000 ft. AGL or
ambient night lighting. Proportion differences were tested with a 2-sided Chi-
Square test. PPL-IFR, instrument rated private pilots, n = accident count.

Fig. 2. Fatal in-flight loss-of-control accidents in degraded visibility. Fatal accident
counts in degraded visibility (as described in Fig. 1) due to in-flight loss-of-control
(LOC-I) or other causes (Non LOC-I) for the specified pilot category are shown. The
difference in proportions of accidents was tested for with a Fisher’s Exact Test.
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PPL-IFR airmen were due to a high-energy approach (defined as
any in which the aircraft porpoised, floated or bounced multiple
times) a difference which was statistically significant (v2

p = 0.036).
Conversely, a higher (v2 p = 0.009) proportion of landing acci-

dents which the NTSB binned into the ‘‘ground loss of directional
control” category (0.92 vs. 0.53) was evident for airline pilots
(Fig. 3). This was unexpected as managing this vector component
is more critical for a transport category aircraft with its substan-
tially wider main wheel base compared with that of a light aircraft.
We considered the possibility that this surprising finding was
related to the type of aircraft landing gear. Tail-wheel (conven-
tional) and tricycle (nose) landing gear-equipped aircraft exhibit
different handling characteristics and are well recognized as more
challenging to maintain ground directional control particularly in a
cross-wind (Kirby, 2020). Indeed, consistent with this argument,
while over 70% of landing accidents involving air carrier pilots
were incurred with tail-wheel airplanes, this proportion was sub-
stantially lower (<30%) for such mishaps involving PPL-IFR airmen
(Fig. 4). This difference in accident aircraft landing gear type was
statistically significant for the two pilot cohorts (v2 p < 0.001). Pre-
sumably, the over-representation of this type of landing accident
for airline pilots reflects their preference for such-equipped aircraft
for general aviation operations (Table 1). It is worth noting that
none of the ground loss of directional control accidents involving
airline pilots in tail-wheel equipped airplanes was due to an excee-
dance of the maximum demonstrated cross-wind component.

3.4. Violation of FAA regulations

Airline operations are under strict vigilance for infringement of
the FAA regulations via a variety of mechanisms including flight
quality assurance programs (Federal Aviation Administration,
2004) and audio recordings of the flight deck (Electronic Code of
Federal Regulation, 2017). In contrast, little comparable oversight
exists for general aviation. Moreover, airline pilots are well aware
that infractions of the regulations leading to an incident or acci-
dent may culminate in the revocation of flying privileges and hence
income. With these factors in mind, we hypothesized that a dimin-
ished fraction of FAA violation-related general aviation accidents
would be evident for these airmen whilst operating light aircraft.

Contrary to expectations, the proportion of 14CFR 91 rules
transgression-related mishaps by airline pilots, although low,
was more than double (7 vs. 3% respectively) that for accidents
involving PPL-IFR airmen. There was little evidence of a temporal
trend in such accidents as 3 and 4 of mishaps involving an infrac-
tion of the FAA regulations occurred over the 1998–2007 and
2008–2017 periods respectively, The infractions of the FAA regula-
tions were then sub-categorized (Table 2). Interestingly, there was
a disproportionate (v2 p = 0.021) number of violations involving
airline pilots in which the light aircraft was operated below the
legal minimum altitude –accounting for 57% of FAA rule infrac-
tions. In contrast, this subcategory accounted for 17% of all PPL-
IFR accidents in which the FAA regulations were breached. Inter-
estingly, the second most common (constituting 43% of all FAA

Table 1
Prospective survey of airline and PPL-IFR pilots.

Airline Pilots PPL-IFR P value

Age n 295 618
Median (h) 53 60 <0.001
Q1 (h) 43 48
Q3 (h) 60 68

Total Time Light Aircraft (h) Most Commonly Flown n 293 615
Median (h) 500 730 0.011
Q1 (h) 260 323
Q3 (h) 1350 1700

Annual Light Aircraft Time (h) Airplane Most Frequently Flown n 292 613
Median (h) 75 80 0.005
Q1 (h) 44 50
Q3 (h) 100 120

Last 90 Days Flight Time (Make-Model) n 295 618
Median (h) 10 16 <0.001
Q1 (h) 5 9
Q3 (h) 20 30

Number of Flights in Light Aircraft Most Commonly Operated Last 90 Days n 295 618
Median 8 10 0.069
Q1 3 5
Q3 15 17

Annual IMC Time (h) Light Aircraft Most Frequently Operated n 295 618
Median (h) 2 7 <0.001
Q1 (h) 0 2
Q3 (h) 10 15

Annual Night Time (h) Light Aircraft Most Commonly Used n 295 618
Median (h) 2 7 0.005
Q1 (h) 0 2
Q3 (h) 10 15

Landing Gear Type Tail-Wheel (n) 90 32 p < 0.001
% 31 5
Nose-Wheel (n) 205 586
% 69 95

Results of an online survey conducted of the airline (Airline) and instrument-rated private (PPL-IFR) pilot population-at-large. Data were non-normally distributed per a
Shapiro-Wilk test and accordingly differences in median values tested using a Mann-Whitney U Test. Proportion differences for landing gear type was tested using a Chi-
Square test. h, hours; Q, quartile. IMC, instrument meteorological conditions.
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transgressions) violation of the FAA regulations for accidents
involving airline pilots was the ‘‘No Pre-Flight WX Briefing OR
Intentional Flight Operations in Instrument Conditions.” However,
in statistical testing, the proportions corresponding to this viola-
tion category for the two groups of accident pilots were compara-
ble (p > 0.005).

4. Discussion and conclusions

We show herein that, for general aviation operations, airline
pilots show both safety improvements and deficits relative to

PPL-IFR airmen. Regarding improvements the absence of in-flight
loss-of-control accidents in degraded visibility was notable for air-
line pilots. Conversely, and initially surprising, these airmen were
more likely to experience a ground loss of directional control dur-
ing the landing roll. Finally, in regard to violations of the FAA reg-
ulations, despite the regimented nature of air carrier operations,
airline pilots showed a greater proclivity for disregarding the min-
imum altitudes prescribed by 14CFR 91.

The safety of the airline pilots operating in degraded visibility,
as witnessed by an absence of any in-flight loss-of-control acci-
dents, merits some discussion especially since such mishaps under
corresponding conditions in the general aviation sector are fre-
quent and moreover carry a high fatality rate (National
Transportation Safety Board, 2018). Certainly, these professional
airmen have a high exposure to such weather conditions as part
of their professional occupation. In contrast PPL-IFR pilots eschew
operating in such weather (Federal Aviation Administration, 2015)
and struggle to maintain currency to legally operate in instrument
conditions (Weislogel, 1983). Nevertheless, transport-category air-
craft are highly automated and there is current debate as to
whether such automation adversely affects stick-and-rudder skills.
Indeed, in a study of Boeing 747 aircraft pilots tasked with per-
forming an instrument approach in which aircraft automation
was progressively degraded (Casner et al., 2014), 44% were in error
in identifying the missed approach fix and 16% descended below
the minimum altitudes prescribed by the approach chart. How
then do these findings reconcile with the stellar performance of
airline pilots operating light aircraft with less automation
(Federal Aviation Administration, 2015) in degraded visibility in
the general aviation environment? We suspect that a combination
of increased experience operating transport-category aircraft
under such conditions and ATP certification (Boyd & Peters,
2015; Li, Baker, Grabowski, & Rebok, 2001) demanding a higher
level of proficiency in instrument flight (relative to the IFR rating
held by PPL airmen) more than offset any decrements caused by
frequent automation usage.

The sub-classification of landing accidents related to pilot tech-
nique informs performance deficiencies for both the PPL-IFR and
airline pilot cohorts. Indeed, the preponderance of landing acci-
dents caused by poor landing speed control (mainly high-energy)
for the former airmen contrasting with the absence of such mis-
haps for the latter pilots is noteworthy. Our findings are congruent
with those of prior studies (Boyd, 2019; Goode et al., 1976) report-
ing on the tendency of general aviation pilots to carry excessive

Fig. 4. Landing gear type for accidents ascribed to a deficiency in pilot technique. The proportion of accident aircraft with the specified undercarriage equipment shown
(values in parentheses) for landing mishaps ascribed to a deficiency in pilot stick-and-rudder skills. Differences in proportions was tested using a Fisher’s Exact Test. n,
accident count.

Fig. 3. Causes of landing accidents related to deficiency in pilot technique. The
proportion of landing accidents for the specified causes related to pilot stick-and-
rudder skills is illustrated as a function of pilot category. A high-energy landing
accident was one in which the NTSB report cited porpoising, floating or multiple
bounces of the aircraft. A low-energy landing mishap was one in which the aircraft
stalled above the runway. The p values shown were derived from adjusted residuals
of a Chi-Square test. n, count of accidents.
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landing speeds (higher than V-Ref –airplane speed in the landing
configuration, at the point where it descends through the 50 ft.
height) (Saini, 2010). Such a practice with transport category air-
craft would lead to an abundance of runway overruns and air car-
rier pilots must adhere closely to the approach speed regimen. On
the other hand, airline pilots relative to their PPL-IFR counterparts
showed a greater deficiency in maintaining ground directional con-
trol during the landing roll. We argue that several reasons likely
underlie this observation. First, airline pilots accrued a lower
amount of time-in-type as evident from both a prospective survey
of the airline pilot population-at-large as well as that for the acci-
dent airmen (median make-model flight times-132 and 261 hours
for airline and PPL-IFR respectively). Second, compared with oper-
ating a transport category aircraft, light aircraft demand more con-
trol inputs for identical landing wind conditions. Third, and likely
most important, is the preference of airline pilots for operating
light aircraft with tail-wheel landing gear (conventional undercar-
riage). It is well established that such airplanes show ground han-
dling characteristics at variance with tricycle aircraft (Federal
Aviation Administration, 2016). Specifically, conventional aircraft
are inherently unstable on the ground and exhibit an exaggerated
tendency to weathervane during ground operations in a cross-
wind (Federal Aviation Administration, 2016). In regard to this lat-
ter point, we considered the possibility that the involved conven-
tional under-carriage aircraft had unique ground handling
characteristics based on: (a) being of experimental build or (b) less
rigorous certification standards in effect for older aircraft. How-
ever, these arguments are unlikely for two reasons. First, none of
the ground loss of directional control mishaps involved experimen-
tal (i.e., non-certificated) aircraft. Second, while indeed the
involved aircraft were of older vintage and subject to earlier certi-
fication regulations (i.e., civil air regulations-CARs (Civil
Aeronautics Board, 1949), such standards with respect to ground
handling were identical to those promulgated for later aircraft cer-
tification per 14CFR 23.231-233 (Electronic Code of Federal
Regulation, 2017) effective up to 2017.

Surprisingly, airline pilots involved in accidents did not show
greater compliance with the FAA regulations than PPL-IFR airmen.
For this accident category, more than half of mishaps were due to
these airmen operating the aircraft below the minimum altitudes
prescribed by 14CFR 91.119 (500 and 1,000 feet above ground
for other-than-congested and congested areas respectively)
(Electronic Code of Federal Regulation, 2015). Why is this? One
must consider that airline operations are all conducted under IFR
rules requiring adherence to minimum altitudes defined by jet
routes, standard arrivals and departures (Federal Aviation
Administration, 2015) absent for VFR operations. Whether airline
pilots were unfamiliar with the minimum altitudes for VFR opera-
tions per 14CFR 91 (Electronic Code of Federal Regulation, 2015) or
were deliberately operating contrary to such regulations is cur-
rently unknown. Based on anecdotal information we suspect the
former. Thus, for three of the four minimum altitude infractions,

in their NTSB statements one pilot admitted to flying ‘‘ along a
creek” another, ‘‘through a valley” with the third airman stating
descending to what he ”thought was a safe VFR altitude.” Notably,
none of these accidents were due to degraded visibility ruling out
‘‘scud-running” as a causal factor. Another question raised by this
infraction relates to the role of surveillance evident in the airline
industry but absent from general aviation. Consequently, general
aviation pilots may be tempted to infringe such minimum altitudes
with immunity nevertheless developing a greater skillset with
respect to operating below legal minimum altitudes.

Also noteworthy was the disregard by airline pilots for the FAA
regulations necessitating preflight weather briefings and inten-
tional flight into instrument conditions. We entertain the possibil-
ity that the former transgression relates to the role of the airline
dispatcher in preparation of a weather briefing for their pilots. It
may be that: (a) the airline pilot is so habituated to receiving this
prepared material that such a task is overlooked for general avia-
tion and/or (b) he/she may be unaware of the tools to obtain a
weather brief via official sources typically used by the general avi-
ation pilot.

Although our research is the first to report on airline pilot safety
in general aviation, an older study of accidents spanning the 1973–
1983 period merits discussion (Salvatore, Stearns, Huntley, &
Mengert, 1986). The authors of that report noted that most ATP-
certificated pilot accidents were due to aerobatics whereas, in
the current study, aerobatics was cited for a single airline pilot
accident. Moreover, only 4% of the airline pilot population-at-
large survey respondents indicated this as the primary purpose
of their general aviation flights. How can the differences in the
results between the two studies be reconciled? A key difference
in study design is pertinent. Specifically, the Salvatore and co-
author study was not limited to airline pilots per their two inclu-
sion criteria: (a) ATP-certificated and (b) a self-description as a
‘‘professional pilot.” Thus, the cohort would also include pilots
engaged in charter operations (14CFR 135), corporate flying and
other non-air carrier professions with corresponding lower levels
of training/recurrency/oversight. In addition, much has changed
in general aviation over the intervening three decades in regard
to technology such as in-flight data-linked weather and in the case
of general aviation scenario-based training (Federal Aviation
Administration, 2017).

Our study was not without limitations. First, the absence of
denominator data for both pilot cohorts operating under 14CFR
91 regulations precluded the determination of accident rates. Sec-
ond, the count of airline pilot accidents was, in some cases, small.
Third, risk exposure was determined in a prospective study with
accident data obtained in a retrospective query. Fourth, type rating
data, used as one of the criteria to operationally define an airline
pilot, was in some instances based on information current at the
time (2019–2020) over which the research was conducted. As a
result, for a subset of non-fatal accident pilots, a type rating may
have been achieved after the mishap. Fifth, we accept that the mul-

Table 2
Categories of FAA violations for airline and PPL-IFR pilots.

FAA violation Airline Pilots PPL-IFR P value

Count (n) Fraction Count (n) Fraction

Disqualifying Medical Condition/Use of Illegal Drugs 0 0.00 4 0.10 >0.05
Intentional Visual Flight Departure into Instrument Conditions OR No Pre-Flight WX Briefing 3 0.43 22 0.54 >0.05
Lack of IFR Currency 0 0.00 2 0.05 >0.05
Maneuvering Flight below Legal Minimum Altitude 4 0.57 7 0.17 0.021
Un-Airworthy aircraft 0 0.00 6 0.15 >0.05

>0.05
TOTAL 7 1 41 1

The count (n) and proportion (fraction) of accidents in which the NTSB cited the specified FAA violation is tabulated. P values were derived from adjusted residuals from a
Fisher’s Exact Test. Wx, weather.
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tiple criteria used concurrently (ATP certification, a Class 1 Medical
and type rating in a transport category aircraft) to operationally
define an airline pilot might also lead to the inclusion of a few air-
men who do not fly for an air carrier. Finally, (and not addressed in
the current study) it would be of particular interest in a future sur-
vey to determine how airline and PPL-IFR pilots’ views compare
with respect to safe operations of a light aircraft. In a similar vein,
endeavors to capture accident pilot attitudes in NTSB reports with
respect to ‘‘thrill-seeking” in an environment absent for surveil-
lance are lacking.

Although the objective of the current study was to determine
the safety of airline pilots in the general aviation environment,
the findings inform performance deficiencies for both these and
PPL-IFR pilots which warrant redress. Notably, regarding the pre-
ponderance of in-flight loss-of-control fatal accidents involving
PPL-IFR pilots, such airman would be well served by increasing
the frequency of recovery from unusual attitudes maneuvers by
reference to instruments in recurrency training. Moreover, for air-
men with deficient IFR proficiency skills, safety could be improved
by development of computer-based training systems which pro-
vide pilots with skills to recognize cues (e.g., cloud bases, visibility,
darkening) associated with impending IMC as reported elsewhere
(Wiggins & O’Hare, 2003). The wide availability of advanced avia-
tion training devices should make for a cost-effective means of
achieving/maintaining such proficiency. PPL-IFR safety would also
benefit from an increased emphasis on landing energy/speed man-
agement in training/recurrency. As to airline pilot safety, airmen
seeking to operate a light aircraft with tail-wheel landing gear
should consider, post tail-wheel endorsement, additional dual time
with an instructor (well experienced in conventional landing gear
operations) focusing on landing/ground operations particularly
under crosswind conditions. This recommendation would be on
par with the initial operating experience required (14CFR
121.913) for airline pilots (Electronic Code of Federal Regulation,
2017). Finally, it would behoove airline pilots to adhere more clo-
sely (and if necessary familiarize themselves with) to 14CFR 91
regulations pertinent to general aviation operations (in particular
minimum altitudes) towards improving their safety whilst operat-
ing light aircraft.

5. Practical applications

For PPL-IFR airmen, training/recurrency should focus on unu-
sual attitude recovery and managing approach speeds. Airline
pilots should seek additional instructional time regarding landing
tail-wheel aircraft and become familiar with 14CFR 91 rules cover-
ing minimum altitudes. Lastly, future accident reporting should
seek to capture airline pilot attitudes in the ‘‘overconfidence/mis
placed motivation” nano-codes in the Preconditions for Unsafe
Acts/Adverse Mental States domain per the established Human
Factor Classification System (Shappell & Wiegmann, 2001;
Shappell, Detwiler, Holcomb, Hackworth, Boquet, & Wiegmann,
2006).
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a b s t r a c t

Introduction: Traffic safety issues associated with taxis are important because the frequency of taxi
crashes is significantly higher than that of other vehicle types. The purpose of this study is to derive safety
implications to be used for developing policies to enhance taxi safety based on analyzing intrinsic char-
acteristics underlying the cause of traffic accidents. Method: An in-depth questionnaire survey was con-
ducted to collect a set of useful data representing the intrinsic characteristics. A total of 781 corporate
taxi drivers participated in the survey in Korea. The proposed analysis methodology consists of two-
stage data mining techniques, including a random forest method, with data that represents the working
condition and welfare environment of taxi drivers. In the first stage, the drivers’ intrinsic characteristics
were derived to classify four types of taxi drivers: unspecified normal, work-life balanced, overstressed,
and work-oriented. Next, priority was determined for classifying high-risk taxi drivers based on factors
derived from the first analysis. Results: The derived policies can be categorized into three groups: ‘the
development of new policies,’ ‘the improvement of existing policies,’ and ‘the elimination of negative fac-
tors.’ Establishing a driving capability evaluation system for elderly drivers, developing mental health
management programs for taxi drivers, and inspecting the taxi’s internal conditions were proposed as
new policies. Improving the driver’s wage system, supporting the improvement of rest facilities, and sup-
porting the installation of security devices for protecting taxi drivers are methods for improving existing
policies to reinforce the traffic safety of taxi drivers. Last, restricting overtime work for taxi drivers was
proposed as a policy to eliminate negative factors for improving taxi traffic safety. Practical Applications: It
is expected that by devising effective policies using the policy implications suggested in this study, taxi
traffic accidents can be prevented and the quality of life of taxi drivers can be improved.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Compared to traffic accidents in commercial vehicles and non-
commercial vehicles, traffic accidents associated with commercial
vehicles are relatively severe. According to the traffic accident
statistics by the Korean Traffic Accident Analysis System (TAAS),
the reduction rate of the traffic accident fatality of noncommercial
vehicles from 2009 to 2018 was approximately 39%, while the
reduction rate of traffic accident fatality for commercial vehicles
in the last 10 years was approximately 31%, which is relatively
lower than the former case. In addition, according to the traffic

accident statistics of the TAAS, from 2014 to 2018, taxis occupied
approximately 46% of traffic accidents, which was relatively higher
than other modes such as buses (17.5%), rental cars (15.4%), and
trucks (12.8%). In addition, the number of traffic accidents in taxis
increased by 1.46% in 2018 compared to 2017, and the number of
injured persons also increased by 0.03%. Therefore, it is necessary
to prepare for effective countermeasures based on an in-depth
analysis of the causes of taxi-related accidents to enhance traffic
safety on the road.

The main causes of traffic accidents can be categorized into
three classes: road environmental factors, vehicle factors, and dri-
ver factors. As a result of analyzing how much road, vehicle, and
driver factors contribute to traffic accidents, road factors account
for 28–34%, vehicle factors account for 8–12%, and driver factors
account for 93–94% (Do, 2013). In this context, a thorough
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understanding of drivers’ intrinsic and extrinsic characteristics that
potentially lead to high accident risks is fundamental to preventing
accidents and reducing the severity, which motivates our study.

This study focuses on identifying the intrinsic characteristics of
taxi drivers in terms of traffic safety. The intrinsic characteristics
include demographics, living and working environments, and
health conditions in this study. An in-depth questionnaire survey
was conducted to collect a set of useful data representing the
intrinsic characteristics. A total of 781 corporate taxi drivers partic-
ipated in the survey. Then, data obtained from the survey were
incorporated into corresponding individual taxi drivers’ accident-
related data archived from the commercial taxi driver manage-
ment system operated by the Korean Transportation Safety
Authority (KOTSA). A two-stage data mining approach based on a
random forest (RF) method was conducted to identify factors
affecting taxi accidents. A notable feature of the proposed method-
ology was to extract factors that represent the characteristics by
the type of taxi drivers and then to derive the priority of extracted
factors capable of explaining traffic safety effectively. The type of
taxi drivers was classified into four groups, unspecified normal,
work-life balanced, overstressed, and work-oriented, which were
defined by the literature (Commercial Vehicle In-depth Accident
Study: Corporate Taxi, 2019). In the first stage, factors capable of
distinguishing the type of taxi driver were extracted. Next, mean-
ingful factors capable of identifying high-risk taxi drivers were pri-
oritized by the second RF analysis. Last, this study derived a set of
policy implications for the prevention of taxi crashes from three
perspectives: personal, working, and health and welfare. The
derived policies can be divided into the development of new poli-
cies, the improvement of existing policies, and the elimination of
negative factors. In addition, the main purpose and key issues of
each policy are discussed.

2. Literature reviews

The literature review in this study was conducted to study the
relationship between the characteristics of taxi drivers and traffic
accidents, and to study random forest methodology. As a result
of the literature reviews, it was found that understanding the inter-
nal characteristics of taxi drivers is essential to analyzing traffic
accidents in taxis. In addition, RF methods can be effectively used
for identifying significant factors contributing to traffic accidents.

2.1. Characteristics of taxi drivers in traffic safety

Vahedi et al. (2018) showed that factors such as the age of taxi
drivers, marital status, violation of laws and regulations, and the
amount of daily traffic can affect traffic accidents in taxis. As a
result of research on the causes and factors of traffic accidents of
taxi drivers, Al-Ghamdi (2000) found that taxi drivers’ safety dis-
tance violations and speeding are the main causes of taxi traffic
accidents. Borowsky and Oron-Gilad (2013) conducted a study on
the effect of driving experience on risk perception ability for dri-
vers with low driving experience, drivers with high driving experi-
ence, young drivers, and taxi drivers. The study found that taxi
drivers were more sensitive to danger than other drivers. Maag
et al. (1997) conducted a study on the relationship between the
taxi driver’s visual ability and the frequency of accidents. As a
result, the taxi driver’s accident frequency was higher than that
of the general driver, and specifically, a driver’s visual deterioration
was more frequent. Li et al. (2019) suggested that taxi drivers with
a high risk of accidents tend to have a longer average daily driving
time and less daily rest time. Meng et al. (2019) analyzed the effect
of fatigue on the driving ability of taxi drivers. As a result of the
analysis, it was found that taxi driver fatigue had an effect on brake

control, lane control, and steering control. Apantaku et al. (2012)
conducted a study on the work and health characteristics of taxi
drivers in Chicago, Illinois, USA, and found that cancer screening
participation, exercise, and fruit and vegetable consumption rates
were low compared to general drivers. Lim and Chia (2015) con-
ducted a study on the health characteristics of taxi drivers. As a
result of the study, it was found that obesity, hypertension, and
diabetes were the highest among taxi driver diseases, and taxi dri-
vers experienced high fatigue due to lack of sleep. Miyamoto et al.
(2008) suggested the limited working space in a taxi and whole-
body vibration that occurs during operation as a cause of low back
pain for taxi drivers. Bulduk et al. (2014) suggested that taxi dri-
vers have very high exposure to musculoskeletal disorders, which
is significantly related to lack of rest, age, and career. Chen et al.
(2005) found that a taxi driver may have a higher risk of develop-
ing cardiovascular disease in a month with more travel time.
Hansen et al. (1998) found that taxi drivers may increase the risk
of cancer by inhaling carcinogens while on duty.

2.2. Random forest method for traffic safety analysis

Ma and Cheng (2016) presented that the random forest method
can be used to analyze a large number of explanatory variables
without losing data. Lee et al. (2019) analyzed spatiotemporal data
by processing weather and road condition information to predict
road conditions using a RF method with 95% accuracy. Ximiao
Jiang et al. (2016) used a large quantity of data to derive the influ-
encing factors of traffic accidents according to the type of accident
for each section using an RF method. Siddiqui et al. (2012) used
decision tree and random forest techniques to derive essential
variables related to the severity of collisions for each traffic analy-
sis zone in four areas of Florida. Abdel-Aty et al. (2008) used an RF
technique to evaluate traffic safety on Dutch highways and sug-
gested that the random forest technique was a relatively effective
classifier compared to decision trees. Harb et al. (2009) used a ran-
dom forest technique to derive important factors related to drivers
traffic accident avoidance behavior.

2.3. Research opportunity

Many researchers have studied the relationship between the
characteristics of taxi drivers and traffic accidents. However, there
is little research to address work, welfare, life, and health-related
characteristics along with traffic accident data. This study attempts
to investigate the causes of traffic accidents for corporate taxis in
terms of the internal characteristics of drivers. Historical accident
data, commercial vehicle driver aptitude test data, and in-depth
cause survey data are used to identify factors affecting taxi driver
safety. In addition, this study differs from previous research in that
it suggests the necessity of legal and institutional management to
reduce traffic accidents in taxi and reduce accident risk group clas-
sification by proposing traffic safety policy implications for taxi
drivers.

3. Data

3.1. Data collection

The dataset used in this study was established by two different
resources, including an in-depth questionnaire survey for identify-
ing intrinsic driver factors potentially leading to crashes and com-
mercial vehicle driver management system (CVDMS) data operated
by KOTSA. More details for the data are presented in the subse-
quent sections.
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3.2. In-depth investigation of corporate taxi drivers

A survey to identify potential factors leading to crash occur-
rence was conducted as a part of this study. The investigation of
the causes of traffic accidents in corporate taxis was conducted
from September to October 2019. KOTSA conducts traffic safety
inspections annually for companies with a history of traffic crashes
in which one fatal or three seriously injured persons occurred. A
total of 89 taxi companies participated in the survey, among the
companies that were inspected between the 3rd quarter of 2018
and the 2nd quarter of 2019, participated in the survey of this
study. In-depth interviews using questionnaires were conducted
for taxi drivers and a safety officer of each taxi company. A face-
to-face survey, which took approximately 20 minutes for each sub-
ject, was conducted with 781 taxi drivers and 89 safety managers.
Fig. 1 presents the distribution of taxi drivers by administrative
district based on the address of the taxi company participating in
the survey. The major regions of Korea were divided into the Seoul
metropolitan area, Yeongnam area, Chungcheong area, Honam, and
Gangwon area. The Gangwon area was excluded from the survey as
there were neither fatal nor seriously-injured crashes. The occu-
pancy rate of taxi drivers by each region is 48%, 31%, 19%, and
2%, respectively.

The questionnaire consisted of questions that included drivers’
demographics, disease, mental and physical health conditions,
working environment, economic situation, living conditions repre-
sented by interpersonal and family relationships, and leisure activ-
ities. A total of 230 candidate variables to be used for the proposed
analysis method were extracted by processing the survey result by
taking the characteristics of the questionnaire, such as multiple-
response questions, into consideration. The questionnaire for the
safety manager was focused on the management and training sta-
tus of the drivers and the working environment of the taxi com-
pany. Fourteen variable candidates were extracted using
questions related to driver welfare of taxi companies, such as
whether to conduct safety training for elderly drivers and whether
to have rest facilities.

3.2.1. Commercial vehicle driver management system
Two candidate variables were derived from the results of the

driver aptitude test, which consists of two different types of tests,
referred to as test I and test II in this study, conducted by the
KOTSA. The aptitude test I is a driving adequacy test that is per-
formed for all commercial vehicle drivers. Aptitude test II is con-
ducted for drivers involved in a serious accident and drivers
expected to be incapable of safe driving due to illness and other
reasons. Both tests evaluate drivers in terms of driving ability
based on 13 test items. In this study, the average grade for each dri-
ver obtained from test I and test II was calculated and used as a
variable. The driving ability was considered to be excellent, as
the calculated average grade was closer to 1.

3.3. Establishment of the dataset

3.3.1. Input variables
A set of candidate variables was obtained from the in-depth

survey and CVDMS for inputs of the proposed analysis method. A
data processing procedure as shown in Fig. 2 was devised to select
meaningful variables to be used for conducting the random forest
analysis. A total of 246 candidate variables evaluated by the pro-
posed variable selection procedure consisting of two steps in terms
of whether given hypotheses are accepted or not. The hypothesis
defined in this study is that the average difference of a variable
in cases where an accident does and does not occur is statistically
significant, and a theoretical causal relationship is also feasible.

In Step 1, a total of 246 candidate variables were evaluated in
terms of whether a given hypothesis is accepted or not. The
hypothesis defined in this study is that the average difference of
a variable in cases where an accident does and does not occur is
statistically significant, and a theoretical causal relationship is also
feasible. Regarding the continuous variables, the average difference
was investigated by conducting a t-test according to whether the
taxi driver experienced accidents in the last three years. Addition-
ally, the chi-square test was adopted to identify the statistical sig-
nificance of differences in nominal variables. The statistical

Fig. 1. Percentage of respondents by administrative region.
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significance of the t-test and chi-square-test results was examined
at a 90% confidence level. In Step 2, the test results were further
evaluated to be the same as the hypothesis in light of the theoret-
ical causation between the variables and traffic accidents. Vari-
ables were classified into three groups based on the test results,
such as ‘suitable,’ ‘unsuitable,’ and ‘unable to judge.’ The suitable
variable in this study indicates that there is a significant difference
according to the occurrence of an accident, and the theoretical
interpretation of the relationship is acceptable. Variables for which
the hypothesis suitability cannot be judged refer to ones corre-
sponding to a case where the ratio of nonresponse or biased-
response is high. For example, drivers who conduct volunteer
social services as a leisure activity cannot be obviously classified
because the response rate of drivers with an accident experience
is approximately 0.3%, and the response rate of drivers without
an accident experience is 0%. It was identified by conducting the
analysis in Step 1 that a total of 71 variables are suitable to be used
for the inputs of the proposed methodology. Others that did not fit
the hypothetical conditions were excluded from the set of input
variables. Then, 37 taxi driver characteristic variables were

selected as the final set of input variables for the random forest
analysis by excluding variables with low theoretical causality from
the 71 variables in Step 2.

3.3.2. Target variables
This study defines target variables to be used for the proposed

two-stage random forest-based data mining method based on
the taxi driver’s types and accident history data. For the first ran-
dom forest analysis, four target variables obtained from a previous
study (Commercial In-Depth Accident Study (CIDAS) - Corporate
Taxi, 2020) were adopted. Taxi drivers were classified into four
groups: unspecified normal, work-life balanced, high-stress imbal-
anced, and work-oriented. Lee et al. (2020) classified taxi drivers
into four groups through on a hybrid clustering methodology that
performs hierarchical and non-hierarchical cluster analyses
sequentially by utilizing internal characteristics of corporate taxi
drivers. In categorizing taxi drivers, a total of 21 driver character-
istics, which can be fallen into four classes including health, work-
ing, living, and crash conditions, were used for their analysis.
Factors contributing to the classification of taxi drivers include

Fig. 2. Data processing procedure for input variables.
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waiting time, health care level, weekly working hours, crash sever-
ity, and so forth. The unspecified normal type is defined as the
most common driver. The work-life balanced type is defined as
one that is generally found to have good conditions in work, life,
and heath. The high-stress imbalanced type is defined as one that
is generally found to have bad conditions in work, life, and health.
Finally, the work-oriented type is defined as one that is found to be
relatively good in life satisfaction and health status, but one with
high age and long working hours.

In the second random forest analysis, an accident risk group
was defined and used as target variables for the classification based
on the accident experience frequency and casualties per accident
in the last three years. Taxi drivers who fall into the high-risk
group have experienced at least one serious or fatal accident, and
taxi drivers falling into the medium-risk group have experienced
minor or injured traffic accidents in the last three years. Low-risk
drivers are defined as those who have never experienced an
accident.

In the first stage, factors capable of distinguishing the type of
taxi driver were extracted. Next, meaningful factors capable of
identifying high-risk taxi drivers were prioritized by the second
RF analysis. Finally, policy implications to enhance taxi drivers’
safety were derived based on the results of the proposed analysis
method. Directions of policy development and the needs of institu-
tional management of taxi drivers were discussed.

4. Methodology

The proposed methodology consisting of two-stage random for-
est analysis was devised to address the correlation between taxi
driver intrinsic characteristics and traffic accidents as shown in
Fig. 3. In the first stage, factors capable of distinguishing the type
of taxi driver were extracted. It is important to extract variables
that are capable of characterizing taxi driver types in that different
types of drivers have different contributing factors potentially
leading to accident occurrence. Next, meaningful factors, which
were extracted from the first stage, capable of identifying high-
risk taxi drivers were prioritized by the second RF analysis. Finally,
policy implications to enhance taxi drivers’ safety were derived
based on the results of the proposed analysis method. Directions
of policy development and the needs of institutional management
of taxi drivers were discussed.

4.1. Random forest

Random forest is one of the ensemble machine learning tech-
niques, and it is an advanced technique of decision tree analysis
developed to address the problem of decision tree analysis
(Breiman, 2001). In the random forest learning process, each tree
is generated based on bootstrap samples that are randomly
selected with replacement. The number of trees is set in advance

Fig. 3. Proposed Methodology.
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by the analyst, and based on the results generated in each tree, the
average value of the results for each tree is derived as the final pre-
diction result. The random forest technique is known as a tech-
nique that can build a model with excellent predictive
performance. This is because there is no restriction on variable
selection so it is possible to prevent overfitting. The random forest
learning process using bootstrap sampling proceeds in the follow-
ing steps.

1) Generate Ts training datasets from the given training dataset
through the bootstrap sampling.

2) Train a basic T sorter (tree).
3) Combine the basic sorter (tree) into one sorter (random

forest).
4) Determine the final forecast by average and majority voting.

Observed values that are not used in the learning process of
individual trees in the random forest are called out-of-bagging
(OOB) and are used to validate the model. OOB is used to estimate
the predicted probabilities by category and identify the variables
that cause anomalies. The number of times that OOB is selected
in all the decision trees of the random forest differs from each tree,
and the predicted values are different for each tree. The probability
of appropriately predicting the OOB observation of each observa-
tion belonging to category k in the original category is defined as
follows.

cpk xið Þ ¼
P

j2OOBi�I by xi ;tjð Þ¼k
� �

OOBij j , for k

I is an indicator function that indicates 1 when the value in the
parentheses is true, 0 when the value is false, and by xi; tj

� �
repre-

sents the predicted category. tjmeans the jth decision tree in the
generated decision tree. OOBi is a set of decision trees that is not
used as an observed value in the learning process using bagging.
Where a set of decision trees does not include xi, the ratio of the
number of decision trees predicting xi to the k category is cpk xið Þ
(Deng et al., 2012). The verification method using OOB is as accu-
rate as verification through new verification data (Breiman, 2001).

This study uses the mean decrease Gini (MDG) as an index to
evaluate the significance of explanatory variables in random for-
ests. MDG is the average of the GI index reductions for a particular
explanatory variable in all trees. If the number of classification cat-
egories (i) is j, that is, i ¼ 1;2;3; � � � ; J; the GI index is calculated as
follows.

GI=
PJ

i¼1f i 1� f ið Þ ¼ 1�PJ
i¼1f

2
i

f iis the ratio of correctly classifying i to i category, and 1� f iis
the ratio of predicting i to another category. If the model perfectly
classifies every category, f i is 1, and the GI index is 0. The higher
the MDG value of a particular variable indicates that this value is
suitable for classifying a certain category correctly, which means
it decreases the impurity degree. The MDG can be calculated
between 0 and 100. If one of the variables’ MDG is 0, that variable
is not used for classification at all. However, if the MDG is closer to
100, the variable can completely classify the observation.

5. Results

In the first stage, the MDG values of each input variable were
calculated by setting the driver’s type as a target variable and set-
ting 37 characteristic variables of taxi drivers as input variables.
The top 15 variables with large MDG values were extracted, and
these variables were used as input variables for the next stage
analysis. In the second stage, extracted variables from the first
stage are set as input variables, and the accident risk group was
set as a target variable.

5.1. Identification of factors characterizing taxi driver type

For learning the random forest, the total number of trees was
set to 500, and each tree was set to build a tree using five variables
at random. The OOB error of the model was 17.74%. Using the MDG
values of each variable, the importance of each variable was
assessed. Based on the MDG values, the top 15 variables considered
to be effective in classifying taxi driver types were selected, and the
results are presented in Table 1. The selected variables included in
terms of health, work, and living environment of taxi drivers, such
as the degree of mental health, the satisfaction of work, the stress
level at work, fatigue, the satisfaction level for life, or the satisfac-
tion level for the wage system.

Except for age, taxi driving experience, weekly working hours,
and average number of weekend work per month, which can be
represented by continuous variables, other variables were survey
by 5-point scale. 5-point satisfaction obtained from mental health,
job satisfaction, life satisfaction, health care, wage satisfaction,
sleeping time, and vehicle interior environment indicates the best
condition. On the other hand, the worst condition is represented by
5-points in case of job stress, fatigue, physical burden, and stress
from passengers. Among these variables, the MDG value of the
degree of mental health of the taxi drivers was analyzed to be
54.49 and was selected as the most effective factor in classifying
the taxi driver’s type. The MDG values of the satisfaction of work,
stress level at work, fatigue, and the degree of the physical burden
of taxi driving were calculated to be over 20, so it was found that
the variables related to work and living environment are effective
in classifying taxi driver type.

5.2. Prioritizing factors influencing accident risk

To analyze the factors influencing the classification of the acci-
dent risk group, a random forest methodology was applied using
the 15 variables derived above as explanatory variables. The total
number of trees was set to 500, and each tree was set to build a
tree using two variables at random. The OOB error of the model
was 30.75%. The results of the MDG values are presented in Fig. 4.

It was determined that the taxi driver’s age has the most con-
siderable influence on the classification of accident risk groups,
with an MDG value of 28.4. In addition, the MDG values of the taxi
driving experience of commercial vehicles, the satisfaction level for
life, and the satisfaction of work were calculated to be over 20, so
these variables were highly related to the classification of accident
risk group. As shown in Fig. 4, the age and career of the taxi driver
and the living and working environment were considered to have a
significant influence on the taxi driver’s accident risk group classi-
fication. We were able to extract 15 variables that can clearly

Table 1
Results of MDG by factors affecting taxi driver characterization.

Rank Variable Mean Decrease Gini

1 Degree of Mental Health 54.49
2 Satisfaction of Work 31.75
3 Stress Level at Work 27.21
4 Fatigue 25.9
5 Physical Workload 24.1
6 Satisfaction Level for Life 19.75
7 Health Management Level 18.47
8 Satisfaction Level for Wage System 16.38
9 Mental Stress due to Passengers 16.32
10 Age 15.72
11 Taxi driving Experience 13.63
12 Weekly Working Hours 11.68
13 Daily Sleeping Time 10.7
14 Monthly Weekend Work days 10.1
15 Satisfaction with Vehicle Interior Environment 8.78
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distinguish the difference among four types of taxi drivers through
conducting the first random forest analysis. The result implied that
mental health, job satisfaction level, and job stress contributed
greatly to explaining the difference between driver types. The sec-
ond random forest analysis was conducted to identify how much
each variable would affect the crash severity. It was found that
age, driving experience, and life satisfaction level had a great influ-
ence on the crash risk of taxi drivers. This study attempted to
extract variables that can clearly classify driver types and driver’s
crash risk through the proposed methodology based on 2-stage
random forest analysis.

5.3. Policy implications for improving taxi drivers’ safety

Fifteen variables were selected as the meaningful variables,
which were highly prioritized based on the RF analysis in this
study. For example, the age and taxi driving experience of taxi dri-
vers were categorized into demographic variables to represent the
personal characteristics of drivers. Monthly weekend workdays,
weekly working hours, and the satisfaction level for the wage sys-
tem were regarded as variables for the work environment. More-
over, variables including daily sleeping time and the satisfaction
level for life were interpreted as variables representing the health
and welfare characteristics of taxi drivers. In this context, the 15
variables can be categorized into three groups: the taxi driver’s
personal characteristics, work environment characteristics, and
health and welfare characteristics. This study derived a set of pol-
icy implications for the prevention of traffic accidents based on the
analysis of variables influencing the classification of taxi driver
types in terms of traffic safety. Details on each policy implication
are presented in the subsequent subsections. The relationship
between driver’s intrinsic factors and policy implications is pre-
sented in Fig. 5.

5.3.1. Establishing a driving capability evaluation system for elderly
drivers

A systematic evaluation of the driving capability of elderly dri-
vers is required to identify high-risk taxi drivers. With the evalua-

tion of driving ability, continuous monitoring of work and life
environments and health conditions are also useful in developing
effective countermeasures to enhance traffic safety associated taxi
drivers. As a part of the evaluation system, it is recommended to
add evaluation items to represent the work and health-related
conditions.

5.3.2. Improving the driver’s wage system
It is necessary to improve the satisfaction of the driver’s wages

through a policy that guarantees the minimum wage of taxi dri-
vers, which leads to the reduction in work-related stress. This ulti-
mately contributes to enhancing traffic safety.

5.3.3. Restricting overtime work for taxi drivers
One of the important factors resulting in accidents is the fatigue

of drivers. A policy restriction on overtime work for taxi drivers is
necessary to significantly reduce fatigue, including physical and
mental stresses.

5.3.4. Supporting the improvement of rest facility
Providing shared rest facilities for taxi drivers is necessary to

improve the work environment toward relieving the fatigue. In
the case of a small taxi company, the remaining facilities are often
in poor condition. A feasible solution to this problem is to provide
the shared rest facility at the local government level.

5.3.5. Developing mental health management programs for taxi
drivers

The purpose of this policy is to reduce the stress level at work
and the crash risk by establishing a system to monitor and manage
the mental health of taxi drivers. Through collaboration between
local public health centers and taxi companies, it is necessary to
periodically monitor the physical and mental health condition of
taxi drivers. In addition, it is expected that the quality of life and
traffic safety of taxi drivers will be improved by providing guideli-
nes for mental health management.

Fig. 4. Result of prioritizing factors to identify accident risks.

J. Park, S. Lee, C. Oh et al. Journal of Safety Research 76 (2021) 238–247

244



5.3.6. Inspecting the taxi’s internal conditions
This policy is to improve the in-vehicle condition. Specifically, it

is necessary to establish an evaluation system to maintain the
cleanliness of taxis at the governmental level to perform the peri-
odic evaluation. In addition, it is necessary to check the condition
of the inside of the vehicle together with regular vehicle
inspection.

5.3.7. Supporting the installation of security devices for protecting taxi
drivers

This policy ensures the safety of taxi drivers who are exposed to
physical and mental damage from passengers due to the nature of
the work. It is possible to ensure the safety of taxi drivers by estab-
lishing a regulation that legally mandates the installation of CCTV
in the taxi. To reduce the economic burden of taxi drivers as much
as possible, the subsidy for the installation of the protection device
should be increased.

The seven policies for taxi drivers derived in this study can be
classified into three types: N, I, and E according to the characteris-
tics of the policy. Type N is a new policy developed for taxi drivers,
and Type I is a policy that promotes improvements of the existing
policy for taxi drivers. Lastly, Type E is a policy to eliminate nega-
tive factors for the safety of taxi drivers. Each of the three types of
policies has a direction of policy promotion based on the current
situation and problems.

Currently, efforts for developing and implementing policies for
evaluating the driving ability of taxi drivers and managing the
working environment in Korea are insufficient. Institutional mea-
sures to improve the driving ability and working environment
are needed because they are directly related to crash risks. In this
study, a new policy that can be prepared for taxi driver work envi-
ronment and traffic safety management is presented as Type N.
One of the critical issues for taxi drivers who drive long hours in
limited places and deal with various customers is security and rest.
Type I is a policy that can improve traffic safety for taxi drivers by
improving existing policies. For example, efforts are needed to

enhance the effectiveness of policies to ensure rest and prevent
violence from passengers. In addition, it is necessary to improve
the wage system because work stress and overworking leading to
crash risk can be reduced by devising proper wage system. Finally,
Type E refers to a policy to reduce exposure to traffic crashes by
removing the factors that hinder traffic safety of taxi drivers. It is
believed that with systematic restrictions of overworking taxi dri-
vers, it will be possible to not only reduce crash risks but also
improve the quality of life.

In this study, we analyzed the priority of the proposed policy
implications to emphasize the need for institutional management
for taxi drivers. To prioritize the seven policies for improving traffic
safety for taxi drivers, the results of the priority analysis of the fac-
tors affecting the classification of accident risk groups were used.
First, a process of matching explanatory variables closely related
to each policy was performed. For example, the variables of the
age of driver and taxi driving experience were matched with the
policy for the establishment of an evaluation system for the driving
capability of the elderly taxi driver. The variables for the satisfac-
tion of work, the average number of working days on the weekend
per month, the stress level at work, and the satisfaction level for
the wage system were matched with the policy for the improve-
ment of the taxi driver’s wage system.

After analyzing the relationship between 7 policies and 15
explanatory variables, the priority was derived by calculating the
average value of MDG for each policy. The equation for the
calculation of the average MDG of each policy is presented in
Equation 3.

MDGi ¼
Pn

k¼1MDGa

N

i indicates policy and MDGi indicates the average MDG of policy
i. MDGa indicates the MDG value for each explanatory variable, and
N is the number of explanatory variables matched with the policy.
The results of the average MDG for each policy are presented in
Table 2, and as a result of the analysis, it is analyzed that the

Fig. 5. Mapping driver’s intrinsic factors with policy implications.
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establishment of an evaluation system for the driving ability of the
elderly taxi driver is preferentially necessary to improve the traffic
safety of the taxi driver.

6. Conclusion

Traffic safety issues associated with taxis are of keen interest
because the frequency of taxi crashes is significantly higher than
that of other vehicle types. Thorough investigations on the cause
of taxi crashes are fundamental to developing effective policy-
based countermeasures. A variety of existing studies have
attempted to identify influencing factors leading to crashes. Vari-
ables related to drivers’ human factors have been known to be
dominant and critical among such factors. However, most existing
studies deal with external causal factors indicative of unsafe driv-
ing behavior characteristics resulting in crashes, such as inatten-
tion, distraction, drowsiness, and aggressiveness. Unlike existing
studies, this study focuses on underlying intrinsic aspects that
can be the root cause of unsafe driving behavior. In addition to
work and living environment, drivers’ health-related conditions,
obtained from an in-depth questionnaire survey, were analyzed
to identify intrinsic factors contributing to taxi safety. It should
also be noted that this study proposed a methodology based on
an RF technique, which is a widely used heuristic method without
inevitable assumptions for statistical analyses, to mine meaningful
implications to be used for deriving safety policies.

The methodology proposed in this study extracted risk factors
by applying RF in two stages. In the first stage, factors capable of
distinguishing the type of taxi driver were identified. It was found
that a total of 15 variables were capable of characterizing taxi dri-
ver types. Next, extracted variables from the first stage were used
as inputs, and the crash risk level including high-risk, medium-risk,
and low-risk was set as a target variable to prioritize variables in
terms of the importance level affecting the safety of taxi drivers.
This study derived a set of policy implications for the prevention
of taxi crashes from three perspectives: personal, working, and
health and welfare. In addition, the main purpose and key issues
of each policy were discussed. The derived policies can be divided
into the development of new policies, the improvement of existing
policies, and the elimination of negative factors. Regarding the
development of new policies, this study proposed ‘establishing a
driving capability evaluation system for elderly drivers,’ ‘develop-
ing mental health management programs for taxi drivers,’ and
‘supporting the installation of security device for protecting taxi
drivers.’ Additionally, ‘improving the driver’s wage system,’ ‘in-
specting the taxi’s internal conditions,’ and ‘supporting the
improvement of rest facility’ are for improving existing policies.
Last, the main purpose of ‘restricting overtime work for taxi dri-
vers’ is to eliminate negative factors. It is believed that the outcome
of this study will be valuable in developing policy countermeasures
to prevent taxi crashes. However, further studies need to be con-

ducted to obtain more substantial and useful implications for
safety policies. First, more sample data should be collected with
the institutionalization of the in-depth survey. It is also necessary
to continuously discover new questions and improve existing
questions to be used for identifying intrinsic factors associated
with taxi safety. From the methodological point of view, perform-
ing the proposed methodology with various different types of tar-
get variables is expected to allow for obtaining more meaningful
results. In particular, different definitions need to be applied to
classify the risk level of taxi drivers. In addition, among all licensed
taxis in Korea, corporate taxis and private taxis account for 34.53%
(86,935 taxis) and 65.47% (164,868 taxis), respectively (2020,
National Association of Taxi Transportation Business Associations).
It is expected that there exist obvious differences between corpo-
rate taxis and private taxis in various aspects such as criteria for
obtaining a license, wage system, and working hours, which will
affect the characteristics related to health, work, and living condi-
tions of taxi drivers. Therefore, it is necessary to expand our study
subject to private taxis in the future, as this study only focused on
corporate taxis. This study conducted a 2-stage random forest
analysis, which was focused on the identification of the relation-
ship between the health, work, and life characteristics and traffic
safety of individual corporate taxi drivers. While conducting this
analysis, the geographical characteristics of taxi companies and
drivers were not considered. However, it is expected that the geo-
graphic environment would affect the personality and attitude
contributing to driving behavior. Therefore, a future study should
take geographic environment into consideration in analyzing taxi
crashes and drivers’ internal characteristics.

Acknowledgement

This research was supported by a grant from Transportation
and Logistics Research Program funded by Ministry of Land, Infras-
tructure and Transport of Korea government (20TLRP-B148659-
03).

References

Abdel-Aty, M., Pande, A., Das, A., & Knibbe, W. J. (2008). Assessing safety on Dutch
freeways with data from infrastructure-based intelligent transportation
systems. Transportation Research Record, 2083(1), 153–161.

Al-Ghamdi, A. S. (2000). Taxi service characteristics and involvement in road traffic
accidents in Riyadh. Journal of King Saud University-Engineering Sciences, 12(2),
199–216.

Apantaku-Onayemi, F., Baldyga, W., Amuwo, S., Adefuye, A., Mason, T., Mitchell, R.,
& Blumenthal, D. S. (2012). Driving to better health: Cancer and cardiovascular
risk assessment among taxi cab operators in Chicago. Journal of Health Care for
the Poor and Underserved, 23(2), 768.

Borowsky, A., & Oron-Gilad, T. (2013). Exploring the effects of driving experience on
hazard awareness and risk perception via real-time hazard identification,
hazard classification, and rating tasks. Accident Analysis & Prevention, 59,
548–565.

Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Bulduk, E. Ö., Bulduk, S., Süren, T., & Ovalı, F. (2014). Assessing exposure to risk

factors for work-related musculoskeletal disorders using Quick Exposure Check
(QEC) in taxi drivers. International Journal of Industrial Ergonomics, 44(6),
817–820.

Chen, J. C., Chen, Y. J., Chang, W. P., & Christiani, D. C. (2005). Long driving time is
associated with haematological markers of increased cardiovascular risk in taxi
drivers. Occupational and Environmental Medicine, 62(12), 890–894.

Deng, H., Runger, G., & Tuv, E. (2012). System Monitoring with Real Time Contrasts.
Journal of Quality Technology, 44(1), 9–27.

Do, C. W. (2013) Transportation Safety Engineering Cheongmoongak, pp.105–111.
Hansen, J., Raaschou-Nielsen, O., & Olsen, J. H. (1998). Increased risk of lung cancer

among different types of professional drivers in Denmark. Occupational and
Environmental Medicine, 55(2), 115–118.

Harb, R., Yan, X., Radwan, E., & Su, X. (2009). Exploring precrash maneuvers using
classification trees and random forests. Accident Analysis & Prevention, 41(1),
98–107.

Jiang, X., Abdel-Aty, M., Hu, J., & Lee, J. (2016). Investigating macro-level hotzone
identification and variable importances.

Table 2
Results of average MDGs by policy implications.

Rank Policy Implications MDG

1 Improving the driving capability evaluation system for
elderly drivers

26.72

2 Improving the driver’s wage system 16.90
3 Restricting overtime work for taxi drivers 14.53
4 Improving driver’s rest environment 14.10
5 Developing mental health management program for taxi

drivers
14.00

6 Improving the taxi’s internal conditions 13.25
7 Supporting the installation of security device for protecting

taxi drivers
12.90

J. Park, S. Lee, C. Oh et al. Journal of Safety Research 76 (2021) 238–247

246

http://refhub.elsevier.com/S0022-4375(20)30167-5/h0005
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0005
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0005
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0010
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0010
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0010
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0015
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0015
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0015
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0015
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0025
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0025
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0025
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0025
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0030
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0035
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0035
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0035
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0035
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0035
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0040
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0040
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0040
http://refhub.elsevier.com/S0022-4375(20)30167-5/h9000
http://refhub.elsevier.com/S0022-4375(20)30167-5/h9000
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0050
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0050
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0050
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0055
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0055
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0055


Lee, M. W., Kim, Y. G., Jun, Y. J., & Shin, Y. H. (2019). Random Forest based Prediction
of Road Surface Condition Using Spatio-Temporal Features. Journal of Korean
Society of Transportation, 37(4), 338–349.

Lee, S. Y., Cho, E. S., Oh, C., Kang, S. H., & Choi, B. H. (2020). Pattern Classification of
Taxi Drivers Based on Work and Living Conditions for Commercial Vehicle
Safety Management System. Journal of Korean Society of Transportation, 38(3),
218–231.

Li, M. K., Yu, J. J., Ma, L., & Zhang, W. (2019). Modeling and mitigating fatigue-related
accident risk of taxi drivers. Accident Analysis & Prevention, 123, 79–87.

Lim, S. M., & Chia, S. E. (2015). The prevalence of fatigue and associated health and
safety risk factors among taxi drivers in Singapore. Singapore Medical Journal, 56
(2), 92.

Maag, U., Vanasse, C., Dionne, G., & Laberge-Nadeau, C. (1997). Taxi drivers’
accidents: How binocular vision problems are related to their rate and severity
in terms of the number of victims. Accident Analysis & Prevention, 29(2),
217–224.

Ma, J., & Cheng, J. C. (2016). Identifying the influential features on the regional
energy use intensity of residential buildings based on Random Forests. Applied
Energy, 183, 193–201.

Meng, F., Wong, S. C., Yan, W., Li, Y. C., & Yang, L. (2019). Temporal patterns of
driving fatigue and driving performance among male taxi drivers in Hong Kong:
A driving simulator approach. Accident Analysis & Prevention, 125, 7–13.

Miyamoto, M., Konno, S., Gembun, Y., Liu, X., Minami, K., & Ito, H. (2008).
Epidemiological study of low back pain and occupational risk factors among
taxi drivers. Industrial Health, 46(2), 112–117.

Siddiqui, C., Abdel-Aty, M., & Huang, H. (2012). Aggregate nonparametric safety
analysis of traffic zones. Accident Analysis & Prevention, 45, 317–325.

Vahedi, J., Shariat Mohaymany, A., Tabibi, Z., & Mehdizadeh, M. (2018). Aberrant
driving behaviour, risk involvement, and their related factors among taxi
drivers. International Journal of Environmental Research and Public Health, 15(8),
1626.

Jiwon Park received the B.S. degree from Hanyang University in 2018, where she is
currently working toward the Ph.D. She is currently studying traffic safety and crash
data analyses.

Seolyoung Lee received the Ph.D. degree from Hanyang University in 2020. She is
currently a principal researcher of the department of Smart City Research at Seoul
Institute of Technology, Korea. Her research interests include traffic crash data
analysis, traffic and driving simulations, and traffic safety issues in mixed traffic
flow with automated vehicles and regular vehicles.

Cheol Oh received the Ph.D. degree in civil engineering–transportation systems
engineering from the University of California at Irvine in December, 2003. He is
currently a full professor of the department of transportation and logistics engi-
neering at Hanyang University, Korea. He is conducting research on commercial
vehicle safety, active traffic safety analytics, and traffic management strategy under
cooperative automated driving environments.

Byongho Choe received the Ph.D. degree in psychology from the Oldenburg
University in 2001. He is currently a director of the transportation safety research
and development institute of Korea Transport Safety Authority. His research
includes traffic safety policies, driving behavior analysis, and crash data analysis
and management systems.

J. Park, S. Lee, C. Oh et al. Journal of Safety Research 76 (2021) 238–247

247

http://refhub.elsevier.com/S0022-4375(20)30167-5/h9005
http://refhub.elsevier.com/S0022-4375(20)30167-5/h9005
http://refhub.elsevier.com/S0022-4375(20)30167-5/h9005
http://refhub.elsevier.com/S0022-4375(20)30167-5/h9010
http://refhub.elsevier.com/S0022-4375(20)30167-5/h9010
http://refhub.elsevier.com/S0022-4375(20)30167-5/h9010
http://refhub.elsevier.com/S0022-4375(20)30167-5/h9010
http://refhub.elsevier.com/S0022-4375(20)30167-5/h9030
http://refhub.elsevier.com/S0022-4375(20)30167-5/h9030
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0065
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0065
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0065
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0070
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0070
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0070
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0070
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0075
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0075
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0075
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0080
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0080
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0080
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0085
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0085
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0085
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0090
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0090
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0095
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0095
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0095
http://refhub.elsevier.com/S0022-4375(20)30167-5/h0095


Adolescent noncompliance with age-specific versus universal US
motorcycle helmet laws: Systematic review and meta-analysis

Jon Berrick a,⇑, Konstantina Gkritza b

a Science Division, Yale-NUS College, 10 College Avenue West #01-101, Singapore 138609, Singapore
b Lyles School of Civil Engineering and Department of Agricultural & Biological Engineering, Purdue University, 550 Stadium Mall Dr, West Lafayette, IN 47907-2093, USA

a r t i c l e i n f o

Article history:
Received 23 April 2019
Received in revised form 18 September
2020
Accepted 15 December 2020
Available online 2 January 2021

Keywords:
Adolescent psychology
Age-restricted
Attributable percentage among exposed
Threat of apprehension
Youth control

a b s t r a c t

Introduction: The U.S. experience with motorcycle helmets affords an important insight into the responses
of adolescents to age-specific laws. Political contention has led to a number of U.S. state law changes back
and forth between universal and age-specific laws. Because both kinds of law require adolescent motor-
cyclists to wear helmets, relatively few studies have focused on how the law type affects their behavior.
Method: Differential behavior is tested by a systematic review of literature, leading to a meta-analysis, in
relation to the experience of various states’ motorcycle helmet laws. An electronic search was conducted
for before-and-after studies in U.S. states that include data on adolescent helmet usage – both with a uni-
versally applicable motorcycle helmet law, and with an age-restricted law (usually, under-21 or under-
18) – from observational, injury or fatality records for a certain period (e.g., 12 months) pre and post the
state law change. Results: The search yielded ten studies, including two that compared a set of age-
specific law states with a set of universal law states over the same time period. Heterogeneity analysis
of seven single-state studies with raw data revealed an acceptable fit for a random-effects model.
Additional noncompliance with age-restricted laws was indicated by an attributable percentage among
exposed of over 65% and odds ratio exceeding 4. Conclusions: About two-thirds of adolescent noncompli-
ance with age-restricted motorcycle helmet usage laws disappears with universal applicability. Evidence
from numerous international studies of youth reaction to helmet laws suggests that a large part of the
greater compliance with universal laws is due to their conveying a more convincing message that hel-
mets afford protection against injury. Practical Applications: The meta-analysis provides fresh, young-
rider perspective on the continuing debate over motorcycle-helmet laws. Broader insight into adolescent
psychology suggests considering alternatives to age-restricted laws more widely in safety and health
policy.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

There are a number of public health and safety domains where
the behavior of adolescents has an important role. Often the regu-
latory response to this lies in age-specific laws. But how effective
are they? In many cases (e.g., alcohol and tobacco), it is difficult
to draw direct conclusions because there are few instances of con-
trasting laws within comparable populations. United States motor-
cycle helmet laws are an important exception: many states have
had different regimes in force at different periods, offering an
opportunity for making comparisons.

1.1. Motorcycle helmets

Motorcycles are a distinctly hazardous form of travel. By dis-
tance traveled, U.S. motorcyclists are over 30 times more likely
to die in a crash than drivers of other types of motor vehicles
(Lin & Kraus, 2008); in 2018, 3% of motorcycle fatalities involved
riders 19 years or less (IIHS, 2019). The role of helmets in prevent-
ing motorcyclist fatalities and alleviating injury has long been
demonstrated (Evans & Frick, 1988). An international systematic
review (Liu et al., 2008) concluded that helmets reduce the risk
of head injury by 69% and death by 42%. In turn, universal helmet
laws are recognized as one of the most effective approaches for
increasing helmet use (Lee, 2018; Peng et al., 2017) and their ben-
efits persist over the long term (Lee & Outlaw, 2018). Accordingly,
numerous countries have adopted such policies, including those of
the European Union, Japan, Canada, Australia, Singapore, and New
Zealand.
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1.2. Importance of adolescent compliance

It is well known that adolescents are overrepresented in
motor-vehicle crashes (Shope & Bingham, 2008). Obviously less
experienced, they are also considered to be more liable to
sensation-seeking and impatience (Wong et al., 2010). They could
further be described as less risk-aware: a West Australian survey
indicated that while 85% of the general community expressed con-
cern about the safety of novice drivers, only a minority of novice
drivers shared this concern (OECD/ECMT, 2006). Lowered risk per-
ception by adolescents has been attributed to personality and
social norms (Falco et al., 2013), sleep deprivation (Groeger,
2006), and socio-cultural contributors (Njå & Nesvåg, 2007).

Evidently then, to the extent that helmets are protective, it is
important that youth obey laws mandating their use. In the Discus-
sion section, we seek to analyze various contributors to noncompli-
ance, informed by broad theoretical models of motivators of
behavior. It is clearly valuable to gain an understanding of factors
affecting compliance that fall under the control of policy-makers.
Is it possible that the nature of the law itself might influence its
acceptance? An affirmative answer could have implications
beyond the immediate realm of adolescent motorcycle safety.

1.3. Universal versus age-specific laws for increasing adolescent
motorcycle helmet use

The decade following the U.S. Highway Safety Act of 1966 saw
almost all U.S. states respond to federal economic incentives to
introduce universally applicable motorcycle helmet laws. Follow-
ing the discontinuance of this support with the 1976 Federal-Aid
Highway Act, and under pressure from motorcycle rights organiza-
tions, over succeeding decades the majority of states restricted the
applicability of their laws to adolescents only (typically those
under 18 or under 21; Lee & Outlaw, 2018). Continued political
contention has led to a number of law changes back and forth
between universal and age-specific laws (Dee, 2009; Homer &
French, 2009; Vaca, 2006).

Adoption of partial laws has resulted in fewer riders wearing
helmets, and increased motorcyclist fatalities and injuries experi-
enced by those states that repealed universal helmet laws
(Buckley et al., 2016). In states with an under-21 law, Weiss et al.
(2010) found that serious traumatic brain injury among young rid-
ers was 38% higher than in states with universal helmet laws.

1.4. Existing literature and previous related reviews/meta-analyses

Political debate about appropriate helmet laws has largely con-
trasted issues of effectiveness of helmets in reducing injury with
libertarian concerns (Jones & Bayer, 2007). Consequently, there
are numerous studies of effects of such law changes. However,
instead of adolescent response they tend to focus on questions
relating to number of lives lost (Lee et al., 2017), frequency
(Olsen et al., 2016) and nature (Peek-Asa & Kraus, 1997) of injuries
(Abbas et al., 2012), and economic costs (Kim et al., 2015); see also
(Coben et al., 2007).

Because adolescent motorcyclists are required to wear helmets
under both kinds of law, some authors have assumed that relevant
statistics would not vary according to the type of law. For example:

� ‘‘Since the change in helmet wearing requirements occurred for
individuals 18 years of age and older, informationwas examined
for those individuals only” (Fleming & Becker, 1992, p.835);

� ‘‘Because Louisiana has always mandated helmet use in the
underage group, pre- and post-repeal helmet use in the
under-18 age group would be expected to be unchanged” (Ho
& Haydel, 2004, p.154);

� ‘‘Of course, because the repeal of the motorcycle helmet-use
law applied only to motorcycle operators and passengers older
than 21 years of age, the repeal of the law should have little if
any effect on the serious injury and fatality rate series for
motorcycle riders younger than 21 years of age. The use of the
younger-than-21 serious injury and fatality rates as statistical
controls in the analyses helps us to avoid attributing signifi-
cance to the repeal of the law that should, more accurately, be
attributed to some other independent but coincidental event
such as a change in weather conditions” (Stolzenberg &
D’Alessio, 2003, p.134).

� On the other hand, Watson et al. (1980, p.581) ignores underage
data ‘‘because the number of motorcyclist deaths per month in
each age class would have been too small.”

Accordingly, relatively few studies appear to have attempted to
measure the effect of law changes on youth helmet usage, or even
to have published enough data to allow the effect to be measured.

Two multi-state reviews that have considered youth accordance
with different laws are Brooks et al. (2010) and Peng et al. (2017).
The former analyzed motorcycle fatality data from the years 1996–
2005; for those under 18 years, the study reported no significant
difference in fatality rates per 10,000 registrations between the
three states with no helmet laws and three states with partial hel-
met laws (states with universal helmet laws were not considered).
The latter is a systematic review (without meta-analysis), which
noted sizeable percentage point differences in youth helmet usage
between generic and age-limited regimes.

1.5. Research objectives

The bulk of the present research comprises a systematic review
of literature, leading to a meta-analysis, to address the following
question (Berrick PROSPERO, 2018):

In relation to the experience of various US states’ motorcycle hel-
met laws, what is the effect on adolescent noncompliance of an age-
specific law instead of a universal law?

The approach is to consider cohort studies that include data on
adolescent helmet usage for a certain period (e.g., 12 months) both
pre- and post- a particular state law change. These may be ascer-
tained from observational, injury or fatality records.

Secondly, insofar as the meta-analysis reveals a difference in
outcomes, we then seek to discuss what factors seem to be relevant
in leading to such a difference. The observation of Houston (2007,
p.334) that ‘‘partial coverage statutes undermine the motives that
lead individuals to comply with the law,” indicates the need for
examination of the motives for adolescent noncompliance with
age-specific laws. Although this discussion is necessarily more ten-
tative than the preceding meta-analysis, we feel that such insights
can be of value to the wider public health and safety community in
other domains where age-specific laws prevail. To frame the dis-
cussion, we now briefly review the theoretical background.

1.6. Helmet laws and adolescent psychology: four hypotheses

The first two common surmises are those that accord with
deterrence theory, as discussed in Houston (2007), whereby it is
the likelihood of punishment that most leads to compliance.

(i) Conspicuity. Generic laws make all unhelmeted riders sub-
ject to police apprehension, increasing the deterrent impact
in comparison with an age-specific regime where it might
not be easy for police to decide the age of an unhelmeted
rider.

(ii) Enforcement prioritization. ‘‘Less rigorous enforcement may
also result from perceived lack of priority once older age
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groups have been exempted from helmet-use compliance”
(Weiss et al, 2010, p.1593).

In contrast, the theory of planned behavior (Ajzen, 1991) and
social learning theory and the prototype/willingness model
(Scott-Parker et al., 2013) highlight the influence of subjective
and social norms in giving laws their expressive effects. See also
Fig. 1 ‘‘Typology of determinants of adherence to a law” in
Berrick (2013).

(iii) Mixed messaging. The ‘‘perceived lack of priority” above
might also influence the motorcyclists themselves; in other
words, they may interpret an age-specific law as a signal
that lawmakers are less convinced of the dangers of riding
unhelmeted.

Lastly, reactance theory (Dillard & Shen, 2005) suggests that the
discriminatory nature of partial laws hints that their ulterior pur-
pose is youth control and may thus incite rebellion among those
who feel discriminated against.

(iv) Rite-of-passage. The requirement to wear a symbol of one’s
immaturity contradicts the expression of independence sig-
nified by the mobility of ridership.

Evidently, the above issues are relevant to any choice between a
generic and an under-age law.

2. Materials and methods

An electronic search was conducted for studies (1970s until
2018) in U.S. states that have changed their motorcycle helmet
laws between an age-restricted and a universal law, in order to
gather statistical data comparing adolescent noncompliance under
each condition. This was followed by a meta-analysis of the data
obtained.

2.1. Criteria for considering studies for this review

2.1.1. Types of studies
Studies sought were cohort studies that include data on adoles-

cent helmet usage for a certain period (e.g., 12 months) both pre
and post- the state law change. These may be ascertained from
observational, injury, or fatality records.

2.1.2. Participants/population
In a U.S. state that has changed from one kind of law to another,

the relevant population comprises motorcyclists under the age
mandated to wear helmets in the age-restricted regime (usually,
under-21 or under-18).

2.2. Comparator(s)/control

The search sought before-and-after studies publishing rates of
adolescent noncompliance – both with a universally applicable
motorcycle helmet law, and with an age-restricted law. (Due to
the symmetry of the situation, either the universal or age-specific
regime could be considered the control in the meta-analysis.)

2.3. Context

By studying data for individual U.S. states, interstate demo-
graphic differences are controlled for. As most studies relate to a
year or two before and after the law change, this reduces the
impact of temporal demographic changes.

2.4. Search methods for identification of studies

Two reviewers worked independently to obtain suitable studies
from databases, relevant journals, previous reviews, and trans-

portation agency websites. Further sources were obtained by
(mostly backward) snowballing. Where appropriate, authors were
contacted in order to obtain raw data, consisting of actual numbers
of crash-involved persons.

2.4.1. Inclusion criteria
The search filtered for the terms ‘‘motorcycle” and ‘‘helmet,” but

was further refined by terms such as ‘‘law” and ‘‘compliance” in the
case of the databases MEDLINE, Google Scholar, The Cochrane
Library and nhtsa.gov., as well as the U.S. General Accounting
Office. Journals searched were Accident Analysis & Prevention,
American Journal of Public Health, Annals of Emergency Medicine,
Injury Prevention, Journal of Health Economics, Journal of Safety
Research, Journal of Trauma–Acute Care Surgery, Journal of
Trauma–Injury Infection & Critical Care, The American Journal of
Surgery, and Traffic Injury Prevention.

2.4.2. Exclusion criteria
From studies initially retrieved there were excluded those

focusing on such matters as all-terrain vehicles, bicycles, seat-
belts, pedestrians, young children, helmet design, alcohol, nature
of injury, economic impacts, education, and non-U.S. data. Studies
with very small samples were excluded; and in the case of more
than one study covering a particular law change, so as to avoid
double-counting, validity and sample size were considered in order
to determine which one study would be included.

2.5. Assessment of risk of bias in included studies

When the question of relative adolescent noncompliance is not
the primary objective of a study, its results of interest to this
review tend to be reported only incidentally. This reduces the like-
lihood of publication bias. The main reasons why the question is
unlikely to be the primary objective of a study are considered to
be the following.

(i) It is counter-intuitive: when adolescents are subject to both
age-specific and universal laws, theoretically their compli-
ance should not vary.

(ii) Most studies are primarily interested in direct safety and
economic impacts of helmet laws, rather than compliance
and its causes.

(iii) Adolescents form a small portion of the motorcyclist popula-
tion. Since most studies focus on injuries or economic conse-
quences, there is little motivation to isolate this relatively
small subgroup.

(iv) Given the unreliability of observational assessment of age of
motorcyclist, a much larger overall sample is needed in
order to obtain usable data for the adolescent subgroup.

Selection bias is not a major issue because the whole adolescent
population is subject to both laws. However, in a study spanning
several years, the adolescent population at the end of the period
will not comprise the same people as those at the beginning of
the study.

Attrition bias could arise because an unhelmeted cyclist is more
likely to suffer a fatal injury, suggesting that, ceteris paribus, the
proportion of cyclists using helmets would rise over time. How-
ever, given the low frequency of fatalities relative to demographic
movements, any such effect is not considered likely to be
significant.

There is some evidence that observation data and crash data
yield comparable predictions of helmet use. For example
(Buckley et al., 2016): ‘‘The current study estimated the rate of hel-
met use (including novelty helmets) at 75% for all motorcycle oper-
ators, compared with 73% identified in police-reported crash data.
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The similarity and alignment is notable and suggests there is value
in using crash data, in particular data that include property-
damage-only crashes, when understanding statewide helmet use
rates. Given the costs of large scale observations and that crash
data are routinely collected by states, helmet use rates in crash
data may be a useful and inexpensive way to approximate overall
helmet use and especially to identify associated characteristics and
changes over time.”

Detection bias can be an issue when injury data are recorded, if
records rely on patients’ self-reporting, because helmet usage is
mandatory. However, this applies equally to adolescents under
both helmet laws. The bias can be reduced by relying on fatality
data instead, when available.

The statistical bias created by the protective effect of helmets in
using fatality data to determine rates of helmet usage is addressed
in the Appendix.

A bias due to an underlying trend of helmet use is mitigated by
studying both directions of change – from age-limited to universal
and from universal to age-specific laws. Moreover, we consider
national studies that examine over a uniform time period adher-
ence to each kind of law in a variety of states.

Performance bias is a possibility when comparing records sev-
eral years apart, because it may be that the records were taken
according to different protocols. Nevertheless, the clarity of the
dichotomous outcome – using or not using a helmet – mitigates
this. There may be changes over time in recorders’ interpretations
of what constitutes a ‘‘proper” helmet; this is not considered to be
a significant factor.

2.6. Effect measures

The statistics used in this analysis are attributable percentage
among exposed (APaE) and odds ratio (OR). Their suitability is dis-
cussed as follows.

A typical policy-maker’s question is: By what percentage will a
current adverse outcome (noncompliance in the present instance)
be reduced if the proposed intervention is introduced? (Compare
Rockhill et al., 1998; Gefeller, 2001.) It is addressed here by the
statistic known as attributable percentage (or proportion, or frac-
tion, or risk) among exposed (Cole & MacMahon, 1971). It is prob-
ably most readily understood as a percentage, which we refer to as
APaE. Its formula is

APaE ¼ 100� ðRc � RpÞ=Rc ¼ 100� ð1� 1=RRÞ ð1Þ

Here, Rc and Rp denote respectively the noncompliance rates
under current and proposed policies, while RR is the relative risk
Rc/Rp.

While the odds ratio is considered to have relatively attractive
theoretical properties, it is less readily explained to a policymaker.
A possible explanation might be as follows. For each policy, con-
sider the multiple by which compliance outweighs noncompli-
ance; then record the relative size of those two multiples. The
formula is

OR ¼ Rcð1� RpÞ=ðRpð1� RcÞÞ ð2Þ

2.6.1. Illustrative example
As a hypothetical example, if the proposed intervention was

associated with a lowering of the noncompliance rate from its cur-
rent 25% to 10%, that would count as a reduction of 60% (being
15/25), so APaE = 60%. In this example, the current policy has com-
pliance three times as large (being 75/25) as noncompliance; for
the proposed policy this multiple would be 9 times (being
90/10). Therefore, the odds ratio is 3 (being 9/3).

2.7. Strategy for data synthesis

Attributable percentage among exposed and odds ratio for
noncompliance attributable to an age-restricted law (in contrast
to a universally applicable law) were determined for each studied
law change. This was a point estimate in the case where raw data
were not available, and a 95% confidence interval where data
were available. Comparison of studies led to a test for hetero-
geneity and of the suitability of a fixed-effect model (Borenstein
et al., 2009). Subgroup analysis was to be conducted if considered
appropriate from the results of the heterogeneity analysis. Using
either a fixed-effect or random effects model (as found appropri-
ate), for those studies where raw data exist to allow pooling of
data, aggregated attributable risk and odds ratio were deter-
mined, together with 95% confidence intervals, displayed by for-
est plot.

Pooling was conducted only for (fixed state, varied regime)
studies pertaining to pre- and post-law change data within a single
state. Any (fixed regime, varied state) studies comparing a set of
universal-law states with a set of partial-law states were excluded
from heterogeneity analysis and pooling. This is because of the dif-
ferent nature of such studies: it may be, for example, that cultural
differences between states that have a universal law throughout
the study period and those that have an age-restricted law
throughout the period act as a confounder.

3. Results

3.1. Search yield

Progress of the search for relevant studies is indicated in Fig. 1.
Altogether, preliminary screening by key words and phrases as
described in Methods above yielded 1,288 papers for further
review. Further screening by title and abstract, and removal of
duplicates, resulted in 138 articles assessed on the basis of their
full text. After further exclusion of repetitious reports, so as to
avoid double-counting of a single law change event, the remaining
10 studies, detailed in Table 1, comprised the basis for meta-
analysis. There were no disagreements between the authors relat-
ing to study eligibility. Data extraction details are available from
the corresponding author.

Two of the 10 selected studies did not relate to a single state
law change, but compared, over a period of years, compliance in a
sample of states with age-restricted laws against compliance in a
set of states with age-unrestricted laws. Of the remaining eight
studies, one did not provide raw data. The seven single-state
studies with raw data were then subjected to heterogeneity
analysis.

3.1.1. Adjustment for fatality data
The literature suggests that the effectiveness e of helmets in

saving lives in motorcycle crashes has improved over time as hel-
met design has become more effective (Lin & Kraus, 2008). Since
the years for which fatality data were used centered around
1977 (Texas DPS, 1991), 2000 (Ulmer & Northrop, 2005) and
1995–2003 (Mayrose, 2008) – see Table 1, the value of e indicated
by NHTSA (1998), namely e = 36%, was used for this purpose. See
the Appendix for details of how the value of e is applied.

3.1.2. Description of studies selected
Table 1 presents a summary of the studies included in the meta-

analysis.
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3.2. Meta-analysis

3.2.1. Study results
As described in (2.7) Strategy for data synthesis, attributable

percentage among exposed (APaE) and odds ratio (OR) for noncom-
pliance (that is, no helmet worn) attributable to an age-restricted
law (in contrast to noncompliance under a universally applicable
law) were determined for each studied law change. In the case of

SD77, this was a point estimate; for the remaining studies a 95%
confidence interval was obtained. In all these remaining studies,
at the 5% significance level the OR was found to be greater than
one and the APaE exceeded zero.

3.2.2. Heterogeneity analysis
Random-effects models resulted in an I2 of 53% for each of the

APaE and OR statistics. A fixed effect model, after exclusion of

Fig. 1. Search results PRISMA flowchart.

Table 1
Studies included in the meta-analysis.

State and change
year

Change Data sources
Pre-change

Data sources
Post-change

SD77* U? 18-
July 1, 1977

Struckman-Johnson and Ellingstad, 1980: all crashes; months
12–0

Struckman-Johnson and Ellingstad, 1980: all crashes; months
0–24

ND77 U? 18-
July 1, 1977

Heilman et al., 1982: injuries; months 6–0 Heilman et al., 1982: injuries; months 0–42

TX77 U? 18-
August 29,
1977

Texas DPS, 1991: fatalities; months 12–0 Texas DPS, 1991: fatalities; months 0–12

LA82 18-? U
January 1,
1982

McSwain and Belles, 1990: all crashes; months 12–0 McSwain and Belles, 1990: all crashes; months 0–12

TX89 18-? U
Sept. 1, 1989

Goodnow, 1990: injuries; months 36–20 Preusser et al., 2000: injuries; months 52–64

TX97 U? 21-
Sept. 1, 1997

Preusser et al., 2000: injuries; months 44–0 Preusser et al., 2000: injuries; months 0–16

FL00 U? 21-
July 1, 2000

Ulmer and Northrop, 2005: fatalities; months 42–6 Ulmer and Northrop, 2005: fatalities; months 6–42

MI12 U? 21-
April 12, 2012

Carter et al., 2017**: all crashes; months 27–3 Carter et al., 2017**: all crashes; months 9–33

USA95-03 Mayrose, 2008: fatalities
USA05-08 Olsen et al., 2016: all crashes

*: Insufficient data to enable calculation of 95% Confidence Intervals (thus excluded from pooling).
**: Supplementary data kindly provided by authors (enabling CI and pooling).
U: Universal law (no age-restriction).
18-: Law applies only to those under 18 years (possibly also to uninsured, etc.).
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the TX89 data, reduced the I2 to 0% and 17% respectively, without
leading to markedly different means (details available from corre-
sponding author).

Pooling of the single-state data using a random-effects model
resulted in a mean APaE of 65.3%, with 95% confidence interval
of [51.0, 75.4]. A fixed effect model after exclusion of TX89 gave
a mean of 62.1% [54.7, 68.3]; an unweighted pooling of single-
state data led to a mean of 72.3% [65.7, 78.9]. In lay terms, this
means that about two-thirds of noncompliance occurring under
an age-restricted helmet law disappears under a universal law.
The OR results for these models were 4.41 [3.13, 6.23] (random-
effects), 3.86 [3.07, 4.86] (fixed effect), and 6.71 [5.57, 8.08] (un-
weighted). As an indication, an OR of 4 would correspond to 25%
noncompliance with an age-restricted law (odds of 3 to 1) shrink-
ing to 7.7% noncompliance (odds of 12 to 1) after change to a uni-
versal law.

3.2.3. Forest plots
Below, we display the forest plots for both attributable percent

among exposed (APaE) Fig. 2 and odds ratio (OR) Fig. 3, comparing
youthful noncompliance with universal and partial helmet laws.
The mean figures for each state, for the weighted pooling of states
(other than South Dakota, whose data were too limited to allow
pooling), and for each of the national studies, are presented in
the third column. The graphical display shows that mean as a small
square located within the 95% confidence interval as a horizontal
bar. (The size of the square relates inversely to the length of the
confidence interval and represents the weighting in the pooled
results.) For the pooled results, the confidence interval corresponds
to the horizontal endpoints of the kite-like figure, and the mean
corresponds to the vertically broadest part of the figure. Note that

APaE can theoretically achieve any value between 0 and 100, with
higher values representing a higher proportion of noncompliance
with an age-specific law that disappears under a universal law
regime. The OR can theoretically have any positive value, with val-
ues in excess of 1 indicating higher odds of youth noncompliance
with an age-restricted helmet law relative to the odds of youth
noncompliance with a universal law. The compression induced
by the 100 upper bound for APaE makes an outlier like TX89 less
obvious in the first forest plot than in the second.

4. Discussion

4.1. Outcomes

4.1.1. Heterogeneity and model tests
Heterogeneity among states may result from cultural differ-

ences arising from, for example, climate and geography, history
or demography. Differences in outcomes may also reflect the effec-
tiveness and zeal of accompanying campaigns, media attention,
political contention over the law-change, and comments by high-
profile individuals. Differences in data collection methods may also
contribute to heterogeneity among studies. Nevertheless, even for
the random-effects model, acceptable levels of I2 were obtained.

4.1.2. Interpretation of results
As noted by the Community Preventive Services Task Force

(2016), commenting on a subset of the studies reported here,
‘‘Although each study design comes with unique risks of bias, effect
estimates across multiple study types, population groups, and out-
come measures were remarkably consistent for this body of evi-
dence. No plausible source of bias could account for this

Fig. 2. Young operator noncompliance with age-specific versus universal helmet laws Forest plot: Attributable Percentage among Exposed.
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consistency” (ibid, p.11). The highly overlapping confidence inter-
vals obtained from pooled-intrastate and national data for APaE
and OR in Table 1 may be taken as a broad indication of the size
of this effect. The finding of Brooks et al. (2010) is that ‘‘Partial
[age-specific] helmet laws neither significantly reduce fatality
rates nor increase helmet compliance rates among young riders.
A partial helmet law is roughly equivalent to none at all” (ibid,
Abstract).

4.2. Limitations

The cited studies rely on three different types of measurement
of helmet usage: all riders in crashes, crash injury victims, and
fatalities. Since each metric leads to different numbers, there are
limitations to comparing figures prior and subsequent to legisla-
tive changes by means of different measurement types. Even
where there is consistency of metric, each has its own limitations.

Crash or crash injury data involving unhelmeted motorcyclists
in breach of the law may be under-reported owing to legal liability
and insurance claim issues. Moreover, because of differences in
state laws, the extent of such under-reporting may vary among
states and thus be very difficult to make accurate allowance for.
None has been made in the present analysis. A limitation of fatality
data is that the sample is smaller than for injuries. Perhaps differ-
ential rates of fatalities over time relate to differences in quality of
health care, or changing attitudes and behavior. However, for a
comparison of rates in the same state separated by only a few
years, these effects are likely to be small. Other differences may
relate to demographics, and publicity from the political debate
accompanying the law change.

The use of fake/novelty helmets is a complicating issue. Rice
et al. (2017) found that riders in Californian collisions wearing nov-

elty helmets were almost twice as likely to die as riders with full-
face helmets. The decision to wear such helmets may be related to
the type of motorcycle driven and the gender of the driver and pas-
senger (Turner & Hagelin, 2000). However, the relationship
between the usage of such helmets and the prevailing law is not
clear-cut (Preusser et al., 2000; Turner & Hagelin, 2004).

4.3. Implications

4.3.1. U.S. evidence
There is evidence that drivers are more likely to wear helmets

for rural trips (Dorris & Purswell, 1978; Krane & Winterfield,
1980; U.S. GAO, 1991; Gkritza, 2009). There, overall vehicle mile-
age death rates are much higher (O’Neill & Kyrychenko, 2006),
and fear of apprehension for flouting helmet laws is presumably
less, than in cities. This would appear to undermine the conspicuity
and enforcement prioritization hypotheses presented in Section 1.6
above. Moreover, youth whose main motivation for wearing a hel-
met is fear of detection would need to drive so as to minimize the
risk of being apprehended for an unrelated offense that would
reveal their infringement of the underage helmet law. ‘‘Enforce-
ment of the [underage] law almost always is secondary, with offi-
cers checking the age and/or insurance coverage only after
stopping the motorcycle for another traffic violation”
(Kyrychenko & McCartt, 2006, p.56). This more cautious behavior
would in turn make it less likely that the rider would appear in
the fatality or serious incident statistics that comprise these stud-
ies. The effect would be to reduce noncompliance with age-
restricted laws detected by these crash-based studies. Yet the size
of the differences found here casts doubt that that is what has
occurred. Kraus et al. (1995) found that the percentage of youth

Fig. 3. Young operator noncompliance with age-specific versus universal helmet laws Forest plot: Odds Ratio.
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wearing helmets increased in advance of a universal law taking
effect – a period during which there would be no increased threat
of apprehension. Likewise, Lund et al. (1991, p.578) observed:
‘‘Most of the increases [in helmet use] occurred immediately in
Texas despite the announcement by some State officials that they
would not enforce the law during its first 90 days.”

Numerous studies, both within and outside the United States,
provide support for the mixed messaging hypothesis. In the United
States, Ranney et al. (2010, p.2061) reported: ‘‘The variables with
the strongest correlation with not always using a helmet were:
not believing that wearing a helmet was protective (tetrachoric
rho = 0.80); believing that helmets impair sight/hearing (tetra-
choric rho = 0.80);” earlier, Allegrante et al. (1980) found that the
primary distinction between helmet-wearers and non-wearers
was their belief in safety versus comfort-convenience conse-
quences of helmet use.

4.3.2. International evidence
Despite the limitations of international comparisons, we note

various international studies that consider whether youths’ adher-
ence to helmet laws may be influenced by the messaging they con-
vey about safety as opposed to enforcement threats. In rural
Thailand (where enforcement of motorcycle helmet use laws is
described as ‘‘poorly enforced”), Swaddiwudhipong et al. (1998)
found that an education campaign on the protection afforded by
helmets produced in intervention villages an APaE for helmet
usage noncompliance of 32% and OR of 3.3 when compared with
control villages; these statistics are consistent with the U.S. out-
comes recorded above. An Iranian study (Haqverdi et al., 2015)
reported that ‘‘Perception of enforcement on helmet use does not
reliably affect helmet use.” In rural Malaysia, Sabahiah and Sukor
(2014) found noteworthy differences between respondent age
groups, with the strongest indicators of helmet usage in the young-
est (16–25 years) age group being attitude, perception of others
not using a helmet, and perceived danger; while enforcement
played a key role only for older age groups. Likewise, in Cambodia,
for Bachani et al. (2012) 86% of respondents indicated the lifesav-
ing potential of a helmet as a reason for wearing one, as opposed to
21.7% nominating police fines. An Italian survey (Bianco et al.,
2005) of public secondary students aged 14–19, reported that
78.5% opposed helmet laws applicable only for those under
18 years, whereas, despite 70% considering helmets uncomfort-
able, only 11.7% opposed universal helmet laws.

4.3.3. Other studies
Focus group studies also support the mixed messaging

(Germeni et al., 2009) and rite-of-passage (Eliasson et al., 2010)
hypotheses. Quantitative studies in the somewhat related area of
bicycle helmet laws are also revealing, despite the limitation of
change of domain. A systematic review (Karkhaneh et al., 2006)
of a dozen bicycle helmet studies concludes that ‘‘perhaps the main
effect of the legislation is to educate the community/parents that
bike helmets are protective, subsequently changing social norms
about helmet use and increasing prevalence . . . even in the absence
of rigorous enforcement” (ibid, p.81). For example, an Australian
survey (Finch, 1996) of 1,240 13- to 17-year-olds found that the
majority would wear (mandatory) bicycle helmets to be safe,
whereas fewer than 15% stated fear of apprehension as an argu-
ment for wearing one.

Recent growth in behavioral economics (more specifically,
choice architecture or ‘‘nudges”) might encourage the hope that
suitable campaigns (or adjustments to, for example, the terms
and conditions of insurance policies) could lead to greater adher-
ence to helmet laws in states where universal laws are deemed

politically infeasible. Nevertheless, this review indicates that it is
the law itself that provides a substantial nudge.

5. Conclusion

The studies in this review indicate that around two-thirds of
adolescent noncompliance with motorcycle helmet usage laws
that are age-restricted tends to disappear in the context of laws
that are universally applicable. Studies of youths’ reactions suggest
that in large part this is because universal laws send a more con-
vincing message that helmets afford protection against injury. It
appears that youth are considerably more likely to respect univer-
sal laws that send a message of protective benefit than age-specific
laws that may be interpreted as signaling authorities’ desire for
youth control.

6. Practical applications

The meta-analysis provides a fresh perspective on the relative
efficacy of universal helmet laws, for young riders in particular.
Further studies also offer insight into adolescent psychology, sug-
gesting that alternatives to age-specific laws be considered more
widely in the domain of public safety and health.
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Appendix

Preusser et al. (2000) have called attention to the way in which
fatality statistics tend to underestimate the rate r of compliance
with helmet laws. To see this, let f be the helmeted proportion of
all underage fatalities. Then N crashes of sufficient severity as to
lead to the death of those without helmets would involve rN riders
with helmets (some of whom survive) and (1 – r)N without hel-
mets (none of whom survives). If helmets are effective in saving
the lives of proportion e of their wearers in such incidents, after
N of these severe events there are among the fatalities (1 – e)rN rid-
ers observed with helmets (since erN survive) and also (1 – r)N
observed without helmets (since none survives). Thus, the propor-
tion of helmeted riders seen among the fatalities is

f ¼ ð1� eÞrN=ðð1� eÞrN þ 1� rÞNð Þ:
From this, we deduce that

r ¼ f=ð1� eþ ef Þ;
which exceeds f because f < 1 implies that 1 – e + ef < 1.

Worked example
Suppose that both before and after a law change 200 fatalities

are recorded, with 64 helmeted under an age-restricted law and
128 under a universal law. These raw data give the following con-
tingency table.

Age-restricted Universal

Helmet 64 128
No helmet 136 72
Total fatalities 200 200

When converted to crash data according to the formulae above (us-
ing e = 0.36), the following table is obtained.

Age-restricted Universal

Helmet 100 200
No helmet 136 72
Total serious crashes 236 272

Rc = 136/236 Rp = 72/272

For this hypothetical example, the APaE is therefore calculated as
APaE = 100 � (Rc – Rp)/Rc = 54.1%.
This can be interpreted as 54 percent of the youth noncompli-

ance with an age-specific law being attributable to its age-
restriction.
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a b s t r a c t

Introduction: Although cycling is increasingly being promoted for transportation, the safety concern of
bicyclists is one of the major impediments to their adoption. A thorough investigation on the contributing
factors to fatalities and injuries involving bicyclist. Method: This paper designs an integrated data mining
framework to determine the significant factors that contribute to the severity of vehicle-bicycle crashes
based on the crash dataset of Victorian, Australia (2013–2018). The framework integrates imbalanced
data resampling, learning-based feature extraction with gradient boosting algorithm and marginal effect
analysis. The top 10 significant predictors of the severity of vehicle-bicycle crashes are extracted, which
gives an area under ROC curve (AUC) value of 0.8236 and computing time as 37.8 s. Results: The findings
provide insights for understanding and developing countermeasures or policy initiatives to reduce severe
vehicle-bicycle crashes.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Cycling is becoming increasingly popular in recent years as this
mode of transportation is healthy, low-cost and environmentally
friendly. Many transportation decision makers aim to make cycling
a lifestyle in order to support the car-lite vision and enhance the
overall livability of the city or country. However, the safety concern
on cycling is one of the major impediments to its adoption, as bicy-
clists are more vulnerable in comparison with auto-mobile occu-
pants. To achieve the long-term goal of alleviating congestion
and pollution by engaging more bicyclists, it is necessary to solve
commuters’ fear of being involved in a crash (Kaplan & Giacomo
Prato, 2015).

Enhancing the safety level of bicyclists is a different challenge
compared with motorized traffic which has been well studied in
the literature. The crashes involving bicyclists are rare and often
severe; bicyclists exposure is different from vehicle exposure
which is difficult to quantify; and the crash trends of bicyclists
are quite distinctive which depend on land use, existing bicycle
infrastructure, socio-economic factors, etc. Raihan, Alluri, Wu,
and Gan (2019). A thorough investigation on different characteris-
tics contributing to fatalities and injuries involving bicyclists is
necessary.

For road safety analysis, the application of non-parametric and
data mining technique becomes increasingly popular in recent
years, which refers to the analytic process designed to explore

big data, searching for structures, commonalities, and hidden pat-
terns or rules (Prati, Pietrantoni, & Fraboni, 2017; Han, Pei, &
Kamber, 2011). The data mining techniques can handle large and
complicated datasets with relatively short data preparation time
and provides satisfiable accuracy (Ding, Chen, & Jiao, 2018).

This paper designs an integrated data mining framework to
determine the significant factors which contribute to the severity
of vehicle-bicycle crashes based on the crash dataset of Victorian,
Australia (2013–2018). The framework integrates imbalanced data
resampling, learning-based feature extraction with gradient boost-
ing algorithm and marginal effect analysis to determine the signif-
icant contributing factors to vehicle-bicycle crashes.

Specifically, in terms of traffic safety, the main contributions of
this paper are elaborated as follows: This paper is dedicated to
vehicle-bicycle crash severity modeling to address the safety con-
cerns on bicyclists who are vulnerable road users. In vehicle-
bicycle crash severity analysis, the class imbalance issue of the
crash dataset exists as the proportion of fatal or severe crashes is
relatively small (Prati et al., 2017). The problem can be handled
by the imbalanced data resampling process in the integrated data
mining framework. The complexity of crash dataset can also be
addressed with the learning-based feature extraction process in
an iterative manner, in order to determine the most significant
contributing factors to the severity of vehicle-bicycle crashes and
cater for the trade-off between computation time and model per-
formance. Moreover, the vehicle-bicycle crash dataset in this paper
contains a large number of discrete variables. The large number of
categories can be handled by gradient boosting algorithm, relying
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on no strict statistical assumption (Saha, Alluri, & Gan, 2015; Ding,
Cao, & Næss, 2018; Zheng, Lu, & Lantz, 2018). The impact of the
most significant contributing factors on the severity of vehicle-
bicycle crashes are explained with the marginal effect analysis,
and the result from the integrated data mining framework can pro-
vide some implications for policies and counter-measures for fatal
and serious vehicle-bicycle crashes.

2. Related work

Research on crash severity modeling has been conducted to
identify the most significant predictors of the severity of vehicle-
bicycle crashes. Klop and Khattak (1999) identified the contribut-
ing factors to bicycle crash severity on two-lane, undivided road-
ways with ordered probit model. Kim, Kim, Ulfarsson, and
Porrello (2007) analyzed the determinants of bicyclists injury
severity in vehicle-bicycle crashes with multinomial logit model.
Yan, Ma, Huang, Abdel-Aty, and Wu (2011), Bahrololoom,
Moridpour, and Tay (2016) analyzed the interrelationship of irreg-
ular maneuver, crash patterns, etc., and cyclist injury severity with
binary logit model. Kaplan, Vavatsoulas, and Prato (2014),
Bahrololoom, Moridpour, Tay, and Sobhani (2017) analyzed the
determinants of cyclist injury severity level with generalized
ordered probit model and generalized ordered logit model. Helak
et al. (2017) utilized univariate and multiple regression analyses
to study the influence of bike lanes, alcohol, lighting, speed, and
helmet on the injury severity of bicyclists. Robartes and Chen
(2017) identified the factors that affect cyclist injury severity in
the case of single bicycle-single vehicle crashes, in consideration
of the cyclist, auto-mobile driver, vehicle, environmental and road-
way characteristics with an ordered probit model. Behnood and
Mannering (2017) analyzed the factors that significantly affect
bicycle injury severities in vehicle-bicycle crashes, utilizing a ran-
dom parameters multinomial logit model with heterogeneity in
means and variances. Bahrololoom, Young, and Logan (2018)
investigated the effect of factors related to the three pillars of the
Safe System approach including ‘safe roads and roadsides’, ‘safe
speeds’ and ‘safe road users’ on bicycle crash severity with random
parameter binary logit model. Yasmin and Eluru (2018) analyzed
the total crash count and crash proportion by various crash sever-
ity levels based on a joint negative binomial-ordered logit frac-
tional split econometric model framework. Sivasankaran and
Balasubramanian (2020) applied latent class clustering algorithm
to analyse the crash severity of vehicle-bicycle crashes for each
cluster. Liu, Khattak, Li, Nie, and Ling (2020) investigated bicyclists
injury severity with geographically weighted ordinal logistic
regression model to address the spatial heterogeneity.

In particular, research has been conducted for crash severity
modeling of vehicle-bicycle crashes on specific types of infrastruc-
ture, such as bike lanes and intersections. Klassen, El-Basyouny,
and Islam (2014) investigated the severity level of vehicle-bicycle
intersection-related and mid-block-related crashes with spatial
mixed logit model. Wall et al. (2016) evaluated the influence of
sharrow, painted bicycle lane and physically protected path on
bicyclist injury severity with negative binomial model. Moore,
Schneider, Savolainen, and Farzaneh (2011) examined bicyclists
injury severity in vehicle-bicycle crashes at intersection and non-
intersection respectively with mixed logit model. Wang, Lu, and
Lu (2015) analyzed the contributing factors bicyclists’ injury sever-
ity level in vehicle-bicycle crashes at unsignalized intersections
with partial proportional odds model. Stipancic, Zangenehpour,
Miranda-Moreno, Saunier, and Granié (2016) investigated the con-
tributing factors to the severity of vehicle-bicycle conflicts at urban
intersections with ordered logit model based on video data and
post-encroachment time, taking the gender differences into

account. Asgarzadeh, Verma, Mekary, Courtney, and Christiani
(2017) analyzed the effects of intersection and street design on
vehicle-bicycle crash severity with multivariate log-binomial
regression model, and the results indicated that non-orthogonal
intersections and non-intersection segments are associated with
higher crash severity. Bahrololoom, Young, and Logan (2018),
Bahrololoom, Young, and Logan (2018) investigated the impact of
kinetic energy on crash severity of bicyclists at intersections.
Rash-ha Wahi, Haworth, Debnath, and King (2018) studied the
effects of various traffic control types at intersection with the appli-
cation of separate mixed logit models for bicyclist injury severity.

Ordinal regression models has been commonly applied to for-
mulate the crash severity model since the injury outcomes are
ordinal from no injury to fatal. More recently, to address the limi-
tation of the assumption that all parameters estimated in the
model are constant across observations and the heterogeneity of
the crash outcomes, some multi-nomial logit models and mixed
logit models have been applied for crash severity modeling (Li,
Ma, Zhu, Zeng, & Wang, 2018). Regression models relies on strict
statistical assumptions, for example, linearity in modeling the rela-
tion, which can hardly be satisfied in most crash circumstances.
Moreover, the performance of the regression model is poor when
handling mass complicated crash data with many discrete vari-
ables or variables with a large number of categories satisfactorily
(Prati et al., 2017; Li et al., 2018; Ding et al., 2018). To overcome
the shortcomings of statistical models, data mining techniques
which examines the pre-existing large database have been applied
for crash severity modeling. Prati et al. (2017) applied the CHi-
squared Automatic Interaction Detection (CHAID) decision tree
and Bayesian network analysis to predict the severity of bicycle
crashes corresponding to the factors related to crash characteris-
tics. The Bayesian network analysis was further applied to identify
the most significant predictors. However, when the complexity of
the crash dataset gets larger, feature extraction process is neces-
sary to be applied to address trade-off between computing time
and model performance.

Based on the literature review, the research gaps in terms of traf-
fic safety are summarized as follows: (1) In the field of traffic safety,
limited research was dedicated to crash severity modeling for
vehicle-bicycle crashes in comparison with vehicle-vehicle crashes.
(2) The crash severity levels in the vehicle-bicycle crash dataset is
highly imbalanced, affecting the performance of crash severity clas-
sification model. (3) The data mining techniques which can over-
come some shortcomings of statistical models such as the
reliance on strict statistical assumptions have rarely been used for
the analysis of crash severity of vehicle-bicycle crashes. (4) The
learning-based feature extraction process has not been applied in
the literature to address the complexity of the crash dataset.

This paper aims to address the research gap by determining the
significant factors which contribute to the severity of vehicle-
bicycle crashes with a data mining framework, integrating imbal-
anced data resampling, learning-based feature extraction and mar-
ginal effect analysis. The framework introduced in this paper uses
gradient boosting as the key algorithm for feature extraction,
which can handle different types of predictor attributes, require lit-
tle data preprocessing effort, and can fit complex nonlinear rela-
tionship (Elith, Leathwick, & Hastie, 2008; Zhang & Haghani,
2015; Zheng et al., 2018).

3. Methodology

3.1. Integrated data mining framework

An integrated data mining framework is designed to extract the
key crash-related features and predict vehicle-bicycle crash
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severity level, which integrates imbalanced data resampling,
learning-based feature extraction, and marginal effect analysis.
The framework is illustrated in Algorithm 1.

Algorithm 1: Integrated data mining framework

Input: Vehicle-bicycle crash severity dataset D
Output: Vehicle-bicycle crashes severity level prediction
Step 1: Resample imbalanced dataset
(a) Synthetic Minority Over-sampling Technique (SMOTE)
(b) Resampled crash dataset D0
Step 2: Learning-based feature selection
(a) Train gradient boosting model based on D0
(b) Determine relative feature importance
(c) Recursive feature elimination
(d) Dataset with key vehicle-bicycle crash features
Step 3: Marginal effect analysis

As the vehicle-bicycle crash dataset is with highly imbalanced
classes, data resampling process is applied. For learning-based fea-
ture selection, gradient boosting algorithm which is an ensemble
learning technique is applied as the key algorithm. The key fea-
tures for bicycle-vehicle severity prediction is extracted recur-
sively, in consideration of the trade-off between AUC (area under
the receiver operating characteristic curve) value and computing
time. The receiver operating characteristics (ROC) is a probability
curve which demonstrates a comparison of two operating charac-
teristics, namely, specificity and sensitivity, as the threshold
changes (Beshah & Hill, 2010). Then, the AUC value serves as a
measure of separability, quantifying the overall capability of the
model in distinguishing between classes (Narkhede, 2018;
Bradley, 1997). The AUC value of 0.5 represents an entirely random
test, while the AUC value of 1 represents a perfect classification
test. The features extracted are further included in marginal effect
analysis to investigate their impact on the vehicle-bicycle crash
occurrences.

3.2. Resample imbalanced data

The vehicle-bicycle crash dataset is imbalanced as the classes of
crash severity levels are not approximately equally represented.
Although predictive accuracy is commonly applied to evaluate
the performance of machine learning techniques, it is not suitable
when the dataset is imbalanced and the cost of different errors var-
ies greatly. In such situations, the Receiver Operating Characteristic
(ROC) curve typically serves as the performance measurement to
optimize, which is a probability curve calculated by the true posi-
tive rate on the y-axis against the false positive rate on the x-axis.
Every point on the ROC curve corresponds to a pair of sensitivity
and specificity values based on specific decision threshold. The
area under the ROC curve (AUC) serves as a measure of separability
between the two classes of crash severity in this paper, such that
the value closer to 1 indicates a better separability of model. This
paper applies Synthetic Minority Over-sampling Technique
(SMOTE) to resample the original crash dataset, which synthesises
new minority instances between existing minority instances
instead of over-sampling to replacement (Chawla, Bowyer, Hall,
& Kegelmeyer, 2002). Moreover, the majority instances are also
under-sampled, whose output is a more balanced dataset.

3.3. Gradient boosting algorithm & learning-based feature selection

The gradient boosting algorithm is a type of ensemble learn-
ing technique, which sequentially fits a simple parameterized
function or base learner into current ‘pseudo’-residuals by least
squares in each iteration in order to construct additive regres-
sion models. At each step, the weightage of observations is
adjusted as the subsequent predictors learn from the mistakes
of previous predictors. Regarding the model values at each train-
ing data point evaluated in the current step, the pseudo-
residuals are the gradient of the loss functions being minimized
(Friedman, 2002).

Let N be the total number instances in the dataset, and M be the
total number of trees to be generated. Let x be the feature vector
with a set of predictors and FðxÞ be an approximation function of
the target variable (i.e. severity level of vehicle-bicycle crashes).
The gradient boosting algorithm estimates the function FðxÞ as an
additive expansion based on the base learner function bðx; amÞ
(Ding et al., 2018; De’Ath, 2007; Saha et al., 2015; Chung, 2013;
Zhang & Haghani, 2015):

FðxÞ ¼
XM
m¼1

FmðxÞ ¼
XM
m¼1

kmbðx; amÞ ð1Þ

bðx; amÞ ¼
XD
d¼1

cdmIðx 2 RdmÞ ð2Þ

where each decision tree m divides the input space into D disjoint
regions R1m; . . . ;RDm and predicts a constant value cdm for each
region Rdm;

Iðx 2 RdmÞ ¼
1; if x 2 Rdm

0; otherwise

8><
>:

ð3Þ

am represents the mean of split locations and the leaf node for
each splitting variable in tree m; km represents weights given to
the nodes of decision tree and determines how predictions from
the individual decision trees are combined. km is calculated by
minimizing a specified loss function, which is a squared error
function:

Lðy; FðxÞÞ ¼ ðy� FðxÞÞ2 ð4Þ
The gradient boosting model is built in a stage-wise fashion,

which is updated by minimizing the expected value of the loss
function. To avoid over-fitting and improve accuracy, the learning
rate or shrinkage, is used to scale the contribution of each base tree
learner by introducing a factor of eð0 < e 6 1Þ as below (Ding et al.,
2018; Friedman, 2002):

FmðxÞ ¼ Fm�1ðxÞ þ e � kmbðx; amÞ ð5Þ
A hybrid two-step learning-based feature selection model is

applied to select the key features for vehicle-bicycle crash severity
modelling, which is summarized in Algorithm 2. The procedure
firstly train and tune the model to rank the feature importance,
then the process is permuted to determine an optimal subset of
features with Recursive Feature Elimination (RFE), in consideration
of the trade-off between the area under ROC curve and computing
time.
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3.4. Marginal effect analysis

The sensitivity analysis of traditional linear regression models
can only evaluate one predictor at one time such that it ignores
the correlation among other predictors. In this paper, the non-
linear effects of a set of predictors on the severity of vehicle-
bicycle crashes can be illustrated with partial dependence plots
generated based on the integrated data mining framework. The
partial dependence plot of each predictor demonstrates its mar-
ginal effect on the target variable in consideration of the average
influences of all other predictors (Saha et al., 2015; Ding et al.,
2018).

3.5. Data description

The crash dataset for model estimation comes from Victoria
police crash reports across the entire state included 6237 crashes
involving bicyclists and motorists between 2013 and 2018 in the
entire Victoria State in south-eastern Australia (VicRoads, 2019).
Victoria is the smallest mainland state and the second densely pop-
ulated state in Australia. All crashes included in the analysis are
finished cases, while reopened cases are excluded. The attributes
of dataset which describe the characteristics of the vehicle-
bicycle crashes are summarized in Table 1. Vehicle-bicycle crash
injury severity is the dependent variable, which is classified into
three categories, namely, fatal accident, serious injury accident
and other injury accident. As the percentage of fatal accident is
extremely low in comparison with the other types of injuries, the
injury severity is finally categorized as Fatal and serious injury
accident (1), Other injury accident(0). 30 independent variables
are selected for analysis which are classified into five categories,
including the type of accident, time factor, characteristics of vehi-
cles, characteristics of environment condition, and human factors.
The definitions of some variables are further clarified as below: The
road condition classification is based on the State-wide Route
Numbering Scheme (SRNS) (data.vic, 2019): ‘M’ represents the
roads which provide a consistent high standard of driving condi-
tions, with divided carriageways, four traffic lanes, sealed shoul-
ders and line marking easily visible in all weather conditions; ‘A’

represents the roads with similar high standard of driving condi-
tions on a single carriageway; ‘B’ represents the sealed roads,
which are wide enough for two traffic lines, with good centre line
and edge line marking, shoulders, and a high standard of guidepost
delineation; ‘C’ represents the roads that are generally two lane
sealed with shoulders; others are not classified. Different types of
collisions are defined based on Victoria State’s local definitions
for classifying accidents (DCA code) (VicRoads, 2013).

4. Results analysis

4.1. Model optimization

The vehicle-bicycle crash dataset is randomly separated into
two sets, namely training set (80%) and test set (20%). To optimize
the model, this paper applied a ten-fold cross-validation procedure
which repeated three times on the training set to determine the
optimal combination of parameters. The training set is randomly
partitioned into ten sub-samples, and each of them is used as the
test set while the remaining sub-samples serve as the training set.

The parameters which have been tuned from grid search based
on AUC values are explained as below: The shrinkage value or
learning rate is introduced to reduce the influence of each individ-
ual tree structure and leave space for future trees for improving the
model (Friedman, 2002), which is set as 0.1. The lower learning
rate can lead to longer computation time. The number of trees indi-
cate the number of gradient boosting iterations, and if the value is
too high, it may lead to overfitting, and the value is set as 3. The
interaction depth indicate the maximum number of splits of each
tree, which is set as 150. The minimum number of observations
in the terminal nodes of the trees is also tuned, which is set as 10.

4.2. Recursive feature selection and importance ranking

After model training, recursive feature selection process has
been carried out in consideration of the trade-off between AUC
value and computing time, as shown in Fig. 1a. The relative contri-
bution rankings or relative importance of the twenty most signifi-
cant explanatory variables in predicting the severity of vehicle-

Algorithm 2: Learning-based feature selection
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Table 1
Descriptive statistics.

Category Variable Count %

Severity Fatal accident 33 0.53
Serious injury accident 1467 23.52
Other injury accident 4737 75.95

Accident type
Collision type Right through 994 16.01

Cross traffic 793 12.78
Vehicle strikes door of parked/stationary vehicle 714 11.5
Left turn side wipe 458 7.38
Vehicle off footpath strikes another vehicle while emerging from driveway 413 6.65
Vehicle strikes another vehicle while emerging from driveway 408 6.57
Left near 359 5.78
Right near 308 4.96
Rear end 279 4.49
Lane side swipe 243 3.91
Out of control on carriageway 163 2.63
Entering parking 108 1.74
Right far 84 1.35
Y turn 71 1.14
Right turn side swipe 65 1.05
Head on 63 1.01
. . . . . . . . .

Alcohol related No 6217 99.68
Yes 20 0.32

Time factor
Year 2013 584 9.36

2014 1298 20.81
2015 1221 19.58
2016 1104 17.70
2017 1054 16.90
2018 976 15.65

Month January 442 7.09
February 547 8.77
March 683 10.95
April 499 8.00
May 517 8.29
June 397 6.37
July 477 7.65
August 481 7.71
September 437 7.01
October 626 10.04
November 563 9.03
December 568 9.11

Day of week Monday 883 14.39
Tuesday 1044 17.02
Wednesday 1081 17.62
Thursday 1081 17.62
Friday 881 14.36
Saturday 582 9.49
Sunday 583 9.50

Vehicle characteristics
No. of vehicles involved 2 5987 95.99

3 226 3.62
4 11 0.18
5 5 0.08
6 4 0.06
7 2 0.03
8 1 0.02
14 1 0.02

No. of heavy vehicles involved 0 6143 98.49
1 94 1.51

No. of passenger vehicle involved 0 224 3.59
1 5878 94.24
2 126 2.02
3 3 0.05
4 1 0.02
5 3 0.05
6 1 0.02
13 1 0.02

No. of public vehicles 0 6180 99.09
1 57 0.91

Involve vehicle run off-road No 14210 95.87
Yes 206 1.43
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Environment condition characteristics
Light condition Dark no street lights 40 0.64

Dark street lights off 3 0.05
Dark street lights on 647 10.37
Dark street lights unknown 83 1.33
Day 4392 70.42
Dusk/Dawn 865 13.87

Road Geometry Cross intersection 1914 25.87
Multiple intersection 137 2.20
Not at intersection 2237 35.87
T intersection 1922 30.82
Y intersection 16 0.26
Dead end 2 0.03

Speed zone 110 km/h 3 0.05
100 km/h 93 1.49
90 km/h 7 0.11
80 km/h 249 3.99
75 km/h 1 0.02
70 km/h 195 3.13
60 km/h 2391 38.34
50 km/h 1579 25.32
40 km/h 1149 18.42
30 km/h 17 0.27
Campus ground or off-road 59 10.95
Other speed limit 17 0.27

Node type Intersection 3823 61.31
Non-intersection 2387 38.28
Off-road 26 0.42

Urbanized area Melbourne Urban 4983 79.89
Small cities 315 5.05
Melbourne CBD 303 4.86
Large provincial cities 276 4.43
Rural Victoria 197 3.16
Towns 148 2.37
Small towns 15 0.24

Road classification Arterial highway 657 10.75
Arterial other 2378 39.91
Freeway 48 0.79
Local road 3028 49.55

Road condition by the Statewide Route Numbering Scheme A 80 12.82
B 125 20.03
C 369 59.13
M 50 8.01

Crash occur on a divided portion of road Divided 4324 70.76
Undivided 1787 29.24

Where crash occur Metro region 5426 87
Country region 811 15.86

Demographics
Hit-and-run No 5911 94.77

Yes 326 5.23
No. of males involved 0 655 10.50

1 2772 44.44
2 2580 41.37
3 193 3.09
4 22 0.35
5 14 0.22
7 1 0.02

No. of females involved 0 2705 43.37
1 2750 44.09
2 724 11.61
3 41 0.66
4 10 0.16
5 5 0.08
6 1 0.02
7 1 0.02

No. bicyclists involved 1 6146 98.54
2 79 1.27
3 6 0.10
4 4 0.06
5 1 0.02
6 1 0.02

No. of pedestrians involved 0 6227 99.84
1 9 0.14
4 1 0.02

No. of drivers involved 1 6127 98.24
2 103 1.65
3 3 0.05
4 1 0.02

(continued on next page)
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bicycle crashes are summarized with Fig. 1b. The calculated impor-
tance ranking scores demonstrate the association between the
crash-related predictors and vehicle-bicycle crash severity level.
The higher the score, the more significant the predictor. 140
vehicle-bicycle crash features are included in the analysis after
sparsifying the crash dataset. As the number of features increases
from 5 to 140, the AUC value increases with decreasing gradient
from 0.7976 to 0.8540, while the computing time also increases
from 26.3 s to 339.4 s.

For further analysis, the top ten predictors have been selected,
including the number of males and females involved in the crash,
the road type is arterial (other than highway), the speed zone of

100 km/h, the number of young drivers involved in the crash, the
light condition (dark with street lights on), the month (August),
the collision type (right turn near intersections,bicycle off footpath
strikes the vehicle on the carriageway), the number of bicyclists
from 13 to 18 years old, with AUC value as 0.8236 and computing
time as 37.8 s.

4.3. Marginal effects of key predictors

The partial dependence plots of the significant predictors on the
severity of vehicle-bicycle crashes has been plotted for marginal
effect analysis, where the relative logit contribution of the predic-

Table 1 (continued)

Category Variable Count %

5 2 0.03
7 1 0.02

No. of vehicle passengers involved 0 5601 89.80
1 509 8.16
2 78 1.25
3 31 0.50
4 15 0.24
5 3 0.05

No. of 5–12 year old cyclists involved 0 6043 96.89
1 1 191
2 3 0.05

No. of 13–18 year old cyclists involved 0 6236 99.98
1 1 0.02

No. of 65 years and older pedestrians involved in the crash 0 5929 95.06
1 308

No. of 65 years and older drivers involved 0 5929 95.06
1 308

No. of 18–25 year old young drivers involved 0 5448 87.35
1 787 12.62
2 2 0.03

Unlicensed driver 0 (no) 6155 98.69
1 (yes) 82 1.31

Fig. 1. Learning-based feature selection.
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tor on the class probability of ‘Fatal & serious injury accident’ is
plotted as the y-axis. More detailed information on the concept
of partial dependence plot can be found in Friedman (2002). The
general positive or negative effects of the top ten predictors on
the vehicle-bicycle crash severity level reflected by the partial
dependence plots are described and summarized in Table 2.

4.4. Discussion

4.4.1. Demographics
As for the impact of demographics, the result shows that the

crash is more likely to be a fatal or severe injury accident as the
number of males involved in the accident increases. The result is
consistent with Kim et al. (2007), Eluru, Bhat, and Hensher
(2008), Behnood and Mannering (2017), which suggested that
male bicyclists are more likely to be involved in severer crashes.
In this paper, we also found that as the number of females involved
in the crash increases, the crash is more likely to be severe or fatal.
However, the impact of the number of females involved in the
crash is less significant than the number of males involved in the
crash on the prediction of vehicle-bicycle crash severity.

On the other hand, the results also show that the vehicle-bicycle
crash is less likely to be fatal or severe when young drivers or bicy-
clists are involved in the crash. The result is consistent with the lit-
erature (Prati et al., 2017; Yan et al., 2011; Bíl, Bílová, & Müller,
2010), which suggested that bicyclists’ injury severity increases
with age. The result can be explained by the physical fragility of
elder bicyclists, longer perception and reaction time during colli-
sion and more inattentive during cycling. It can also be explained
that the elder drivers are more susceptible to injury and the higher
crash involvement rate due to unsafe driving (Li, Braver, & Chen,
2003). Therefore, more attention should be directed to elder bicy-
clists’ group and driver group to alleviate the vehicle-bicycle crash
severity level.

4.4.2. Environment condition characteristics
The results illustrate that vehicle-bicycle crashes on arterials

(not highway) are more like to be fatal or serious injury accidents,
hence more attention should be paid to developing effective coun-
termeasures on arterials (not highway) to improve the safety level
of bicyclists. It is also found that the vehicle speed zone of 100 km/
h are more likely to result in fatalities or serious injuries in com-
parison with other speed zones. The finding is consistent with
Robartes and Chen (2017), Kim et al. (2007) which suggested that
high speed can significantly affect the severity level of bicyclist-
vehicle crashes. It is also found that when the light condition is
dark with street lights on, the likelihood of severe and fatal
vehicle-bicycle crash increases. This is consistent with the litera-
ture, as poor light condition were likely to be associated with more

severe consequences of bicycle crashes due to the limited range of
visibility (Eluru et al., 2008; Prati et al., 2017).

Although (Robartes & Chen, 2017; Liu et al., 2020) suggested
that crashes are less likely to be severe at intersections, the inter-
section type is not found to be important to crash severity level in
this paper. This is understandable, as the intersections still repre-
sent major conflict points for bicyclists, despite increasing alert-
ness of bicyclists and drivers at intersections. This may also be
explained by the increased numbers of cycle lanes constructed,
which can reduce the sensitivity of intersection type to crash
severity. In addition, the change in time and space may also cause
the difference in the relationship between crash severity and the
influential factors (Liu, Hainen, Li, Nie, & Nambisan, 2019).

4.4.3. Time factor
The vehicle-bicycle crash is more likely to be serious or fatal in

the August, which is the winter season in Australia. According to
Liu, Shen, and Huang (1995), Kaplan and Prato (2013), bicycle
crashes is influenced by season and weather conditions, and the
result in this paper can be explained by the unpredictability of
the weather condition in the specific month.

Unlike (Behnood & Mannering, 2016), year is not identified as a
significant contributing factor to crash severity. This may be
explained by the fact that (Behnood & Mannering, 2016) utilized
the eight-year (2005–2012) crash dataset, covering pre-recession,
recession and post-recession period, such that the significant tem-
poral instability was found. On the other hand, this paper only uti-
lized crash dataset for post-recession period such that the long-
term effect of time factor is not apparent.

4.4.4. Accident type
Previous research has also addressed the impact of collision

types on crash severity level (Kim et al., 2007; Bíl et al., 2010;
Yan et al., 2011; Behnood & Mannering, 2017; Prati et al., 2017).
In this paper, it is found that when the vehicle turns right near
intersections and when bicycle off footpath strikes the vehicle on
the carriageway, the vehicle-bicycle crash severity is more likely
to increase. The result can be explained by the unexpected event
and higher level of kinetic energy during the particular types of
collision in comparison with others.

Although head-on vehicle-bicycle collision or facing the traffic
was found to be important in Kim et al. (2007), Liu et al. (2020),
it is not identified as a significant predictor to crash severity in this
paper. This can be explained by the fact that head-on interaction
causes higher relative speed as well as more rapid response of dri-
vers and bicyclists since they are able to see their conflict party
before collision. Higher relative speed may increase the crash
severity while more proactive reaction may reduce it. Moreover,
the type of opponent vehicles involved in the vehicle-bicycle crash
is not identified as a significant contributing factor to crash sever-
ity level in this study, even though it was identified as a significant
predictor in Robartes and Chen (2017), Yan et al. (2011). The result
can be explained by the difference in the dataset used for analysis
and the way of feature extraction.

5. Conclusions

In this paper, an integrated data mining framework which
includes imbalanced data resampling, learning-based feature
extraction and marginal effect analysis is designed to determine
the significant factors contributing to the severity level of
vehicle-bicycle crashes based on the crash dataset of Victoria, Aus-
tralia from year 2013 to 2018.

This paper has been dedicated to crash severity modeling for
vehicle-bicycle crashes which has been less commonly addressed

Table 2
Top ten predictors.

No. Predictor Effect

1 No. of males involved in the crash Positive
2 No. of females involved in the crash Positive
3 Road classification (arterial other) Positive
4 Speed zone (100 km/h) Positive
5 Collision type (right turn near intersections) Positive
6 No. of young drivers involved in the crash Negative
7 Light condition (dark with street lights on) Positive
8 Month (August) Positive
9 Collision type (bicycle off footpath strikes the

vehicle on the carriageway)
Positive

10 No. of bicyclists from 13 to 18 years old Negative
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in the literature in comparison with vehicle-vehicle crashes. The
learning-based feature selection technique based on gradient
boosting algorithm has been applied for key feature extraction
on the mass complicated crash dataset which contains a large
amount of categorical variables, empty entries, etc. The most sig-
nificant predictors that affect the severity of vehicle-bicycle
crashes are extracted which include the number of males and
females involved in the crash, the road type is arterial (other than
highway), the speed zone of 100 km/h, the number of young dri-
vers involved in the crash, the light condition (dark with street
lights on), the month (August), the collision type (right turn near
intersections, bicycle off footpath strikes the vehicle on the car-
riageway), the number of bicyclists from 13 to 18 years old.

Although cycling is being increasingly promoted as transporta-
tion mode, the safety concerns is one of the main obstacles to their
adoption. It is a challenge to enhance the safety level of bicyclists
to solve the major fear of them, as their safety depends on various
factors, including land use, socio-economic factors, etc. The find-
ings of this paper highlight the necessity to identify the contribut-
ing factors to fatal and serious vehicle-bicycle crashes to enhance
the safety level and guide safety improvements. Several recom-
mendations have been made to improve the safety level of bicy-
clists. More attention should be paid to the road types and speed
zone that are determined to be more prone to severe vehicle-
bicycle crashes. For the road user groups, collision types, and time
period which are identified to be significant contributing factors to
the fatal and serious injury crashes, targeted education campaign
should be carried out to enhance the road safety level. The method
of this paper can also be extended and applied to other datasets
with higher dimensionality for feature selection in order to extract
the most significant features and reduce the computation time.
Further study can also be carried out to study the crash severity
and frequency together and identify the contributing factors to
various types of crashes.
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a b s t r a c t

Introduction: Reducing the likelihood of freeway secondary crashes will provide significant safety, oper-
ational and environmental benefits. This paper presents a method for assessing the likelihood of freeway
secondary crashes with Adaptive Signal Control Systems (ASCS) deployed on alternate routes that are
typically used by diverted freeway traffic to avoid any delay or congestion due to a freeway primary
crash. Method: The method includes four steps: (1) identification of secondary crashes, (2) verification
of alternate routes, (3) assessment of the likelihood of secondary crashes for freeways with ASCS
deployed on alternate routes and non-ASCS (i.e. pre-timed, semi- or fully-actuated) alternate routes,
and (4) investigation of unobserved heterogeneity of the likelihood of freeway secondary crashes. Four
freeway sections (i.e., two with ASCS deployed on alternate routes and two non-ASCS alternate routes)
in South Carolina are considered. Results and Conclusions: Findings from the logistic regression modeling
reveal significant reduction in the likelihood of secondary crashes for one freeway section (i.e., Charleston
I-26 E) with ASCS deployed on alternate route. Other factors such as rear-end crash, dark or limited light,
peak period, and annual average daily traffic contribute to the likelihood of freeway secondary crashes.
Furthermore, random-parameter logistic regression model results for Charleston I-26 E reveal that unob-
served heterogeneity of ASCS effect exists across the observations and ASCS are associated with the
reduction of the likelihood of freeway secondary crashes for 84% of the observations (i.e., primary
crashes). Location of the primary crash on the freeway is observed to affect the benefit of ASCS toward
freeway secondary crash reduction as the primary crash’s location determines how many upstream free-
way vehicles will be able to take the alternate route. Practical Applications: Based on the findings, it is rec-
ommended that the South Carolina Department of Transportation (SCDOT) considers deploying ASCS on
alternate routes parallel to freeway sections where high percentages of secondary crashes are found.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Secondary crashes are defined as crashes that occur within the
spatio-temporal impact range of a primary incident (Kitali et al.,
2018) caused by traffic congestion due to occurrence of the pri-
mary incident. Although non-recurrent in nature, secondary
crashes can impose substantial delay, emissions and operating
costs, and they increase the crash risk for the vehicles upstream.
Therefore, transportation agencies are seeking new technologies

or policies of reducing possible secondary crashes on freeways.
With more and more motorists having access to smart phone-
based navigation tools such as Google Maps, Apple Maps, and
Waze, drivers are more likely to divert to an alternate route for a
reduced travel time when there is a major incident on the freeway.
If such alternate routes are equipped with an advanced traffic man-
agement technology such as Adaptive Signal Control Systems
(ASCS) that update signal parameters in real-time based on the
fluctuating traffic demand, then the alternate routes with ASCS
can better accommodate the diverted traffic from freeways as well
as reduce the likelihood of secondary crashes on freeways, com-
pared to the alternate routes without ASCS.

ASCS typically include algorithms that optimize and update the
traffic signal parameters (i.e., cycle lengths, phase splits and
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sequences, and offsets) in real-time (Lowrie, 1990; Mirchandani &
Head, 2001; Gartner et al., 2002; Jin et al., 2019; Jin et al., 2020; Jin
et al., 2021). Operational benefits of ASCS are significant in both
corridor and network operations as reported in the literature (So
et al., 2014; Khattak, 2016; Elkins & Niehus, 2012; Fontaine et al.,
2015; Kergaye et al., 2009; Eghtedari, 2006). Prior to the deploy-
ment of ASCS, conventional signal systems based on time of day
(TOD) were used in many locations where signal plans are typically
pre-set and adjusted every 2-3 years. These conventional signal
systems are unable of handling highly variable traffic demand.
With real-time traffic signal parameters adjustment capability,
ASCS are better at handling highly variable traffic demand or traffic
congestions caused by traffic incidents or special events. Thus, any
alternate route with ASCS can be used to potentially improve the
traffic operations on a freeway in case any incident happens on
that freeway. However, to the best of our knowledge there exists
no such study in the literature that evaluated the possible benefits
of having an ASCS deployed on alternate route to a freeway section
toward the reduction of freeway secondary crashes.

In this paper, the authors present a method for assessing the
likelihood of secondary crashes on freeways with alternate routes
where ASCS have been deployed. The applicability of the method
is firstly demonstrated with two freeway sections where ASCS
are deployed in several intersections within the alternate routes
used by diverted freeway traffic when a major crash occurs on
the freeway sections. The authors develop fixed-parameter binary
logistic regression models for Charleston I-26 (Eastbound and
Westbound) in South Carolina to investigate if the presence of an
ASCS deployed alternate route is associated with the reduction of
the likelihood of freeway secondary crashes. This study also devel-
ops fixed-parameter binary logistic regression models for two free-
way sections with non-ASCS (i.e., pre-timed, semi- or fully-
actuated) alternate routes to examine if the likelihood of secondary
crashes differs between freeways with ASCS deployed on alternate
routes and freeways with non-ASCS alternate routes. In addition,
the effect of ASCS on the likelihood of secondary crashes on a free-
way may vary across observations (i.e., primary crashes). To cap-
ture unknown variations in the effect of ASCS across the
observations (which the authors refer to as ‘‘unobserved hetero-
geneity” in this paper) the authors develop a random-parameter
binary logistic regression model to account for observation-
specific variations in the effects of ASCS and to provide more accu-
rate inferences. Note that there is a significant number of studies in
the literature on the likelihood estimation of secondary crash
occurrences using logistic regression models (Kitali et al., 2019;
Karlaftis et al., 1999; Goodall, 2017; Xu et al., 2016; Yang et al.,
2014). However, these studies did not consider the effect of having
an advanced traffic management or control technology, such as
ASCS, deployed on alternate route on freeway secondary crashes.
Thus, the primary contribution of this paper lies in exploring the
safety benefit of having an ASCS deployed alternate route toward
the reduction of the likelihood of freeway secondary crashes.

The remainder of the paper is organized as follows: literature
review, method, data sources and variables, analyses and results,
conclusions, and practical applications. The literature review sec-
tion reviews the identification of secondary crash and the likeli-
hood estimation modeling of secondary crashes. The method
section focuses on the procedure of identification of secondary
crashes, verification of alternate routes, and modeling the likeli-
hood of secondary crashes. The data sources and variables section
explains the crash data received from the South Carolina Depart-
ment of Transportation (SCDOT) and variables that are used in
the models. The analyses and results section presents the model
estimation results, and conclusions summarize the main findings
of this paper. Practical applications section presents policy
implications.

2. Literature review

In this section, the authors review the previous work related to
the likelihood estimation of secondary crashes focusing on the sec-
ondary crash identification methods and the likelihood estimation
models.

2.1. Identification of secondary crashes

Several studies have sought to investigate the criteria to iden-
tify secondary crashes. Table 1 shows a summary of these criteria.
Raub (1997a, 1997b)) considered any crashes within the time per-
iod of a primary crash plus 15 minutes and within a mile from the
primary crash in the upstream as secondary crashes. Based on
these criteria, the author identified secondary crashes and found
that 81 primary crashes were followed by 97 secondary crashes.
The author concluded that 1 of every 11 incidents that occurred
in Rolling Meadows (between January 9, 1995 and February 5,
1995) was associated with one or more secondary crashes.
Karlaftis et al. (1999) analyzed 5 years of incident data on Borman
Expressway in Illinois to identify the primary crash characteristics
that led to the secondary crashes. Latoski et al. (1999) analyzed the
data from portions of I-80, I-94 and I-65 in North West Indiana.
Both Karlaftis et al. (1999) and Latoski et al. (1999) considered 3
miles upstream of the primary crash and the clearance time plus
15 minutes following the primary crashes to identify secondary
crashes.

Moore et al. (2004) studied 84,684 crashes in California. The
authors considered crashes that occurred within a 2-hour time per-
iod and 2 miles in both directions of the primary crashes as an
identification measure for the secondary crashes.
Hirunyanitiwattana and Mattingly (2006) studied the characteris-
tics of secondary crashes using two years of crash data from the
California highway system from 1999 to 2000. They found that a
secondary crash is the one that occurred within an hour and 2
miles upstream of the primary crash. They also found that the pro-
portion of secondary crashes was higher in urban areas compared
to rural areas. Yang et al. (2013) developed a method based on bin-
ary speed contour plot to account for the dynamic characteristics
of spatio-temporal impact range in identifying secondary crashes.
This study used sensor data from a 27-mile urban highway section
in New Jersey. The authors found that almost 50% of the secondary
crashes occurred within a 2-mile range in the upstream, and 75% of
the secondary crashes occurred within up to 2 hours of the primary
crashes.

2.2. Modeling of the likelihood of secondary crashes

Karlaftis et al. (1999) primarily investigated contributing factors
that induce a secondary crash. They developed a fixed-parameter
binary logistic regression model using the attributes of the primary
crashes to estimate the possibility of a secondary crash. The study

Table 1
Review of Secondary Crash Identification Criteria.

Author(s), year Secondary crash
identification criteria

Road type

Raub, 1997a,b Clearance time
+ 15 minutes, 1 mile

Urban arterial

Karlaftis et al., 1999 Clearance time
+ 15 minutes, 1 mile

Freeway/expressway

Latoski et al., 1999 Clearance time
+ 15 minutes, 3 miles

Freeway

Moore et al., 2004 2 hours, 2 miles Freeway
Hirunyanitiwattana &

Mattingly, 2006
1 hour, 2 miles Urban/rural

freeway/highway
Yang et al., 2013 2 hours, 2 miles Urban highway
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concluded that the attributes such as clearance time, season, type
of vehicle involved, and lateral location of the primary crash were
the most significant factors for increased likelihood of secondary
crashes. Goodall (2017) developed a fixed-parameter binary logis-
tic regression model to predict the occurrence of secondary crashes
over time. Three contributing factors were considered, namely, (a)
whether congestion occurred or did not occur due to an incident,
(b) the incident duration, and (c) the approximate number of vehi-
cles that encountered an incident (if no congestion) or queue due
to an incident (if congestion was present) in the same direction.
The results revealed that, for every 2–3 minutes spent for a con-
gested scenario, the secondary crash occurrence probability
increases approximately by 1%. Xu et al. (2016) used the Bayesian
random effect logit model to develop a secondary crash risk predic-
tion model. The model associated the prediction probability of sec-
ondary crashes with variables such as real-time traffic variables
(e.g., average speed, traffic volume, standard deviation of detector
occupancy), primary crash characteristics (e.g., date and time of
primary crash, primary crash severity and crash type), weather
conditions, and geometric characteristics. The most significant
real-time traffic variables were traffic volume, average speed, the
standard deviation of detector occupancy, and volume difference
between adjacent lanes. The study concluded that the secondary
crash prediction accuracy can be increased by 16.6% by including
traffic flow variables. Yang et al. (2014) assessed the risk of sec-
ondary crashes on major highways. A rare event logistic regression
model was used to study the secondary crashes. The authors con-
cluded that one additional minute increase in the incident duration
could increase the likelihood of secondary crashes by 1.2%.

The fixed-parameter binary logistic regression model cannot
capture unobserved heterogeneity since the model assumes global
effect of each predictor for all observations. Therefore, a random-
parameter binary logistic regression model is deployed in this
paper to study the unobserved heterogeneous effect of the predic-
tors on the likelihood of freeway secondary crashes across
observations.

3. Method

The method to assess the likelihood of secondary crashes on
freeways with alternate routes includes four steps:

(1) Identification of secondary crashes (using fixed spatio-
temporal criteria and other factors such as manner and
probable cause of collision)

(2) Verification of alternate routes (with SCDOT and travel time
data from the alternate routes)

(3) Modeling the likelihood of secondary crashes for both ASCS
deployed on alternate routes and non-ASCS alternate routes
using fixed-parameter binary logistic regression models

(4) Investigation of unobserved heterogeneity of ASCS using a
random-parameter binary logistic regression model.

This section of the paper explains these four steps of the
method in details.

3.1. Identification of secondary crashes

Selecting a spatio-temporal criterion for identifying the sec-
ondary crashes on freeways is a challenging task. Secondary
crashes are typically induced by primary crashes that cause
adverse effects on the traffic flow. These impacts of primary
crashes on the traffic flow vary depending on many factors such
as the number of blocked lanes, clearance time, and crash severity.
However, lane blockage and clearance time information are not

available for the study corridors. Thus, the individual impact of
each primary crash cannot be determined. Therefore, the authors
consider a fixed spatio-temporal range as a primary criterion for
the identification of secondary crashes. The authors consider a
crash to have the possibility of being induced by a primary crash
if it occurs within a 1-hour period after the primary crash and
within a 2-mile range in the upstream of the primary crash. The
authors use this fixed spatio-temporal range for the secondary
crash identification as there is no available real-time traffic volume
data for the four freeway sections considered in this paper that
may be used to develop dynamic ranges for the secondary crash
identification.

The temporal threshold used in this paper to identify the sec-
ondary crashes (i.e., up to 1-hour after a crash occurrence on the
freeway) can be justified based on the overall crash detection,
response and clearance time in South Carolina. According to
Chowdhury et al. (2007), the incident detection time of Traffic
Management Center (TMC) is 1–5 minutes for South Carolina and
arrival of the first responder takes 9–10 minutes after that. In addi-
tion, according to the SCDOT State Highway Emergency Program’s
(SCDOT SHEP, 2020) 2019 database (obtained from SCDOT), the
average clearance time for Charleston is 38.5 minutes and for
Richland-Lexington is 38.7 minutes. Therefore, on average we get
48–54 minutes by combining the detection, response, and clear-
ance time that is lower than the selected temporal threshold of 1
hour for the secondary crash identification. Using this 1-hour tem-
poral threshold, the authors can decide on the spatial threshold for
the secondary crash identification by observing the relative change
in the number of identified secondary crashes as we vary the spa-
tial threshold. Fig. 1 presents the relative change in the number of
identified secondary crashes for spatial threshold ranging from 1
mile to 4 miles. As observed from Fig. 1, an increment of the spatial
threshold from 2 miles to 2.5 miles causes less than 10% relative
change (i.e., less than 10% relative increase) in the number of iden-
tified secondary crashes. While increasing the spatial threshold
beyond 3 miles can cause this relative change to be lower than
5%, the authors choose to use a fixed spatial threshold of 2 miles
as it makes more sense with the SCDOT practitioners as an upper
limit for the spatial impact range based on their experience.

The limitation of using a fixed spatio-temporal criterion is that
it may not capture all the secondary crashes since the impact of

Fig. 1. Relative change in the number of secondary crashes with varying spatial
threshold.

M.S. Salek, W. Jin, S.M. Khan et al. Journal of Safety Research 76 (2021) 314–326

316



some primary crashes on traffic may exceed the predefined spatial
and temporal thresholds. However, fixed spatial and temporal
thresholds may include some crashes that may have been caused
by some other factors. Therefore, the authors utilize two criteria,
namely, ‘‘manner of collision” and ‘‘probable cause of collision,”
after applying the spatial and temporal thresholds for filtering
the secondary crashes. The rationale behind using these two crite-
ria is to prevent any crashes from being misclassified as secondary
crashes that occurred due to some other reasons. To be more speci-
fic, if the ‘‘manner of collision” for a crash that falls within the
spatio-temporal impact range of a primary crash is listed as a
‘‘head-on collision,” then the authors do not label that crash as a
secondary crash. Typically, a head-on collision can occur only
between two vehicles traveling in opposing directions. Therefore,
crash data related to either one of the two vehicles involved in a
head-on collision should not be labeled as a secondary crash. Apart
from that, the other types of crashes, for example, rear-end, angle,
and side-swipe crashes, are not discarded this way because it is not
reasonable to assume that these types of crashes cannot be caused
by primary crash’s impact. Similarly, if the ‘‘probable cause of col-
lision” for a crash that falls within the spatio-temporal impact
range of a primary crash is listed as either one of (a) tire/wheel fail-
ure, (b) mechanical failure of the vehicle, (c) debris/obstruction or
animal on the roadway, and (d) medical related, then the authors
deem it reasonable to not label that crash as a secondary crash.
Thus, the authors do not label a crash within the spatio-temporal
impact range of a primary crash as a secondary crash, if it is not
reasonable to be labeled as a secondary crash. While this informa-
tion might be subject to police misspecification and reporting
practice, the authors could not find any additional means to
cross-validate this information. However, the authors observe that
after satisfying the spatio-temporal criterion, only a few crashes
are not considered as secondary crashes due to their ‘‘manner of
collision” or ‘‘probable cause of collision.” For example, for
Charleston I-26, only 6 out total 3562 crashes, and for Richland-
Lexington I-26, no crashes are discarded as secondary crashes
based on the manner of collision or probable cause of collision.
Fig. 2 presents this crash identification procedure with a flow
diagram.

3.2. Verification of alternate routes

The authors investigate the parallel arterials of the freeway sec-
tions for alternate route verification. Firstly, the authors verify the
alternate routes with SCDOT. Then, the authors utilize real-time

travel data to investigate the changing traffic conditions of the par-
allel arterials in the event of crashes on the freeways. Hourly travel
time data recorded by ClearGuide (SCDOT Iteris ClearGuide, 2020)
is used to observe how the average travel time of the parallel arte-
rial changes in the 1-hour after period when a crash occurs on the
freeway section. For each crash on the freeway, weighted average
travel time in 1-hour after period is computed from the hourly tra-
vel time data. For example, if a crash occurs at 05:25 PM, then the
weighted average travel time on the ASCS-deployed alternate route
for the 1-hour after period (05:25 PM to 06:25 PM) is calculated as
follows,

Weighted average travel time (05:25 PM to 06:25 PM) = 35
60�

(average travel time from 05:00 PM to 06:00 PM) + 25
60� (average

travel time from 06:00 PM to 07:00 PM)
The weighted average travel time is then compared with the

historical weighted average of travel time for that period of
time of the day. Hourly travel time data recorded by ClearGuide
(SCDOT Iteris ClearGuide, 2020) from four consecutive months
around the time when the crash occurred is used to compute
historical weighted average of hourly travel time data. Historical
weighted average of travel time for 1-hour after period of the
crash is then computed from the historical average of hourly
travel time data similarly as shown in the last example above.
The historical weighted average is computed separately for
weekdays and weekends. The weighted average travel time for
1-hour after period of a crash occurrence is compared with
the 95th percentile of historical weighted average of travel time
for that time period. If the weighted average exceeds the 95th

percentile of the historical weighted average of travel time, then
the change in travel time (through the alternate route) due to
the crash occurrence on the freeway is considered to be
significant.

3.3. Fixed-parameter binary logistic regression model

The authors develop a fixed-parameter binary logistic regres-
sion model to evaluate the likelihood of secondary crashes, as the
secondary crash occurrence is a binary outcome (occurrence or
non-occurrence) that can depend on many factors.

A fixed-parameter binary logistic regression (logit) model can
be developed to evaluate the likelihood of a secondary crash occur-
rence, which is formulated as follows,

log
Pðy ¼ 1jXÞ

1� Pðy ¼ 1jXÞ
� �

¼ Xb ð1Þ

Fig. 2. Crash identification procedure.
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where, Pðy ¼ 1jXÞ¼ the conditional probability of a secondary
crash occurrence given a primary crash occurred

X = the vector of explanatory variables associated with the pri-
mary crashes

b¼the vector of coefficients corresponding to the explanatory
variables

Equation (1) presents a general form of the fixed-parameter
binary logistic regression model. The authors develop corridor-
specific fixed-parameter binary logistic regression models for both
freeways with ASCS deployed on alternate routes and freeways
with non-ASCS alternate routes from equation (1) and identify sta-
tistically significant explanatory variables. The response variable, y
in equation (1) is equal to 1 if a secondary crash occurred or 0
otherwise.

The authors use open-source R software to perform the regres-
sion analyses. The generalized linear model function ‘‘glm” in R is
used to estimate the coefficients of the logistic regression model.
The Iterative Weighted Least Squares (IWLS) is used in this func-
tion to obtain the Maximum Likelihood Estimation (MLE) of b.
Using the fitted model, the effect of the k-th explanatory variable
on the occurrence of a secondary crash can be evaluated by Odds
Ratios (ORs) given by,

OR ¼ ebk ð2Þ
where, bk is the coefficient of the k-th explanatory variable in the
fitted model.

The Variance Inflation Factor (VIF) is used to check for potential
Multi Collinearity (MC). Many researchers used a VIF of 10 to indi-
cate excessive or severe MC issue (O’Brien, 2007). Akaike Informa-
tion Criteria (AIC) is compared among different candidate models
and the model with the lowest AIC value is preferred.

3.4. Random-parameter binary logistic regression model

Compared to the fixed-parameter binary logistic regression
model, a random-parameter binary logistic regression (logit)
model can capture unobserved heterogeneity across observations.
Equation (1) can be rewritten as,

log
Pðyi ¼ 1jXiÞ

1� Pðyi ¼ 1jXiÞ
� �

¼ Xibi; i ¼ 1;2;3; :::::n ð3Þ

bi � gðbijhÞ ð4Þ
where, Xi is a vector of the explanatory variables of observation (i.e.,
primary crash) i, and bi is a vector of the coefficients.

In the random-parameter binary logit model, bi is allowed to be
varying for each observation i rather than fixed for all observations.
The distribution, gðbijhÞ is specified to enable bi vary across each
observation, where h is a vector including the mean and variance
of a random distribution.

bi can be written as bi ¼ bþ Lxi, where b is the vector of the
mean of coefficients. Note that, each coefficient can be written as
bki ¼ bk þ rkxi. bki is k-th element in bi. xi is a vector of random
variables that follow random distributions. L is a diagonal matrix
that contains the standard deviations of the coefficients, rk. In this
paper, bki is considered to follow a normal distribution, which is
specified as bki � Nðbk;r2

kÞ. The normal distribution specification
for bki provides a better model fit, compared to other possible
distributions such as log normal distribution based on our analysis.

To explore the unobserved heterogeneity of the parameters (i.e.,
coefficients in the model) across observations, the conditional
mean of the parameters is estimated. The estimator of the condi-
tional mean of the random parameters (Sarrias, 2016) is obtained
by the Simulated Maximum likelihood (SML) procedure, which is
expressed as:

ÊðbijdataiÞ ¼
XR
r¼1

P̂ðyijXi; birÞPR
r¼1P̂ðyijXi; birÞ

 !
b̂ir ð5Þ

where, b̂ir ¼ b̂þ L̂xir; yi is the response variable (1 if a secondary
crash occurred; 0 otherwise). datai stands for the explanatory vari-

ables associated with each observation. P̂ðyijXi; birÞ is the estimated
simulated probability for the observation i evaluated at the r-th ran-
dom draw of bi; R is the total number of random draws in the SML
procedure. In the estimation of conditional mean of the parameters,
a Halton random number generator with a standard uniform distri-
bution, Uð0;1Þ generates the random draws. Detail Halton draws
procedure can be found in Sarrias (2016).

The SML procedure is conducted to obtain the model estimation
results using the ‘‘Rchoice” library in the R software. 100 Halton
draws are used in the SML procedure for the purpose of model esti-
mation (Sarrias, 2016). Likelihood ratio test is used to compare the
performance between the random-parameter models and the
fixed-parameter models (Washington et al., 2020).

4. Data sources and variables

The authors consider two freeway sections with ASCS deployed
on alternate routes to investigate the likelihood of secondary crash
occurrences (see Fig. 3(a)): (1) an 8.92-mile section of Charleston I-
26 E, (2) a 9.6-mile section of Charleston I-26 W. These two corri-
dors are referred as ‘‘Freeways with ASCS deployed on alternate
routes” in rest of the paper as they have an ASCS deployed parallel
arterial (i.e., US 52). There are three main components in the ASCS
deployed on US 52: the vehicle detection, local traffic controller(s),
and central server. The central server processes data and generates
optimized signal timings. The local traffic controller collects vehi-
cle detection data and receives the signal timings from the central
server. The primary objective of the ASCS algorithm is to minimize
total traffic delays of the intersections while ensuring suitable pro-
gression bandwidth of the main corridors. For the Charleston I-26
freeway sections, ASCS was deployed at 17 intersections of parallel
US-52 in October 2016. US 52 is considered as an alternate route
(verified by SCDOT and with ClearGuide data) for the diverting
traffic of I-26 Eastbound and Westbound sections in the event of
a freeway primary crash. The functional class of US 52 is principal
arterial.

This study also uses freeways with non-ASCS (i.e., pre-timed,
semi- or fully-actuated) alternate routes similar to the freeways
with ASCS deployed on alternate routes to examine if the effect
of the after-period indicator (i.e., an explanatory variable used in
our regression models which will be explained in the next section)
differs between these freeways. The authors select two freeway
sections with non-ASCS alternate routes that have comparable
lengths, annual average daily traffic (AADT) of the freeway sections
and the same functional classes as the freeways with ASCS
deployed on alternate routes (see Fig. 3(b)). The freeways with
non-ASCS alternate routes are: (1) a 7.75-mile section of
Richland-Lexington I-26 E, (2) a 7.64-mile section of Richland-
Lexington I-26 W. In addition, both the ASCS-deployed sites and
the non-ASCS sites considered for this study are located within
the jurisdiction of the same Department of Transportation in the
United States (i.e., South Carolina Department of Transportation
or SCDOT). Therefore, the authors assume similar management
and maintenance characteristics, such as pavement maintenance,
traffic management, and enforcement for the corridors considered
in this study. A comparison of characteristics of the freeways with
ASCS deployed on alternate routes and freeways with non-ASCS
alternate routes are presented in Table 2.

For the analysis, the authors use ‘‘crash code” (i.e., crash code 0
and crash code 1 to indicate primary crashes that did not induce
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any secondary crashes and primary crashes that induced one or
more secondary crashes, respectively) as the response variable.
Tables 3 and 4 present a summary of the primary crashes in the
crash data used for analysis based on the crash codes.

To evaluate the effect of ASCS deployment on the likelihood of
freeway secondary crashes, the authors extract a total of
52 months crash data for Charleston I-26 (East andWest) corridors,
i.e., 26 months (September 2014 to October 2016) for the before
period of the ASCS deployment, and 26 months (November 2016
to December 2018) for the after-period of the ASCS deployment.
The same period of data is extracted for Richland-Lexington I-26
(East and West) corridors. The complete extracted dataset consist-
ing of both primary and secondary crashes includes a total of 1,757
crashes on the Charleston I-26 E section (772 crashes in the before-

period and 985 crashes in the after-period), and a total of 1805
crashes on the Charleston I-26 W section (849 crashes in the
before-period and 956 crashes in the after-period). Note that the
complete extracted dataset includes both primary and secondary
crashes. After identifying the primary crashes with ‘‘Crash code
0” and ‘‘Crash code 1”, the authors conducted further analyses with
the primary crashes only. The frequencies and percentages of these
primary crashes are presented in Table 3.

For each freeway section, the crash data does not only include
crashes that occurred on the freeway but also includes the crashes
that occurred on the entrance ramps to the freeway section. The
rationale for including the entrance ramp crashes in the analyses
is that when a crash occurs on the freeway, sometimes if it creates
a major congestion, then traffic can back up to the entrance ramp
and can cause secondary crashes on the ramps as well. Therefore,
the entrance ramp crashes are used in the dataset only to check
if there was any secondary crash on the ramps induced by a pri-
mary crash on the freeway. Table 5 lists the number of entrance
ramps included in the crash data set for the secondary crash
detection.

SCDOT provides the crash data for the analyses presented in this
paper. The crash data includes several attributes such as collision
time, AADT, light condition, roadway surface condition, manner
of collision, weather condition, first harmful event, and probable
cause of crash. Variables such as light condition (dawn, daylight,
dusk or dark), roadway surface condition (dry, icy, wet or snowy),
weather condition (adverse or not adverse condition), and manner
of collision (rear-end, angle, head-on, side-swipe, etc.) help to
account for various possible attributes that may have effects on
the secondary crash occurrence. The authors do not use real-time
traffic volume data since there is a lot of missing data in the whole
study period.

Fig. 3. (a) Charleston I-26 with ASCS deployed on alternate route US 52, and (b) Richland-Lexington I-26 with non-ASCS alternate route US 176.

Table 2
Comparison of the freeways with ASCS deployed on alternate routes and non-ASCS alternate routes.

Corridor name Corridor length Mean AADT Alternate route Functional class of the alternate route

Freeways with ASCS deployed on alternate routes
Charleston I-26 E 8.92 miles 149,852 US 52 Principal arterial
Charleston I-26 W 9.6 miles 145,875 US 52 Principal arterial

Freeways with non-ASCS alternate routes
Richland-Lexington I-26 E 7.75 miles 119,699 US 176 Principal arterial
Richland-Lexington I-26 W 7.64 miles 115,983 US 176 Principal arterial

Table 3
Summary of response variables of the freeways with ASCS deployed on alternate
routes.

Corridor name Crash code Frequency Percentage

Charleston I-26 E 0 1443 91.04%
1 142 8.96%

Charleston I-26 W 0 1518 92.17%
1 129 7.83%

Table 4
Summary of response variables of the freeways with non-ASCS alternate routes.

Corridor name Crash code Frequency Percentage

Richland-Lexington I-26 E 0 1233 90.73%
1 126 9.27%

Richland-Lexington I-26 W 0 1368 90.66%
1 141 9.34%
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‘‘Peak period” is used as a predictor for modeling the likelihood
of secondary crash occurrences on all the freeway sections. For
each freeway section, the authors analyze the hourly average travel
time recorded by ClearGuide (SCDOT Iteris ClearGuide, 2020) to
define corridor-specific peak periods. The authors observe hourly
average travel time for weekdays and weekends separately. How-
ever, no significant weekend peak periods are detected. Peak peri-
ods only exist on weekdays for the freeway sections considered
here. Table 6 presents the corridor-specific weekday peak periods
that are considered for logistic regression modeling. Note that,
both Charleston I-26 E and Richland-Lexington I-26 E experience
AM peak periods as traffic goes in to the center of the cities during
this time (Charleston I-26 E goes in to the center of Charleston, and
Richland-Lexington I-26 E goes in to the center of Columbia). Sim-
ilarly, Charleston I-26 W and Richland-Lexington I-26 W experi-
ence PM peak periods as traffic comes out of the center of the
cities during this time.

‘‘After-period indicator for freeways with ASCS deployed on
alternate routes” is used as a predictor to investigate the effect of
ASCS deployment in the alternate route on the likelihood of free-
way secondary crashes. In the models, ‘‘after-period indicator for
freeways with ASCS deployed on alternate routes” is specified as
1 if a crash occurs in the after-period of ASCS deployment, and 0
if a crash occurs in the before-period of ASCS deployment. For
the freeways with non-ASCS alternate routes, ASCS was not
deployed on the alternate routes. The authors still include a predic-
tor called ‘‘after-period indicator for freeways with non-ASCS alter-
nate routes” with same temporal division as the freeways with
ASCS deployed on alternate routes in order to examine if the effect
of the temporal division (before-after period) differs between the
freeways with ASCS deployed on alternate routes and the freeways
with non-ASCS alternate routes.

‘‘Temporal trend” variable is included to account for long-term
temporal trends in safety due to unobserved factors such as long-
term roadway conditions, weather conditions, and improvements
in vehicular technologies (Persaud et al., 2010). The ‘‘Temporal
trend” variable is coded as numerical values. For example, if a crash
occurs in 2014, it is specified as 0, if a crash occurs in 2015, it is
specified as 1, and so on.

Table 7 summarizes all the variables that are considered for the
analysis of the likelihood of freeway secondary crashes.

5. Analyses and results

5.1. Verification of alternate routes

Table 8 presents the results from the alternate routes verification
for all the corridors. It is observed that for over 40% of the crashes
occurredon the freeway sections fromSeptember 1, 2018 toDecem-
ber 31, 2018 (as ClearGuide travel time data are not available before
September 1, 2018 and the study period for all the corridors ends on
December31, 2018), travel time increased significantly compared to
the 95th percentile of the historical weighted average travel time in
the corresponding parallel alternate routes indicating that drivers
often use these routes when a crash occurs on the freeway.

5.2. Fixed-parameter binary logistic regression model results

Based on the explanatory variables considered here, equation
(1) can be rewritten as follows,

log
pðy¼1jXÞ

1�pðy¼1jXÞ
� �

¼b0þb1

� after -periodindicatorofASCSdeploymentð Þ
þb2� lightconditionð Þþb3

� roadwaysurfaceconditionð Þþb4

� weatherconditionð Þþb5

� rear -endcrashð Þþb6� anglecrashð Þ
þb7� weekdayð Þþb8� peakperiodð Þ
þb9� crashseverityð Þþb10

� temporaltrendð Þþb11�log AADTð Þ
ð6Þ

Table 5
Number of entrance ramps included in the crash data set.

Number of
entrance ramps

Freeways with ASCS
deployed on alternate
routes

Charleston I-
26

Eastbound 11
Westbound 15

Freeways with non-ASCS
alternate routes

Richland-
Lexington I-26

Eastbound 8
Westbound 8

Table 6
Corridor-specific weekday peak periods.

Corridor type Corridor name Corridor-specific
weekday peak period

Freeways with ASCS deployed
on alternate routes

Charleston I-26
E

5:30 AM to 8:30 AM

Charleston I-26
W

3.00 PM to 6.00 PM

Freeways with non-ASCS
alternate routes

Richland-
Lexington I-26 E

6.30 AM to 8.30 AM

Richland-
Lexington I-26
W

3.30 PM to 6.30 PM

Table 7
Model Variables.

Category Variable name Description

Response
variable

Crash code 1 – Primary crash that induces secondary
crash(es)
0 – Primary crash that does not induce any
secondary crash

Explanatory
variables

After-period
indicator

1 – Crash occurs in the after-period of ASCS
deployment
0 – Crash occurs in the before-period of ASCS
deployment

Light
condition

1 – Dawn, dusk, dark or limited light
0 – Daylight

Roadway
surface
condition

1 – Icy, snowy or wet
0 – Dry

Weather
condition

1 – Adverse weather
0 – otherwise

Rear end 1 – Primary crash is rear end
0 – otherwise

Angle crash 1 – Primary crash is angle crash
0 – otherwise

Weekday 1 – Primary crash occurs on a weekday
0 – otherwise

Peak period 1 – Primary crash occurs during peak period
0 – otherwise

Crash severity Numerical values indicating five levels (0, 1,
2, 3, and 4); 0 = no injury, 1 = possible injury,
2 = non-incapacitating injury,
3 = incapacitating injury, 4 = fatal

Temporal
trend

Numerical values. 0 if a crash occurs in 2014,
1 if a crash occurs in 2015, 2 if a crash occurs
in 2016, 3 if a crash occurs in 2017, 4 if a
crash occurs in 2018.

AADT Numerical values. log(AADT) is used for
scaling down purpose.
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The authors apply the fixed-parameter binary logistic regres-
sion model (as presented in equation (6)) explained in the research
method section to the crash datasets for all the study corridors.
Table 9 presents the model estimation results of ‘‘After-period
indicator variable of ASCS deployment” for the freeways with ASCS
deployed on alternate routes and freeways with non-ASCS routes
(based on corridor-specific fixed-parameter binary logistic regres-
sion models). For all the corridor-specific models, the authors
check for any existing multicollinearity using the VIF. For all the
ASCS and the non-ASCS corridors, the maximum VIF is found to
be less than or equal to 3.5. Therefore, it is assumed the multi-
collinearity does not exist among the explanatory variables as
VIF < 10.

As explained before, the Odds Ratio (OR) is defined as the ratio
of the odds of an outcome occurring by exposure of a variable to
the odds of the outcome occurring in the absence of that exposure.
From the odds ratios, percentage changes in the secondary crash
occurrence odds are evaluated. In Table 9, the odds ratios and per-
centage changes in the secondary crash occurrence odds are dis-
played only if the predictor (i.e., after-period indicator of ASCS
deployment) is found to be statistically significant at a 0.1 signifi-
cance level.

As shown in Table 9, for Charleston I-26 E, a 47.32% reduction of
the likelihood of secondary crashes is associated with the after per-
iod of ASCS deployment. However, for Charleston I-26W, the fixed-
parameter binary logistic regression model cannot reveal any sta-
tistical significance of ASCS deployment for reducing the likelihood
of secondary crashes. As the same parallel arterial may not be
always convenient as an alternate route for the drivers traveling
in opposing directions, the effect of ASCS deployment on the alter-
nate routes can also be different for opposing traffics on the free-
way. Also, opting for an alternate route depends on many factors
such as drivers’ behavior, freeway crash severity, lane blockage,
and number of vehicles involved in the crash.

As mentioned in the research method section, for freeways with
non-ASCS alternate routes, ‘‘after period indicator for freeways
with alternate non-ASCS corridors” is included in the model as a
predictor in order to observe if the temporal division used for ASCS
deployment’s before and after period signifies anything. In Table 9,
it is observed that this variable is not significant for the freeways
with non-ASCS alternate routes. It indicates that, this temporal
division of the study period signifies nothing for the freeways with
non-ASCS alternate routes as there was no ASCS deployment.

Table 10 presents the other statistically significant predictors
and their corresponding coefficients estimate from logistic regres-

sion model. For both freeways with ASCS deployed on alternate
routes and non-ASCS alternate routes, frequently observed statisti-
cally significant variables include- rear-end crashes, light condi-
tion, weekday, and AADT. Note that, crash severity and roadway
surface condition are not included in Table 10, as for none of the
corridors these two variables are significant.

The authors perform additional analysis for Charleston I-26 E
with traffic count and speed data collected from the SCDOT Traffic
Polling and Analysis System (SCDOT Traffic Counts, 2020). The
authors perform this analysis exclusively for Charleston I-26 E to
prove that the favorable effect of ASCS found for Charleston I-26
E is not a contribution of reduced crash exposure (i.e., lower free-
way traffic counts after a crash occurrence) or reduced speed on
the freeway. The authors compute the weighted average traffic
count and speed on the freeway for the 1-hour after period of each
crash occurrence based on the hourly traffic count and speed data
collected from SCDOT Traffic Polling and Analysis System (SCDOT
Traffic Counts, 2020). The weighted average of traffic count and
speed is computed in the same way as the weighted average travel
time computation explained in subsection ‘‘3.2 Verification of
Alternate Routes” of section ‘‘3 METHOD.”

In Fig. 4, the authors present two bar charts that present the
percentages of ‘‘Crash code 1” (i.e., crashes that induced secondary
crashes) across various ranges of traffic counts and speed on the
freeway during the 1-hour after period of a freeway crash occur-
rence. For each range shown in Fig. 4(a) and (b), two separate bars
are used to show the percentages of ‘‘Crash code 1” during the
before-period and the after-period of ASCS deployment. In Fig. 4
(a), the authors combine vehicle counts during the 1-hour after
period of freeway crash occurrences ranging from 0 to 3000 vehi-
cles/hour into one bar and from 4000 to 6000 vehicles/hour into
another bar because of small number of observations. Therefore,
three ranges can be considered for Fig. 4(a); lower range (i.e., 0–
3000 vehicles/hour), mid-range (i.e., 3000–4000 vehicles/hour),
and upper range (i.e., 4000–6000 vehicles/hour). As observed from
Fig. 4(a), first of all, no consistent positive or negative trend is
found between the percentages of ‘‘Crash code 1” and varying
ranges of traffic counts during the 1-hour after period of freeway
crash occurrences; the maximum percentage of ‘‘Crash code 1” is
found for the mid-range (i.e., 3000–4000 vehicles/hour). Second,
lower percentages of ‘‘Crash code 1” during the after period of ASCS
implementation compared to the before period of ASCS implemen-
tation are found for middle (i.e., 3000–4000 vehicles/hour) and
upper ranges (i.e., 4000–6000 vehicles/hour). Therefore, it can be
concluded that the favorable effect of ASCS found for Charleston

Table 8
Verification of the alternate routes with travel time information.

Study corridor name % of crashes on the freeway that caused average travel time
to increase significantly in the alternate route

Freeways with ASCS deployed on alternate routes Charleston I-26 E 44.76%
Charleston I-26 W 51.56%

Freeways with non-ASCS alternate routes Richland-Lexington I-26 E 47.42%
Richland-Lexington I-26 W 42.02%

Table 9
Fixed-parameter logistic regression model estimates & interpretations of after-period indicator of ASCS deployment.

Corridor type Corridor Name Coefficients: Odds ratio % change in the secondary
crash occurrence odds

Estimate Pr(>|z|)

Freeways with ASCS deployed on alternate routes Charleston I-26 E �0.641 0.059* 0.527 �47.324%
Charleston I-26 W 0.222 0.5182 - -

Freeways with non-ASCS alternate routes Richland-Lexington I-26 E �0.065 0.8518 - -
Richland-Lexington I-26 W 0.334 0.3030 - -

‘*’ statistically significant at a 0.1 significance level.
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I-26 E is not contributed by reduced exposure or low traffic counts
on the freeway (i.e., traffic counts on the freeway can be lower than
usual as the freeway drivers start to take the alternate route after a
crash occurrence on the freeway).

However, in Fig. 4(b), it is observed that there is a negative or
downward trend between the percentages of ‘‘Crash code 1” and
the ranges of average vehicle speed during the 1-hour after period

of freeway crash occurrences. While it is pretty much intuitive for
primary crashes that increased speed on the freeway could cause
higher percentage of primary crashes (Abdel-Aty et al., 2007), same
cannot be stated with confidence for the freeway secondary
crashes. It is to be noted that, the freeway secondary crashes are
caused due to sudden congestion/queue on the freeway because
of sudden lane blockage or disturbance in the traffic flow caused
by a primary crash on the freeway. Thus, higher average speed
on the freeway during the 1-hour after period of a freeway crash
occurrence indicates less impact due to that crash. On the contrary,
lower average speed on the freeway during the 1-hour after period
of a freeway crash occurrence indicates higher disturbance caused
by that crash, which would increase the risk for a secondary crash.

To validate this further, the authors also perform a separate
logistic regression modeling (as shown in Table 11) utilizing the
traffic counts and average speed information during the 1-hour
after period of freeway crash occurrences as continuous variables.
As the ‘‘traffic counts” variable is not found significant at a 0.1 sig-
nificance level, the authors do not include it and other insignificant
variables from the model presented in Table 11 in order to obtain a
better fit. It should be mentioned that, these two variables were
not used in the models presented earlier in this paper because
the traffic counts and average speed information is not available
for all the crashes. The authors found that, the traffic counts and
average speed information is available for about 95% of the crash
data considered for Charleston I-26 E. However, just for the sake
of investigating if there is any relationship between the likelihood
of secondary crashes and traffic counts or average speed during the
1-hour after period of freeway crash occurrences, the available
data can be considered sufficient. As shown in Table 11, the
‘‘Speed” variable (i.e., average speed on the freeway during the 1-
hour after period of a freeway crash occurrence) is found to be sig-
nificant at a 0.05 significance level and it has a negative coefficient
which further validates that as the average speed on the freeway is

Table 10
Fixed-parameter logistic regression model estimates of other predictors.

Predictors Coefficients estimate (with Pr(>|z|) in the parentheses)

Freeways with ASCS deployed on alternate routes Freeways with non-ASCS alternate routes

Charleston I-26 E Charleston I-26 W Richland-Lexington I-26 E Richland-Lexington I-26 W

Light condition NS 0.378 (0.093*) 0.599 (0.028**) NS
Weather condition NS 0.547 (0.015**) NS NS
Rear end 0.821 (0.0008**) 1.417 (4.96e-07**) 0.949 (0.0003**) 1.077 (3.72e-05**)
Angle crash NS 1.397 (0.0006*) NS NS
Weekday NS NS 0.498 (0.068*) �0.912 (4.4e-05**)
Peak period 0.929 (7.32e-06**) NS NS NS
Temporal trend 0.268 (0.041**) NS NS NS
log(AADT) 1.916 (0.0001**) NS 1.876 (0.001**) NS

‘**’ statistically significant at a 0.05 significance level.
‘*’ statistically significant at a 0.1 significance level.
‘NS’ not statistically significant.

Fig. 4. Bar charts showing percentages of Crash code 1 across ranges of (a) traffic
counts and (b) average speed on the freeway during the 1-hour after period of
freeway crash occurrences.

Table 11
Estimates of the random-parameter logistic regression model using speed as an
explanatory variable (for Charleston I-26 E).

Predictors Coefficients

Estimate Pr(>|z|)

(Intercept) �507.5 0.061*
Rear-end 0.911 5.02e-05**
After-period indicator of ASCS deployment �0.588 0.089*
Temporal trend 0.239 0.075*
Speed �0.021 2.80e-04**
log(AADT) 1.810 6.56e-04**

‘*’ statistically significant at a 0.1 significance level.
‘**’ statistically significant at a 0.05 significance level.

M.S. Salek, W. Jin, S.M. Khan et al. Journal of Safety Research 76 (2021) 314–326

322



higher during the 1-hour after period of a freeway crash occur-
rence, the likelihood of secondary crash occurrence is lower (same
as concluded based on Fig. 4(b)). Therefore, the authors conclude
that the favorable effect of ASCS found for Charleston I-26 E in
terms of reducing the likelihood of secondary crashes is not a con-
tribution of reduced crash exposure (i.e., lower freeway traffic
counts after a crash occurrence) or reduced speed on the freeway.

5.3. Random-parameter logistic regression model results

Fixed-parameter binary logistic regression models help to iden-
tify the statistically significant variables in the likelihood of sec-
ondary crash. However, a limitation of fixed-parameter binary
logistic regression model is that it cannot capture unobserved
heterogeneity since the model assumes the global effect of each
predictor across observations. Therefore, a random parameter
logistic regression model is deployed to study the heterogeneous
effect of the ASCS deployment for Charleston I-26 E. The results
for Charleston I-26 E is of interest and thus presented here since
it shows statistically significant ASCS effect in the previous section
using fixed-parameter binary regression modeling.

The estimations of random-parameter logistic model for Char-
leston I-26 E is presented in Table 12. The random-parameter
model explains the variability in the effect of ASCS deployment
(i.e., ASCS deployment variable) across observations and provides
more significant parameters over the fixed-parameter model
(e.g., angle crash variable becomes significant in the random-
parameter model). Although the weekday variable is not signifi-
cant in the random-parameter model, it is still kept since keeping
the weekday variable reduces the AIC value and improves the over-
all goodness of fit of the model as observed in our analyses. Note
that the fixed-parameter logistic regression model presented in
Table 12 has 2 additional variables (i.e., angle crash, and weekday)
compared to the model presented previously in Table 10. The addi-
tional variables are included to compare the goodness of fits
between the fixed-parameter logistic regression model and the
random-parameter logistic regression model. The likelihood ratio
test suggests that the random-parameter model improves the

overall goodness of fit of the model compared to the fixed-
parameter model, as shown in Table 13. The standard deviation
associated with the presence of ASCS (i.e., S.D. ASCS) is statistically
significant at a 0.05 significance level, indicating the presence of
unobserved heterogeneity across observations.

As indicated in Table 12, the random parameter of ASCS follows
a normal distribution with a mean of �2.305 and a standard devi-
ation of 2.351. Since the parameter of ASCS follows the normal dis-
tribution, it is estimated that 84% of all observations have a
negative coefficient associated with the presence of ASCS corridor,
suggesting an association between the presence of the ASCS
deployed on the alternate route and the reduction of the likelihood
of secondary crashes on the parallel freeway. For the remaining
16% of all observations, the coefficients associated with the pres-
ence of ASCS deployed on the alternate route are positive, suggest-
ing an association between the presence of the ASCS deployed on
the alternate route and the increase of the likelihood of freeway
secondary crashes.

Fig. 5 shows the kernel density of the individual’s conditional
means for the coefficient of ASCS. It turns out that the majority
of the individual’s conditional means (the unshaded portion in
the Figure) has negative signs, suggesting the presence of ASCS
associated with reductions of the likelihood of freeway secondary
crashes for most of the observations.

The authors then investigate the locations of individual obser-
vations (i.e., primary crashes) for which the presence of the ASCS
deployed on alternate route is associated with an increase in the
likelihood of freeway secondary crashes. Fig. 6 shows the loca-
tions of the crashes on Charleston I-26 E (in blue color on the
freeway) and the possible exit ramps to exit Charleston I-26 E
to access US 52. As observed from Fig. 6, most of the primary
crashes for which coefficients of ASCS are positive occurred closer
to the east end of the Charleston I-26 E section and took place
past the second possible exit ramp to access US 52. Also, closer
to the east end of the Charleston I-26 E section means closer to
the Charleston city downtown. When a crash occurs closer to
the east end of Charleston I-26 E section, it may not always seem
to be a convenient choice for the upstream traffic to divert as they

Table 12
Results of model estimation for Charleston I-26 E with ASCS deployed on alternate route.

Predictors Coefficients

Fixed-parameter logistic regression model Random-parameter logistic regression model

Estimate Pr (>|z|) Estimate Pr (>|z|)

Constant �26.209 1.73E-05 ** �31.396 6.73e-05 **
Temporal trend 0.265 0.0439 ** 0.3230 0.0433 **
Rear end 0.802 0.001 ** 1.087 0.002 **
Angle crash 0.679 0.117 0.959 0.082*
Weekday �0.370 0.302 �0.628 0.168
Peak period 0.916 8.63E-06 ** 1.107 3.06E-05 **
log(AADT) 1.916 0.0002 ** 2.334 0.0003**
Mean. ASCS �0.631 0.063* �2.305 0.06*
S.D. ASCS NA NA 2.351 0.0247**

‘**’ statistically significant at a 0.05 significance level.
‘*’ statistically significant at a 0.1 significance level.
‘NA’ not available for the fixed-parameter model.

Table 13
Likelihood ratio tests results.

Degrees of freedom Log-Likelihood Difference in degrees of freedom Chisq Pr(>Chisq)

Fixed-parameter logistic regression model 8 �450.22
Random-parameter logistic regression model 9 �448.53 1 3.3736 0.066*

‘*’ statistically significant at a 0.1 significance level.
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may think that they are already very close to their destination
and sometimes it may not be a feasible option to divert as they
may have already passed the nearest exit ramp. Also, the benefit
of ASCS deployed on the alternate route may not be that much
since fewer signals are involved when a crash occurs closer to

the east end of Charleston I-26 E section. Therefore, the effect of
ASCS deployed on alternate route on the likelihood of freeway
secondary crashes can vary depending on the location of the pri-
mary freeway crash as it affects the amount of traffic are that is
able or chooses to divert.

Fig. 5. Kernel density of the individual’s conditional means for the coefficient of ASCS (Charleston I-26 E with ASCS deployed on alternate route US 52).

Fig. 6. Location of Charleston I-26 E freeway crashes associated with the increase in the likelihood of secondary crashes.
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6. Conclusions

The reduction of the likelihood of secondary crashes can notice-
ably decrease the emissions, delays, vehicle operating costs, and
safety issues on the freeways. This research unveils a unique inter-
relation between ASCS deployed on alternate route and the likeli-
hood of parallel freeway secondary crashes. The findings from a
fixed-parameter binary logistic regression model using 52 months
crash data of Charleston I-26 E with ASCS deployed on alternate
route US 52 shows a 47% reduction of the likelihood of freeway
secondary crashes. The authors further investigate Charleston I-
26 E using a random-parameter binary logistic regression model
to find unobserved heterogeneity and find that 84% of all observa-
tions have negative coefficients associated with the presence of
ASCS deployed on alternate route, suggesting an association
between the presence of ASCS deployed on alternate route and
the reduction of the likelihood of secondary crashes on the parallel
freeway. The benefit of ASCS deployment on an alternate route
towards freeway secondary crash reduction is found to be depen-
dent on the location of the primary crash as the location of the pri-
mary crash determines how much of the upstream traffic will be
able or choose to take the exit ramp to the ASCS deployed alternate
route. Therefore, the findings provide a new insight on improving
safety on a freeway with the implementation of ASCS arterials that
could be used as alternate routes during an incident on the free-
way. The results also reveal that other contributing factors such
as rear-end crash, light condition, peak period, weekday and AADT
increase the likelihood of secondary crashes on a freeway.

In this research, the authors have identified secondary crashes on
freeways based on a predefined spatio-temporal criterion adopted
extensively in previous work. Selecting a fixed spatio-temporal cri-
terion for identifying thesecondarycrasheson the freeways is a chal-
lenging task. For some primary crashes that occur on the freeways,
the corresponding secondary crashes can sometimes occur beyond
a predefined spatio-temporal range since the impacts of some pri-
mary crashes on traffic can exceed the predefined spatio-temporal
criterion. In the future, further researchwill be conducted consider-
ing various spatio-temporal criteria. In addition, due to limitation of
appropriate data on the drivers’ safety awareness (South Carolina
Traffic Collision Report Form (TR-310), 2012), the authors did not
consider the safety awareness of drivers as a factor while modeling
the likelihood of secondary crashes. Unavailability of lane blockage
and clearance time information for individual crash is another limi-
tation of this study. Also, different ASCS controllers follow different
types of algorithms. For this study, all the intersections on the alter-
nate routes considered are equipped with only one type of ASCS
technology. However, our future research will focus on identifying
how different types of ASCS deployed on the alternate routes can
affect the freeway secondary crash occurrences.

7. Practical applications

Analysis results indicate that, there is an association between
ASCS deployed on an alternate route and the likelihood of sec-
ondary crashes on the parallel freeway. Therefore, it is recom-
mended that the SCDOT considers utilizing ASCS on corridors
that are often used as alternate routes when there is a crash on
the adjacent parallel freeways. According to the findings of this
paper, existence of such an ASCS-deployed alternate route can help
reduce the likelihood of freeway secondary crashes and can
improve freeway safety.
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a b s t r a c t

Introduction: Safety of horizontal curves on rural two-lane, two-way undivided roadways is not fully
explored. This study investigates factors that impact injury severity of such crashes. Method: To achieve
the aim of this paper, issues associated with police-reported crash data such as unobserved heterogeneity
and temporal stability need to be accounted for. Hence, a mixed logit model was estimated, while hetero-
geneity in means and variances is investigated by considering four injury severity outcomes for drivers:
severe injury, moderate injury, possible injury, and no injury. Crash data for the period between 2011 and
2016 for crashes that occurred in the state of Oregon was analyzed. Temporal stability in factors deter-
mining the injury severity was investigated by identifying three time periods through splitting crash data
into 2011–2012, 2013–2014, and 2015–2016. Results: Despite some factors affecting injuries in all spec-
ified time periods, the values of the marginal effects showed relative differences. The estimation results
revealed that some factors increased the risk of being involved in severe injury crashes, including head-
on collisions, drunk drivers, failure to negotiate curves, older drivers, and exceeding the speed limits.
Conclusions: The hypothesis that attributes of injury severity are temporally stable is rejected. For exam-
ple, young drivers (30 years old and younger) and middle-aged drivers were found to be temporally insta-
ble over time. Practical applications: The findings could help transportation authorities and safety
professionals to enhance the safety of horizontal curves through appropriate and effective
countermeasures.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Horizontal curves are integral elements in roadway infrastruc-
ture since they play a vital role in changing the alignment or the
direction of roadways. Despite the significant role of these curves
in roadway design, such locations are still safety hazards to road
users in the United States. Therefore, enhancing safety at horizon-
tal curves has been set as an overarching goal for transportation
agencies across the United States. However, this is not an easy task
because some factors are commonly associated with horizontal
curves. These factors include increased demand on drivers (Calvi,
2015; Pratt et al., 2018), underestimation of curve sharpness
(Pratt et al., 2018; Schneider et al., 2009), curve length
(Rakotonirainy et al., 2015), curve radii (Geedipally et al., 2019),
sight distance (Rakotonirainy et al., 2015), speed limit (Wu et al.,
2019), poor signage (Rakotonirainy et al., 2015), inclement weather

and its impact on side friction (Pratt et al., 2018; Rakotonirainy
et al., 2015), and superelevation (Geedipally et al., 2019).

It has been reported that the number of fatalities occurring due
to crashes along horizontal curves is higher compared to that on
tangent segments, despite the disproportionate length of horizon-
tal curves in the roadway network (Geedipally et al., 2019; Lord
et al., 2011; Torbic et al., 2004; Wu and Xu, 2017). Nationwide,
recent statistics show that the second most common vehicle
maneuver before a fatal crash was negotiating a curve, with nearly
18.5% of all reported fatal crashes in 2017 (NHTSA, 2019). The same
trend has also been seen statewide in Oregon, in which 27.3% (110
out of 403) of the reported fatalities in 2017 occurred on horizontal
curves (ODOT, 2019). It is worth noting that crashes along rural
two-lane undivided highway (RTU) horizontal curves encompass
the majority of reported crashes at horizontal curves.

In light of this, highway engineers, transportation agencies, and
safety researchers strive to leverage safety at RTU horizontal
curves to improve the overall safety. This could be accomplished
by capturing determinants of injury severity that resulted from
crashes along RTU horizontal curves. By doing so, appropriate
countermeasures could be implemented. However, this depends
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on the performance and accuracy of developed methodological
approaches in terms of their inferences to make accurate predic-
tions because erroneous and inefficient interventions can be imple-
mented if inaccurate methods are used. This study attempts to
address notorious limitations in traffic safety analysis methods,
namely, unobserved heterogeneity and temporal stability of con-
tributing factors.

A major gap in the literature regarding the safety of horizontal
curves is ignoring temporal stability and unobserved heterogene-
ity. As such, the current study aims to fill this gap. By doing so, a
better understanding of determinants of injury severity from these
crashes can be gained. Achieving this overarching goal could assist
transportation agencies and safety professionals to enhance safety
at horizontal curves through appropriate countermeasures target-
ing, in part, geometric design features of the curves and/or empha-
sizing law enforcement.

2. Literature review

Compared with highway tangents, RTU horizontal curves pose
serious concerns to traffic safety. As such, an abundance of
research has been devoted to rigorously emphasize horizontal
curve safety from different perspectives, including safety–critical
events on rural two-lane curves (Wang et al., 2017), crash fre-
quency (Dhahir & Hassan, 2019a, 2019b; Gooch et al., 2016; Xin
et al., 2017), visibility of horizontal curve (Jamson et al., 2015),
developing safety performance functions (Banihashemi, 2016;
Gooch et al., 2018), reliability analysis (Jesna & Anjaneyulu,
2016), run-off risk (Choudhari & Maji, 2019), motorcycle safety
(Gabauer & Li, 2015; Xin et al., 2019), large truck safety
(Fitzsimmons et al., 2012), injury severity (Schneider et al.,
2009), crash frequency by severity (Anarkooli et al., 2019), and dri-
vers’ speed behavior when negotiating horizontal ramp curves in
interchanges (Farah et al., 2019).

This literature shows that exploring injury severity of crashes
along RTU horizontal curves is highly overlooked, with only
research conducted by Schneider et al. (2009). However, this
research failed to address unobserved heterogeneity issue. This is
because the multinomial logit model used in their study was a very
promising model at that time when there was no such advance-
ment in methodological methods. Therefore, the current study
aims at overcoming the limitations highlighted in the literature
by using advanced methods that are capable of capturing unob-
served heterogeneity, which is more likely to exist in police-
reported crash reports (Mannering et al., 2016). Recently, examin-
ing unobserved heterogeneity used the random parameters
approach, without exploring whether the means and variances of
potential random parameters being a function of explanatory vari-
able or not is criticized (Al-Bdairi et al., 2020; Alnawmasi &
Mannering, 2019; Behnood & Mannering, 2017a; Seraneeprakarn
et al., 2017). In addition to this issue, a temporal stability concern
also arises in the crash data, which was highly ignored in past
research that emphasized crashes along horizontal curves
(Anarkooli et al., 2019; Choudhari & Maji, 2019; Mannering,
2018; Schneider et al., 2009; Wang et al., 2017). Taken together,
the current study investigated temporal stability of factors impact-
ing injury severity of drivers involved in crashes along RTU hori-
zontal curves via estimating mixed logit models with
heterogeneity in means and variances approach and splitting the
crash data into three time periods.

3. Methodological approach

The so-called heterogeneity models have been widely used in
the analysis of crash-injury severity due to their superior perfor-

mance compared to other models (Al-Bdairi, 2020; Al-Bdairi
et al., 2018; Al-Bdairi & Hernandez, 2017; Behnood et al., 2014;
Behnood & Mannering, 2017b, 2017c). Despite their superiority
in model fitting, unobserved heterogeneity models have also some
drawbacks (Mannering et al., 2016). For instance, the random
parameters approach fails to investigate the relationship between
the unobserved heterogeneity and explanatory variables. In other
words, the means and variances of the random parameters are
fixed (homogeneous) across the observations. However, this is
not the case if an analyst seeks more flexibility in the developed
models. That being said, the random parameters approach with
heterogeneity in means and variances is utilized in the current
study to overcome the aforementioned shortcomings in the most
commonly used methods in recent years, and also to come up with
efficient, unbiased, and more accurate inferences.

Following Milton et al. (2008) and Washington et al. (2011), an
injury severity function Tkjshould be firstly introduced, and this
function is written as:

Tkj ¼ bkXkj þ ekj ð1Þ
where Tkj is a function of injury severity determining the driver
severity k in crash j, bk is the vector of the estimated coefficients
for injury k, Xkj is the associated vector of attributes affecting driver
injury severity k resulted from crash j, and ekj is the error term. It
should be noted that the error term follows a generalized extreme
value distribution. Accounting for heterogeneity in the means and
variances of random parameters is illustrated in Eq. (2). This should
be achieved through letting bkj as a vector of estimated parameters,
in which parameters vary across crashes (Alnawmasi & Mannering,
2019; Behnood & Mannering, 2019; Behnood and Mannering,
2017a; Seraneeprakarn et al., 2017).

bkj ¼ bk þHkjZkj þ rkjEXP xkjWkj

� �
vkj ð2Þ

where bk is the mean parameter, Zkj is a vector of attributes that
accommodate the heterogeneity in the mean,Hkj is a corresponding
vector of estimable parameters, Wkjis a vector of attributes that
addresses heterogeneity in the standard deviation rkj, xkjis the cor-
responding parameter vector, and vkjis a randomly distributed term
that accounts for unobserved heterogeneity across RTU horizontal
crashes. To derive the probability of a crash j results in driver injury
severity k, the framework presented by McFadden and Train (2000)
and Washington et al. (2011) should be followed as:

Pj kð Þ ¼
Z

EXPðbkXkjÞP
8KEXP bkXkj

� � f bjuð Þdb ð3Þ

where f bjuð Þ is the density function of b with u denoting vector of
parameters (mean and variance) of density function. A simulated
maximum likelihood with 200 Halton draws has been utilized
herein in estimating the models (McFadden & Train, 2000). Also,
extensive parametric distributional forms, including normal, log-
normal, triangular, and uniform have been tried for random param-
eters. Yet, only normal distribution yields a superior statistical fit.
The marginal effects are also calculated to ease interpretation of
the estimated results. The difference in the estimated probabilities
given that indicator variables are altered from zero to one repre-
sents the marginal effects (Washington et al., 2011).

4. Empirical setting

In this study, crash data were drawn from Oregon Department
of Transportation (ODOT) involving crashes that occurred along
RTU horizontal curves in Oregon for the period between 2011
and 2016. After removing incomplete or crashes with missing
information, a total of 13,882 observations are obtained in the final
dataset. The final dataset includes a great deal of crash information
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on driver attributes (i.e., driver sobriety, gender, age, seatbelt
usage, driving license status, driver fatigue, and if driver is dis-
tracted); roadway characteristics (i.e., roadway surface conditions,
traffic control device, and speed limit); crash attributes (i.e., colli-
sion type, number of vehicles involved, and major cause of crash);
vehicle features (type of involved vehicle); time-related attributes
(such as time of crash); and weather and lighting conditions.

To overcome a limitation in the final dataset represented by
lower observations of fatal crashes, injury severity of drivers was
collapsed into four main groups: severe injury (fatal and incapaci-
tating injury), moderate injury (non-incapacitating), possible
injury (possible injury), and no injury (property damage only).
Since this study sought to statistically assess the temporal instabil-
ity in the risk factors of crashes along RTU horizontal curves, final
dataset was split into three time periods1: 2011–2012, 2013–2014,
and 2015–2016. The distribution of injury severity levels in the final
data set in the four time periods is provided in Table 1. Further, the
final data set includes numerous variables that affect driver injury
severity resulted from RTU horizontal curves crashes. Table 2 dis-
plays the descriptive statistics of significant attributes.

Table 1 shows that the distribution of injury severity among
three time periods is quite similar. Overall, severe, moderate, pos-
sible, and no injuries constitute 6.3%, 22.6%, 20.0%, and 50.8%, of
the total data. A few points are noteworthy in Table 2. First, some
driver-related attributes such as seatbelt usage is found being sta-
tistically significant and impacting injury severity in all time peri-
ods. Also, this factor is overrepresented with more than 80% of the
crash data. On the contrary, the factor of falling asleep while driv-
ing also turned out to significantly influence injury severity in all
time periods. Still, it is underrepresented in crash data. This could
be attributed to the difficulty of proving drowsiness as the main
cause of accidents due to failures of states to come up with a stan-
dardized reporting system that can easily define sleepiness-related
crashes. Female drivers and losing control of a vehicle while nego-
tiating a horizontal curve account for more than 30% and 40% of the
observations, respectively. Second, in terms of crash attributes,
more than 70% of crashes along horizontal curves involved a single
vehicle in all time periods.

5. Temporal stability tests

Likelihood ratio tests are commonly used to statistically verify
whether developing separate models is justified or crash data can
be aggregated to estimate a joint model. Herein, the temporal sta-
bility of determinants that impact the severity of drivers in RTU
horizontal curves crashes can be examined by splitting crash data
into three time periods: 2011–2012, 2013–2014, and 2015–2016.
For details on two likelihood ratio tests, readers are referred to
Washington et al. (2011). The test statistic of the first test is formu-
lated as:

X2 ¼ �2 LL b2011�2016ð Þ � LL b2011�2012ð Þ � LL b2013�2014ð Þ � LL b2015�2016ð Þ½ �
ð4Þ

where LL b2011�2016ð Þ is the log-likelihood at convergence of the mod-
els estimated with whole crash data (i.e., for crashes occurred
between 2011 and 2016). LL b2011�2012ð Þ, LL b2013�2014ð Þ,
andLL b2015�2016ð Þ are the log-likelihood at convergence of the model
using 2011–2012, 2013–2014, and 2015–2016 crash data, respec-

tively. The outcome statistic X2obtained using Eq. (4) equals to
1,747.58 with 41 degrees of freedom, which suggests that the null
hypothesis that examining temporal stability by developing sepa-
rate models for the specified time periods is inessential can be
rejected with over 99.99% confidence. This finding confirms with
considerable evidence that severity models regarding RTU horizon-
tal curves crashes are temporally instable.

The second test is utilized to test the stability of injury severity
determinants over time, this test can be written as in Eq. (5)
(Washington et al., 2011):

X2 ¼ �2 LL bt2t1

� �
� LL bt1

� �h i
ð5Þ

The definition of each term is defined in Washington et al.
(2011). According to the displayed results in Table 3, it is obvious
that the null hypothesis that the parameters are equivalent in
the two time periods can be rejected with more than 99.99% con-
fidence level. The results of likelihood ratio tests collectively con-
firm that this study is in line with past studies in which the
temporal instability of injury severity determinants was examined
(Al-Bdairi et al., 2020; Alnawmasi & Mannering, 2019; Behnood &
Al-Bdairi, 2020; Behnood & Mannering, 2016, 2015). However,
these studies did not investigate crashes along horizontal curves.

6. Estimation results

The estimation results along with marginal effects for the devel-
oped models for 2011–2012, 2013–2014, and 2015–2016 time
periods data, respectively, are presented in Tables 4–6. These
tables reveal that heterogeneity in means and variances was cap-
tured in all three time period models. Also, Tables 4–6 show that
all three estimated models have a good overall statistical fit as
indicated by the values of McFadden Pseudo R-squared, which
are in the range of 0.2–0.3. In this analysis, an extensive list of con-
tributing factors that can significantly affect the injury severity
outcomes of crashes along RTU horizontal curves is considered.
However, only the variables with significant t-statistics with at
least 90% significant level were kept in the models. By considering
t-statistics as a threshold, 22, 23, and 26 factors are included in
2011–2012, 2013–2014, and 2015–2016 time period models,
respectively. In these models, 3 parameters (crashes occurred on
weekdays, drunk drivers, and belted drivers), 2 parameters (losing
control of vehicle and belted drivers), and 5 parameters (young
drivers-30 years and younger, losing control of vehicle, belted dri-
vers, middle-aged drivers-between 30 and 65 years, and wet road-
way surface condition) produced statistically significant random
parameters with normal distribution in 2011–2012, 2013–2014,

Table 1
Distribution of injury severity and frequency.

Time period Injury severity Observations Percent (%)

2011–2012 Severe 278 6.30%
Moderate 1,009 22.87%
Possible 883 20.01%
No injury 2,242 50.82%
Total 4,412 100.00%

2013–2014 Severe 292 6.39%
Moderate 1,033 22.60%
Possible 884 19.34%
No injury 2,362 51.67%
Total 4,571 100%

2015–2016 Severe 313 6.39%
Moderate 1,099 22.43%
Possible 1,018 20.78%
No injury 2,469 50.40%
Total 4,899 100.00%

1 The split of dataset adopted in this study is considered after careful testing for any
potential temporal instability in specified time periods. The criterion that should be
followed in separating the data is maintaining a reasonable number of observations in
each time period so that the accuracy and performance of the developed models
cannot be affected. Followed this criterion which has been recommended by Ye and
Lord (2014), it was found that splitting the data into 2011–2012, 2013–2014, and
2015–2016 time periods provided the only statistically significant separation.
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and 2015–2016 time period models, respectively. Thus, to ease
interpretation of the findings due to the vast number of explana-
tory variables being statistically significant in each model, these
variables were categorized into driver characteristics, roadway
characteristics, crash characteristics, time-related attributes, and
weather and lighting attributes. As seen in Tables 4–6, some factors
were found to affect exclusively one time period while others
turned out to be statistically significant in all or at least two time
period models. Accordingly, to highlight the differences in their

influence on injury severity, the marginal effects of contributing
factors in all time period models will be presented in Table 7
side-by-side. The findings of the current study will be elaborated
in more details in the next subsections.

6.1. Driver characteristics

The estimation results disclose that some driver-related attri-
butes affect injury severity of crashes at RTU horizontal curves in
all time period models. However, these factors are temporally
instable, and their impacts are different (as shown in Table 7).
Specifically, six parameters produced statistically significant
impacts on injury severity outcomes in all specified time period
models. These parameters include older drivers with more than
65 years, drunk drivers, female drivers, belted drivers, losing con-
trol of the vehicle, and driver fell asleep. The indicator variable of
belted drivers was found to produce random parameter in the
three models with overall increase in the likelihood of moderate
injury. The values of mean (standard deviation) of this indicator
variable were obtained as �1.551 (1.502), �3.696 (4.565), and
�12.822 (13.907) in 2011–2012, 2013–2014, and 2015–2016 time
period models, respectively. This implies that moderate injury like-
lihood will be more likely to be sustained by belted drivers for

Table 2
Summary statistics of significant attributes in the developed models.

Variable 2011–2012 2013–2014 2015–2016

Mean S. D Mean S. D Mean S. D

Driver characteristics
Elderly driver (1 if more than 65 years; 0 otherwise) 0.079 0.270 0.088 0.283 0.070 0.255
Drunk drivers (1 if drunk drivers; 0 otherwise) 0.125 0.331 0.123 0.328 0.106 0.308
Fatigued (1 if driver was fatigued; 0 otherwise) – – – – 0.051 0.221
Driver license status (1 if valid other states license; 0 otherwise) 0.071 0.257 – – – –
Female (1 if driver is female; 0 otherwise) 0.360 0.480 0.367 0.482 0.286 0.452
Young driver (1 if less than 30 years; 0 otherwise) – – – – 0.367 0.482
Driver error (1 if driver failed to negotiate a curve; 0 otherwise) – – 0.045 0.206 0.104 0.305
Losing control of vehicle (1 if yes; 0 otherwise) 0.444 0.497 0.419 0.493 0.310 0.463
Belted drivers (1 if driver was belted; 0 otherwise) 0.832 0.374 0.823 0.381 0.649 0.477
Distracted (1 if driver was distracted; 0 otherwise) – – 0.036 0.186 0.037 0.189
Driver license status (1 if valid Oregon license; 0 otherwise) – – – – 0.638 0.481
Falling asleep (1 if yes; 0 otherwise) 0.054 0.226 0.050 0.218 0.049 0.215
Middle-aged driver (1 if between 30 and 65 years; 0 otherwise) – – 0.426 0.495 0.334 0.472

Roadway characteristics
Wet (1 if wet roadway; 0 otherwise) – – – – 0.299 0.458
Speed limit (1 if 55 mph; 0 otherwise) 0.506 0.500 0.510 0.500 0.536 0.499
Dry (1 if dry roadway; 0 otherwise) 0.503 0.500 0.517 0.500 0.541 0.498
National highway system (1 if yes; 0 otherwise) – – – – 0.219 0.414
Speed limit (1 if 45 mph, 0 otherwise) 0.080 0.271 0.071 0.256 – –
Curve sign (1 if traffic control device is curve sign; 0 otherwise) 0.033 0.179 0.039 0.194 – –
Run-off (1 if yes; 0 otherwise) 0.892 0.310 0.895 0.307 0.874 0.332
No traffic control device (1 if yes; 0 otherwise) – – – – 0.336 0.472

Crash characteristics
Single vehicle involved (1 if yes; 0 otherwise) 0.723 0.448 0.729 0.445 0.716 0.451
Head-on (1 if crash type is head-on; 0 otherwise) 0.083 0.275 0.075 0.264 0.082 0.275
Exceeding the posted speed limit (1 if yes; 0 otherwise) 0.039 0.192 0.039 0.195 0.055 0.227
Fixed object (1 if crash type is fixed object; 0 otherwise) 0.644 0.479 – – – –
Airbag deployment (1 if airbag was deployed; 0 otherwise) 0.213 0.410 0.209 0.406 0.203 0.402
Overturned (1 if crash type is overturned; 0 otherwise) 0.080 0.272 0.061 0.239 0.073 0.260

Time related attributes
Winter (1 if between January and April; 0 otherwise) 0.270 0.444 0.242 0.428 – –
Morning (1 if between 4:00 AM and 11:00 AM; 0 otherwise) – – – – 0.235 0.424
Afternoon (1 if between 11:00 AM and 6:00 PM; 0 otherwise) 0.408 0.491 0.424 0.494 – –
Night (1 if between 6:00 PM and 12:00 AM; 0 otherwise) – – – – 0.289 0.453
Weekdays (1 if yes; 0 otherwise) 0.658 0.474 – – – –
Fall (1 if between September and December; 0 otherwise) – – – – 0.371 0.483

Weather and lighting attributes
Dawn (1 if dawn lighting condition; 0 otherwise) – – 0.027 0.162 – –
Clear weather (1 if yes; 0 otherwise) 0.487 0.500 – – – –
Snowy weather (1 if yes; 0 otherwise) – – 0.042 0.200 – –

S.D is standard deviation.

Table 3
Results of temporal stability tests with degrees of freedom for specified time periods
(degrees of freedom in parentheses).

t1 t2

2011–2012 2013–2014 2015–2016

2011–2012 – 496.74 (23)
[>99.99 %]

477.83 (26)
[>99.99 %]

2013–2014 488.54 (22)
[>99.99 %]

– 280.89 (26)
[>99.99 %]

2015–2016 56.10 (22)
[>99.99 %]

47.06 (23)
[>99.78 %]

–

Note: values in brackets are confidence level.

Nabeel Saleem Saad Al-Bdairi and A. Behnood Journal of Safety Research 76 (2021) 205–217

208



15.1%, 20.1%, and 17.8% of the observations in 2011–2012, 2013–
2014, and 2015–2016 time period models, respectively. Looking
into these percentages, one could conclude that there is no sub-
stantial difference regarding how moderate injury outcome
increases as time passes. Fig. 1 shows that marginal effects of
belted drivers corresponding to moderate injury levels are
decreased meaning that the probability of ending up with moder-
ate injuries in crashes occurred along RTU horizontal curves in
which drivers are belted are highly unlikely, while no injury out-
comes would be more likely to be sustained by those drivers. This
finding is intuitive and underscores the importance of safety seat-
belt in saving lives and reducing injuries resulted from roadway
crashes. Previous studies also documented the significance of seat-

belt use and how it reduces the chances of fatal crashes (Russo
et al., 2014; Schneider et al., 2009).

Losing control of the vehicle was found to produce statistically
significant random parameter in two time period models (i.e.,
2013–2014 and 2015–2016), while this variable was found to be
fixed in 2011–2012 model. For random parameters, the means (s-
tandard deviations) are �0.849 (2.849) and �7.014 (19.879) for
2013–2014 and 2015–2016 time period models, respectively. This
distribution implies that 38.3% and 36.2% of crashes occurred due
to losing control of the vehicle will increase the probability of sus-
taining moderate injuries in crashes along RTU horizontal curves
for 2013–2014 and 2015–2016 time period models, respectively.
As shown in Fig. 2, the moderate injury outcomes are more likely

Table 4
Estimation results for 2011–2012 time period model.

Variable Parameter
estimate

t-stat Marginal effects

Severe
injury

Moderate
injury

Possible
injury

No
injury

Constant [SI] �4.299 �14.86 – – – –
Constant [MI] �2.699 �10.46 – – – –
Constant [PI] �2.241 �12.92 – – – –

Driver characteristics
Elderly driver (1 if more than 65 years; 0 otherwise) [SI] 0.806 3.66 0.0045 �0.0007 �0.0009 �0.0028
Drunk drivers (1 if drunk drivers; 0 otherwise) [SI] 1.113 2.28 0.0254 �0.0059 �0.0051 �0.0144
Standard deviation of ‘‘drunk drivers” (normally distributed) 1.628 2.10 – – – –
Female (1 if driver is female; 0 otherwise) [PI] 0.506 3.58 �0.0016 �0.0042 0.0204 �0.0146
Falling asleep (1 if yes; 0 otherwise) [NI] �0.534 �2.95 0.0010 0.0019 0.0022 �0.0052
Losing control of vehicle (1 if yes; 0 otherwise) [MI] 0.436 3.38 �0.0016 0.0211 �0.0047 �0.0148
Belted driver (1 if driver was belted; 0 otherwise) [MI] �1.551 �2.55 0.0059 �0.0584 0.0190 0.0334
Standard deviation of ‘‘belted driver” (normally distributed) 1.502 2.38 – – – –
Driver license status (1 if valid other states license; 0 otherwise) [NI] 0.264 1.71 �0.0005 �0.0013 �0.0014 0.0032

Roadway characteristics
Curve sign (1 if traffic control device is curve sign; 0 otherwise) [SI] �0.773 �2.38 �0.0020 0.0013 0.0003 0.0004
Dry (1 if dry roadway; 0 otherwise) [MI] 0.964 5.85 �0.0051 0.0536 �0.0122 �0.0363
Speed limit (1 if 55 mph, 0 otherwise) [MI] 0.547 4.11 �0.0024 0.0290 �0.0064 �0.0202
Run-off (1 if yes; 0 otherwise) [NI] �0.552 �3.49 0.0152 0.0343 0.0390 �0.0885
Speed limit (1 if 45 mph; 0 otherwise) [NI] �0.398 �2.74 0.0012 0.0019 0.0026 �0.0056

Crash characteristics
Single vehicle involved (1 if yes; 0 otherwise) [SI] 0.663 2.63 0.0230 �0.0041 �0.0044 �0.0145
Exceeding the posted speed limit (1 if yes; 0 otherwise) [SI] 0.782 2.75 0.0026 �0.0005 �0.0005 �0.0016
Fixed object (1 if crash type is fixed object; 0 otherwise) [PI] 0.515 3.91 �0.0030 �0.0080 0.0377 �0.0268
Overturned (1 if crash type is overturned; 0 otherwise) [NI] �0.636 �4.18 0.0016 0.0045 0.0036 �0.0097
Head-on (1 if collision type is head-on; 0 otherwise) [SI] 2.072 7.05 0.0174 �0.0027 �0.0030 �0.0117
Airbag deployment (1 if airbag was deployed; 0 otherwise) [SI] 1.330 8.02 0.0226 �0.0030 �0.0043 �0.0153

Time related attributes
Winter (1 if between January and April; 0 otherwise) [SI] �0.520 �2.71 �0.0046 0.0007 0.0008 0.0031
Afternoon (1 if between 11:00 AM and 6:00 PM; 0 otherwise) [MI] �0.233 �1.87 0.0006 �0.0086 0.0019 0.0061
Weekdays (1 if yes; 0 otherwise) [PI] �0.877 �1.24 �0.0048 �0.0153 0.0478 �0.0277
Standard deviation of ‘‘weekdays” (normally distributed) 1.673 1.73 – – – –

Weather and lighting attributes
Clear weather (1 if yes; 0 otherwise) [SI] 0.318 2.12 0.0082 �0.0016 �0.0015 �0.0052

Heterogeneity in the means of the random parameters
Belted driver: Single vehicle involved (1 if yes; 0 otherwise) 1.251 3.85 – – – –
Belted driver: Head-on (1 if crash type is head-on; 0 otherwise) 1.610 3.95 – – – –
Weekdays: Head-on (1 if crash type is head-on; 0 otherwise) 1.322 3.62 – – – –
Weekdays: Elderly driver (1 if more than 65 years; 0 otherwise) 0.568 1.92 – – – –
Weekdays: Dry (1 if dry roadway; 0 otherwise) 0.384 2.31 – – – –

Heterogeneity in the variances of the random parameters
Belted driver: Airbag deployment (1 if airbag was deployed; 0

otherwise)
1.391 5.37 – – – –

Belted driver: Female (1 if driver is female; 0 otherwise) 0.435 2.42 – – – –
Weekdays: Airbag deployment (1 if airbag was deployed; 0 otherwise) 0.658 2.34 – – – –
Weekdays: Female (1 if driver is female; 0 otherwise) 0.435 2.46 – – – –

Model statistics
Number of observations 4412
Log likelihood at convergence �4818.78
Log likelihood at constants only �6116.33
McFadden Pseudo R-squared 0.212

Note: letters in brackets are explanatory variable defined for: [NI] No injury; [PI] Possible injury; [MI] Moderate injury; [SI]: Severe injury.
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to be incurred by drivers losing control of their vehicles when
involved in crashes along RTU horizontal curves. Also, this figure
shows that the trend regarding the effect of this variable is declin-
ing over time. The possible reason could be due to the drivers’
behavior related to negotiating curves by compensating that with
reducing speed, which in turn alleviates the severity of crash out-
comes. This growing attitude among drivers could be due to
unstopping efforts lead by safety officials and traffic engineers to
enhance safety at such hazardous locations.

Driver age turned out to highly affect the outcome of injury
severity in crashes along RTU horizontal curves. For example, older
drivers (more than 65 years) are more prone to severe injury levels
compared to other drivers when they are involved in crashes along
RTU horizontal curves, regardless of the time period used. Table 7

and Fig. 3 disclose that the probability of severe injury levels for
older drivers is nearly 6.4, 9.0, and 37.5 times compared to moder-
ate injuries in 2011–2012, 2013–2014, and 2015–2016 time period
models, respectively. This finding explains how older drivers who
encompass large share from the U.S. drivers are at high risk, partic-
ularly at horizontal curves. A possible reason could be related to
deterioration of driving abilities of older drivers and reaction time
in negotiating curves. Also, the increased chances of injury levels
being sustained by such drivers are attributed to fragility of older
drivers’ bodies compared to young and middle-aged drivers. Simi-
lar findings were obtained in past studies (Kim et al., 2013;
Schneider et al., 2009).

Alcohol consumption has been extensively documented as a
leading cause of crashes because such behavior has negative impli-

Table 5
Estimation results for 2013–2014 time period model.

Variable Parameter
estimate

t-stat Marginal effects

Severe
injury

Moderate
injury

Possible
injury

No
injury

Constant [SI] �4.034 �15.65 – – – –
Constant [MI] �2.496 �9.43 – – – –
Constant [PI] �1.672 �13.07 – – – –

Driver characteristics
Elderly driver (1 if more than 65 years; 0 otherwise) [SI] 1.043 5.22 0.0081 �0.0009 �0.0019 �0.0053
Drunk drivers (1 if drunk drivers; 0 otherwise) [SI] 1.843 12.32 0.0304 �0.0049 �0.0067 �0.0189
Losing control of vehicle (1 if yes; 0 otherwise) [MI] �0.849 �1.68 �0.0016 0.0112 �0.0024 �0.0072
Standard deviation of ‘‘losing control of vehicle” (normally distributed) 2.849 3.08 – – – –
Failing to negotiate curve (1 if yes; 0 otherwise) [SI] 0.664 2.73 0.0028 �0.0003 �0.0007 �0.0018
Belted driver (1 if driver was belted; 0 otherwise) [MI] �3.696 �2.29 0.0069 �0.0686 0.0183 0.0434
Standard deviation of ‘‘belted driver” (normally distributed) 4.565 3.01 – – – –
Female (1 if driver is female; 0 otherwise) [PI] 0.759 9.48 �0.0041 �0.0061 0.0484 �0.0381
Distracted (1 if driver was distracted; 0 otherwise) [PI] 0.450 2.24 �0.0002 �0.0004 0.0028 �0.0022
Falling asleep (1 if yes; 0 otherwise) [NI] �0.603 �3.54 0.0013 0.0012 0.0032 �0.0058
Middle-aged driver (1 if between 30 and 65 years; 0 otherwise) [NI] �0.240 �3.24 0.0034 0.0041 0.0122 �0.0197

Roadway characteristics
Dry (1 if dry roadway; 0 otherwise) [MI] 0.524 2.65 �0.0020 0.0186 �0.0047 �0.0118
Speed limit (1 if 55 mph, 0 otherwise) [MI] 0.824 3.83 �0.0028 0.0285 �0.0072 �0.0184
Run-off (1 if yes; 0 otherwise) [NI] �0.241 �2.02 0.0075 0.0089 0.0248 �0.0412
Speed limit (1 if speed limit is 45 mph; 0 otherwise) [NI] �0.321 �2.33 0.0009 0.0007 0.0027 �0.0042
Curve sign (1 if traffic control device is curve sign; 0 otherwise) [MI] 1.081 2.57 �0.0003 0.0032 �0.0008 �0.0021

Crash characteristics
Single vehicle involved (1 if yes; 0 otherwise) [SI] 0.807 3.47 0.0330 �0.0039 �0.0081 �0.0210
Head-on (1 if crash type is head-on; 0 otherwise) [SI] 1.658 6.02 0.0127 �0.0014 �0.0028 �0.0085
Overturned (1 if crash type is overturned; 0 otherwise) [NI] �0.438 �2.88 0.0009 0.0011 0.0032 �0.0052
Exceeding the posted speed limit (1 if yes; 0 otherwise) [SI] 0.554 1.99 0.0018 �0.0002 �0.0004 �0.0012
Airbag deployment (1 if airbag was deployed; 0 otherwise) [SI] 1.044 7.36 0.0215 �0.0026 �0.0053 �0.0136

Time related attributes
Winter (1 if between January and April; 0 otherwise) [SI] �0.610 �3.44 �0.0054 0.0005 0.0013 0.0036
Afternoon (1 if between 11:00 AM and 6:00 PM; 0 otherwise) [MI] �0.505 �2.50 0.0010 �0.0125 0.0032 0.0083

Weather and lighting attributes
Dawn (1 if dawn lighting condition; 0 otherwise) [SI] 0.744 2.21 0.0017 �0.0002 �0.0004 �0.0011
Snowy weather (1 if yes; 0 otherwise) [PI] �0.686 �2.99 0.0002 0.0002 �0.0028 0.0024

Heterogeneity in means of random parameters
Losing control of vehicle: Drunk drivers (1 if drunk drivers; 0 otherwise) 1.000 2.24 – – – –
Losing control of vehicle: Dawn (1 if dawn lighting condition; 0

otherwise)
�2.817 �2.05 – – – –

Belted driver: Single vehicle involved (1 if yes; 0 otherwise) 2.246 3.01 – – – –
Belted driver: Female (1 if driver is female; 0 otherwise) 1.079 3.24 – – – –
Belted driver: Head-on (1 if crash type is head-on; 0 otherwise) 2.189 2.90 – – – –
Belted driver: Winter (1 if between January and April; 0 otherwise) �0.906 �2.48 – – – –
Belted driver: Drunk drivers (1 if drunk drivers; 0 otherwise) 1.307 2.28 – – – –

Heterogeneity in variances of random parameters
Belted driver: Speed limit (1 if 45 mph, 0 otherwise) 0.350 2.15 – – – –

Model statistics
Number of observations 4571
Log likelihood at convergence �5024.85
Log likelihood at constants only �6336.75
McFadden Pseudo R-squared 0.207

Note: letters in brackets are explanatory variable defined for: [NI] No injury; [PI] Possible injury; [MI] Moderate injury; [SI]: Severe injury.
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cations on drivers’ awareness, consciousness, reaction time, and
driving abilities. Tables 4–6 clearly show that drunk drivers are
more prone to severe injuries when involved in crashes along hor-
izontal curves. Table 7 and Fig. 4 illustrate that the probability of
being involved in severe injuries among drunk drivers is 4.3, 6.2,
and 14.4 times in comparison with moderate injuries in 2011–
2012, 2013–2014, and 2015–2016 time period models, respec-

tively. Based on this finding, strict law enforcement on alcohol con-
sumption is needed to alleviate this behavior.

6.2. Roadway characteristics

Roadway surface condition is an important determinant of
injury severity. In this study, dry roadway surface condition, as
mentioned above, was found to increase the likelihood of moderate

Table 6
Estimation results for 2015–2016 time period model.

Variable Parameter
estimate

t-stat Marginal effects

Severe
injury

Moderate
injury

Possible
injury

No
injury

Constant [SI] �5.422 �14.17 – – – –
Constant [MI] �3.844 �12.87 – – – –
Constant [PI] �3.796 �14.27 – – – –

Driver characteristics
Drunk drivers (1 if drunk drivers; 0 otherwise) [SI] 2.136 11.93 0.0244 �0.0017 �0.0073 �0.0155
Failing to negotiate curve (1 if yes; 0 otherwise) [SI] 1.066 5.45 0.0085 �0.0004 �0.0030 �0.0050
Losing control of vehicle (1 if yes; 0 otherwise) [MI] �7.014 �1.46 �0.0009 0.0119 �0.0050 �0.0060
Standard deviation of ‘‘losing control of vehicle” (normally distributed) 19.879 2.00 – – – –
Elderly driver (1 if more than 65 years; 0 otherwise) [SI] 1.362 6.12 0.0075 �0.0002 �0.0017 �0.0056
Fatigued (1 if driver was fatigued; 0 otherwise) [SI] �0.875 �2.72 �0.0021 0.0001 0.0009 0.0011
Belted driver (1 if driver was belted; 0 otherwise) [MI] �12.822 �2.01 0.0015 �0.0198 0.0090 0.0093
Standard deviation of ‘‘belted driver” (normally distributed) 13.907 2.49 – – – –
Distracted (1 if driver was distracted; 0 otherwise) [MI] 2.099 4.89 �0.0004 0.0034 �0.0012 �0.0018
Female (1 if driver is female; 0 otherwise) [PI] 1.207 8.91 �0.0059 �0.0026 0.0351 �0.0266
Young driver (1 if less than 30 years; 0 otherwise) [PI] �1.656 �2.19 �0.0018 �0.0069 0.0302 �0.0215
Standard deviation of ‘‘young driver” (normally distributed) 3.587 4.30 – – – –
Driver license status (1 if valid Oregon license; 0 otherwise) [PI] 1.721 9.46 �0.0177 �0.0072 0.1046 �0.0797
Falling asleep (1 if yes; 0 otherwise) [NI] �1.322 �5.31 0.0019 0.0007 0.0037 �0.0063
Middle-aged driver (1 if between 30 and 65 years; 0 otherwise) [NI] �2.040 �7.27 0.0115 0.0030 0.0356 �0.0501
Standard deviation of ‘‘middle-aged driver” (normally distributed) 1.413 3.23 – – – –

Roadway characteristics
National highway system (1 if yes; 0 otherwise) [PI] 0.481 3.45 �0.0015 �0.0005 0.0088 �0.0068
Wet (1 if wet roadway; 0 otherwise) [SI] �1.315 �2.18 0.0043 �0.0002 �0.0011 �0.0030
Standard deviation of ‘‘wet” (normally distributed) 1.665 3.39 – – – –
Speed limit (1 if 55 mph; 0 otherwise) [SI] 0.586 3.93 0.0154 �0.0007 �0.0050 �0.0098
Dry (1 if dry roadway; 0 otherwise) [MI] 0.484 1.88 �0.0007 0.0067 �0.0016 �0.0045
No traffic control device (1 if yes; 0 otherwise) [NI] 0.226 1.90 �0.0018 �0.0011 �0.0046 0.0075
Run-off (1 if yes; 0 otherwise) [NI] �0.491 �2.63 0.0115 0.0067 0.0252 �0.0433

Crash characteristics
Single vehicle involved (1 if yes; 0 otherwise) [SI] 1.103 3.54 0.0342 �0.0016 �0.0108 �0.0218
Head-on (1 if crash type is head-on; 0 otherwise) [SI] 2.220 6.67 0.0154 �0.0006 �0.0046 �0.0103
Overturned (1 if crash type is overturned; 0 otherwise) [NI] �0.350 �1.92 0.0007 0.0003 0.0013 �0.0024
Exceeding the posted speed limit (1 if yes; 0 otherwise) [SI] 0.918 3.49 0.0033 �0.0001 �0.0008 �0.0023
Airbag deployment (1 if airbag was deployed; 0 otherwise) [SI] 1.303 7.75 0.0170 �0.0005 �0.0056 �0.0109

Time related attributes
Morning (1 if between 4:00 AM and 11:00 AM; 0 otherwise) [SI] 0.363 2.06 0.0036 �0.0001 �0.0011 �0.0024
Night (1 if between 6:00 PM and 12:00 AM; 0 otherwise) [MI] 0.564 2.23 �0.0004 0.0045 �0.0010 �0.0031
Fall (1 if between September and December; 0 otherwise) [NI] 0.310 2.60 �0.0028 �0.0016 �0.0069 0.0112

Heterogeneity in the means of the random parameters
Wet: Single vehicle involved (1 if yes; 0 otherwise) �0.883 �2.00 – – – –
Wet: Driver license status (1 if valid Oregon license; 0 otherwise) 1.333 2.94 – – – –
Belted driver: Single vehicle involved (1 if yes; 0 otherwise) 7.867 2.32 – – – –
Young driver: Single vehicle involved (1 if yes; 0 otherwise) 1.835 3.27 – – – –
Middle-aged driver: Single vehicle involved (1 if yes; 0 otherwise) �0.425 �2.11 – – – –
Middle-aged driver: Driver license status (1 if valid Oregon license; 0

otherwise)
1.159 4.38 – – – –

Heterogeneity in the variances of the random parameters
Losing control of vehicle: Airbag deployment (1 if airbag was deployed; 0

otherwise)
1.877 4.91 – – – –

Belted driver: Overturned (1 if crash type is overturned; 0 otherwise) 1.260 3.67 – – – –
Belted driver: Airbag deployment (1 if airbag was deployed; 0 otherwise) 1.254 6.24 – – – –
Young driver: Airbag deployment (1 if airbag was deployed; 0 otherwise) 1.480 3.75 – – – –

Model statistics
Number of observations 4899
Log likelihood at convergence �4726.49
Log likelihood at constants only �6791.46
McFadden Pseudo R-squared 0.304

Note: letters in brackets are explanatory variable defined for: [NI] No injury; [PI] Possible injury; [MI] Moderate injury; [SI]: Severe injury.
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Table 7
Marginal effects of injury severity in different time period models.

Variable Severe injury Moderate injury Possible injury No injury

2011–
12

2013–
14

2015–
16

2011–
12

2013–
14

2015–
16

2011–
12

2013–
14

2015–
16

2011–
12

2013–
14

2015–
16

Driver characteristics
Elderly driver (1 if more than

65 years; 0 otherwise)
0.0045 0.0081 0.0075 �0.0007 �0.0009 �0.0002 �0.0009 �0.0019 �0.0017 �0.0028 �0.0053 �0.0056

Drunk drivers (1 if drunk
drivers; 0 otherwise)

0.0254 0.0304 0.0244 �0.0059 �0.0049 �0.0017 �0.0051 �0.0067 �0.0073 �0.0144 �0.0189 �0.0155

Fatigued (1 if driver was
fatigued; 0 otherwise)

- – �0.0021 – – 0.0001 – – 0.0009 – – 0.0011

Driver license status (1 if valid
other states license; 0
otherwise)

�0.0005 – – �0.0013 – – �0.0014 – – 0.0032 – –

Female (1 if driver is female; 0
otherwise)

�0.0016 �0.0041 �0.0059 �0.0042 �0.0061 �0.0026 0.0204 0.0484 0.0351 �0.0146 �0.0381 �0.0266

Young driver (1 if less than
30 years; 0 otherwise)

– – �0.0018 – – �0.0069 – – 0.0302 – – �0.0215

Failing to negotiate curve (1 if
yes; 0 otherwise)

– 0.0028 0.0085 – �0.0003 �0.0004 – �0.0007 �0.0030 – �0.0018 �0.0050

Losing control of vehicle (1 if
yes; 0 otherwise)

�0.0016 �0.0016 �0.0009 0.0211 0.0112 0.0119 �0.0047 �0.0024 �0.0050 �0.0148 �0.0072 �0.0060

Belted drivers (1 if driver was
belted; 0 otherwise)

0.0059 0.0069 0.0015 �0.0584 �0.0686 �0.0198 0.0190 0.0183 0.0090 0.0334 0.0434 0.0093

Distracted (1 if driver was
distracted; 0 otherwise)

– �0.0002 �0.0004 – �0.0004 0.0034 – 0.0028 �0.0012 – �0.0022 �0.0018

Driver license status (1 if valid
Oregon license; 0
otherwise)

– – �0.0177 – – �0.0072 – – 0.1046 – – �0.0797

Falling asleep (1 if yes; 0
otherwise)

0.0010 0.0013 0.0019 0.0019 0.0012 0.0007 0.0022 0.0032 0.0037 �0.0052 �0.0058 �0.0063

Middle-aged driver (1 if
between 30 and 65 years; 0
otherwise)

– 0.0034 0.0115 – 0.0041 0.0030 – 0.0122 0.0356 – �0.0197 �0.0501

Roadway characteristics
Wet (1 if wet roadway; 0

otherwise)
– – 0.0043 – – �0.0002 – – �0.0011 – – �0.0030

Speed limit (1 if 55 mph; 0
otherwise)

�0.0024 �0.0028 0.0154 0.0290 0.0285 �0.0007 �0.0064 �0.0072 �0.0050 �0.0202 �0.0184 �0.0098

Dry (1 if dry roadway; 0
otherwise)

�0.0051 �0.0020 �0.0007 0.0536 0.0186 0.0067 �0.0122 �0.0047 �0.0016 �0.0363 �0.0118 �0.0045

National highway system (1 if
yes; 0 otherwise)

– – �0.0015 – – �0.0005 – – 0.0088 – – �0.0068

Speed limit (1 if 45 mph; 0
otherwise)

0.0012 0.0009 – 0.0019 0.0007 – 0.0026 0.0027 – �0.0056 �0.0042 –

Curve sign (1 if traffic control
device is curve sign; 0
otherwise)

�0.0020 �0.0003 – 0.0013 0.0032 – 0.0003 �0.0008 – 0.0004 �0.0021 –

Run-off (1 yes; 0 otherwise) 0.0152 0.0075 0.0115 0.0343 0.0089 0.0067 0.0390 0.0248 0.0252 �0.0885 �0.0412 �0.0433
No traffic control device (1 yes;

0 otherwise)
– – �0.0018 – - �0.0011 – – �0.0046 – – 0.0075

Crash characteristics
Single vehicle involved (1 if

yes; 0 otherwise)
0.0230 0.0330 0.0342 �0.0041 �0.0039 �0.0016 �0.0044 �0.0081 �0.0108 �0.0145 �0.0210 �0.0218

Head-on (1 if crash type is
head-on; 0 otherwise)

0.0174 0.0127 0.0154 �0.0027 �0.0014 �0.0006 �0.0030 �0.0028 �0.0046 �0.0117 �0.0085 �0.0103

Exceeding the posted speed
limit (1 yes; 0 otherwise)

0.0026 0.0018 0.0033 �0.0005 �0.0002 �0.0001 �0.0005 �0.0004 �0.0008 �0.0016 �0.0012 �0.0023

Fixed object (1 if crash type is
fi-ed object; 0 otherwise)

�0.0030 – – �0.0080 – – 0.0377 – – �0.0268 – –

Airbag deployment (1 if airbag
was deployed; 0 otherwise)

0.0226 0.0215 0.0170 �0.0030 �0.0026 �0.0005 �0.0043 �0.0053 �0.0056 �0.0153 �0.0136 �0.0109

Overturned (1 if crash type is
overturned; 0 otherwise)

0.0016 0.0009 0.0007 0.0045 0.0011 0.0003 0.0036 0.0032 0.0013 �0.0097 �0.0052 �0.0024

Time related attributes
Winter (1 if between January

and April; 0 otherwise)
�0.0046 �0.0054 – 0.0007 0.0005 – 0.0008 0.0013 – 0.0031 0.0036 –

Morning (1 if between 4:00 AM
and 11:00 AM; 0 otherwise)

– – 0.0036 – – �0.0001 – – �0.0011 – – �0.0024

Afternoon (1 if between 11:00
AM and 6:00 PM; 0
otherwise)

0.0006 0.001 – �0.0086 �0.0125 – 0.0019 0.0032 – 0.0061 0.0083 –

Night (1 if between 6:00 PM
and 12:00 AM; 0 otherwise)

– – �0.0004 – – 0.0045 – – �0.0010 – – �0.0031
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injury severity in all time period models. Again, the overconfidence
of drivers in such conditions and their attempts to increase their
driving speed could be a reason. Unlike dry roadway surface condi-

tion, the propensity of severe injury levels would be higher under
wet roadway surfaces. Table 6 reveals that in 2015–2016 time per-
iod model, crashes that happened along horizontal curves under
wet roadways are more likely to end up with severe injuries.
Fig. 5 also provides a clearer picture of how driving under such
conditions jeopardizes drivers’ safety as the probability of sustain-
ing severe injuries is about 21.5 times compared to moderate
injuries.

Another notable factor that was found to significantly affect
injury severity is traffic control device. For example, the presence
of a curve sign as a traffic control device in the horizontal curves
showed high instability in terms of its benefits on reducing crashes
and injuries of these crashes at horizontal curves, because such a
factor was found to statistically decrease the possibility of severe
injuries in the 2011–2012 time period model, while the same fac-
tor highly increases the likelihood of moderate injuries in 2013–
2014 model (as shown in Fig. 6). This variation or instability of this
factor can translate the disparity of drivers in terms of their com-
pliance with traffic control devices at horizontal curves. Contrarily,
no injury outcomes are more likely being suffered in crashes occur-
ring at horizontal curves in which no traffic control devices are
used (see 2015–2016 time period model).

6.3. Crash characteristics

Five factors produced statistically significant impacts on injury
severity in all time period models. It is noteworthy that these fac-
tors tend to be stable over time in their impacts on injury severity
probabilities. These factors include single vehicle involved, head-
on collision, overturn crashes, deployed airbags, and exceeding

Table 7 (continued)

Variable Severe injury Moderate injury Possible injury No injury

2011–
12

2013–
14

2015–
16

2011–
12

2013–
14

2015–
16

2011–
12

2013–
14

2015–
16

2011–
12

2013–
14

2015–
16

Weekdays (1 if yes; 0
otherwise)

�0.0048 – – �0.0153 – – 0.0478 – – �0.0277 – –

Fall (1 if between September
and December; 0 otherwise)

– – �0.0028 – – �0.0016 – – �0.0069 – – 0.0112

Weather and lighting
attributes

Dawn (1 if dawn lighting
condition; 0 otherwise)

– 0.0017 – – �0.0002 – – �0.0004 – – �0.0011 –

Clear weather (1 if yes; 0
otherwise)

0.0082 – – �0.0016 – – �0.0015 – – �0.0052 – –

Snowy weather (1 if yes; 0
otherwise)

– 0.0002 – – 0.0002 – – �0.0028 – – 0.0024 –

Fig. 1. Marginal effects of the indicator variable of belted drivers.

Fig. 2. Marginal effects of the indicator variable of losing control of vehicle.

Fig. 3. Marginal effects of the indicator variable of older drivers.

Fig. 4. Marginal effects of the indicator variable of drunk drivers.
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the posted speed limit as the primary cause of the crash. Regarding
the number of vehicles involved in crashes along RTU horizontal
curves, crashes involving a single vehicle were found to signifi-
cantly increase the propensity of severe injuries in all time periods,
meaning that the effect of this variable is stable over time (as illus-
trated in Fig. 7). Driver errors such as failure of lane keeping, inabil-
ity to identify the change in horizontal alignment, and speed while
negotiating the curves are the most possible reasons underlying
higher severity sustained in crashes along RTU horizontal curves
involving a single vehicle compared to crashes involving more than
one vehicle.

Crash type was found to be significant in terms of its effects on
injury severity sustained. In this study, two crash types were iden-
tified to be dominant at RTU horizontal curves, namely head-on
and overturn collisions. Both crashes affect injury severity out-
comes in all time period models. The indicator variable of head-
on crashes was found to increase the probability of severe injuries
in all specified models, while the indicator variable of overturn
crashes was found to be associated with less severe injuries (as
seen in Table 7 and Fig. 8). This finding simply indicates how solid
the problem is at RTU horizontal curves regarding head-on colli-
sions over time. As such, proper and effective engineering mea-
sures that deter such crashes at RTU horizontal curves are
urgently required. This finding is in complete agreement with pre-
vious studies (Anarkooli & Hosseinlou, 2016; Kockelman & Kweon,
2002; Lee & Li, 2014).

Among risky driving behavior factors that have direct implica-
tions on roadway safety is exceeding the speed limit. This variable
was found to highly impact the probability of injury severities, par-
ticularly increases the severe injury severity in all time period
models. From the findings, this variable shows relative stability

over time. Yet, the marginal effects (see Table 7 and Fig. 9), illus-
trate that the influence of this variable increases in the last time
period model. The reason underlying increased severity of crashes
caused by exceeding the speed limit is attributed to the decreased
perception-reaction time at a speed higher than the posted one.

6.4. Time related attributes

As documented in previous studies (Al-Bdairi, 2020; Behnood &
Mannering, 2019; Pahukula et al., 2015; Zou et al., 2017), time of
day is a significant attribute that can influence the injury severity
of roadway crashes. In this research, three time of day periods pro-
duced significant effects on injury severity. These time of day peri-
ods are crashes occurring in morning (between 4 a.m. and 11 a.m.),
crashes occurring in the afternoon (between 11 a.m. and 6p.m.),
and crashes at night (between 6 p.m. and 12 a.m.). The first time
of day period was only significant in the 2015–2016 time period
model, the second time of day period was significant in the
2011–2012 and 2013–2014 time period models, and the third time
of day period was only significant in the 2015–2016 time period
model. For crashes that occurred at afternoon time of day, moder-
ate injuries are highly unlikely to be sustained in both the 2011–
2012 and the 2013–2014 time period models (see Fig. 10). This is
attributed to rush hours at such time of day and the increase in
traffic volumes, which reduce the propensity of higher injury
levels.

In the 2015–2016 time period model, two time of day periods
were found to affect the injury severity in crashes along RTU hor-
izontal curves, morning and night. The first factor increases the
severity of crashes conditioning that crashes occur at horizontal
curves, while the effect of the latter factor is less compared to
crashes occurring in the morning (as illustrated in Fig. 11). The dis-
parity in effects of these time of day periods on injury severity is
related to driver fatigue and the effect of alcohol being consumed
on the performance of drivers in the morning (between 4 a.m.
and 11 a.m.) time window that may increase the chance of drivers
being involved in severe crashes. In contrast, at night (between 6 p.
m. and 12:00 a.m.) crashes are relatively less severe due to the fact

Fig. 5. Marginal effects of the indicator variable of wet roadway surface condition.

Fig. 6. Marginal effects of the indicator variable of curve sign.

Fig. 7. Marginal effects of the indicator variable of single vehicle involved.

Fig. 8. Marginal effects of the indicator variable of head-on collisions.
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that fatigue and driving under influence at such time window are
unlikely to be contributing factors.

6.5. Weather and lighting attributes

Regarding lighting conditions, the indicator variable of dawn
lighting condition showed an increase in the likelihood of sustain-
ing severe injuries in 2013–2014 time period model. Presumably,
this could be attributed to sunlight glare that exacerbates the vis-
ibility of drivers, particularly on RTU horizontal curves.

Specific weather conditions were also found to have an effect on
injury severity of crashes. Specifically, two indicators of weather
conditions: clear and snowy weather were found to produce signif-
icant impacts. In 2011–2012 time period model, the increase in the
probability of having severe injuries was conditioning that crashes
occurred in clear weather. Driving at higher speed in such weather
conditions could be a possible reason. In contrast, snowy condi-
tions were found to reduce the probability of severe injuries in
2013–2014 time period model. Again, this finding may reflect dri-
ver behavior under such conditions, in which drivers tend to be
tentative and driving carefully to compensate for these weather
conditions. Fig. 12 clearly shows the difference in the effects of
clear and snowy weather conditions on injury severity sustained.

6.6. Heterogeneity in means and variances of random parameters

In the 2011–2012 time period model, belted drivers and crashes
occurring on weekdays turned out to be statistically significant and
produced a random parameter with significant heterogeneity in
means (as seen in Table 4). The means of these parameters
increased if a head-on collision was involved. These findings indi-
cate that head-on collisions are extremely dangerous and pro-
nounced on RTU horizontal curves. That being said, effective
treatments on such locations are required to curb such crashes.
For belted drivers, there was a significant increase in the mean of
this variable if crashes involved a single vehicle, meaning that
moderate injuries are highly likely to be suffered compared to
other injury outcomes if crashes involved a single vehicle.

For crashes occurring on weekdays, the means of this variable
increased if older drivers (over 65 years) were involved and crashes
occurring on dry roadway surface conditions. This will result in an
increase in severe and moderate injuries for crashes involving
older drivers (over 65 years) and crashes occurring on dry roadway
surface conditions, respectively (see Table 4). These findings could
be interpreted as direct implications of physiological deterioration
due to aging, which reduces reaction times, visibility, and driving
skills. Also, drivers’ overconfidence in dry surface conditions could
be am underlying reason for moderate injuries from crashes occur-
ring on dry roadways compared to that on wet conditions.

In terms of the heterogeneity in the variances, the variances of
the two random parameters (belted drivers and crashes occurring
on weekdays) increased if crashes involved female drivers and
deployed airbags.

Table 5 clearly shows that in 2013–2014 two factors were found
to produce a random parameter with heterogeneity in means;
belted drivers and losing control of vehicle. For belted drivers
and losing control of vehicle, drunk drivers resulted in an increase
in their means, making severe injuries more likely to be incurred
by drunk drivers in crashes along RTU horizontal curves compared
to sober drivers. The lack of consciousness and deterioration in
driving abilities could be reasons.

Table 5 also shows that the mean of belted drivers increased if
female drivers were involved, which resulted in an increase in the
possibility of sustaining possible injuries among female drivers rel-
ative to male drivers. Again, differences in risk taking behavior
between males and females, meaning that females tend to be less
risky compared with males, could substantiate such findings. As
regards to belted driver, the mean of this variable decreased if
crashes occurred in the winter season (between January and April).
This finding proves that the probability of severe injury resulted
from crashes occurring in winter along RTU horizontal curves is
reduced compared to crashes in other seasons. Weather conditions
associated with winter, such as heavy rain, snow, and fog, require
paying more attention and being alert. As a result, crashes occur-
ring in the winter along RTU horizontal curves tend to be less sev-
ere compared to crashes in other seasons.

Fig. 9. Marginal effects of the indicator variable of exceeding speed limit.

Fig. 10. Marginal effects of the indicator variable of afternoon time of day.

Fig. 11. Marginal effects of the indicator variables of morning and nighttime
windows.

Fig. 12. Marginal effects of the indicator variables of weather conditions.
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As for the variance of belted drivers, the variance of crashes
occurring on roadways with 45 mph speed limit is increased.

In the 2015–2016 time period model, four variables were found
to be random and produced heterogeneity in means: wet roadway
surface condition, belted drivers, young drivers, and middle-aged
drivers. Table 6 shows that the means of belted drivers and young
drivers increased if a single vehicle was involved, meaning that
severe injuries are more likely being sustained in crashes involved
single vehicle along RTU horizontal curves relative to crashes
involved two or more vehicles. In contrast, the indicator variable
of single vehicle decreased the means of middle-aged drivers and
crashes occurred on wet roadway surfaces, making severe injuries
less likely to be suffered compared to crashes involved two or more
vehicles. The variation in injury severity sustained among drivers
(young vs. middle-aged) in crashes involved single vehicle could
reflect the role of age and driving experience in navigating curves
and reducing injuries if crash occurred.

For the variances of belted drivers, young drivers, and losing
control of vehicle, the variance of indicator of the deployed airbag
is increased. Similarly, for belted drivers, the variance of the indi-
cator variable of overturn crashes is increased.

7. Summary and conclusions

Among hazardous locations that need extensive research efforts
is the safety of RTU horizontal curves. As such, the main interest of
the current study is to shed some light on the factors that influence
injury severity of crashes at such locations. Also, it is widely recog-
nized that driver behavior and other attributes such as roadway
geometry, driving skills, the way of being distracted are changing
over time. As a result, accounting for temporal stability of these
factors would be extremely important to correctly infer from the
obtained estimates. Addressing temporal stability is not enough
if the shortcomings in the traditional crash data gathered by police
officers are not considered. Considering that, a mixed logit model
with heterogeneity in means and variances of the random param-
eters was utilized to capture contributing factors to crashes
occurred along RTU horizontal curves. To achieve the goal of this
paper, crash data of Oregon for crashes occurred between 2011
and 2016 was used. Then, crash data was split into three time peri-
ods: 2011–2012, 2013–2014, and 2015–2016 to explore temporal
stability of the contributing factors.

The estimation results reveal the hypothesis that the determi-
nants of injury severity of crashes along RTU horizontal curves
are stable over time must be rejected. This has been conducted
by using a series of likelihood ratio tests. Older drivers with more
than 65 years found to be significant and relatively stable in three
time periods. However, young drivers with 30 years and younger
and middle-aged drivers are temporally instable. This could be in
part due to the rapid change in technology (such as cellphone
apps) and how it impacts young and middle-aged drivers over time
by means of distraction compared to older drivers who are away
from this advancing technology. The estimation results also show
that some variables have common effects in all or two of time per-
iod models, however, the marginal effects of these factors are sig-
nificantly different. For example, distracted drivers were found to
increase moderate injuries in 2015–2016 time period model while
decreasing moderate injuries in 2013–2014 time period model.
Continuous change in drivers’ behavior such as distraction engage-
ment, driving skills, risk taking behavior, responding to a stimulus,
perception-reaction time, advanced technology equipped with
new vehicles are potential reasons underlying temporal instability.

The findings can help and insight traffic authorities and official
to improve safety of horizontal curves, particularly those with two-
lanes, two-way undivided at rural roadways. For instance, based on

the findings of this research, head-on collisions are more pro-
nounced on RTU horizontal curves. Accordingly, geometric design
of hazardous curves can be remediated by installing centerline
rumble strips and considering speed limits at curves with high
crash frequency. Regarding driver behavior factors, driving under
the influence of alcohol and exceeding speed limit should be tar-
geted with strict law enforcement. One approach of improvement
is deploying curve signs effectively to reduce crashes and resulted
injuries. Also, the findings reveal that an obvious temporal shift in
crash risks, particularly behavioral factors is existing due to the
implications of evolving technologies equipped with vehicles that
could potentially increase the chances of distracted driving, the
advancing in communication devices (cell phones), and risk-
taking behaviors. Accordingly, addressing the temporal stability
of risk factors of crashes along RTU horizontal curves can highly
improve the safety of these hazardous locations.

It should be noted that some important factors are lacked in the
used crash data such as curvature of horizontal curves, shoulder
width and type, and pavement characteristics. Therefore, one could
recommend for future studies to collect comprehensive crash data
to gain further insights.
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a b s t r a c t

Introduction: Research on risk for child pedestrian injury risk focuses primarily on cognitive risk factors,
but emotional states such as fear may also be relevant to injury risk. The current study examined chil-
dren’s perception of fear in various traffic situations and the relationship between fear perception and
pedestrian decisions. Method: 150 children aged 6–12-years old made pedestrian decisions using a
table-top road model. Their perceived fear in the pedestrian context was assessed. Results: Children
reported greater emotional fear when they faced quicker traffic, shorter distances from approaching traf-
fic, and red rather than green traffic signals. Children who were more fearful made safer pedestrian deci-
sions in more challenging traffic situations. However, when the least risky traffic situation was presented,
fear was associated with more errors in children’s pedestrian decisions: fearful children failed to cross the
street when they could have done so safely. Perception of fear did not vary by child age, although safe
pedestrian decisions were more common among the older children. Conclusions: Children’s emotional
fear may predict risk-taking in traffic. When traffic situations are challenging to cross within, fear may
appropriately create safer decisions. However, when the traffic situation is less risky, feelings of fear
could lead to excessive caution and inefficiency. Practical applications: Child pedestrian safety interven-
tions may benefit by incorporating activities that introduce realistic fear of traffic risks into broader safety
lessons.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Worldwide, road traffic injury (RTI) is the leading cause of death
for children over five years old (WHO, 2018), and pedestrian injury
is the most common type of child RTI mortality. According to Glo-
bal Burden of Disease data estimates, 34,000 children ages 5–14
died from road traffic crashes in 2017; 25,000 (74%) of those deaths
were child pedestrians. In China, the focus of this study, 68% of
children ages 5–14 who die in RTI are pedestrians (Institute for
Health Metrics and Evaluation, 2019).

Given these data, behavioral scientists have examined factors
that may increase risk of children’s pedestrian injuries (Ampofo-
Boateng & Thomson, 1991; Kovesdi & Barton, 2013; Meir, Oron-
Gilad, & Parmet, 2015; Meir, Parmet, & Oron-Gilad, 2013;
Schwebel, Davis, & O’Neal, 2012; Schwebel & Gaines, 2007;
Wazana, Krueger, Raina, & Chambers, 1997). One prominent risk
factor is children’s cognitive-perceptual skills. Since children’s
cognitive-perceptual skills naturally develop through the early

and middle childhood years, they demonstrate inadequate knowl-
edge about road safety rules and practices (Dong et al., 2011;
Koekemoer, Gesselleen, Niekerk, Govender, & As, 2017), misper-
ceive risk from oncoming traffic (Demetre, 1997; Poudel-
Tandukar, Nakahara, Ichikawa, Poudel, & Jimba, 2007), and demon-
strate inadequate attention and visual searching abilities amidst
traffic (Tabibi & Pfeffer, 2007; Whitebread & Neilson, 2000). Defi-
cits in these cognitive-perceptual skills increase risk for traffic-
related injuries.

Scholars in the broader child injury prevention literature have
recently suggested, however, that emotional state is relevant to
child injury risk as well as cognitive skills (Morrongiello, Corbett,
Switzer, & Hall, 2015; Morrongiello & Lasenby-Lessard, 2006;
Morrongiello & Matheis, 2007). In pedestrian settings, the role of
fearful emotions in influencing children’s decision-making or
behavior in traffic is poorly understood. Basic social learning prin-
ciples suggest children who experience, observe, or learn about
others being injured or in danger while crossing the street, might
develop fearful emotions surrounding street-crossing, leading the
children to avoid or take caution when engaging in street-
crossing behavior (Bandura, 1977; Skinner, 1969). Results from
the broad child injury literature support this hypothesis
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(Morrongiello & Matheis, 2004), as do results in the driving litera-
ture (Bouffard, 2014; Lu, Xie, & Zhang, 2013).

Other evidence from traffic safety contradicts such patterns,
however, suggesting fearful individuals – usually conceptualized
from a temperament or personality perspective rather than an
emotional state of fear – may take greater risks in traffic situations.
Shen, McClure, and Schwebel (2015) found, for example, signifi-
cant relations between temperamental fear and children’s risky
pedestrian behavior in a virtual reality traffic environment. In that
study, fearful children were more likely to hesitate prior to cross-
ing, and thus entered and crossed within smaller traffic gaps and
had increased risk of virtual collisions. Similarly, some adult driv-
ing research supports fear as an influence on greater risk-taking
in traffic. Taylor, Deane, and Podd (2007) reported, for example,
that fearful drivers made significantly more mistakes during an
on-road driving assessment than non-fearful ones.

The present study used a table-top road model to manipulate
traffic speeds, distances, and traffic signal lights and examine chil-
dren’s perception of fear in various traffic situations and across dif-
ferent age groups. We hypothesized children would report
different degrees of fear in various traffic scenarios, with greater
perception of fear under more challenging or threatening traffic
scenarios (based on vehicle speed and distance, and red instead
of green traffic lights). We also considered whether fear ratings
would influence decisions to cross. As a secondary question, we
examined developmental influences, anticipating older children
would make safer decisions and experience less fear in pedestrian
settings.

2. Methods

2.1. Participants

Participants were recruited from an elementary school in Nan-
tong City, China and included 150 children (75 females, 75 males)
aged 6–12-years-old (M = 9.14 years, SD = 1.89; range = 6.17–
12.92 years). Participants were recruited from the 1st grade
(N = 50; 25 girls and 25 boys; M = 7.39 years, SD = 0.53, ran-
ge = 6.17 years to 8.25 years), 3rd grade (N = 50; 25 girls and 25
boys; M = 9.44 years, SD = 0.87, range = 8.42 years to 11.25 years),
and 5th grade (N = 50; 25 girls and 25 boys; M = 11.31 years,
SD = 0.65, range = 9.42 years to 12.92 years). Thirty-seven children
(25%) reported walking as their most common means of trans-
portation to school, and 2 students (1%) reported taking public
transportation. The remaining children (111 students; 74%) took
a family vehicle/motorcycle to school most often. The following
exclusion criteria were applied: (a) history of self-reported pedes-
trian traffic-related injury; (b) impaired vision or hearing, as
reported by the classroom teacher; and (c) attentional or other
cognitive impairment, as reported by the classroom teacher. No
children were excluded for these reasons. The study protocol was
reviewed and approved by the Nantong University Academic Ethics
Committee and the Primary Education Office of participating
schools. Written parental consent was obtained prior to each
child’s participation.

2.2. Materials

2.2.1. Table-top road model
Previous studies demonstrate table-top road models to be both

feasible and valid for studying children’s road safety (e.g., Albert &
Dolgin, 2010; Ampofo-Boateng & Thomson, 1991; Barton &
Schwebel, 2007; Thomson, 1997; Twisk, Vlakveld, Mesken,
Shope, & Kok, 2013). Building from these previous studies, we
designed a table-top model of an urban Chinese community setting

(See Fig. 1). The model, which measured 120 cm � 100 cm,
included an apartment complex, school, hospital, park, bank, gas
station, auto repair shop, supermarket, hotel, playground, and mall.
The road traffic environment was simulated by multiple 8 cm-long
toy cars and by 7 cm-high traffic lights which could be manually
switched between red and green lights. Two felt figures of children
(4.5 cm tall; one boy and one girl) were used, with gender-
matching to participants. The table-top model was affixed to a
table about 1 meter high.

2.2.2. Pedestrian task protocol
Each participant engaged in traffic situations that manipulated

three variables: traffic light signal (red vs. green), vehicle distance
(far vs. near), and vehicle speed (fast vs. slow). Each of these situ-
ations was considered to be a singular variable for data analysis
and each variable had two levels. Based on the size of the model,
48 cm and 13 cm were set as the ‘‘far vehicle distance” and ‘‘near
vehicle distance,” respectively, and 1.4 m/s and 0.5 m/s were set
as the ‘‘fast vehicle speed” and ‘‘slow vehicle speed,” respectively.
Vehicle distance and speed were manipulated within the same tri-
als (that is, children experienced cars traveling far and fast, far and
slow, near and fast, and near and slow) while traffic light signals
were manipulated in separate trials.

In total, therefore, children completed six types of road-crossing
scenarios: (a) red light signal, (b) green light signal, (c) slow car
approaching from near distance, (d) slow car approaching from
far distance, (e) fast car approaching from near distance, and (f) fast
car approaching from far distance. The two traffic light signal situ-
ations were presented four times each and the four vehicle
approaching situations were presented two times each. Thus, each
child engaged in 16 total crossings.

Automated ‘‘pull-back” toy cars, which had their speed con-
trolled through an internal wind-up spring that created consistent
speeds across trials and across children, were used to represent
moving traffic. They were placed by research assistants at the
required distance for each situation. Two identical-looking cars
were used, one for ‘‘fast” trials and the other for ‘‘slow” trials;
the internal spring mechanism varied, creating the different
speeds. Research assistants manually manipulated the speed of
the car by placing the appropriate car on the tabletop, and children
judged safety by watching and deciding if they would cross the
street given the location and speed of the model car. During all sce-
narios, other cars were placed in stationary locations, representing
travel on different roads. They simulated typical traffic scenarios
and discouraged children from selecting alternate routes with less
traffic to reach their destination.

To increase realism and diversify the experimental experience,
the 16 road-crossing situations were randomly matched across
participants to 8 different pedestrian travel scenarios, each of
which was presented twice for each participant: (1) Supermar-
ket? Bus Station; (2) Bus Station? Supermarket; (3) Shopping
Mall? Park; (4) Park? Shopping Mall; (5) Telephone Booth?
Playground; (6) Playground? Telephone Booth; (7) Park? Gas
Station; and (8) Gas Station? Park. Each task was selected to meet
the following criteria: (a) there was more than one route available
to travel from the starting point to the destination, and (b) only one
of the available routes was the shortest, defined as children needed
to cross only two roads to reach the destination. Randomization
was accomplished through a system of random-number draws.

Children were introduced to each travel scenario in the context
of a short vignette story. In each story, the boy/girl had the task of
meeting his/her friend. For example, for the Shopping Mall? Park
task, children heard: Today is [date and time of the experiment].
This child [researcher displays gender-matched toy doll] is going
to the park to meet his/her [gender-matched] friend. His/her mom
is going shopping in the mall, and while she is shopping, she lets the
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boy/girl go to the park by him/herself. Would you please help this boy/-
girl get to the park safely?While each story was being told, a second
researcher placed the experimental props (the traffic lights or vehi-
cles) in appropriate locations on the model, reflecting the scenario
presented and the roads children would likely choose to reach the
destination.

2.3. Procedure

Each child was brought by his/her classroom teacher to a vacant
classroom at the school, where two trained research assistants
guided the child through the experiment. One researcher arranged
the vehicles and traffic lights on the table-topmodel corresponding
to the randomization scheme. The second researcher read each
pedestrian vignette and then asked the child to help the doll reach
the destination safely by moving the doll across the roads.

After each child listened to the pedestrian vignette, she/he was
asked to report her/his route plan and be ready to cross the road.
Just before the child began moving the doll to cross the road, the
researcher set one of the vehicles in motion toward the doll and
the other research assistant asked the child two questions: (1)
would you decide to cross the road at this moment? and (2) if
you crossed the road at this moment, how scared would you be?
After answering the questions, researchers stopped the moving
vehicle and allowed the child to move the doll across the road.
For approaching vehicle tasks, therefore, children’s decisions were
made as the car moved on the model street toward the doll. For the
traffic light tasks, children were asked to answer the two questions
just before moving the doll to cross the road, and no vehicles
moved.

To reduce the influence on our outcome measures of children
randomly selecting safe or unsafe crossing options given the binary
choices presented, following each crossing the researcher asked
the child to explain why he or she chose to cross (see Ampofo-
Boateng & Thomson, 1991; Morrongiello & Matheis, 2004;
Whitebread & Neilson, 2000). Children’s responses were coded as
either appropriate (1 point; e.g., I didn’t cross because the car was
moving fast toward me) or illogical (0 points; e.g., I didn’t cross
because my legs were tired). In rare instances when the researcher
was unsure how to score a child’s response (<3%), the response
was recorded in writing and then discussed with the research team
to reach a consensus score.

Fear responses (‘‘How scared would you be?”) were recorded on
a 5-point scale (from 0 to 4). To ensure children understood the
response guidelines, at the start of the session the researcher
offered the following example: Let’s imagine you are rating how cold
you feel. In summer, it’s very hot and you will not feel cold. You should
answer 0 for how cold you feel. In autumn, it’s cooler, and you might
feel a little chilly. So in autumn, you can rate your coldness with 1
point. In winter, the temperature is much lower and you will feel cold.
So you can rate winter as 2 points. On some days in winter there is
thick snow. On those days, you will feel very cold. You might rate those
cold and snowy days with 3 points. And what if you fall into an icy
river during winter? Then you will feel extremely cold. You would rate
that as 4 points. Following that example, children were instructed
to use similar methods to assess their level of fear in each scenario.
Not feeling fear was rated as 0; a little fear was rated as 1; more
fear was rated as 2; very fearful was rated as 3; and extremely fear-
ful was rated as 4. The study took about 45–60 minutes for each
participant, and each child was compensated with a selection of
small gifts, such as school supplies.

Fig. 1. Table-top road model.
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2.4. Outcome measures

Three outcome measures were obtained from each pedestrian
story: (a) the child’s decision to cross at an appropriate time (de-
tails in next paragraph), (b) the appropriateness of the child’s rea-
son for crossing or not crossing, and (c) how fearful the child felt to
cross. The decision to cross was coded as safe (1) or unsafe (0). The
reason to cross was coded as either logical and appropriate (1) or
illogical and inappropriate (0). We merged these two scores (deci-
sion to cross and appropriateness of reason) into a single compos-
ite variable of pedestrian decisions by summing the two scores and
yielding a crossing safety outcome score ranging from 0 to 2 for
each crossing trial. For example, the child scored the minimum
of zero if they were rated with a 0 for both their decision and rea-
son scores. The child scored the maximum of two if they demon-
strated a safe decision to cross with a logical reason for crossing.

Decisions about whether the child chose to cross at an appropri-
ate time were based on the arrival time of the approaching toy car
(about 0.09 s, 0.26 s, 0.34 s and 0.96 s, respectively, for the four
combinations of approaching vehicle speed and distance) and the
length of time needed for the child to cross the road (about
0.12 s, according to children’s average walking pace in this study,
1.3 m/s, and the width of simulated road). Decisions were consid-
ered appropriate if children chose to cross when the vehicle was
moving slowly and was a far distance away, or if the children chose
not to cross when the vehicle was in any of the three other condi-
tions. Similarly, decisions were considered appropriate when chil-
dren crossed when they saw a green traffic light or if they waited
when they saw a red traffic light. Again, appropriate decisions were
coded as 1 and inappropriate decisions were coded as 0. The fear
rating was measured at each crossing and analyzed in its original
form (range = 0–4).

Because children completed two trials at each vehicle speed/
distance combination, the crossing safety and fear scores were
each averaged across those trials to yield four ‘‘safety scores” for
each participant, representing the four speed/distance combina-
tions. Similarly, because children completed four trials at each traf-
fic signal the safety and fear scores were averaged across the four
trials for each of the two colored light signals.

2.5. Data analysis

We implemented a 2 (sex: female vs. male) * 3 (grade: 1st
grade, 3rd grade vs. 5th grade) * 2 (vehicle distance: far vs. near)
* 2 (vehicle speed: fast vs. slow) mixed factorial design and a 2

(sex: female vs. male) * 3 (grade: 1st grade, 3rd grade vs. 5th grade)
* 2 (traffic lights: red vs. green) mixed factorial design separately.
Grade and sex served as between-subject predictors, and vehicle
speed, vehicle distance and traffic lights as within-subject predic-
tors. Data cleaning excluded 2 children due to experimenter error
during the trials. The remaining 148 children included 50 first-
graders, 48 third-graders, and 50 fifth-graders. Preliminary analy-
ses examined bivariate relations between sex and grade and the
outcome measures; sex was omitted from subsequent analyses
given null results in preliminary analyses. Primary analyses were
conducted through a series of repeated measures ANOVA models
with grade, vehicle distance, vehicle speed and traffic lights serving
as the independent variables and the pedestrian decision and fear
perception outcomes as the dependent variables. Both main effects
and interactions between multiple factors were tested. Finally,
Pearson correlations and a series of logistic regressions were con-
ducted to analyze relations between children’s fear and their
pedestrian decisions.

3. Results

Our first objective was to evaluate children’s fear perceptions
across different traffic speeds and distances. Descriptive data
appear in Table 1. A 3 (grade: 1st vs. 3rd vs. 5th) * 2 (vehicle dis-
tance: far vs. near) * 2 (vehicle speed: fast vs. slow) repeated mea-
sures ANOVA indicated statistically significant effects of vehicle
distance (Fdistance (1, 145) = 87.22, p < 0.001, g2p=0.38) and vehicle
speed (Fspeed (1, 145) = 340.69, p < 0.001, g2p=0.70) on children’s
fear perception. We also detected a statistically significant interac-
tion effect between vehicle distance and speed, Fdistance�speed (1,
145) = 10.32, p < 0.01, g2p=0.07. Simple effect tests showed children
experienced more fear when the vehicle was near (Mnear = 1.72,
Mfar = 2.24) and when vehicles were moving fast (Mfast = 2.69,
Mslow = 1.27). There were no significant grade effects, F (2, 145) < 1.

Our second objective was to examine children’s fear perception
in traffic scenarios with red and green traffic lights. Descriptive
data appear in Table 2. A 3 (grade: 1st vs. 3rd vs. 5th) * 2 (traffic
lights: red vs. green) repeated measures ANOVA on fear perception
was computed. A main effect of traffic lights was found, F(1, 145)
= 413.53, p < 0.001, g2p=0.74, indicating children experienced more
fear when they crossed the road with a red traffic light present
than with a green traffic light present (Mred = 2.22, Mgreen = 0.09).
There were no significant grade effects, F (2, 145) < 1, nor did inter-
action effects emerge between traffic lights and grade, F (2, 145)
< 1.

Table 1
Means (Standard Deviation) of Fear Perception in Response to Different Traffic Scenarios and across Different Grade Groups.

Grade Vehicle Distance: Far Vehicle Distance: Near Traffic Lights

Fast Slow Fast Slow Red Green

First grade (n = 50) 2.70 (1.39) 0.97 (1.14) 2.93 (1.22) 1.65 (1.22) 2.25 (1.25) 0.16 (0.37)
Third grade (n = 48) 2.31 (1.14) 0.76 (0.76) 2.88 (1.16) 1.49 (0.95) 3.17 (1.31) 0.03 (0.11)
Fifth grade (n = 50) 2.49 (0.96) 1.07 (1.04) 2.80 (1.05) 1.67 (0.92) 2.24 (1.20) 0.09 (0.34)
Total (N = 148) 2.50 (1.18) 0.94 (0.99) 2.87 (1.14) 1.60 (1.04) 2.22 (1.25) 0.09 (0.30)

Table 2
Means (Standard Deviation) Score of Pedestrian Decisions across Different Traffic Scenarios and Grade Groups.

Participant Grade Groups Approaching Vehicles Far Approaching Vehicles Near Traffic Lights

Fast Slow Fast Slow Red Green

First grade (n = 50) 1.49 (0.53) 1.18 (0.60) 1.44 (0.55) 1.30 (0.64) 1.52 (0.47) 1.56 (0.45)
Third grade (n = 48) 1.66 (0.43) 1.42 (0.61) 1.75 (0.39) 1.51 (0.48) 1.67 (0.48) 1.80 (0.32)
Fifth grade (n = 50) 1.85 (0.31) 1.33 (0.55) 1.87 (0.30) 1.71 (0.46) 1.70 (0.47) 1.86 (0.28)
Total (N = 148) 1.66 (0.45) 1.31 (0.59) 1.68 (0.46) 1.51 (0.55) 1.63 (0.48) 1.74 (0.38)
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A series of repeated measures ANOVAs yielded statistically sig-
nificant effects of vehicle distance (Fdistance (1, 145) = 11.19,
p < 0.001, g2p=0.07), vehicle speed (Fspeed (1, 145) = 137.63,
p < 0.001, g2p=0.49) and traffic lights (Ftraffic lights (1, 145) = 13.61,
p < 0.001, g2p=0.09) on children’s pedestrian decisions. A main
effect of grade was also found, F (2, 145) = 9.89, p < 0.001,
g2p=0.12). Bonferroni post-hoc analyses indicated children in 1st
grade scored lower in safety than children in 3rd grade (M = 1.35
vs. 1.58) and in 5th grade (M = 1.35 vs. 1.69), and children scored
higher in safety when the traffic light was green than when it
was red (M = 1.74 vs. 1.63).

We also found statistically significant interaction effects
between vehicle distance and speed, Fdistance�speed (2, 145) = 6.64,
p < 0.05, g2p=0.04. Simple effect tests showed that when the car
was approaching quickly, children’s crossing decision scores were
similar for far and near distances (M = 1.66 vs. 1.68, p > 0.05).
When the car was approaching slowly, however, children’s cross-
ing decision scores were lower when the approaching car was far
rather than near (M = 1.31 vs. 1.51, p < 0.01). Overall, children’s
decision scores were safer when the approaching car was moving
fast than when it was moving slow (M = 1.68 vs. 1.41, p < 0.001)
(Fig. 2).

Our final objective was to consider relations between children’s
fear and their pedestrian decisions. Spearman correlations were
computed first. As shown in Table 3, there were significant positive
associations between fear perception and pedestrian decisions for
the far and fast condition (r = 0.32, p < 0.01), the near and fast con-

dition (r = 0.29, p < 0.01), and the near and slow condition (r = 0.51,
p < 0.01), and a significant negative association between fear per-
ception and pedestrian decisions in the far and slow condition
(r = -0.59, p < 0.01). Significant associations also emerged between
fear perception and pedestrian decisions during the red light con-
dition (r = 0.17, p < 0.05; See Table 4) and the green light condition
(r = -0.18, p < 0.05).

Last, a series of logistic regressions were computed with grade
and fear perception as independent variables predicting each of
the pedestrian decisions (see Tables 5 and 6). For this analysis, only
pedestrian decisions (decision to cross rather than appropriateness
of reason) was considered, and each decision was considered inde-
pendently, without averaging across trials. Fear perception con-
tributed significantly to pedestrian decisions in most models (far
and slow vehicle condition, Wald v2 (df = 1, N = 149) = 15.11,
p < 0.01; near and fast vehicle condition, Wald v2 (df = 1,
N = 149) = 4.03, p < 0.05, near and slow vehicle condition, Wald
v2 (df = 1, N = 149) = 18.27, p < 0.01, and the red light traffic condi-
tion, Wald v2 (df = 1, N = 147) = 4.371, p < 0.05), and approached
traditional significance levels for the far and fast pedestrian condi-
tion decisions, Wald (df = 1, N = 149) = 3.70, p = 0.054. Fear percep-
tion was not a significant predictor of pedestrian decisions in the
green light traffic condition after controlling for grade.

4. Discussion

This study investigated relations between children’s fear in var-
ious traffic scenarios and their pedestrian decisions. As hypothe-
sized, children reported greater degrees of fear when faced with
more challenging traffic scenarios (those with faster vehicle speeds
and closer vehicle distances), as well as when they encountered red
rather than green traffic signals. Results concerning relations
between perceived fear and pedestrian decisions indicated that
fearful children were more cautious in their behavior near traffic.
In more challenging traffic situations, more fearful children made
safer pedestrian decisions; their fear led to appropriate caution
as vehicle approached. When the least risky traffic situation was
presented, however, fear was associated with excessive caution
and errors in children’s pedestrian decisions; fearful children chose
not to cross when they could have done so safely. We discuss each
of these findings below.

As predicted, and consistent with previous work (Rosenbloom,
Nemrodov, Ben-Eliyahu, & Eldror, 2008), our results showed that
children reported more fear when they faced more dangerous traf-
fic situations. This finding was true even among the youngest chil-
dren we studied, indicating that by first grade, children may have
developed sufficient cognitive skills to apprise traffic- related dan-
ger and risk (Ampofo-Boateng & Thomson, 1991; Meir et al., 2015,
2013).

Our results concerning the association between children’s fear
and their pedestrian decisions offer insights to help explain the
apparent contradictions in the existing literature. Consistent with

Fig. 2. Children’s Pedestrian Decisions as a Function of Vehicle Distance and Vehicle
Speed.

Table 3
Correlations between Fear Perception and Pedestrian Decisions for Vehicle Speed/Distance.

1 2 3 4 5 6 7

Fear: Vehicle moving fast, far distance 1
Fear: Vehicle moving slow, far distance 0.41** 1
Fear: Vehicle moving fast, near distance 0.69** 0.32** 1
Fear: Vehicle moving slow, near distance 0.52** 0.58** 0.56** 1
Decisions: Vehicle moving fast, far distance 0.32** 0.22** 0.19* 0.25** 1
Decisions: vehicle moving slow, far distance �0.30** �0.59** �0.19* �0.27** �0.28** 1
Decisions: vehicle moving fast, near distance 0.21* 0.08 0.29** 0.14 0.40** �0.09 1
Decisions: vehicle moving slow, near distance 0.30** 0.36** 0.35** 0.51** 0.48** �0.53** 0.26**

Note: * p < 0.05; ** p < 0.01.
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findings from the broader child injury field, when faced with traffic
situations that presented considerable risk, higher perception of
fear yielded safer pedestrian decisions (Morrongiello & Matheis,
2004). This was true in three of the moving vehicle conditions (ve-
hicles moving fast from a near distance, slow from a near distance,
and fast from a far distance), as well as when children were pre-
sented the option of crossing the street when they faced a red
(don’t walk) signal. The result reflects a developmentally-
appropriate fearful response to a challenging situation that threat-
ens personal safety.

When children faced the comparatively safe traffic situation of a
vehicle moving toward them at a far distance and slow speed, how-
ever, fear related to more errors in pedestrian decisions: fearful
children failed to cross the road when they could have done so
safely. We also found a non-significant trend for this behavior pat-
tern when children faced crossing with a green traffic light, a result
that was impacted mathematically by near-ceiling scores among
the older age groups of children and small variances among all
age groups. It seems likely that the most fearful children, whether
driven by temperamental or situational fear, hesitate or pause out
of fear and anxiety in situations when most children would cross
without hesitation (Shen et al., 2015). These emotion-driven delays
lead to cognitive indecision or contemplation, increasing risk to the
child as the traffic continues to move toward the child, and leading
to errors including inefficient road crossing and failure to cross the
street when a safe crossing is possible. Such behavior may also
increase traffic-related fear through cyclical patterns, as close calls
will inevitably ensue and could increase fearful emotions.

Our results also offer new insights concerning the development
of both pedestrian safety skills and traffic-related fear. As expected,
older children made safer pedestrian decisions than younger ones
(Ampofo-Boateng & Thomson, 1991; Barton, Ulrich, & Lyday,
2011). We did not find relations between child age and perceptions
of fear in traffic, a finding that matches some previous findings
(Derevensky, 1974; Ollendick, 1983) but not others (Rosenbloom
et al., 2008).

The findings offer tantalizing opportunities for injury preven-
tion efforts. Fear-appeal tactics are used frequently in other health
promotion campaigns (Job, 1985, 1988) and in safety training pro-
grams (Peters, Ruiter, & Kok, 2012; Will, Sabo, & Porter, 2009). They
yield varying results (Goldenbeld, Twisk, & Houwing, 2008; Ruiter,
Abraham, & Kok, 2001) but, consistent with our findings, tend to be
less effective when the threat-level (perceived susceptibility and
severity of the threat) is low (Price et al., 2011). Our findings indi-
cate perceived fear yielded greater safety for children in higher-
risk pedestrian situations, a result that matches the fear-appeal
intervention literature, which suggests such campaigns are most
effective when they depict a significant and relevant threat to
the target audience, and when they outline effective responses that
appear feasible to accomplish (Ahmadi & Ytterstad, 2007; Lewis,
Watson, & White, 2008).

Thus, if an intervention were designed to stimulate appropriate
levels of fear of traffic-related injury among children, and if those
children were given appropriate tools to manage that fear through
self-efficacy to cross streets safely, we might yield increased safe
pedestrian behaviors. Such efforts would need to be conducted
cautiously, with the goals of increasing children’s perceived sus-
ceptibility to pedestrian safety and the potential severity of such
injuries, ultimately creating moderate levels of fear accompanied
by lessons on how to cross streets safely and efforts to build self-
efficacy to engage in street-crossing behaviors.

Although we conducted this study with scientific rigor, like all
research our study had limitations. First, we simulated the traffic
situations by using table-top road models to examine children’s
fear perception and pedestrian decisions. Simulations are used fre-
quently in the field and have evidence of validity (Ampofo-Boateng
& Thomson, 1991; Thomson, 1997), but it is unclear whether chil-
dren’s behavior in tabletop simulations match precisely what they
would do in real-world situations. Second, we used self-report to

Table 4
Correlations between Fear Perception and Pedestrian Decisions in the Traffic Light
Condition.

Fear: Red
Light

Fear: Green
Light

Decisions: Red
Light

Fear: Red Light 1
Fear: Green Light 0.03 1
Decisions: Red Light 0.17* �0.10 1
Decisions: Green

Light
0.09 �0.18* 0.60**

Note. * p < 0.05; ** p < 0.01.

Table 5
Summary of Logistic Regression Analysis for Variables Predicting Safe and Not Safe Pedestrian Decisions with Vehicle Speed/Distance Manipulated.

Far and Fast Condition Far and Slow Condition Near and Fast Condition Near and Slow Condition

Predictor b SE b eb (95% CI) b SE b eb (95% CI) b SE b eb (95% CI) b SE b eb (95% CI)

First Grade �1.56** 0.46 0.21(0.09–0.51) �0.68 0.49 0.51(0.19–1.32) �1.89*** 0.48 0.15(0.06–0.39) �1.47** 0.47 0.23(0.09–0.58)
Third Grade �0.93* 0.45 0.39(0.16–0.96) 0.28 0.45 1.32(0.54–3.21) �0.82 0.49 0.44(0.17–1.15) �0.81 0.44 0.44(0.19–1.06)
Fear Perception 0.30 0.16 1.35(1.00–1.83) �1.07** 0.28 0.34(0.20–5.88) 0.34* 0.17 1.40(1.01–1.93) 0.84** 0.20 2.32(1.58–3.42)

Notes: Fifth grade is the reference category.
*p < 0.05. **p < 0.01. ***p < 0.001

Table 6
Summary of Logistic Regression Analysis for Variables Predicting Safe and Not Safe Pedestrian Decisions with Traffic Signal Light Manipulated.

Red Light Condition Green Light Condition

Predictor b SE b eb (95% CI) b SE b eb (95% CI)

First Grade �1.12* 0.46 0.33 (0.13–0.80) �0.1.52** 0.48 0.22 (0.09–0.56)
Third Grade �0.33 0.48 0.72 (0.28–1.83) �0.23 0.54 0.79 (0.28–2.29)
Fear Perception 0.31* 0.15 1.37 (1.02–1.85) �0.73 0.61 0.48 (0.15–1.58)

Notes: Fifth grade is the reference category.
*p < 0.05. **p < 0.01. ***p < 0.001

H. Wang, C. Morgan, D. Li et al. Journal of Safety Research 76 (2021) 56–63

61



record children’s fear perception in several traffic situations. It is
unclear how accurate children’s self-reported fear is (Gullone &
Lane, 1997) and future research might incorporate psychophysio-
logical measures as well as self-reported fear. Third, we conducted
our research in China, which has a high child pedestrian injury rate
and rather chaotic traffic patterns. Generalizability to other cul-
tures and locations is unknown.

5. Conclusion

The role of emotion in children’s pedestrian behavior and safety
is poorly understood. Our results suggest children report feelings
of fear consistent with the risk involved in traffic situations. We
also discovered relations between perception of fear and safety
of pedestrian decisions. In more challenging traffic situations, chil-
dren’s fear was associated with safer pedestrian decisions. In less
challenging situations, fear was associated with street-crossing
errors. These findings offer insight into mechanisms that may
underlie children’s decisions in traffic and may guide development
of interventions that incorporate induction of realistic fear of traffic
risks into broader lessons on pedestrian safety and efforts to
increase children’s self-efficacy to handle traffic environments.
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a b s t r a c t

Introduction: Buses are different vehicles in terms of dimensions, maneuverability, and driver’s vision.
Although bus traveling is a safe mode to travel, the number of annual bus crashes cannot be neglected.
Moreover, limited studies have been conducted on the bus involved in fatal crashes. Therefore, identifi-
cation of the contributing factors in the bus involved fatal crashes can reduce the risk of fatality. Method:
Data set of bus involved crashes in the State of Victoria, Australia was analyzed over the period of 2006–
2019. Clustering of crash data was accomplished by dividing them into homogeneous categories, and by
implementing association rules discovery on the clusters, the factors affecting fatality in bus involved
crashes were extracted. Results: Clustering results show bus crashes with all vehicles except motor vehi-
cles and weekend crashes have a high rate of fatality. According to the association rule discovery findings,
the factors that increase the risk of bus crashes with non-motor vehicles are: old bus driver, collision with
pedestrians at signalized intersections, and the presence of vulnerable road users. Likewise, factors that
increase the risk of fatality in bus involved crashes on weekends are: darkness of roads in high-speed
zones, pedestrian presence at highways, bus crashes with passenger car by a female bus driver, and
the occurrence of multi-vehicle crashes in high-speed zones. Practical Applications: The study provides
a sequential pattern of factors, named rules that lead to fatality in bus involved crashes. By eliminating
or improving one or all of the factors involved in rules, fatal bus crashes may be prevented. The recom-
mendations to reduce fatality in bus crashes are: observing safe distances with the buses, using road
safety campaigns to reduce pedestrians’ distracted behavior, improving the lighting conditions, imple-
menting speed bumps and rumble strips in high-speed zones, installing pedestrian detection systems
on buses and setting special bus lanes in crowded areas.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Road traffic injuries are one of the top 10 causes of fatality in the
world (WHO, 2019). It is estimated that about 1.35 million people
are killed in traffic crashes worldwide annually (WHO, 2019).
Meanwhile, public bus transportation is considered as one of the
most common and safe modes of travel in developed countries
and its use among people is increasing (Barua & Tay, 2010). Statis-
tically, the number of bus crashes is less than 1% of the total traffic
crashes, however the high passenger carrying capacity of this vehi-
cle compared to passenger cars increases the amount of financial
and human losses caused to it (Chimba et al., 2010). Although
bus travel is one of the safest modes of travel, the number of bus

crashes cannot be neglected (Chimba et al., 2010). In some parts
of the world, the number of bus crashes has increased and the
knowledge about bus safety is usually less than the safety of pas-
senger cars (Feng et al., 2016). Although the number of people
killed in bus crashes in Australia in the first half of the last decade
(2009–2018) has been declining, there has been a slight increase in
the number of people killed in bus crashes over the past five years
(BITRE, 2019). Existing studies have focused mainly on the analysis
of risk factors associated with the likelihood of bus crashes and the
bus driver errors (Kaplan & Prato, 2012). Despite the great interest
in bus safety, bus crashes have received less attention and many
fundamental questions of bus crashes remain unanswered (af
Wåhlberg, 2004; Chimba et al., 2010). It is important to identify
the factors and the pattern of bus crashes that leads to fatality.

Combined models can detect basic hidden patterns in crash
data and discover the effect of factors on the severity of the injury
(Sun et al., 2019). Due to the inherent heterogeneity of crash data,
which is usually due to the lack of reporting of some of the factors
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involved in the crash and the non-uniform distribution of factors
affecting the crashes, clustering of crash records is necessary (Li
& Fan, 2019; Sun et al., 2019). In addition, segmentation of the
database leads to a better understanding of the complex relation-
ships between the severity of the crash and the contribution of
geometric, environmental, and demographic factors of drivers.
Recently, some researchers have used clustering techniques to cre-
ate data clusters that were later used as inputs in subsequent ana-
lyzes (Alikhani et al., 2013; Kashani & Besharati, 2017; Mohamed
et al., 2013). In terms of analytical methods, various regression
models have been used to model the occurrence of crashes (Lord
& Mannering, 2010) and the severity of road users’ injuries
(Kaplan & Prato, 2012). Data mining techniques have been intro-
duced and used in recent years to analyze large data sets of traffic
crashes. Data mining involves several parametric and non-
parametric techniques that can be used to analyze large amounts
of data and extract hidden patterns (Kumar & Toshniwal, 2016).
Over the past decade, non-parametric data mining methods,
including association rules discovery, have been used to analyze
crash data (Besharati & Tavakoli Kashani, 2018; Montella, 2011;
Pande & Abdel-Aty, 2009; Weng et al., 2016).

In summary, limited studies have been conducted on the bus
involved fatal crashes, especially identifying the factors and the
pattern of bus crashes that leads to fatality. Therefore, this study
aims to identify the contributing factors in the bus involved fatal
crashes that can reduce the risk of fatality. Since a crash is caused
by the chain of factors, the severity of the crash injury can be
reduced by eliminating one or all of them. Unlike other models that
measure the impact of crash factors on the severity of a crash indi-
vidually, this study uses association rules discovery to discover
chains of effective factors that lead to a fatality in bus involved
crashes. In the present research, factors related to the environment,
humans, and vehicles have been considered. For this purpose, bus
crashes data in the state of Victoria, Australia during 2006–2019
have been used. The data included 2.7% of fatal crashes, 34% of sev-
ere injuries, and the rest classified as the other types of injuries
(VicRoads, 2019). In addition, the rules provided by this model
introduce the pattern of occurrence of a specific severity of the
bus involved crash, which is statistically reliable. Knowing these
patterns and the parameters involved in them will assist road
authorities to develop appropriate strategies to reduce the number
of casualties and injuries caused by the collision with the bus.

The paper is organized as follows. Section 2 reviews the previ-
ous studies on the severity of injuries in bus crashes. Section 3
describes the methodology adopted for this study that includes
an explanation of the two-step clustering and association rules dis-
covery models. Section 4 is devoted to bus crash data used in this
study. It is followed by Section 5 that presents the discussion of
results from the models. Finally, in Section 6, the conclusions of
this study are presented.

2. Literature review

The main factors involved in a crash are often described under
three components: driver, vehicle, and environment (Goh et al.,
2014a). It should be noted that the safety risk associated with
various human, physical, and environmental aspects of bus per-
formance is complex (Strathman et al., 2010). Some of the main
problems in this area are: differences in reports published by hos-
pitals and police, inaccuracies in the report of property damage
only (PDO) crashes (which is the most common level of bus
crashes), insufficient data about the type and severity of injuries
and the lack of an acceptable classification of bus crashes

(Albertsson & Falkmer, 2005). In addition, buses may be directly
or indirectly involved in crashes (Brenac & Clabaux, 2005). More
than 40% of the bus crashes were rear-ended, while 80% of the
crashes occurred when the bus stopped at the station and was
hit by another vehicle (Jovanis et al., 1991). Rollover is a common
bus crash, especially in suburban areas (Xiaoyun et al., 2019)
where the risk of fatality is five times higher than other types
of bus crashes (Martínez et al., 2003). Studies show that most
bus crashes are caused by a violation of the right of way, control
loss of the vehicle, reckless and high-speed driving. In addition,
the close proximity of the bus to other vehicles is one of the main
reasons for bus crashes (Chu, 2014; Li et al., 2015; Tseng, 2012)
and bus crashes with the fixed object are common (Li et al.,
2012).

The number of urban bus crashes is higher, while the suburban
bus crashes are more severe (Albertsson & Falkmer, 2005). Bus
involved crashes that occur at intersections also cause more seri-
ous injuries (Kaplan & Prato, 2012). Increasing the number of lanes
and the volume of traffic on each lane increases the likelihood of
bus crash, while increasing the width of lanes and midways
reduces the likelihood of bus crash (Chimba et al., 2010). Further,
the movement of the bus on the inner lanes increases the likeli-
hood of colliding with the buses (Chimba et al., 2010). Likewise,
increasing the width of the lane and shoulder and reducing the vol-
ume of traffic in each lane will reduce the severity of injuries
(Chimba et al., 2010). The implementation of bus priority in
addressing maneuverability in Melbourne, Australia has shown a
significant reduction in the ratio of the bus involved crashes
(Goh et al., 2014c). Although the number of bus fatalities and inju-
ries in Hong Kong has decreased with the implementation of bus
rapid transit systems, other users have been exposed to more sev-
ere injuries while using exclusive bus lane (Tse et al., 2014). Cla-
baux et al. investigated the risk of a bus crash with other users at
bus rapid transit system and found that due to the significant
speed difference between buses and motorcyclists (powered two-
wheeler drivers) using exclusive bus lanes, the risk of more severe
injuries to motorcyclists was significantly increased (Clabaux et al.,
2014).

Bus involved crashes can cause serious damage due to features
such as heavyweight, large size, and limitations such as limited
maneuverability (Yoon et al., 2017). High-deck buses, which have
a higher center of gravity and travel at high speeds, increase the
risk of serious crashes and casualties when losing control of vehi-
cles (Chu, 2014).

Inexperienced and young drivers, as well as older drivers,
increase the probability of a crash (Kaplan & Prato, 2012). Zegeer
et al. found no association between bus crashes and gender and
the age of bus drivers (Zegeer et al., 1993). Kaplan and Prato con-
cluded that young drivers were more risky to be involved in
crashes and that male drivers increased the probability of crashes
with less severity (Kaplan & Prato, 2012). Goh et al. showed that
bus drivers over the age of 60, those with less than two years of
driving experience and drivers with experience of crashes increase
the likelihood of bus crashes (Goh et al., 2014a). Moreover, the
presence of vulnerable road users, such as pedestrians, directly
affects the severity of bus crashes (Prato & Kaplan, 2014).

Crash severity increases when a crash occurs over the weekend,
at two-way streets, and the presence of pedestrians and other vul-
nerable users (Barua & Tay, 2010). Research in Ghana (Sam et al.,
2018) also showed that the weekend, lack of median, night time,
poor road conditions (curved, wet and rough roads) and drunk
driving have increased the severity of the crashes, and on the other
hand, the lack of road shoulders, crashes at intersections and traffic
control systems reduce their severity.
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3. Methodology

Our objective is to investigate the relationship between the bus
involved crash severity and chains of the effective factors (environ-
ment, humans, and vehicles) that lead to a fatality in bus involved
crashes. Due to the large number of parameters involved in the
crashes and inherent heterogeneity of the crash data and the
non-uniform distribution of factors affecting the crash, clustering
is necessary. For this reason, in the first step, the crash data was
divided into more homogeneous groups so that the severity of
crashes in each cluster that had unique conditions could be exam-
ined more carefully. In the second step, using the association rules
discovery method, a chain of contributing factors leading to the
fatality of the passengers in the collision with the bus was discov-
ered. The rules presented by this model also introduced the pattern
of occurrence leading to the fatality in bus crashes, which is statis-
tically valid. The details of the models are described below.

3.1. Two-step clustering

In this study, the two-step clustering algorithm is used to divide
crash data into similar categories (Chiu et al., 2001). This algorithm
uses a hierarchical clustering method called BIRCH (Zhang et al.,
1996). The mentioned algorithm consists of two steps. In the first
step, all records are scanned and the location of the record density
is determined. In the second step, the specified density location of
records is received as the input and a hierarchical clustering algo-
rithm based on log-likelihood distance is used to group them into
the desired number of clusters.

The basic strategy for determining the most appropriate num-
ber of clusters is to calculate Bayesian Information Criterion
(BIC). In the first step, the BIC is calculated for each number of clus-
ters in a specific domain to obtain an initial estimate of the number
of clusters. BIC for a model with k cluster is:

BIC kð Þ ¼ �2LL kð Þ þ r kð Þ logN ð1Þ
LL(k) is a log-likelihood function for the model with k cluster, r

(k) is the number of independent parameters, and N is the total
number of records in the data set. The BIC change ratio in each
merge relative to the first merge then determines the initial esti-
mate. dBIC(k) is the difference between BIC between the model
with k cluster and (k + 1) cluster. Then the ratio of BIC changes
according to the changes of the two clusters as follows:

RBK kð Þ ¼ dBICðkÞ=dBICð1Þ ð2Þ
The ratio of measuring the distance R (k) for kth cluster is as

follows:

R kð Þ ¼ RBK kð Þ=RBK kþ 1ð Þ ð3Þ
Finally, the two large ratios of R is compared. If the largest is

more than 1.15 times the second largest R, then the model with
the highest R ratio is selected as the optimal number of clusters
(Hamid & Abawajy, 2014). It should be noted that the final solution
might depend on the order of the records in the database. There-
fore, these files are ordered randomly to ensure that the data
sequence does not have a significant effect on the final solution.
The two-step cluster analysis was performed in the present study
using SPSS software v.25.

3.2. Association rules discovery

Association rules discovery, also known as market basket anal-
ysis, is a prevalent data mining technique for discovering relation-
ships between different attributes (Besharati & Tavakoli Kashani,
2018). This method is well suited for unbalance data such as crash
data. In other words, this model is based on the relative frequency

of occurrence of the sets of items alone and in combination with
each other. This method is used to find the crash factors that occur
more frequently than when they are statistically independent.

Association rules discovery was first proposed by Agrawal and
Srikant (1994). In this study, the apriori algorithm proposed by
Agrawal and Srikant (1994) was used to discover association rules.
This algorithm uses multiple criteria with predefined threshold
values to identify frequent item sets and create association rules.
In this study, the rules are determined by the values of ‘‘Support,”
‘‘Confidence,” and ‘‘Lift.” These values are defined as follows:

Support of a rule is the percentage of the entire data-set covered
by the rule and is expressed as:

support A ! Bð Þ ¼ #ðA \ BÞ=N ð4Þ

where N is the total number of crashes, (A\B) is the number of
crashes in which both A (antecedent) and B (consequent) factors
have co-occurred.

Confidence of a rule is the conditional probability of occurrence
of the consequent, given that the antecedents have occurred and is
expressed as:

Confidence ¼ support A ! Bð Þ=support Að Þ ð5Þ
Lift of a rule is the ratio of the confidence of the rule and its

expected value. The lift of an association rule (A? B) can be calcu-
lated as:

Lift ¼ support A ! Bð Þ=ðsupport Að Þ � support Bð ÞÞ ð6Þ
Lift indicates frequency of simultaneous occurrence of antece-

dent and consequent (i.e. the effect of occurrence of antecedents
on the conditional probability of occurrence of the consequent).
The value of lift as equal to one, represents that having the antece-
dent(s) does not make a lot of difference in the probability of hav-
ing the consequent; while a lift value greater than one shows a
positive interdependence between antecedent and consequent.
The higher the Lift value, the probability of occurrence of the ante-
cedent and consequent in an event is not by chance, and the
greater the interdependence between them.

Any rule with n + 1 items is valid if by adding a variable, the Lift
increases sufficiently. By applying LIC criterion (as defined in Equa-
tion (7)), Lift increase is checked. Rules with one antecedent are
used as a base of validity and the start point. Other rules with more
antecedent will be valid, if the minimum LIC threshold is reached
(1.05) (López et al., 2014; Montella et al., 2011, 2012, 2020). LIC
is determined as below:

LIC ¼ Lift Anþ1ð Þ=Lift Anð Þ ð7Þ

where An is the antecedent of rule with n items, and Anþ1 is the ante-
cedent of rule with n + 1 items.

Due to the fact that the subject of this study is fatal severity and
that it constitutes less percentage than other severity of crashes, so
the minimum threshold values for support (S), confidence (C), lift
(L) and LIC are considered, 1%, 5%, 1.2 and 1.05 respectively. These
values were obtained after several trial and error experiments (Das
et al., 2019) and considering the threshold values taken in other
studies (Besharati & Tavakoli Kashani, 2018; Montella et al.,
2012, 2020). It should be noted that although the amount of sup-
port in a crash database may be low for some association rules
due to its rarity in crashes, it has a strong significant relationship.
This means that the lift criterion is more important in determining
how strong an association rule is than the other two criteria (Pande
& Abdel-Aty, 2009).
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4. Data

In this study, records of bus crashes in Victoria, Australia
between 2006 and 2019 have been used (VicRoads, 2019). All roads
in the Victoria State in Australia including metropolitan Melbourne
roads and rural roads were examined, which are divided into six
main regions: Metropolitan South East Region, Eastern Region,
South Western Region, Northern Region, and North Eastern Region
(VicRoads, 2019). In order to examine more accurately the factors
affecting the severity of the bus crashes, all the records in which
the bus was involved were examined. After deleting the missing
information records, 1,705 bus crashes were finally analyzed. Pos-
sible factors influencing the occurrence of the crashes, including
driver characteristics, environmental characteristics, geometry
and traffic characteristics, and crash characteristics, have been con-
sidered. Moreover, heavy vehicle (heavy commercial vehicle, light
commercial vehicle, rigid truck) and vulnerable users (pedestrians,
bicycle, motor cycle, motor scooter, quad bike, and moped) were
also investigated in bus involved crashes. It is to be noted that
some other factors may influence the occurrence of crashes such
as annual average daily traffic (AADT) and the width of the route
on the severity of the injury. However, these factors could not be
considered in the present study as they were not available in the
crash database.

Australian passenger transport buses, based on their size and
weight, are classified to three groups: Light Rigid (4.5–8 tons),
Medium Rigid (more than 8 tons and has no more than 2 axles)
and Heavy Rigid (a bus consisting of more than one rigid section
which are connected to one another). According to crash reports
in Victoria State in 2006–2019, the buses under study include 48
different brands. The most frequent brands in crashes include: Toy-
ota (10%), Mercedes B (15%), Volvo (22%), Scandia (23%), others
(30%) with capacity seating of 15 to 65 passengers and the weight
of 3 to 25 tons which are made in 1980–2017 (VicRoads, 2019). In
this study Van, Minibus, and Wagon have not been considered.

Based on the distribution of bus crash severity for each variable
which is shown in Table 1, bus overturned is a rare crash type but
has a high rate of fatality (7.2%) and has been observed in other
studies (Seyedi et al., 2019). Also, the fatality rate of bus crashes
in highways and high-speed zones are 6.7% and 3.3% respectively;
and in comparison to the average fatality rate, has a considerable
increase (2.7%). Bus crashes at the weekend, at nights, and by inex-
perienced drivers have high rate of fatality in Australia (5.5%, 5.5%,
and 5.2%, respectively).

According to Australian law, the legal age to get a driving
license is 18. If drivers want to get bus license of Light and Medium
Rigid buses, should have at least one year driving experience and
for Heavy Rigid buses, two years driving experience is necessary.
The driver’s age in Australia is between 19 to 78 years old
(mean = 47.5, SD = 14). Although the crash rate of drivers under
20 is very low, the fatality rate in this group is considerable
(8.8%) and it is noted in similar studies (Goh et al., 2014a). Distri-
bution of bus crash severity versus other variables is represented
in Table 1.

The term severity, which is used in different parts of this paper,
means the severity of injuries to road users due to crashes and
includes 4 levels of injuries, which are: fatality, serious injury,
others injury, and no injuries. People who die at the scene of a
crash or up to 30 days after the crash are in the fatality group. Peo-
ple who have serious injuries and are sent to the hospital are in the
group of serious injuries and people who have other injuries such
as bruising, contusions, and pain are in the group of others injury.
According to the Table 1, 2.7% of bus crashes constitute the fatality
group. Serious injuries occurred in 34% of bus crashes while others
injury occurred in 63% of bus crashes.

It is to be noted that while in some studies the variables fatality
and serious injury are considered as one variable (Montella et al.,
2020; Nasri & Aghabayk, 2020), in many other studies, these vari-
ables have been considered separately (Besharati & Tavakoli
Kashani, 2018; Kaplan & Prato, 2012; Kashani et al., 2014;
Montella et al., 2012; Sam et al., 2018). By following the latter
approach, the fatality and serious injury considered separately
and the fatality was defined as target variable.

5. Results and discussion

5.1. Clustering analysis

The BIC change for each potential solution (k ranging from 2 to
3) is given in Table 2. The two largest values of R (k) are: R (2)
= 1.358 and R (3) = 2.315. Therefore, the R ratio is equal to R (3)/R
(2) = 2.315 / 1.358 = 1.70, which is greater than the threshold of
1.15. Thus, the number of cluster 3 was selected as the optimal
number of clusters.

In the next step, the clusters were analyzed and named based
on their variable distribution. In other words, the variables that
allow the distinction between clusters were used to describe each
cluster. All variables were examined and finally, two variables
were selected to describe the clusters. Based on the single variable
distribution for the variables in Table 3, the following three clus-
ters are listed as follows:

� Cluster 1: Collision with motor vehicles at weekdays
� Cluster 2: All types of collisions except collisions with motor
vehicles at weekdays

� Cluster 3: Weekend

By explaining how the variables are distributed between the 3
clusters, the crash pattern of each cluster can be defined. As shown
in Table 3, 100% of Cluster 1 crashes occurred on weekdays. In
addition, all the records of Cluster 1 crashes in terms of the type
of collision are related to bus crashes with motor vehicles. Similar
to Cluster 1, all Cluster 2 crashes occurred on weekdays and
include all collisions except collisions with motor vehicles. In clus-
ter 3, 100% of bus crashes occurred on weekends.

The general description of the clusters is given in Table 4. It can
be observed that more than half of bus crashes (55%) are related to
collisions with motor vehicles on weekdays (cluster 1). In this clus-
ter, the fatality rate is 1.6%, which is lower than the average fatality
rate (2.7%). According to literature (Damsere-Derry et al., 2017),
bus and car occupants have a protected shell and therefore, they
have more relative safety features as compared to vulnerable road
users, including pedestrians. The presence of safety features in pas-
senger cars, including seat belts and the relative protection of the
occupants inside the car and the bus compared to vulnerable road
users, can be the reason for the low rate of fatalities in this cluster
(Damsere-Derry et al., 2017). In addition, all the records of crashes
in this cluster occurred in the working days of the week and show
the different pattern of crashes in the days of the week. This obser-
vation is consistent with the findings from other studies too (Feng
et al., 2016).

Cluster 2 deals with all bus collisions except for collisions with
motor vehicles on weekdays. The cluster accounts for 27% of all
crashes and has a 3.2% fatality rate, which is higher than the aver-
age (2.7%). According to the distribution of variables of Cluster 2 in
Table 3, the highest number of crashes in this cluster is related to
the collision with pedestrians or fall from or in moving vehicle. The
high rate of fatalities in bus crashes in the presence of vulnerable
users such as pedestrians seems reasonable, and according to other
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Table 1
Variable description for all bus involved crashes.

Variable Description Fatality Serious injury Other injuries Total

Bus involved crash severity 46(2.7%) 585(34.3%) 1074(63%) 1075(100%)
Definition of classified accidents (DCA) Collision with a fixed object 3(5.1%) 18(30.5%) 38(64.4%) 59(3.5%)

Collision with some other object 0(0%) 2(13.3%) 13(86.7%) 15(0.9%)
Collision with motor vehicle 21(1.9%) 372(33.5%) 718(64.6%) 1111(65.2%)
Fall from or in moving vehicle 1(0.5%) 65(30.8%) 145(68.7%) 211(12.4%)
No collision and no object struck 0(0%) 11(21.6%) 40(78.4%) 51(3%)
Struck animal 1(25%) 1(25%) 2(50%) 4(0.2%)
Struck pedestrian 0(0%) 1(20%) 4(80%) 5(0.3%)
Bus overturned (no collision) 17(7.2%) 108(45.8%) 111(47%) 236(13.8%)

Traffic control Give way sign 1(1.3%) 29(37.7%) 47(61%) 77(4.5%)
No control 29(2.6%) 360(32.5%) 717(64.8%) 1106(64.9%)
Ped. Crossing 1(3.6%) 13(46.4%) 14(50%) 28(1.6%)
Ped. Lights 0(0%) 2(40%) 3(60%) 5(0.3%)
Roundabout 1(2.2%) 14(31.1%) 30(66.7%) 45(2.6%)
School flags 0(0%) 1(16.7%) 5(83.3%) 6(0.4%)
Stop sign 1(4%) 11(44%) 13(52%) 25(1.5%)
Stop-go lights 12(3%) 154(38.2%) 237(58.8%) 403(23.6%)
Others 1(10%) 1(10%) 8(80%) 10(0.6%)

Road geometry Cross intersection 12(2.4%) 185(37.5%) 296(60%) 493(28.9%)
Multiple intersection 3(7.1%) 16(38.1%) 23(54.8%) 42(2.5%)
Not at intersection 23(3%) 261(33.8%) 488(63.2%) 772(45.3%)
T intersection 8(2%) 123(31.1%) 264(66.8%) 395(23.2%)
Y intersection 0(0%) 0(0%) 3(100%) 3(0.2%)

Road type Avenue 0(0%) 7(20%) 28(80%) 35(2.1%)
Freeway 2(3.9%) 17(33.3%) 32(62.7%) 51(3%)
Highway 11(6.7%) 60(36.8%) 92(56.4%) 163(9.6%)
Road 23(2.9%) 276(35.1%) 488(62%) 787(46.2%)
Street 7(1.3%) 164(31.4%) 352(67.3%) 523(30.7%)
Others 3(2.1%) 61(41.8%) 82(56.2%) 146(8.6%)

Speed limit Over50 41(3.3%) 436(34.8%) 776(61.9%) 1253(73.5%)
UP to50 5(1.1%) 149(33%) 298(65.9%) 452(26.5%)

Light condition Darkness 12(5.5%) 98(44.7%) 109(49.8%) 219(12.8%)
Day 29(2.1%) 452(33.1%) 884(64.8%) 1365(80.1%)
Dusk/Dawn 5(4.1%) 35(28.9%) 81(66.9%) 121(7.1%)

Road Surface Type Gravel 0(0%) 14(46.7%) 16(53.3%) 30(1.8%)
Paved 46(2.8%) 568(34.2%) 1047(63%) 1661(97.4%)
Unpaved 0(0%) 3(25%) 9(75%) 12(0.7%)

Weather condition Clear 40(2.6%) 513(33.6%) 976(63.8%) 1529(89.7%)
Fog/Snowing 0(0%) 4(30.8%) 9(69.2%) 13(0.8%)
Raining 3(2.1%) 64(44.8%) 76(53.1%) 143(8.4%)
Strong winds/Dust 3(15%) 4(20%) 13(65%) 20(1.2%)

Surface condition Dry 38(2.6%) 494(33.5%) 943(63.9%) 1475(86.5%)
Icy/Snowy 1(16.7%) 1(16.7%) 4(66.7%) 6(0.4%)
Wet/Muddy 7(3.1%) 90(40.2%) 127(56.7%) 224(13.1%)

Heavy vehicle presence Heavy vehicle exist 2(2.6%) 30(39.5%) 44(57.9%) 76(4.5%)
Heavy vehicle not exist 44(2.7%) 555(34.1%) 1030(63.2%) 1629(95.5%)

Vulnerable presence Vulnerable exist 26(5.5%) 188(40%) 256(54.5%) 470(27.6%)
Vulnerable not exist 20(1.6%) 397(32.1%) 818(66.2%) 1235(72.4%)

No. vehicle involved 1 vehicle 23(4.6%) 177(35.5%) 298(59.8%) 498(29.2%)
More than 1 vehicle 23(1.9%) 408(33.8%) 776(64.3%) 1207(70.8%)

Day of the week Weekday 30(2.1%) 463(33.1%) 905(64.7%) 1398(82%)
Weekend 16(5.2%) 122(39.7%) 169(55%) 307(18%)

Driver gender Female 9(4.5%) 65(32.3%) 127(63.2%) 201(11.8%)
Male 37(2.5%) 520(34.6%) 947(63%) 1504(88.2%)

Driver age group Teen driver (under 20) 5(8.8%) 22(38.6%) 30(52.6%) 57(3.3%)
Young driver (20–40) 9(1.8%) 156(31.7%) 327(66.5%) 492(28.9%)
Mid age driver (41–60) 21(2.5%) 289(34.6%) 526(62.9%) 836(49%)
Old driver (over 60) 11(3.4%) 118(36.9%) 191(59.7%) 320(18.8%)

Table 2
Changes in BIC for k ranging from 2 to 3.

Number of Clusters Schwarz’s Bayesian Criterion (BIC) BIC Changea Ratio of BIC Changesb Ratio of Distance Measuresc

1 5571.985
2 3682.314 �1889.671 1.000 1.358
3 2308.054 �1374.260 0.727 2.315

a The changes are from the previous number of clusters in the table.
b The ratios of changes are relative to the change for the two cluster solution.
c The ratios of distance measures are based on the current number of clusters against the previous number of clusters.
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studies, the presence of pedestrians increases the rate of fatalities
in bus involved crashes (Sam et al., 2018).

Cluster 3 crashes are related to bus collisions on the weekends,
accounting for 18% of all bus involved crashes. The fatality rate of
this cluster is 5.2%, which is almost twice the average fatality rate
of bus involved crashes (2.7%). Changes in the traffic and behav-
ioral patterns of drivers and other users on weekends can be the
cause of high bus crash fatalities on weekends. Other studies have
pointed to a different pattern of vehicle crashes over the weekend
than on weekdays (Yu & Abdel-Aty, 2013). Crashes on weekends
have also been reported in other studies, with increase in the rate
of fatalities in bus involved crashes (Barua & Tay, 2010; Sam et al.,
2018). The high severity of bus crash fatalities over the weekend
could be due to driving under the influence of alcohol or drugs
by road users on weekends (Schepens et al., 1998).

5.2. Association rules

It is worth noting that association rules are valid only if all ante-
cedents coincide. In other words, if any of the antecedents can be
removed; there will be no more association rules. Association rules
for bus collision with motor vehicles on weekdays (cluster 1) are

shown in Table 5, which satisfies the LIC criterion. The first rule
of Table 5 shows that bus crashes on suburban roads will increase
the probability of fatalities by 1.34 times. In other studies, the
number of casualties on suburban roads has been significant too
(Albertsson & Falkmer, 2005), and the severity of bus crashes on
roadways has been more severe than on roundabouts and bus sta-
tions (Nasri & Aghabayk, 2020). According to Rule 2, if the speed
limit on suburban roads is above 50 km/h, the probability of fatal-
ities is 1.40 times more than the average. These results are consis-
tent with the results of the direct effect of speed limit on the
severity of bus crash injuries (Chimba et al., 2010). Additionally,
according to Rule 3, if the speed limit on suburban roads is above
50 km/h and the bus collides with more than one vehicle, the prob-
ability of fatalities is 1.48 times more than the average. In addition,
the impact of the number of vehicles involved on the severity of
bus crashes has been investigated and emphasized (Feng et al.,
2016).

Association rules apply to all bus collisions except for collisions
with motor vehicles on weekdays (cluster 2) as shown in Table 6,
which satisfies the LIC criterion. The fatality rate in this cluster is
higher than the average bus crash fatality rate (3.2%). According
to Rule 1, older bus drivers increase the probability of fatalities

Table 3
Summary of univariate distributions for the variables in each cluster.

Variable Level Freq./Percent Cluster 1 Cluster 2 Cluster 3

Day of Week Weekday Frequency 937 461 0
Percent 100.0% 100.0% 0.0%

Weekend Frequency 0 0 307
Percent 0.0% 0.0% 100.0%

Crash Type Description Collision with a fixed object Frequency 0 44 15
Percent 0.0% 9.5% 4.9%

collision with some other object Frequency 0 13 2
Percent 0.0% 2.8% 0.7%

Collision with motor vehicle Frequency 937 0 174
Percent 100.0% 0.0% 56.7%

Fall from or in moving vehicle Frequency 0 158 53
Percent 0.0% 34.3% 17.3%

No collision and no object struck Frequency 0 42 9
Percent 0.0% 9.1% 2.9%

Other accident Frequency 0 4 0
Percent 0.0% 0.9% 0.0%

Struck animal Frequency 0 3 2
Percent 0.0% 0.7% 0.7%

Struck Pedestrian Frequency 0 187 49
Percent 0.0% 40.6% 16.0%

Vehicle overturned (no collision) Frequency 0 10 3
Percent 0.0% 2.2% 1.0%

Table 4
Cluster descriptions.

Cluster
No.

Cluster description Share of each cluster from
entire database

Percentage of fatal crashes in
each cluster

Serious
injury

Other
injury

Not
injured

1 Collision with motor vehicles at weekdays 55.0% (937) 1.6%)15) 32.4%
(304)

66.0%
(618)

0.0%(0)

2 All types of collisions except collisions with motor
vehicles at weekdays

27.0% (461) 3.2% (15) 34.5%
(159)

62.3%
(287)

0.0%(0)

3 Weekend 18.0% (307) 5.2% (16) 39.7%
(122)

55.1%
(169)

0.0%(0)

Total 100.0% (1705) 2.7%(46) 34.3%
(585)

63.0%
(1074)

0.0%(0)

Table 5
List of interesting rules identified for data in cluster 1 (Collision with motor vehicles at weekdays).

LIC Lift C% S% Consequent Antecedent ID

n.a. 1.34 5.1 1.8 Fatality Road type = ‘‘Road” 1
1.05 1.40 6.2 1.2 Fatality Road type = ‘‘Road” & Speed limit = ‘‘Over50” 2
1.06 1.48 6.2 1.2 Fatality Road type = ‘‘Road” & Speed limit = ‘‘Over50” & No. vehicle = ‘‘more than 1veh” 3
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by 1.87 times. This may be due to increase in reaction time among
older drivers. It has been reported that driving performance
changes steadily across age groups with reaction time and variabil-
ity of driving performance increased progressively between the
ages of 20 and 80 (Svetina, 2016). Other studies have also empha-
sized the effect of age on the severity of bus crashes (Feng et al.,
2016) and that the older age of the bus driver increases the likeli-
hood of fatalities (Prato & Kaplan, 2014). According to Rule 2, old
bus drivers with male gender increase the probability of fatalities
by 1.98 times. In previous studies as well, the gender of the bus dri-
ver is affected by the severity of the crashes (Feng et al., 2016).

According to Rule 3, the presence of vulnerable users in bus
involved crashes will increase the risk of the fatalities by 1.57
times than the average. According to previous studies, bus colli-
sions with vulnerable road users increase the risk of crash fatali-
ties. The collision of buses and minibuses with pedestrians (Sam
et al., 2018) and cyclists or motorcyclists using special bus lanes
(Clabaux et al., 2014) increases the severity of bus involved
crashes. Also, according to Rule 4 and 5, if the vulnerable user is
a pedestrian and collision occurs in the absence of special traffic
control, the probability of fatality increases to 1.81 and 1.98 times,
which is consistent with the results of direct effects of the presence
of pedestrians on the severity of bus crashes (Prato & Kaplan,
2014).

The highlight of this study is the investigation of the concurrent
occurrence of older age of drivers and the presence of vulnerable
road users in bus crashes. According to Rule 6, the simultaneous
occurrence of old bus driver and vulnerable users, increases the
probability of fatalities by 3.34 times, which is much more risky
than other rules. According to studies (Kaplan & Prato, 2012), driv-
ing over the age of 65 increases the risk of bus crashes. Besides,
according to studies conducted on city buses, the presence of a vul-
nerable road users in bus involved crashes is directly related to the
increase in the severity of injuries (Nasri & Aghabayk, 2020).

According to Rule 7, bus crashes at signalized intersection,
increases the probability of fatalities by 1.89 times. Intersections
are usually the most dangerous traffic sites for pedestrians (Wei
et al., 2014) and other vulnerable users like motorcyclists (Vajari
et al., 2020), which can be due to the complex bus maneuvers at

intersections. Also, according to Rule 8, a direct collision of a bus
and pedestrians at a signalized intersection, increases the probabil-
ity of fatalities by 2.51 times. According to a study on the severity
of pedestrian injuries, the occurrence of collisions with pedestrians
at intersections increases the probability of increasing pedestrian
injuries (Haleem et al., 2015). These observations are consistent
with the results of this study regarding the collision of buses and
pedestrians at intersections.

Association rules for bus crashes on weekends (Cluster 3) are
shown in Table 7, which satisfies the LIC criterion. The fatality rate
of this cluster (5.2%) is more substantial than other clusters.
According to Rule 1, crashes that occur on weekends and in dark-
ness conditions increase the probability of fatalities by 5.9 times.
According to previous studies, occurrence of crashes at night
(Prato & Kaplan, 2014; Sam et al., 2018) and the time interval
between midnight and dawn (Chu, 2014) have increased the sever-
ity of injuries in bus crashes. According to Rule 2, if the speed limit
is increased in the darkness condition, the probability of fatality is
6.39 times more than the average. In several studies on the severity
of bus crashes, there has been a direct relationship between the
high speed limit and the severity of bus crashes (Nasri &
Aghabayk, 2020; Prato & Kaplan, 2014) and that high speed limit
increases the probability of bus crash occurrence (Chimba et al.,
2010) and the severity of bus involved crashes (Kaplan & Prato,
2012).

According to Rule 3, bus accidents on highways increase the
chances of fatality by 1.4 times. Although the presence of pedestri-
ans on highways are usually not permitted, according to Rule 4, if
such a situation occurs, the probability of fatalities increases 15.35
times. High probability of fatalities due to bus collisions with
pedestrians on highways can be due to the vulnerability of pedes-
trians (Damsere-Derry et al., 2017) and the high speed of buses on
highways.

According to Rule 5, female bus drivers increase the probability
of fatalities by 3.38 times and also, according to Rule 6, if a bus
with a female driver collides in the absence of special traffic con-
trol, the probability of fatalities increases by 4.36 times. In addi-
tion, rule 7 shows that the presence of heavy vehicles increases
the probability of fatalities by 4.80 times. According to previous

Table 6
List of interesting rules identified for data in cluster 2 (All types of collisions except collisions with motor vehicles at weekdays).

LIC Lift C% S% Consequent Antecedent ID

n.a. 1.87 6.0 1.0 Fatality Driver age group = ‘‘Old Driver” 1
1.06 1.98 6.3 1.0 Fatality Driver age group = ‘‘Old Driver” & Driver gender = ‘‘Male” 2
n.a. 1.57 5.1 2.6 Fatality Vulnerable presence = ‘‘Vulnerable exist” 3
1.15 1.81 5.9 2.3 Fatality Vulnerable presence = ‘‘Vulnerable exist” & DCA = ‘‘Struck Pedestrian” 4
1.09 1.98 6.3 1.1 Fatality Vulnerable presence = ‘‘Vulnerable exist” & DCA = ‘‘Struck Pedestrian” & Traffic control = ‘‘No control” 5
2.12 3.34 10.8 1.0 Fatality Vulnerable presence = ‘‘Vulnerable exist” & Driver age group = ‘‘Old Driver” 6
n.a. 1.89 6.1 1.0 Fatality Traffic control = ‘‘Stop-go lights” 7
1.32 2.51 8.1 1.0 Fatality Traffic control = ‘‘Stop-go lights” & DCA = ‘‘Struck Pedestrian” 8

Table 7
List of interesting rules identified for data in cluster 3 (Weekend).

LIC Lift C% S% Consequent Antecedent ID

n.a. 5.90 30.0 1.3 Fatality Light condition = ‘‘Dark No street lights” 1
1.08 6.39 33.0 1.3 Fatality Light condition = ‘‘Dark No street lights” & Speed limit = ‘‘Over50” 2
n.a. 2.18 11.3 1.6 Fatality Road type = ‘‘Highway” 3
7.04 15.35 80.0 1.4 Fatality Road type = ‘‘Highway” & DCA = ‘‘Struck Pedestrian” 4
n.a. 3.38 17.6 1.9 Fatality Driver gender = ‘‘Female” 5
1.28 4.36 22.7 1.6 Fatality Driver gender = ‘‘Female” & Traffic control = ‘‘No control” 6
1.10 4.80 25.0 1.3 Fatality Driver gender = ‘‘Female” & Traffic control = ‘‘No control” & Heavy vehicle presence= ‘‘Heavy vehicle exist” 7
n.a. 1.23 6.5 4.8 Fatality Speed limit = ‘‘Over50” 8
3.39 4.17 21.7 1.6 Fatality Speed limit = ‘‘Over50” & Driver gender = ‘‘Female” 9
1.27 5.32 27.7 1.6 Fatality Speed limit = ‘‘Over50” & Driver gender = ‘‘Female” & No of vehicles = ‘‘More than 1 vehicle” 10
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studies, the gender of the bus driver is affected by the severity of
the crashes (Feng et al., 2016) and that the female bus driver
increases the severity of the injury (Kaplan & Prato, 2012).

According to Rule 8, if the speed limit is above 50 km/h, the
probability of fatalities is 1.23 times more than the average. These
results are consistent with the results of the direct effect of speed
limit on the severity of bus crash injuries (Chimba et al., 2010).
Additionally, according to Rule 9, if the speed limit is above
50 km/h and the bus driver is female, the probability of fatalities
is 4.17 times more than the average. In addition, according to Rule
10, if a female bus driver collides with more than one vehicle in
conditions of high-speed limit, the probability of fatalities will be
5.32 times more than average. The impact of the number of vehi-
cles involved in the severity of bus crashes has been investigated
and emphasized (Feng et al., 2016).

6. Conclusion

In this study, a combination of two data mining methods has
been used to investigate the relationship between the bus involved
crash severity and chains of the effective factors (environment,
humans, and vehicles) that lead to a fatality in bus involved
crashes. In the first stage, two-step clustering of crash data was
separated, and in the second stage, using association rule discov-
ery, the valid rules leading to an increase in the probability of fatal-
ities in bus involved crashes were extracted. Following are the key
observations from the model:

� Based on the clustering results, the factors that separate crash
records into homogeneous groups with the different patterns
are: the type of bus collision (collision with a motor vehicle or
other types of collisions), day of the week.

� Bus crashes with motor vehicles on weekdays have caused a
fatality rate of 1.6%, which is lower than the average rate
(2.7%). According to the results, bus crashes with cars during
weekdays, at roads with high-speed limit and collisions with
more than one vehicle increase the probability of fatalities.

� All types of bus collisions except collisions with motor vehicles
(Cluster 2), have resulted in a fatality rate of 3.2%, which is
almost twice the fatality rate of bus collisions with motor vehi-
cles (Cluster 1). The old age of the bus driver, the presence of
vulnerable road users, and the collision of the bus with pedes-
trians at signalized intersections increase the probability of
fatalities in Cluster 2.

� Cluster 3 includes all bus involved crashes on weekends with a
high rate of fatality (5.2%), which indicates the difference in its
pattern with bus crashes on weekdays. Darkness increases the
probability of fatality on weekends, especially in areas with
higher speed limits. Direct bus collisions with pedestrians on
highways greatly increase the probability of fatalities. In addi-
tion, the female gender of the bus driver, the lack of special traf-
fic controls, the presence of heavy vehicles, and collisions with
multi vehicles are other factors affecting the increase in bus
involved crash fatalities.

The results of this study show that more engineering and edu-
cation efforts and coordination should be made to reduce the
severity of bus involved crashes. Due to the special conditions of
the bus in terms of larger size and more limited driver’s vision than
other vehicles, it is recommended to have awareness and safety
training programs on rules, rights, and duties of other road users,
including observing safe longitudinal and transverse distances
with the buses. According to the results of this study, there is a
high probability of pedestrian fatalities with bus crashes at traffic
intersections. This may be due to distracted behaviors of the pedes-

trian at the intersection (Shiwakoti et al., 2019). Also, safeguarding
bus maneuvers and bus turnings at urban intersections are part of
the solution for pedestrian safety. The use of reflective accessories
or brightly colored clothes (Hagel et al., 2007; Kwan & Mapstone,
2006) for vulnerable users like pedestrians can reduce the proba-
bility of fatality. Studies have shown that low-cost road safety edu-
cation campaigns for pedestrians can reduce distracted and
jaywalking behavior at intersections (Bungum et al., 2005;
Shiwakoti et al., 2019). Illuminated in-ground Light Emitting
Diodes (LEDs) embedded in pathways are also likely to be effective
at attracting the attention of distracted pedestrians, as found in a
recent study in Australia (Larue et al., 2020). If social rules or
enforcement measures are consistently applied, it may also help
in influencing road user’s behavior during weekend entertainment
activities. In addition, the installation of pedestrian detection sys-
tems on buses may help the driver to reduce collisions with pedes-
trians. Also, assigning bus routes with the minimal collision with
other users in low-speed areas to old and female bus drivers can
be effective. However, in a similar study of Melbourne city bus
crashes, it is recommended to assign routes comprising mainly
divided roads as well as newer and shorter buses to less experi-
enced drivers (Goh et al., 2014a). Also, separating bus routes and
setting special lanes in Melbourne city reduced fatal and serious
injury crashes (Goh et al., 2013) and collisions (Goh et al.,
2014b). Thus, bus priority especially in crowded areas where the
movement of vulnerable users is higher can be a cost-effective
way to reduce fatalities and crash counts (Goh et al., 2014c). Since
in this study, bus crashes in the darkness and lack of light are asso-
ciated with increased fatality risk, the necessary action can include
improving the lighting conditions along the bus routes. Higher
speed limits increase the probability of fatalities on direct routes.
Installation of speed bumps and rumble strips along the bus route
can improve safety.

The results of this study provide an insight into the pattern of
crashes and the severity of bus involved crashes, which can be use-
ful for managers of bus companies and road authorities to develop
appropriate strategic measures and actions to reduce fatalities.
This study used the database of a single state in Australia. In future,
similar studies can be carried out in different regions to increase
confidence in the insights into the pattern and severity of bus
involved crashes. It is also suggested that human factors that
may affect the occurrence of crashes such as the health status of
bus drivers and medical conditions to be considered in future
studies.
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a b s t r a c t

Introduction: Random Breath Testing (RBT) remains a primary method to both deter and apprehend drink
drivers, yet a large proportion of road fatalities continue to be caused by the offense. Outstanding ques-
tions remain regarding how much exposure to RBT operations is needed to influence deterrence-based
perceptions and subsequent offending. Method: Given this, licensed motorists (N = 961) in Queensland
were recruited to complete a questionnaire either in the community (N = 741) or on the side of the road
after just being breath tested (N = 243). Survey items measured different types of exposure to RBT oper-
ations (e.g., ‘‘seen” vs. ‘‘being tested”) and subsequent perceptions of apprehension as well as self-
reported drink driving behaviors. Results: The key findings that emerged were: motorists were regularly
exposed to RBT operations (both viewing and being tested), such exposure was not significantly corre-
lated with perceptions of apprehension certainty, and a sizable proportion reported engaging in drink
driving behaviors (e.g., approx. 25%), although roadside participants naturally reported a lower percent-
age of offending behaviors. Importantly, it was revealed that current ‘‘observations” of RBT was sufficient,
but not actual levels of active testing (which needed to be doubled). Nevertheless, higher levels of expo-
sure to RBT operations was found to be predictive of a lack of intention to drink and drive again in the
future. Conclusions: This paper suggests that mere exposure to enforcement may not create the intended
rule compliance, and that the frequency of exposure is also essential for the roadside.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Drink driving is a pervasive problem in many motorized coun-
tries, with clear links to increased crash risk and personal injury.
Despite sustained enforcement efforts to reduce this behavior, in
Australia 25% of road crash fatalities and 9.9% of road crash injuries
are a result of drink driving (Transport and Main Roads, 2018).
While a sizeable body of research has focused on the deterrent
impact of drivers’ perceptions toward police enforcement (e.g.,
Freeman & Watson, 2006; Grosvenor, Toomey, & Wagenaar,
1999; Homel, 1988; Szogi et al., 2017), there has been limited con-
sideration on the extent to which drivers have actually been
exposed to enforcement and the subsequent deterrent effect such
exposure has on promoting rule compliance. This can be consid-
ered a significant omission not least because: (a) police enforce-
ment (e.g., random breath testing) remains a primary method to
deter motorists from drink driving; (b) there is a need to maximize
ever restricting police resources; and (c) outstanding questions

remain regarding whether merely observing enforcement (rather
than actually being tested) can create a deterrent effect. Conse-
quently, this study focuses on the impact of exposure to legal
enforcement, such as Random Breath Testing (RBT), on self-
reported engagement in drink driving behavior(s).

The most dominant enforcement method for deterring drink
driving remains RBT (primarily through general deterrence), and
the mechanism has repeatedly been demonstrated to have a posi-
tive effect on road safety in Australia. For example, earlier research
demonstrated that after the introduction of RBT, alcohol related
road crash fatalities decreased by 18% (Watson, 1994). Similarly,
increasing the number of motorists tested (in Queensland) reduced
both alcohol-related crashes and drink driving offense rates
(Watson et al., 2005). Similar results have been found in the United
States, where instead of RBT, there are sobriety checkpoints that
target drivers who are perceived as being impaired by alcohol (in-
stead of selecting drivers at random; Bergen et al., 2014). It was
found that there were 18% less cases of drink driving in states that
have implemented sobriety checkpoints in comparison to states
that have not implemented these checkpoints (Lenk, Nelson,
Toomey, Jones-Webb, & Erickson, 2016).
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However, conducting RBTs remain costly both in regards to
time and resources, and a sizable proportion of fatalities are still
attributed to drink driving despite the intensive application of
RBT operations. For example, in 2018, while 7,921 RBTs were con-
ducted to every 10,000 licensed drivers in Queensland (BITRE
Bureau of Infrastructure Transport and Regional Economics,
2019), 17.6% of Queensland driver fatalities involved a drink driver
(Department of Transport and Main Roads, 2018). Given that the
previously cited target ratio of 1:1 RBT conducted to licensed dri-
ver (Ferris et al., 2013) is not sustainable into the foreseeable
future, it is timely to consider what type and level of RBT intensity
is needed to provide (and maintain) a deterrent impact on
motorists.

Interestingly, and despite the widespread reliance on RBT test-
ing (in Australia), the optimum level of application has not cur-
rently been established (Ferris et al., 2013; Lenk et al., 2016),
although as noted above, the 1:1 ratio has been utilized as a broad
goal. That is, there is no benchmark for exposure to RBT operations,
and questions remain if ‘‘observing” an RBT operation enacts the
same deterrent effect as actually being breath tested. If this can
be proven to be the case, then operating highly visible RBT opera-
tions may prove to be an excellent proxy method for maintaining a
deterrent effect. At best, a preliminary study by Morrison, Ferris,
Wiebe, Peek-Asa, and Branas (2019) that analyzed crash rates with
roadside sobriety checkpoints found that the effect of sobriety
checkpoints was maintained for one week. Additionally, a United
States study reported a 41% reduction in drink driving was identi-
fied when the rate of sobriety checkpoints was increased to
monthly, in comparison to states that did not conduct sobriety
checkpoints (Lenk et al., 2016). Conversely, one study that exam-
ined the impact of exposure to RBT on drink driving engagement,
including observing RBT as well as actually being tested by an
RBT, found that these variables did not predict self-reported drink
driving events (Watson & Freeman, 2007). However, the sample’s
actual exposure to RBT was low.

Taken together, little is known about the ‘‘perceptual” impact of
exposure to RBT operations, although a complementary
Queensland-based study on exposure to speed cameras failed to
find a strong link with speed limit compliance (Freeman, Kaye,
Truelove, & Davey, 2017). Nevertheless, and stemming from mod-
els of learning, it may be suggested that drivers still need to be
exposed to high levels of enforcement in order to be effectively
deterred from drink driving. That is, learning from experience
and exposure are crucial for humans (Meeter, Shohamy, & Myers,
2009) and the principles of operant and Pavlovian conditioning
have been extensively validated in the scientific literature
(Britton, Lissek, Grillon, Norcross, & Pine, 2011). At the very least,
the importance of the relationship between stimulus and response
have been well documented, particularly in regards to frequent
exposure (Recio, Iliescu, & de Brugada, 2019). In regards to the
question of ‘‘being tested” versus merely ‘‘observing RBT testing,”
more may be learned from behavioral psychology that has demon-
strated exposure to two similar stimuli may reduce generalizations
between them (Sanjuan & Nelson, 2019). On the other hand, length
of exposure to a stimulus also remains important (Recio et al.,
2019), which suggests actually being breath tested may produce
superior deterrent effects (rather than just driving past an RBT
operation). Such issues will be considered in this exploratory
study.

Within the domain of road safety, exposure to enforcement may
(most crucially) be linked to increasing perceptions of certainty of
apprehension, which has long been hypothesized to be the most
important of the three classical deterrent forces (Von Hirsch &
Colloquium, 1999). This construct refers to the idea that if an indi-
vidual believes there is a high chance of being caught and punished
for committing a crime, they will subsequently be deterred from

committing that offense (Beccaria, 1764/2007; Bentham,
1780/1970). Put simply, if a driver has limited exposure to RBT, it
may be suggested that they consequently have low perceptions
of the certainty of being caught, which dilutes deterrent forces
and promotes drink driving. Conversely, if a driver has higher
exposure to RBT (resulting in a higher perception of the certainty
of being caught), they may be more deterred from drink driving.
On the one hand, previous research surrounding perceptual cer-
tainty of apprehension and drink driving found that certainty of
apprehension was a significant negative predictor of drink driving
(Freeman & Watson, 2006, 2009). Alternatively, other studies have
found this variable not to be a direct predictor of drink driving
(Baum, 1999; Homel, 1988; Watson & Freeman, 2007). Such dis-
crepancies may yet be explained by moderating forces such as
actual exposure to enforcement.

1.1. The current study

Given the above, outstanding questions remain regarding the
perceptual deterrent impact of exposure to RBT on subsequent
offending behaviors. This study had the following research
questions:

1. What is the deterrent impact of RBT exposure on perceptual
certainty of apprehension for drink driving?

2. Is there a differential effect between being tested versus observ-
ing testing?

3. How does exposure to enforcement impact upon self-reported
drink driving behaviors and what other factors predict the
offense?

A secondary (exploratory) research question focused on exam-
ining whether perceptual differences and self-reported offending
behaviors differed regarding the period of time since most recent
exposure to RBT. That is, are differences identifiable between indi-
viduals who had recently been tested (e.g., straight after an RBT)
versus in the community (e.g. recency effect).

2. Method

2.1. Participants

A total of 961 participants took part in the study as part of a lar-
ger state-wide deterrence-based research project. The sample was
comprised of 714 community members who were recruited either
online or face to face in public places (e.g., university campuses,
libraries, and shopping centers). The remaining 243 participants
were drivers of motor vehicles recruited at the roadside immedi-
ately following a random roadside breath test (outlined in Table 1).
No significant sociodemographic differences were found for age,
years driving, or the distribution of males and females across the
roadside and community groups. Weekly driving hours were also
fairly consistent between the two groups.

2.2. Measures

2.2.1. Participant characteristics
Participants were asked to provide demographic data pertain-

ing to age, gender, years of licensure, type of license held, weekly
driving hours, and previous apprehension for drink driving
offenses.

2.2.2. Drink driving behavior
Consistent with the need to expand the methodological opera-

tionalization of drink driving events (Freeman et al., 2020), a multi-
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item approach was utilized to examine the frequency of engage-
ment in self-reported drink driving events that were: (a) a possible
drink driving episode, e.g., ‘‘How often do you drink and drive when

you think you may have been over the legal blood alcohol limit?” and
(b) an acknowledged episode, e.g., ‘‘How often do you drink and

drive when you know you have a blood alcohol level above the legal
limit?” An additional proxy measure of drink driving was also
included (‘‘How often have you attempted to avoid Random Breath
Testing sites when you see them?”), as well as a measure of future
intentions to drink drive with one item (‘‘It’s likely that I will drive
above the legal blood alcohol limit in the future”). Item responses
were collected on a 7-point Likert scale ranging from 1 (never) to
7 (always) for both possible and acknowledged drink driving and
evading RBT sites and 1 (strongly disagree) to 2 (strongly agree)
for future intentions to drink and drive. Higher scores for all drink
driving variables indicated more frequent self-reported drink driv-
ing behaviors/intentions.

2.2.3. RBT exposure
Exposure to RBT operations was quantified for both seeing an

RBT site; ‘‘In the past 12 months, how often have you SEEN the police
conducting random breath testing (even if you weren’t tested)” and
being breath tested ‘‘In the past 12 months how many times have
you been stopped and breath tested by police?” To estimate partici-
pant’s own perceptions of the deterrent effect of RBT exposure,
two subjective ratings were included, ‘‘How often would you need
to see an RBT over a 12-month period to make you avoid drink driv-
ing” and ‘‘How often would you need to be breath tested at an RBT site
over a 12 month period to make you avoid drink driving.”

2.2.4. Apprehension certainty
Consistent with previous research (Freeman et al., 2020), an

objective measure of certainty of apprehension for drink driving
‘‘The chances for getting caught for drink driving are high,” was uti-
lized with response items on a 7-point Likert scale ranging from
1 (strongly disagree) to 7 (strongly agree).

2.2.5. Alcohol consumption and drinking behavior
Participant’s behavior relating to alcohol consumption was clas-

sified as either non-risky or risky drinking according to the 4-item
short form of the Alcohol Use Disorder Identification Test (AUDIT-
4; Gual, Segura, Contel, Heather, & Colom, 2002). An item example
is ‘‘How often do you have six of more drinks on one occasion?” items
are scored from 0 � 4 (e.g., 0 = ‘‘never,” 1 = ‘‘less than monthly,”
2 = ‘‘monthly,” 3 = ‘‘weekly,” and 4 = ‘‘daily or almost daily”). Scores
for each item are added to give a total score ranging from 0 to
16. A score > 7 for males and > 5 for females indicates risky drink-
ing behavior.

2.3. Procedure

For both the community and roadside populations, a represen-
tative sample of Queensland motorists was sought by conducting
surveys across a balanced selection of cities (e.g., Logan, Rocklea,
Gold Coast, Townsville, and Ipswich) and regional councils (e.g.,
Toowoomba, Gympie, Emerald [Central Highlands], and Rock-
hampton). A $20 Coles/Myer gift voucher was offered as reim-
bursement for participation. Community sample participants
either completed a paper survey in-person at various community
settings such as the Queensland University of Technology campus,
shopping centers, and other public places. Roadside participants
were offered the opportunity to participate in the study after being
randomly breath tested in various locations throughout Queens-
land. That is, volunteering participants completed the surveys (in
their vehicles) approximately 20 meters further down the roads
(from the operational RBT site). No identifying information was
recorded to ensure the anonymity and confidentiality of responses.
The collected survey data was entered into the IBM SPSS statistics
(version 24) program for analysis.

3. Results

3.1. Self-reported drink driving

Self-reported drink driving behaviors were relatively uncom-
mon (refer to Table 2). In regards to self-reported offending for
the total combined sample, ‘‘acknowledged” drink driving (e.g.,
knowingly over the limit) 827 participants (86.1%) responded with
the ‘‘never” category. The same proportion of respondents, n = 827,
(86.1%) reported they had ‘‘never” attempted to evade RBT sites to
avoid potential breath testing by police (e.g., a proxy measure of
drink driving behavior) in the 12 months prior to the survey. Addi-
tionally, the largest proportion (e.g., n = 749, 77.9%) reported
‘‘never” driving while ‘‘thinking” they may be over the legal limit,
which is consistent with previous research (Freeman, Szogi,
Truelove, & Vingilis, et al., 2016).

To capture the sum total of reported drink driving behavior, a
dichotomized variable was constructed by combining the three
items (e.g., possible, acknowledged, and proxy) such that respon-
dents who answered ‘‘never” on all three variables were desig-
nated as a ‘‘no” condition or not drink drivers, and all other
responses were categorized as ‘‘yes” or, drink drivers. The overall
frequency of participants who were consequently not drink drivers
was 695 (72.3%).

However, and from a different perspective, it is noteworthy that
more than 25% of the sample may have engaged in drink driving
events, which reinforces the significance of the ongoing drink driv-
ing problem. This is further evidenced by an examination of inten-

Table 1
Participant characteristics for the community and roadside samples.

Combined sample Community Roadside

n [M] % [SD] n [M] % [SD] n [M] % [SD]

Total 961 100% 718 74.71% 243 25.29%
Age [39.55] [16.04] [39.61] [16.33] [39.34] [15.17]
Years driving [20.41] [16.03] [20.26] [16.35] [20.85] [15.08]
Male 502 52.24% 371 51.67% 132 54.32%
Female 453 47.14% 346 48.20% 110 45.27%

Weekly driving hours
<5 196 20.40% 153 21.30% 43 17.70%
6–10 305 31.74% 235 32.70% 70 28.81%
11–20 234 24.35% 162 22.60% 72 29.63%
21–30 95 9.89% 74 10.30% 21 8.64%
>30 125 13.01% 91 12.70% 34 13.99%
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tions to drink and drive again in the future, with only 76% of the
combined sample responding with ‘‘strongly disagree” or ‘‘dis-
agree” to such a likelihood (e.g., 24% were unwilling to confirm
such an outcome). A smaller percentage of respondents reported
having been apprehended (at any time) for drink driving in the
past (n = 115, 12.0%). A corresponding chi square analysis revealed
no significant association between drink driving apprehension and
the two sampled cohorts.

A comparative analysis between the two groups (as outlined in
Table 3) revealed statistically significant differences for self-
reported drink driving behaviors, with roadside participants
reporting the lowest frequency. This suggests that motorists may
have (understandably and not surprisingly) engaged in a higher
level of self-report bias when in close proximity to police personnel
(e.g., roadside). However, there was no significant difference found
for future intentions to drink drive between the roadside and com-
munity samples.

3.2. Perceptions of apprehension certainty by RBT exposure

In order to examine the deterrent impact of RBT operations, an
initial baseline assessment of perceptions of apprehension cer-
tainty was undertaken. The results were consistent with previous
research by Freeman et al. (2016) and demonstrated that the most
common response to the statement ‘‘The chances of getting caught
for drink driving are high” was ‘‘agree” (n = 257, 26.7%). Whereas
the least common (n = 86, 8.90%) was both ‘‘strongly disagree” and
‘‘neither agree nor disagree.” However, overall, respondents tended
to ‘‘somewhat agree” that a drink driving apprehension was certain
(M = 4.57, SD = 1.85; the average score of four reflects a response of
‘‘neither agree or disagree” while five equals ‘‘somewhat agree”).

Not surprisingly, a significant difference was identified between
the community and roadside sample’s reported levels of perceptual
certainty. That is, an independent samples t-test revealed the aver-
age rating for certainty by the community sample (M = 4.37,
SD = 0.07) was significantly lower than the average reported by
the roadside sample (M = 5.15, SD = 0.11; t(458.29) = �0.6.10,
p < 0.001). The higher rating for the roadside group highlights a
potential recency effect of RBT exposure on the certainty of being
apprehended for drink driving for this group.

In regards to RBT exposure, the vast majority of respondents
(n = 898, 93.4%) reported being exposed to an RBT operation at
least once in the previous 12 months (M = 4.18 SD = 2.71) with
the most common frequency (mode) being two (n = 145, 12.1%).
Among the population who had been exposed to an RBT, 292
(30.38% of the entire sample) had only seen an RBT (and not been
tested) on average 2.8 times (SD = 2.49). In comparison 355 (36.9%)
had not been tested and, of these, 63 participants (6.6% of the total
sample) had not been exposed at all (seen or tested). As expected,
being tested at an RBT site was less frequent than merely seeing an
RBT. More specifically, n = 606 (63.1%) were tested at least once
(M = 1.36, SD = 1.38) with responses ranging from once (n = 226,
23.5%) to four times (n = 114, 10.8%) and a mode of 1 (n = 226,
23.5%). It may be hypothesized that roadside participants reported
a higher frequency of RBT exposure, not least because of the most
recent event (e.g., exposure prior to completing the survey). A cor-
responding between groups (t-test) examination revealed that the
mean number of times seeing an RBT for the community group
(M = 4.1, SD = 2.9), was not significantly different than this type
of exposure reported by roadside sample (M = 4.42, SD = 2.5; t
(959) = �1.55 p = 0.122). In contrast and as expected, a similar
investigation indicated that the community sample’s average

Table 2
Self-reported drink driving behavior.

Construct Survey Items M SD p Never Rarely Sometimes Uncertain Often Nearly
Always

Always

1 2 3 4 5 6 7

Possible Drink
Driving

How often do you drive when you think you may
have been above the legal blood alcohol limit?

1.31 0.72 77.9% 15.9% 4.9% 0% 0.9% 0% 0.3%

Community 1.36 0.79 <0.001 74.8% 18.1% 5.4% 0% 1.3% 0% 0.4%
Roadside 1.16 0.45 87.2% 9.5% 3.3% 0% 0% 0% 0%

Acknowledged
Drink
Driving

How often do you drive when you know you have a
blood alcohol level above the legal limit?

1.21 0.63 86.1% 8.1% 5.0% 0% 0.5% 0% 0.2%

Community 1.26 0.70 <0.001 84.0% 8.6% 6.3% 0% 0.7% 0% 0.3%
Roadside 1.09 0.33 92.2% 6.6% 1.2% 0% 0% 0% 0%

Proxy Drink
Driving
Measure

How often have you attempted to evade RBT sites
when you see them?

1.27 0.83 86.1% 5.7% 5.7% 0.6% 0.5% 0.4% 0.6%

Community 1.33 0.91 <0.001 83.4% 6.1% 7.4% 0.8% 0.7% 0.6% 0.7%
Roadside 1.09 0.47 93.8% 4.5% 0.8% 0% 0% 0% 0.4%

Note: p = significance of t-test for the null hypothesis that the mean score for the roadside sample is equal to that of the community.

Table 3
Dichotomised drink driving variables.

Drink Driver Total Community Roadside Chi-square

n % n % n % v2 p

Yes 266 27.7 224 31.2 42 17.3 17.56 <0.001
No 695 72.3 494 68.8 201 82.7

Future Intentions
Yes 226 23.5% 180 25.1% 46 18.9% 3.81 0.054
No 735 76.5% 538 74.9% 197 81.1%

Note: Drink driver ‘‘no” is categorized by ‘‘never” on three drink driving variables (think, know and evade RBT); Future intentions ‘‘no” is categorized by responses ‘‘strongly
disagree” and ‘‘disagree” on the single 7-point Likert item. Chi-square comparison is between the community and roadside samples.
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levels of exposure to an actual RBT test (M = 1.28, SD = 1.38) was
significantly lower than reports from the roadside sample
(M = 1.61, SD = 1.34; t(427) = �3.26, p = 0.001).

An additional exploratory analysis was undertaken (refer to
Table 4) to examine how much RBT exposure was estimated by
the sample to be needed to create a deterrent effect (measured
by making a participant avoid drink driving). In response to the
question ‘how often would you need to see an RBT site over a 12-
month period to make you avoid drink driving,’ responses ranged
between 0 and 10 with a mean of 3.33 (SD = 2.48) and a mode of
6. Meanwhile, for the question ‘how often would you need to be
breath tested at an RBT site over a 12-month period to make you avoid
drink driving,’ the responses also ranged between 0 and 10 with a
mean of 2.46 (SD = 2.31) and a mode of 1 (responses for the road-
side and community sample were not dissimilar and no statistical
difference was found for mean ratings of needing to see or be
tested in order to be deterred from drink driving).

It is noteworthy that in a majority of cases, these (estimated)
mean scores are above the sample’s actual level of exposure to
RBTs (tested and seeing without being tested at all) in the past
12 months. Although, for those who saw an RBT and may also have
been tested, the average reported frequency of seeing an RBT was
higher than estimates (refer to Table 4). In terms of exposure com-
pared to the estimated deterrent level, the results show that only
203 participants (21.12%) had been tested at or above the average
estimated deterrent level (e.g., �1.36). In contrast, 511 participants
(53.17%) had seen an RBT (who also may have been tested) at or
above the average estimated deterrent level (e.g., �3.26). Whereas,
for those who had not been tested at all, only 95 (9.89%) had seen
an RBT at or above the frequency estimated to be a deterrent.

RBT exposure was further investigated to confirm whether
increases in the number of weekly driving hours corresponded
with higher levels of RBT exposure. As expected, visual observation
of means showed higher frequencies of both seeing an RBT and
being tested as weekly driving hours increased (see Fig. 1).

3.3. Bivariate correlations

Pearson’s r bivariate correlations between variables for the
community group are presented in Table 5. Please note the road-
side participants were excluded from further analysis due to the
potential unreliability of self-reported drink driving behavior
examined above. Of note, a positive and significant (albeit weak)
relationship was found between RBT exposure (both observations
and being tested) with certainty of apprehension. This relationship
implies that more exposure to RBT operations increases perceptual
certainty of apprehension. Although encouraging, certainty was
not found to have a tangible impact on self-reported offending
behaviors (see below). As expected, moderate significant positive
correlations were found between past drink driving behavior and
future intentions to drink drive. Not surprisingly, drinking behavior
(measured on the AUDIT-4) was also moderately correlated with
past drink driving behavior and weakly correlated with future
intentions to drink drive. Being apprehended in the past was signif-
icantly negatively correlated with past drink driving (with a mod-
erate effect) as well as future intentions to drink drive (with a weak
effect), which suggests that: (a) some offenders may be immune/
impervious to the threat (and application) of sanctions and/or (b)
some offending behaviors may prove to be habitual in nature.

3.4. Multivariate analysis predicting apprehension certainty

To determine if levels of apprehension certainty could be pre-
dicted by key independent variables, an ordinal regression model
was designed with predictors of age, drinking behavior, RBT expo-
sure (seen and tested), weekly hours driving, gender, and past
drink driving apprehension. The model produced an acceptable
fit statistic and demonstrated goodness of fit, however only 5% of
variance in apprehension certainty was accounted for (Nagalkerke
R2). The significant predictors in the model were: age, years of
licensure, and seeing an RBT (see Table 6 for results).

3.5. Multivariate analyses predicting drink driving behavior

To analyze predictors of drink driving behavior (within the
community sample), two separate logistic regression models were
conducted (Table 7). The first model predicted past drink driving
behavior dichotomized into a ‘‘never” condition (n = 495) or ‘‘other
than never” condition (n = 224), thereby identifying individuals
who acknowledge a past indiscretion. The second model predicted
future intentions to drink drive with those who answered ‘‘dis-
agree” or ‘‘strongly disagree” as the ‘‘no” condition (n = 538), and
all other responses as a ‘‘yes” condition (n = 180). Each regression
model had the same predictors of age, gender, hours driving, risky
drinker [yes/no], apprehension certainty, breath tested frequency,
seen RBT frequency, and drink driving apprehension. For the future
intentions model, past drink driving behavior (dichotomized as
previously described) was included to determine the predictive
utility of past behavior on future intentions. A 2-stage hierarchical

Table 4
Actual exposure compared to estimated level needed for a deterrent effect.

RBT exposure (actual and *estimated) Combined Community Roadside p

M SD M SD M SD

Actual Seen and not tested 2.94 2.64 2.9 2.7 3.1 2.4 0.603
Actual Seen and may have been tested 4.18 2.71 4.1 2.9 4.4 2.5 0.122
*Need to see an RBT 3.26 2.46 3.35 2.47 2.98 2.4 0.053

Actual Tested 1.36 1.38 1.28 1.38 1.61 1.34 <0.001
*Need to be Tested 2.39 2.26 2.45 2.3 2.21 2.15 0.150

Note: *self-reported estimates of exposure frequency required to act as a deterrent to drink driving; p = significance levels for 2-tailed independent samples t-test.

Fig. 1. Means plot demonstrating the observed linear relationship between weekly
driving hours and RBT exposure; seen RBT category n = 319 does not include being
breath tested n = 418.
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regression model was used for each analysis, with demographic
variables of age, gender, and hours driving in step 1 and all vari-
ables in the final model (fit statistics and goodness of fit are pro-
vided for step 2 of each model). The predictive value of each
independent variable was measured as the odds ratio (OR), refer-
ring to the odds of being in the designated outcome category for
each level increase of the predictor (holding all other variables con-
stant). Both models produced acceptable fit statistics. The signifi-
cant predictors of drink driving were younger motorists, gender
(males), risky drinking, and a previous drink driving apprehension.
In the future intentions model, only past drink driving behavior
(drink driver yes category) and being a male were identified as sig-
nificant predictors.

4. Discussion

This study aimed to examine the deterrent impact of reported
exposure to RBTs on perceptions of certainty of apprehension
and subsequently engagement in drink driving behavior. Three dif-
ferent ways of operationalizing drink driving were utilized to pro-
vide a more accurate and in-depth examination into the possible
influence RBT exposure may have on behavior. The current study
used a novel approach to recruitment to obtain two participant
cohorts (e.g., general community members and those who had just
been tested). This facilitated a comparative analysis of the cer-

tainty of apprehension post breath testing compared to a more
general level of RBT exposure.

In regards to RBT exposure, and as expected, participants
reported observing an RBT more than twice as often as being actu-
ally tested. However, and consistent with the Queensland Police
Service’s aim of testing every licensed driver once per year, the
sample reported being tested annually (e.g., 1.36). However, a total
of 63.1% of participants reported being breath tested during the
previous 12 months, which is lower than the official published rate
in 2018 (72.91%; BITRE, 2019). Interestingly, in regards to the
exploratory analysis to identify the estimated level of exposure
to create a strong deterrent effect, participants’ current exposure
levels (e.g., ‘‘seeing) were higher than what was proposed (e.g.,
M = 4.18 versus M = 3.26, respectively). In contrast, participants’
actual level of being breath tested (e.g., 1.36) was approximately
half the frequency that was stated to create a strong deterrent
effect (e.g., 2.39 times). These results (to some degree) support
the regression analysis finding that current levels of ‘‘seeing” an
RBT had an effect on perceptual certainty, but not actual engage-
ment in testing. Put differently, the frequency of exposure to being
breath tested (e.g., once annually) may not be sufficient to counter-
act factors that promote drink driving (reviewed below). Based on
these results, and considering limited police resources, it may be
suggested that simply increasing the visibility of RBTs, instead of
also increasing engagement in testing, may be sufficient to, at least

Table 5
Bivariate correlations between variables for the community sample.

1 2 3 4 5 6 7 8 9 10 11

1 Possible DD 1
2 Acknowledged DD 0.82** 1
3 Future Intentions to DD 0.31** 0.32** 1
4 Evade RBT 0.60** 0.62** 0.25** 1
5 DD apprehension �0.29** �0.35** �0.13** �0.23** 1
6 Seen RBT 0.10** 0.09* 0.00 0.09* �0.03 1
7 Tested RBT 0.04 0.04 �0.03 0.07 �0.03 0.45** 1
8 Certainty of apprehension 0.02 0.02 0.09* 0.00 �0.03 0.12** 0.10* 1
9 Age �0.13** �0.12** �0.1 �0.20** �0.10* 0.00 0.01 0.09* 1
10 Gender �0.13** �0.09* �0.02 �0.04 0.12** �0.03 �0.04 0.04 0.02 1
11 AUDIT 4 0.39** 0.34** 0.13** 0.23** �0.25** 0.10** 0.00 0.1 �0.11** �0.26** 1
12 Road exposure �0.04 0.03 0 0.02 �0.1 0.17** 0.21** 0.03 0.03 0.01 0.07

Note: ** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).
Correlation between possible DD and certainty in the roadside sample was �0.18 (p < 0.01).
Community.

Table 6
Ordinal regression predicting certainty of apprehension.

B Wald P 95% CI

Lower Upper

Age 0.01 9.67 0.002** 0.01 0.02
Males �0.22 2.44 0.119 �0.49 0.06
Females 0a . . . .
AUDIT 4 0.05 4.38 0.036* 0 0.09
Seen RBT 0.07 6.19 0.013* 0.01 0.12
Tested RBT 0.05 0.97 0.325 �0.05 0.16
Hours Driving = <5 �0.37 2.17 0.141 �0.86 0.12
Hours Driving = 6–10 �0.41 3.34 0.068 �0.86 0.03
Hours Driving = 11–20 �0.13 0.31 0.576 �0.6 0.33
Hours Driving = 21–30 �0.42 2.24 0.135 �0.97 0.13
Hours Driving = >30 0a . . . .
CaughtDD (N) 0.01 0 0.957 �0.41 0.44
CaughtDD (Y) 0a . . . .

Model fit (logit link function) v2(10) = 2622.61, p < 0.001
Goodness of fit (Pearson Chi-Square) v2(4208) = 4257.90, p = 0.291
Nagelkerke R2 0.05
Proportional odds assumption v2(50) = 73.94, p = 0.015

Note: Results are for the community sample only; B = unstandardized coefficient representing the increase in the outcome variable scale for every one unit increase in the
predictor; A comparative analysis for the roadside sample revealed that the only significant predictor to be: age (B = 0.024, p = 0.003).
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partially, increase deterrence perceptions related to drink driving.
This may be done by conducting RBTs at locations that have a high
traffic density. At the very least, the assumption that greater expo-
sure to the road would lead to greater exposure to RBT was sup-
ported (which supports the reliability of the results) and that
those who were recently tested (e.g., roadside) also reported high
levels of overall testing. The final analysis to focus on perceptual
certainty revealed that being a younger motorist was predictive
of lower levels of apprehension certainty, which is supportive of
broader theories of psychological development that suggests
younger individuals are more vulnerable to fail to recognize (and
respond appropriately) to risk (Lebel & Beaulieu, 2011).

The complementary regression analyses to identify past predic-
tors of past drink driving events revealed the usual suspects. That
is, being younger (Freeman et al., 2020; Szogi et al., 2017), being
male (Freeman et al., 2020; Szogi et al., 2017), consuming higher
levels of alcohol (Freeman et al., 2020; Freeman & Watson,
2009), and previous drink driving convictions (Watson et al.,
2017) were all predictive of past drink driving events. In contrast,
the lack of identified predictors for future intentions to drink and
drive may be more reflective of the array of forces (both personal
and contextual) that can influence any possible drink driving event
that naturally stems beyond the scope of the current study. Given
that efforts to avoid RBT was a predictor of intentions to offend in
the future, it may be suggested that past behavior remains a strong
predictor of future behavior. As such, countermeasures that target
recidivist offenders may be a useful allocation of resources to limit
engagement in drink driving.

5. Concluding remarks

The study’s limitations should be considered when interpreting
the results that include the: (a) relatively small convenience sam-
ple, (b) heavy reliance on self-report data and Likert scales, and (c)
the current sample may not be reflective of the broader Queens-
land motoring population. Despite such limitations, the current
study contributes to a body of research that has failed to find
strong links between enforcement and drink driving outcomes
(Szogi et al., 2017; Watson et al., 2017) and is similar to a sister-
study that failed to find a strong relationship between drivers’

exposure to speed cameras and subsequent driving behaviors
(Freeman et al., 2017). Such counterintuitive results may reinforce
the array of personal and environmental factors that influence any
one breach, not least, the habitual nature of the driving task that is
often overlooked in the empirical literature. From a different per-
spective, it is noted that deterrence-based models are based on
utility and rational decision making, which, respectfully, may not
be a core construct of those who operate motor vehicles. Overall,
based on the results from this study, it may be suggested that
increasing visibility of RBTs, as well as targeted interventions
aimed at recidivist drink drivers, may be beneficial to decrease dri-
vers’ engagement in drink driving.
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a b s t r a c t

Introduction: Highway safety performance at night has received less attention in research than daytime,
despite the higher accident rates occurring under night-time conditions. This study presents a procedure
to assess the potential hazard for drivers created by headlight glare and its interaction with the geometric
design of highways. Method: The proposed procedure consists of a line-of-sight analysis performed by a
geoprocessing model in geographic information systems to determine whether the rays of light that con-
nect headlights and oncoming drivers are obstructed by either the roadway or its roadsides. Then, the
procedure checks whether the non-obstructed rays of light are enclosed by a given headlight beam.
Different hypotheses were set concerning the headlight beam features, including the horizontal spread
angle and whether the headlights are fixed or swiveling. A highway section was selected to test and val-
idate the procedure proposed. A 3D recreation of the highway and its environment derived from a LiDAR
point cloud was used for this purpose. Results: The findings disclose how glare is produced on tangents,
horizontal curves, transitions between them and sequences of curves. The effect of visual obstructions
conveniently placed is also discussed. Conclusions: A greater glare incidence is produced as the horizontal
headlights spread angle increases. Swiveling headlights increase glare on highways left curves and reduce
it on right curves. Practical Applications: The procedure and conclusions of this study can contribute to
develop more effective glare avoidance technologies as well as identify and assess glare-prone sections.
The glare evaluation assists in evaluating glare countermeasures such as deciding whether to place a veg-
etation barrier and where.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

In nighttime driving, road users must have an adequate view of
the roadway and the roadsides without the setback of glare. Vehi-
cle frontlighting systems may dazzle drivers traveling on the
opposing direction, thus reducing overall visibility (disability
glare), as well as causing distraction and annoyance (discomfort
glare) (Hwang & Peli, 2013). Even if a light source ceases to dazzle,
it takes some time for the driver’s eye to adapt to the variation in
light intensity. As a result, the associated contrast reduction may
affect drivers’ visual performance, potentially affecting highway
safety.

Road accidents represent a considerable loss of human life as
well as a negative impact on economic activity. Fewer studies have
been conducted on nighttime sight distance than on daylight,
despite the higher accident rates occurring under nighttime condi-
tions (AASHTO, 2018). Particularly, quantifying the real impact of

glare on driving performance is difficult. In fact, accident records
can hardly gather such information. However, several authors have
described the increased risk of nighttime accidents associated to
disability glare caused by vehicle headlights (Babizhayev, 2003;
Lachenmayr, Berger, Buser, & Keller, 1998). Notwithstanding the
foregoing, vehicle lighting systems have experienced significant
advances in recent years and show potential contributions to
improve safety performance (Mehler, Reimer, Lavalliere, Dobres,
& Coughlin, 2014; Peña-García, Peña, Espín, & Aznar, 2012).

The geometry of the highways also plays an important role in
the incidence of headlight glare since certain alignment sequences
might contribute to glare. In this sense, a vegetation barrier is pre-
sented as a possible treatment to reduce headlight glare. However,
its effect has not been studied in 3D. In addition, advanced front-
lighting systems should be able to adapt to the existing alignment
sequences and traffic to prevent glare occurrence.

The aim of this study is to propose a procedure to observe the
incidence of the driver glare caused by vehicle headlights, and
evaluate the effect of different headlight features on the driver
glare occurring on certain highway alignment sequences and var-
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ied roadside features such as vegetation. To test the procedure, a
real highway was modeled and assessed under a 3D approach.

2. Background

2.1. Drivers glare

Driving performance in nighttime is largely determined by vis-
ibility conditions, which are, in turn, influenced by the design of
the highway and its environment as well as the headlight features.
Drivers must be able to visualize appropriately the roadway ahead
sufficiently illuminated while ensuring that the headlights do not
disrupt the oncoming traffic.

Glare is a phenomenon that affects two aspects of the drivers’
vision (Theeuwes, Alferdinck, & Perel, 2002). On the one hand, dis-
ability glare creates reduced contrast sensitivity. On the other
hand, discomfort glare produces a sensation of discomfort and fati-
gue in the driver without loss of vision. To evaluate glare, the 9-
point De Boer scale is most widely used in the field of automotive
and public lighting (De Boer, 1967). Bullough (2014) analyzed
visual performance benefits and quantify potential safety benefits
from adaptive high-beam headlamp systems using mesopic and
photopic measurements. Van Derlofske, Bullough, Dee, Chen, and
Akashi (2004) tested glare placing a light source at 50 m at an angle
of 5� to simulate oncoming traffic, measuring the ability of driver
to detect a set of targets. Reagan, Frischmann, and Brumbelow
(2016) studied the perceived glare produced by vehicles approach-
ing from straight and curved trajectories on either side. The front-
lighting systems of the test vehicles included diverse combinations
of halogen and high-intensity discharge headlamps, fixed and
swiveling, low beams and high beams.

Concerning the separation distance between the driver and the
glare vehicle, drivers have been reported to be affected by head-
light glare from distances of less than 400 m (Porter, Hankey, &
Binder, 2005).

2.2. Headlight features

A tradeoff between appropriate visibility of the driving scene
and headlight glare avoidance is necessary. As a result, the photo-
metric design of headlamps is standardized (Gibbons, Medina,
Williams, Du, & Rakha, 2012). European headlamp regulations
establish stricter limitations for the headlight beam features to
prevent glare, in detriment of the visual performance of the own
driver. Conversely, American regulations promote higher illumi-
nance performance at the expense of the comfort of oncoming
drivers.

Headlamp technology has advanced considerably in recent
years and new designs could generate new glare scenarios. In this
respect, there is concern that downsizing headlight systems may
be contributing to glare. Moreover, headlamp types such as high
intensity discharge, halogen and LED, the spectrum and size of
the headlamps are factors that affect the severity of glare
(Akashi, Hu, & Bullough, 2008; Van Derlofske et al., 2004).

2.3. Nighttime visibility and glare simulation on highways

To simulate the conditions under which headlight glare is pro-
duced, a line-of-sight analysis must be undertaken. This analysis
concerns the classification of whether two positions in space can
be connected by a straight line that founds no obstruction between
its ends. A ray of light is a particular case of line of sight, which is
assumed to be enclosed within the headlight beam. Glare may
therefore be produced if no obstruction is found between the head-
lamp and the eye of the oncoming driver.

The headlight beam can be modeled in the 3D space as per the
volume enclosed by theoretical boundaries given by the positions
of the headlights with respect to the driver, the horizontal spread
angle, the vertical spread angle, and the range (Hassan, Easa, &
Abd El Halim, 1997). This procedure enabled the assessment of
highway alignment in nighttime driving. In recent studies, the
impact of the headlight beam features on headlight sight distance
under such approaches was quantified (De Santos-Berbel, Castro, &
Iglesias, 2016). Moreover, variations of the vertical spread angle
have been found to potentially produce a significantly different
impact on safety (Andrade-Cataño, De Santos-Berbel, & Castro,
2020).

Adaptive curve lighting, and particularly swiveling headlights,
involves bending the beam pattern into the curve. The swiveling
angle of headlights is the angle rotated by a frontlighting device
to bend the lights apart from the tangential axis of the vehicle’s tra-
jectory. The value of this angle is typically governed by the turning
angle of the vehicle and the speed (Ishiguro & Yamada, 2004). Sev-
eral experiments carried out in test tracks to assess the effective-
ness of swiveling headlights can be found in literature (Bullough
et al., 2006, 2016; Hagiwara et al., 2007, 2009; Ishiguro &
Yamada, 2004). In general, these lighting systems have been
reported to enhance visualization, target detection, and driving
performance.

A number of studies characterized the effects of swiveling head-
lights on horizontal curves through the evaluation of the horizontal
projection of the beam area through computer-aided simulations
(Gao & Li, 2014; Sivak, Schoettle, Flannagan, & Minoda, 2005). Also,
the combined effect of swiveling headlamps and alignment
sequences on headlight sight distance has been modeled in 3D
(De Santos-Berbel & Castro, 2020).

Situations where headlight glare is produced have been ana-
lyzed in diverse simulation systems. Akashi et al. (2008) simulated
the photometric distributions of diverse vehicle headlamp types to
recreate the glare produced by oncoming traffic on tangents. It was
found that higher mounting heights produce greater levels of glare
than expected. Moreover, the effect of bright headlights has been
reproduced and incorporated into a driving simulator (Haycock,
Campos, Koenraad, Potter, & Advani, 2019; Hwang & Peli, 2013).
Recent studies have incorporated nighttime driving conditions into
a driving simulator to evaluate the driver behavior. Driving simu-
lators have also been utilized for advances in glare-free frontlight-
ing systems (Berssenbrügge, Trächtler, & Schmidt, 2016).

3. Modelling of headlight beam and glare

The research hereby presented was based on previous develop-
ments of the authors. The procedure followed is outlined in Fig. 1,
which consists of two main components. The first one is the geo-
processing model, which was exploited for the evaluation of lines
of sight (Iglesias, Castro, Pascual Gallego, & De Santos-Berbel,
2016). This computational tool operates on geographic information
systems (GIS), requiring as inputs a digital terrain model (DTM), a
3D object file, and a dataset containing the points that represent
the ends of the lines of sight to be evaluated.

The DTM and the 3D object file were derived from a Light detec-
tion and ranging (LiDAR) point cloud collected by a mobile map-
ping system. LiDAR surveys are a reliable data source to model a
highway and its environment for the purpose of sight distance
studies (De Santos-Berbel & Castro, 2018; Jung, Olsen, Hurwitz,
Kashani, & Buker, 2018; Ma, Zheng, Cheng, & Easa, 2019). The
DTM illustrates the shape of the roadway and the terrain that sur-
rounds it. This dataset represents 2.5-D features as each position
on the horizontal projection corresponds to a single elevation
value, not enabling overhanging features (De Santos-Berbel,
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Castro, López-Cuervo, & Paréns-González, 2014). Therefore, to con-
nect terrain points of the LiDAR point cloud, a triangular irregular
network (TIN) dataset was built up in GIS. The 3D object file was
created from the remaining points of the LiDAR point cloud to rep-
resent features above the ground with fully-3D features. It con-
nects points closer than a threshold distance and classified
within the same class (i.e., vegetation, roadside equipment, etc.)
to form polyhedral entities (Arranz Justel, 2013; Iglesias, De
Santos-Berbel, Pascual, & Castro, 2019). These features were
imported in GIS as a georeferenced multipatch shapefile, which is
a GIS object that stores a collection of patches (generally triangu-
lar) to represent the boundary of a number of 3D objects (ESRI,
2008). The TIN dataset and the multipatch shapefile constitute
the 3D roadway and roadside model itself. Although it is not part
of the 3D model itself, a point shapefile representing the ends of
the lines of sight to be launched is required. Therefore, this shape-
file must contain, on the one hand, points located on the sequence
of the headlamps’ positions of a vehicle traveling along the high-
way, where the lines of sight representing rays of light originate.
On the other hand, the eye position of the driver of the oncoming
traffic, where the lines of sight end, must be included in the point
shapefile. This shapefile was derived from the theoretical highway
centerline. Both the horizontal and the vertical projections of the

alignment were deduced with computer-aided design software.
According to the Spanish geometric design standard, the driver is
assumed to follow a trajectory parallel to the roadway centerline
on the own lane at an offset of 1.5 m (d1 in Fig. 2) (Ministerio de
Fomento, 2016). The position of either headlight in space was set
in relation to that of the driver as per the following four geometric
parameters (Fig. 2): the headlamp mounting height (hh), the head-
lamp headway with respect to the driver (d2), the offset between
headlamps (d3) and the offset of left headlamp with respect to
the driver (d4). The values selected for these parameters were
derived from those of the 11 most sold vehicles in Spain, which
are shown in Table 1 (ANFAC, FACONAUTO & GANVAM, 2016). In
this sense, it must be noted that the glare evaluation assumed that
both vehicles involved are passenger cars.

The stations that represent the vehicle trajectories were
obtained by means of a script that calculated points on the center-
line spaced 5 meters apart. From these points, stations were
obtained at the standardized offset d1 on both sides of the center-
line and, from each station, the counterpart headlamp positions in
space. Finally, two point shapefiles were produced: one that corre-
sponds to the outward driving direction, which comprises the
headlamp points in such a direction and the driver’s eye positions
on the return direction; and another one that corresponds to the

LiDAR point 
cloud 

Alignment 
recreation 

Create point 
shapefile

Create TIN 
dataset

Create multipatch 
shapefile

GIS geoprocessing 
model

MATLAB Glare 
evaluation 

Ray of light 
line shapefile

Headlight 
beam model

Glare 
graph

Output data 
export

Point 
shapefile

Point shapefile 
export

Fig. 1. Flowchart of the procedure for glare evaluation.
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return driving direction, which contains the headlamp points of the
return direction and the driver’s eye positions on the outward
direction. Fig. 3 displays a section of highway where the point

shapefile contains both a sequence of paired positions of the head-
lights (hi,r and hi,l), and a sequence of the driver’s eye positions (di+1,
. . ., di+6). The blue lines represent rays of light launched from the
headlights at a generic position i towards the positions of the dri-
ver’s eyes ahead.

The geoprocessing model output a line shapefile connecting the
headlamp positions with the driver’s eye positions. Each line repre-
sents a ray of light and is associated with the line-of-sight evalua-
tion outcome (true or false).

The second component consists of a MATLAB module that is fed
with both the output of the geoprocessing model and the geomet-
ric parameters of a headlight beam to compute the glare incidence.
This module evaluates whether the unobstructed rays of light con-

Road centerline 

a) 

b) 

Fig. 2. Layout of headlight beam and driver a) horizontal projection, b) vertical projection.

Table 1
Parameters featuring the position of
headlamps.

Parameter Value

hh 0.750 m
d1 1.775 m
d2 1.345 m
d3 0.320 m

hi,l

hi,r

di+1

di+2

di+3

di+4

di+5

di+6

Fig. 3. Schema of lines launched between headlamp positions (yellow spots) and oncoming driver’s eyes (red spots).
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necting a headlamp position with a target are enclosed within the
defined headlight beam. Particularly, the illuminating headlights of
a vehicle at a given position are considered to dazzle an oncoming
driver at another particular position ahead if, at least, one of the
unobstructed rays of light connecting the positions in the 3D space
of the headlamps and the driver’s eye laid within the headlight
beam (Fig. 4). The output of this module can be displayed in a glare
graph. The glare graph is a plot that features headlight glare inci-
dence along a highway section. The abscissa axis indicates the sta-
tions where the vehicle considered to be illuminating is, and the
ordinate axis specifies the distance along the centerline to a posi-
tion ahead that may be affected by glare.

For the evaluation of glare, the headlight beam layout adopted
is based on assumptions made in previous studies (De Santos-
Berbel & Castro, 2020; De Santos-Berbel et al., 2016; Hassan
et al., 1997). It is assumed to be bounded by the horizontal spread
angle (a), the upward vertical spread angle (b) and the headlight
glare range (Rg). A graphical description of these parameters is
found in Fig. 2. With regard to the horizontal spread angle,
Hassan et al. (1997) explored horizontal spread angle values rang-
ing from 0� to 10� outward the spotlights in headlight sight dis-
tance evaluations. Later studies have utilized values ranging from
0� to 6� (De Santos-Berbel & Castro, 2020; De Santos-Berbel
et al., 2016). The vertical spread angle is measured upward the
beam axle, which is in turn parallel to the longitudinal grade of
the roadway. A value of 1� is commonly found in standards, guides
and research studies (AASHTO, 2018; De Santos-Berbel & Castro,
2020; Hassan et al., 1997; Ministerio de Fomento, 2016). The road-
way grade was accurately extracted from the LIDAR surveying
data. To analyze the sensitivity of headlight glare to the variation
of the horizontal spread angle, values between 1� and 6� were
assigned to this parameter. Finally, based on the literature, the
selected headlight glare range was 400 m. The selected values for
the headlight beam parameters are presented in Table 2.

Two types of frontlighting systems were regarded: fixed front-
lighting systems (FFS) and swiveling frontlighting systems (SFS).
The consideration of different types of frontlighting systems
involved the assumption of a certain swiveling angle (u in Fig. 4).
The value of this angle remained constant and equal to zero along
the highway section in the case of FFS, whereas it varied in the case
of SFS. Based on previous studies developed by the authors, the
swiveling angle of SFS is assumed to be controlled by the steering
wheel rotation for the purpose of keeping the beams on the road-
way where it bends (De Santos-Berbel & Castro, 2020). In turn, the
steering wheel turning angle is assumed to be directly proportional
to the vehicle’s yaw variation per traveled length. The vehicle yaw
is the angle rotated by the vehicle around its vertical axis changing
the direction of heading. If the yaw is denoted by the letter w, the
vehicle yaw variation per traveled length, or simply the yaw vari-
ation h, is given by:

h ¼ dw
ds

ð1Þ

Also according to the abovementioned study developed by the
authors, a mathematical function for the headlamp swiveling angle
u was proposed as follows (De Santos-Berbel & Castro, 2020):

u ¼ f hð Þ ¼ C � hE ð2Þ
where C and E are calibrated parameters, different for either swivel-
ing side. These calibrated values were used in this study and are dis-
played in Table 2.

4. Case study

A section of a two-lane rural highway located in the region of
Madrid (Spain) was selected to assess the incidence of headlight
glare using the procedure devised. Its cross section consists of
one 3-m wide lane per driving direction and 0.5-m wide shoulders.
A design speed of 80 km/h was assumed as per the geometric fea-
tures. The main horizontal alignment features are presented in
Table 3. An initial reverse curve in which both curve radii are
350 m is followed by short tangent, after which a second reverse
curve is found, where both radii are 150 m. This highway section
was selected because it comprises a sequence of multiple reverse
curves with a combination of clear and non-clear inner roadsides,
as well as tangents. These features make it suitable to test the pro-
cedure hereby presented for evaluating the incidence of headlight
glare and how the different factors considered affect glare caused
by vehicle headlights.

Concerning the highway and its environment, two scenarios
were contemplated to assess the impact of certain roadside fea-
tures on headlight glare incidence. Firstly, the actual highway envi-
ronment was modeled in full accordance with the LiDAR point
cloud. A 3D perspective of the original recreated scene, along with
the driver’s eye positions on either path, is illustrated in Fig. 5a.
Secondly, the original multipatch shapefile was added a feature
consisting of a visual barrier by the inner roadside at a double
reverse curve, were headlight glare was expected to be produced
since it was initially clear. The visual barrier consisted of a cluster
of trees conceived in SketchUp that can be imported into a multi-
patch shapefile (De Santos-Berbel & Castro, 2018). The location,
size, and layout of the visual barrier were set aided by 3D Analyst
tools. Particularly, a set of lines of sight was launched between the
beginning and the end of the double reverse curve to obtain the

Fig. 4. Layout of headlight beam in 3D space and oncoming driver potentially affected by glare.

Table 2
Parameters featuring the headlight beam.

Parameter Value

a 1� 2� 3� 4� 5� 6�
Cright 7.1 8.2 9.6 10.7 11.3 12.5
Eright 0.79 0.61 0.58 0.54 0.48 0.46
Cleft 11.75 12.74 14.13 15.22 15.82 17.02
Eleft 0.649 0.558 0.544 0.52 0.479 0.464
b 1�
Rg 400 m

P. Alcón Gil, César De Santos-Berbel and M. Castro Journal of Safety Research 76 (2021) 228–237

232



terrain profile and the necessary heights of the visual barrier. A 3D
perspective of the new scene and the driver’s eye positions are dis-
played in Fig. 5b. In the figure, it is observed that the highway sec-
tion has a composite profile.

5. Results and discussion

In this study, three factors were studied in the 3D simulation of
the headlight glare exposure. First, the effect of the horizontal
spread angle of light on glare was assessed. Second, the glare pro-
duced by two types of frontlighting systems was examined. Third,
two scenarios with varied roadside features were analyzed. It must
also be noted that glare was evaluated on both driving directions.
The results obtained for each of the groups of hypotheses are
described and discussed below.

5.1. Effect of the horizontal spread angle on glare

As previously described, headlight glare was assessed on the
selected highway section contemplating different values of the
horizontal spread angle. To isolate the effect of such a variable,
the other factors are kept constant. Fig. 6 displays the headlight
glare incidence for FFS on the outward direction in relation to
the horizontal spread angle (from 1� to 6�) and the horizontal cur-
vature of the selected section without the additional visual barrier.
It is first noticed that glare had more incidence if a wider horizon-
tal spread angle is considered. If the results are observed in relation
to the curvature graph, the glare incidence occurred at constant
distances on tangents, where the curvature is null. When
approaching or while driving through right-hand bends (stations
556 to 782 and 982 to 1,113), oncoming traffic is dazzled at shorter
distances than on tangents, especially as the horizontal spread

Table 3
Characterization of the horizontal alignment of the selected section.

Alignment Length (m) Radius (m) Deflection angle (gon) Parameter of spiral 1 Parameter of spiral 2

Tangent 556.242 (Inf) 0 – –
Horizontal curve 225.509 350 27.879 160 158
Horizontal curve 182.558 �350 �17.020 158 193.2
Tangent 17.969 (Inf) 0 – –
Horizontal curve 131.019 150 33.805 90 85.5
Horizontal curve 136.756 �150 �33.123 85.5 101.5
Tangent 494,465 (Inf) 0 – –

a) 

b) 

Fig. 5. Scene of the modeled highway a) actual situation and b) with added visual obstruction (cluster of trees).
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angle increases, but the section affected by headlight glare is far
shorter. Conversely, the headlight glare occurrence is virtually
non-existing on left-hand bends (stations 782 to 964 and 1,113
to 1,250). It can also be observed that on left-hand bends, the exist-
ing cut slope produced a visual barrier that breaks the glare area on
the graph around station 750.

These results can help estimate the duration of glare when the
vehicles involved are travelling at a given speed. Thus, assuming
that both vehicles travel at the design speed (80 km/h) alongside
the tangent, when glare occurs, it would last from 5.6 s in the case
of a = 1� to 8.4 s in the case of a = 6�. Although the duration of the
headlight glare would be much shorter in curves, the situation
would be significantly more hazardous if the dazzled driver expe-
riences disability glare as they could lose all reference to his/her
position on the roadway on a curved alignment.

5.2. Effect of the frontlighting system on glare

As mentioned earlier in this document, the glare produced by
two frontlighting systems was considered: FFS and SFS. To analyze
the effect of this factor, the headlight glare incidence considering
constant horizontal spread angle of 4� on the outward direction
without the additional visual barrier is assessed. Fig. 7 illustrates
the corresponding glare graph along with the horizontal curvature.
On right-hand curves, FFS produce glare for shorter distances
between the illuminating vehicle and the oncoming traffic. Con-
versely, on left-hand curves, SFS increase the incidence of glare,
which is practically non-existing for FFS. This effect is produced
because the light beam bends toward the inside of the curve to
light up the roadway instead of lighting up the roadside that lies
straight ahead. In left-hand bends, the light from the swiveling
headlamp runs through the opposite lane in order to illuminate
the greatest possible distance, dazzling at shorter distances. On
the contrary, in right-hand bends, the light from the swiveling
headlamp passes over the inner roadside, avoiding glare on short
distances. It can also be noted that the minimum distance at which
glare is produced on curves (20–30 m) is significantly shorter than
the counterpart distance on tangents (40 m).

Additional noteworthy findings concern the relationship
between the radius of the horizontal curves and the ranges of glare
distances. On the one hand, the minimum distance at which head-
light glare is produced by the calibrated SFS was independent from
the curve radius on left-hand bends, they resulting as short as
15 m. However, the maximum distance at which the oncoming dri-
ver was dazzled was significantly longer on the left-hand bend
around station 680 than on the left-hand bend around station
1,180. This difference was likely to be produced by the small
deflection angle turned on the former curve. On the other hand,
the minimum distances at which glare was produced when assess-
ing the FFS decreased as the curve radius increased.

Fig. 8 shows the percentage of stations as a function of the dis-
tances ahead where headlight glare was found to be produced, in
total for both driving directions. Three pairs of series that corre-
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spond to three horizontal spread angle values (1�, 3� and 6�) in
combination with the two frontlighting systems considered in this
study are represented. It is first noticed that all the series present a
sudden increase of the headlight glare incidence percentage at dif-
ferent distances. As the horizontal spread angle increases, the dis-
tance at which the peak is found decreases. These values
correspond to the distance from which glare is produced on tan-
gents as deduced from Fig. 6. It can also be observed that the SFS
generally yielded slightly higher percentages of glare incidence at

all ranges of distances. These results highlight the increased ten-
dency of SFS to produce glare.

5.3. Effect of the additional visual barrier

As indicated earlier, the effect of introducing a visual barrier by
the inner roadside of a double reverse curve on headlight glare was
assessed. The glare outcome produced in the two scenarios is illus-
trated in Fig. 9 for its comparison. To analyze this effect, FFS with
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the horizontal spread angle set at 6� were considered on the out-
ward direction. In this direction, the visual barrier is located
between the two left-hand curves. Its effect, highlighted in red in
the figure, is therefore produced when the dazzling vehicle travels
along the first left-hand curve, and affects targets located on the
second left-hand curve. Moreover, given the existing sequence of
alignments, the sections where glare is avoided are at a distance
of more than 200 m.

Finally, a similar comparison was performed considering SFS
with the horizontal spread angle set at 6� on the outward direction
(Fig. 10). It can be noticed that the situations where headlight glare
was produced, in general, increased in comparison to the FFS as the
yellow area is greater than in Fig. 9. However, the impact of the
visual barrier on headlight glare reduction is less significant in
the case of the SFS. This occurred because the SFS produce less
glare between vehicles on the two left-hand bends than FFS do.
Instead, glare is produced between vehicles located on consecutive
curves if SFS are regarded.

6. Conclusions

This study proposes a procedure to address the potential high-
way safety effects of headlight glare and their interaction with the
geometric design of a highway section. A 3D model of the highway
and its environment was derived from a LiDAR point cloud. A line-
of-sight analysis performed by a geoprocessing model in GIS deter-
mined whether the rays of light emitted by headlights hit the eye
of the oncoming driver or are intercepted by either the roadway or
the roadside obstructions. Then, a MATLAB module was developed
to check whether the non-obstructed rays of light are enclosed by a
given headlight beam. Different hypotheses were set concerning
the headlight beam features, including the horizontal spread angle
and two types of frontlighting systems, namely FFS and SFS. A
highway section was selected to test and validate the procedure
hereby proposed.

The results showed that a greater glare incidence is produced
on oncoming drivers as the horizontal spread angle of the head-

light beam increases. It was also found that SFS increased glare
occurrence on left-hand curves, while glare incidence was reduced
on right-hand bends when compared to the expected glare of FFS.
However, a more efficient orientation of the light beam should not
increase the incidence of glare. The results also indicated that SFS
are overall more prone to produce glare than the FFS.

A vegetation virtual visual barrier was conveniently placed by
the roadside of an existing double reverse curve on the highway
model, and its effect on headlight glare avoidance was studied.
Given the highway geometric layout of the case study presented,
its effectiveness on glare avoidance was noticed for distances
beyond 200 m. A headlight glare evaluation assists in deciding
whether to place a vegetation barrier and where and can help
determine its potential benefits. In addition, it helped validate
the procedure hereby proposed as the effects found in the case
study were in line with the expectations. The procedure hereby
presented can, on the one hand, contribute to develop more effec-
tive glare avoidance technologies. On the other hand, it facilitates
the identification of glare-prone sections and helps estimate how
long glare would last as a measure to assess potential alignment
shortcomings. It can also assist in discerning whether headlight
glare might have contributed to the occurrence of a particular acci-
dent. Moreover, it is capable of evaluating the effectiveness of
countermeasures such as a visual barrier.

Given the versatility of the procedure, the authors propose the
analysis of glare incidence considering other vehicle types such
as heavy vehicles as a future line of research for a more compre-
hensive evaluation. In addition, the evaluation of glare on a driving
simulator recreating the highway segment studied and the light
conditions created by the swiveling headlights is to be pursued.
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a b s t r a c t

Introduction: This study investigated the effects of pavement surface condition and other control factors
on casualty crashes at signalized intersections. It involved conducting a before and after study for road
surface condition and situational factors. It also included assessing the effects of geometric characteristics
on safety performance of signalized intersections post resurfacing to control for the effect of pavement
surface condition. Pavement surface condition included roughness, rutting, and skid resistance. The con-
trol factors included traffic volume, light and surface moisture condition, and speed limit. The geometric
characteristics included approach width, number of lanes, intersection depth, presence of median, pres-
ence of shared lane, and presence of bus stop. Method: To account for the repeated observations of the
effect of light and surface moisture conditions in four occasions (day-dry, day-wet, night-dry and
night-wet) Generalized Estimating Equation (GEE) with Negative Binomial (NB) and log link function
was applied. For each signalized intersection in the sample, condition data are collected for the year
before and after the year of surface treatment. Crash data, however, are collected for a minimum of three
and maximum of five years before and after treatment years. Results: The results show that before treat-
ment, light condition, road surface moisture condition, and skid resistance interaction with traffic volume
are the significant contributors to crash occurrence. For after treatment; light condition, road surface
moisture condition, their interaction product, and roughness interaction with light condition, surface
moisture condition, and traffic volume are the significant contributors. The geometric variables that were
found to have significant effects on crash frequency post resurfacing were approach width interactions
with presence of shared lane, bus stop, or median. Conclusions: The findings confirm that resurfacing is
significant in reducing crash frequency and severity levels. Practical Applications: The study findings
would help for better understanding of how geometric characteristics can be improved to reduce crash
occurrence.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Crash frequencies at signalised intersections could be a reflec-
tion of poor pavement surface condition. It is believed that ade-
quate level of pavement surface condition would improve traffic
safety at signalised intersections and roadway segments. There-
fore, a good understanding of the factors contributing to crash
occurrence at signalised intersections is important for improving

their safety performance. Pavement condition parameters includ-
ing skid resistance, roughness and rutting are the most common
indicators of road safety problems. The findings from past pub-
lished studies related to the effects of these condition parameters
on safety performance involved using different methodologies
and cover different locations (intersections and road links) and
operating environments (rural and urban).

Generally, these studies show that one of the most important
characteristics of road surface which has the best-established rela-
tionship with crash occurrence is skid resistance. A number of
studies have shown that an improvement in skid resistance can
produce considerable safety benefits for both intersections and
road segments (Candappa, Scully, Newstead, & Corben, 2007;
Giles & Sabey, 1959; Kinnear, Lainson, & Penn, 1984; Noyce,
Bahia, Yambo, & Kim, 2005; Oliver, 1999; Saplioglu, Eriskin,
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Yuzer, & Aktas, 2012). Also, high skid resistance treatments have
also shown to achieve a significant reduction in crash occurrence
and the severity of some crashes. In accordance with observations
from analysis of data for three years before and 18 months after
treatment, Kinnear et al. (1984) reported that there was an effi-
cient reduction in crashes by 25% with a 99% confidence level for
all surfaces after treatment.

Another study carried out by Simpson and Eng (2005) in Mel-
bourne and Geelong, Victoria, to investigate the performance of
roads with high skid resistance and its effect on crash rate trends.
Analysis of the data for before and after study indicated a decrease
in the number of crashes of about 39% in the treated areas, con-
firming the advantage of the treatment. Furthermore, an improve-
ment in skid resistance resulted in considerable safety benefits for
both intersections and road segments (Lyon & Persaud, 2008).
Pardillo Mayora and Jurado Piña (2009) stated that an improve-
ment in skid resistance after resurfacing lead to significant
decrease in crash rates as skid resistance increases in both wet
and dry pavement conditions. They reported an average of 68%
reduction in wet-pavement crash rate after resurfacing.
Chassiakos, Panagolia, Theodorakopoulos, and Vagiotas (2004)
found 44% reduction in crashes at sections related to rural, parts
of urban and intersections due to resurfacing.

In addition, findings from previous studies indicate that an
increase in pavement roughness results in an increase in crash rate
(Chan, Huang, Yan, & Richards, 2010, 2009; Cairney & Bennett,
2008; Ihs, 2004; Othman, Thomson, & Lanner, 2009; Bester, 2003).
Larson, Hoerner, Smith, and Wolters (2008) added that an increase
in crash rates at signalised intersections is associated with an
increase in pavement roughness due to the presence of rutting,
shoving and corrugated road surface. This is in addition to an
increase in thepossibilityof aggregate polishingas a result of regular
stopping and starting operations of high traffic volume at signalised
intersections. Dong, Clarke, Yan, Khattak, andHuang (2014) resulted
in an increase in crash frequency due to increase in International
Roughness Index (IRI) at 603 signalised intersections in Tennessee/
USA through comparison of both multivariate random-parameters
zero-inflated negative-binomial regression and multivariate zero-
inflated negative binomial regression models. Al-Masaeid (1997)
found that an increase in road roughness lead to reduction in
single-vehicle crash rate and increase in multiple-vehicle crash
rates.

Further, the relation of rutting to safety is a major concern; how-
ever, there is no clear relationship between rut depth and crashes
(Ihs, Velin, & Wiklund, 2002). Deeper ruts are not correlated with
higher crash risk except for night and rain weather-related crashes
(Ihs, Gustafsson, Eriksson, & Wiklund, 2011). Cairney, Styles, and
Bennett (2005) carried out a study on a rural major highway in Vic-
toria to examine the relationship between rutting and crashes. The
authors stated that pavement ruts of 20 mm and deeper lead to 60%
increase in crash risk. Chan et al. (2009) indicated that rut depth did
not affect crash predictionmodels significantly except for night and
rain weather-related crashes. Furthermore, Start, Kim, and Berg
(1998) found that crash rate at undivided rural highways increases
with rut depths greater than 7.6 mm.

Many studies have been also concerned with the identification
of geometric parameters that lead to crash occurrence. Different
relationships were developed between geometric characteristics
and crash occurrence at both signalised intersections and roadway
segments. In Victoria, Australia, Ogden, Newstead, Ryan, and
Gantzer (1994) carried out a study of a sample of 76 signalised
intersections to identify factors affecting crash occurrence. Based
on the analysis described in their study it was found that: (i) lower
crash rates were observed in approaches with exclusive right-turn
lanes, (ii) there was a tendency for approaches with narrow lanes
(less than the typical width of 3–3.5 m) to have higher crash fre-

quencies and (iii) the presence of medians greater than 0.9 m con-
tributed to lower crash occurrence. Bonneson and Mccoy (1997)
used negative binomial distribution to identify common trends of
crash occurrence related to median treatment on urban arterials.
Higher crash frequency was found for undivided cross sections
(no median) in situations where parallel parking was allowed.
Knuiman, Council, and Reinfurt (1993) found that total crashes
and crash rates for particular types and severity decreased rapidly
as the median width exceeded nearly 7.6 m.

Othmanet al. (2009) reported that an increase in lanewidth leads
to an increase in crash rates for all types of roads. This evidence is
thought to be due to overtaking behavior, lane changingmaneuvers
and higher speeds on wide carriageways. Based on Ilion’s country-
data, Noland and Oh (2002) performed a study to evaluate the effect
of infrastructure changes on crashes. The authors found that higher
traffic related fatalities were associated with the increased number
of lanes, lane width and outside shoulder widths. Jiang (2012) stud-
ied the effect of traffic engineering factors on the occurrence of two-
vehicle crashes. The results showed that lanewidth did not produce
any significant influence on crash severity and the effect of traffic
engineering factors vary by the type of crashes. In contrast,
Popoola, Abiola, and Odunfa (2018) found that the wider lanes are
related to lower crashes on a two-lane highway.

A study to explore the effect of different factors on crash fre-
quency and examine the effect of spatial correlation among 476 sig-
nalised intersections along 41 corridors in Floridawas conducted by
Abdel-Aty and Wang (2006). The authors found that approaches
with a larger number of lanes were associated with higher crash
frequency. Similarly, Milton andMannering (1998) pointed out that
the number of lanes in a section of highway was a significant factor
in increasing crash frequency. Turner, Singh, and Nates (2012) eval-
uated 238 signalised intersections in New Zealand and Australia.
The authors attempted to quantify the effect of various factors
related to intersection geometry, signal phasing and land-use envi-
ronment on different crash types and to develop crash prediction
models. Results indicated that more crashes occurred at larger
intersections with higher numbers of approach and exit lanes and
at those with greater intersection depths (the crossing distance
from one approach to the opposite approach) and the number of
crashes rose at intersections with parking within 30–40 m of the
stop line. The authors also found that presence of a shared lane
had a mixed effect on crash occurrence. In peak period, right angle
crashes increased in all cities with the presence of a shared lane.
However, approaches with the presence of shared right turn/
through lanes were associated with a reduction in crashes at inter-
sections with lower traffic volumes. Furthermore, Wang and Abdel-
Aty (2006) reported that with regard to type of right-turn lane (left-
turn in Australia) on minor roadways, exclusive and channelised
right-turn lanes were found to be related to fewer rear-end crashes
than shared right turn lanes. However, in a study to investigate the
safety performance of different right-turn designs at intersections,
Fitzpatrick, Schneider, and Park (2006) found that shared
through/right turn lanes were associated with lower crash fre-
quency. Turner et al. (2012) stated that adequate phase time is a
significant factor in reducing crash occurrence. Morgan, Tziotis,
and Turner (2009) added that insufficient phase time is a possible
contributory factor for different crash types.

The purpose of this study is to establish how these pavement
condition parameters contribute to occurrence of casualty crashes
at signalised intersections. Casualty crashes include all severity
levels namely; fatal, serious injury and others. This is in addition
to their interactions with situational factors including speed limit,
traffic volume, light condition and surface moisture condition. The
contribution of intersection geometric characteristics to safety per-
formance after treatment is also assessed. The sites of signalised
intersections used in this study were selected to have been
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subjected to surface treatment (thin asphalt surfacing) with no
changes in geometric characteristics over the study period. Their
safety performance was compared before and after treatment
using suitable regression analyses. In both assessments contribu-
tion of human behaviour to crash occurrence is considered con-
stant. Details of sites selection criteria, collection of surface
condition and crash data, assessment approach are described in
this paper. Assessment results are also presented and discussed.

2. Sites selection

The sites of signalised intersections used in this study were
selected from a metropolitan region in Melbourne, Victoria/Aus-
tralia. For assessing the effects of surface condition parameters
and other situational factors on safety performance, only sites that
satisfied all the following criteria were considered:

� Only sites that have been subjected to surface treatment are
considered

� Have surface condition data (roughness, rutting and skid resis-
tance) for the year before and year after treatment year

� Have crash data over 3–5 years before and after treatment year
� Did not have any changes in geometry or speed limit during the
assessment period

At the time of this study, historical data for surface treatment of
pavements in the selected region was available for the period of
2007–2010. All signalised intersections that were subjected to sur-
face treatment during this period were identified but considering
the remaining above criteria, a sample of 57 sites was selected. It
is important to note that surface treatments applied to any of these
intersections do not cover the whole intersection. They may cover
the intersection centre, intersection centre and approaches or any
of the approaches (immediate 200 m). The total length of treat-
ment for sites that have been included in the analysis ranges
between 100 and 500 m.

Intersections with tram tracks (light rail) were also excluded to
control their effect on the different pavement condition parame-
ters. Since no changes were made to the geometry or speed of
these intersections post treatment, it is safe to assume that the
only variable road-related factors are surface condition and the
normal annual increase in traffic volumes.

A sample of these treated intersections with different geometric
characteristics was selected. The geometric characteristics for the
selected intersections were collected for the years after treatment,
to control for the effect of pavement surface condition. Considering
the significant contribution of phase time, sample size was limited
to those with available phase time data for the years of interest. A
total of 49 sites were selected and Google Earth was used to iden-
tify their geometric characteristics.

3. Statistical approaches

Crash data are non-negative integers and when the mean is
small, their distributions will be positively skewed. Thus, Pois-
son/NB are appropriate primary models to consider for crash data
(Hilbe, 2011). Numerous studies have been carried out to analyse
crash occurrence at intersections by applying statistical
approaches including Poisson and Negative Binomial (NB) regres-
sion models. One of the characteristics of crash frequency data is
that the variance of crash counts is greater than the mean (over
dispersion). The assumption of Poisson regression (equi-
dispersion) is that the mean and variance of crash count data are
equal. Milton and Mannering (1998) suggested that the negative
binomial regression is an appropriate predictive model for apply-
ing in crash frequency studies.

In this study, the crash data are not independent owing to the
repeated observations of the effect of light and surface moisture
conditions over four occasions (day-dry, day-wet, night-dry and
night-wet) for each intersection. This clustering needs to be taken
account of in the statistical analysis to compute appropriate stan-
dard errors. To account for the repeated observations, the Gener-
alised Estimating Equation (GEE) approach has been used to
account for the correlation among clustered data (Liang & Zeger,
1986; Diggle, Heagerty, Liang, & Zeger, 2002). Accordingly, because
the observations are clustered within subjects and are not time
series data, an exchangeable correlation matrix with robust vari-
ance estimation was applied for crash severity analysis.

A GEE gives a marginal (or population average) interpretation of
results which is identical to results obtained using independent
data. Furthermore, for a GEE, the estimated effects are robust to
misspecification of the correlation structure for reasonable sam-
ples sizes (Diggle et al., 2002). Alternatives to GEEs include random
effects models, robust variance estimation or simple scaling of
variances (Diggle et al., 2002; Hilbe, 2011). A disadvantage of ran-
dom effects models is that they require the correlation structure to
be correct for the estimated effects to be unbiased. Moreover, ran-
dom effects models for discrete data (such as crash counts) give a
‘‘subject-specific” interpretation which is not necessarily compara-
ble to results obtained in studies using independent data.

4. Data preparation

The data collected for studying safety performance of the iden-
tified signalised intersections include crash data, surface condition,
geometric characteristics, speed limit, phase time and traffic vol-
umes. Preparations of these data sets are described in the following
subsections.

Crash data was collected from CrashStat database (VicRoads,
2014) which contains information on crashes that occurred during
the 13-year period (2000–2013) of interest. This database was fil-
tered to select only crashes that occurred at the treated direction of
each selected site, using the chainages where crashes occurred.
Crash location could be within centre of intersection or immediate
200 m of its approaches as shown in Fig. 1. Crash data for these
intersections was available either for 3, 4 or 5 years before and
after treatment years. To provide a balanced analysis, an equal per-
iod of crash data for before and after treatment was selected for
each intersection. And to maximise the power of analysis the long-
est available period for each intersection (i.e. either 3, 4 or 5 years)
was used. Crash data collected includes all casualty crashes i.e. cov-
ering all severity levels (fatal, serious injuries and other), type of
crash (head on, rear etc.), light condition when they occurred
(day or night), road surface moisture condition (wet or dry) and
speed limit.

Surface condition data including roughness, rutting and skid
resistance of the treated direction of each site were collected for
one year before treatment year and one year after. Roughness
and rutting data are collected for the whole network bi-annually
using laser profiler. Roughness determined from longitudinal pro-
file measurements is reported in terms of the International Rough-
ness Index in m/km for 100 m segments. The measure used herein
is lane IRI i.e. average IRI of both wheel paths. Rutting is deter-
mined from transverse profile measurements and reported in
terms of average lane rut depth in mm for 100 m segments. Skid
resistance data is collected regularly using Side-ways force Coeffi-
cient Routine Investigation Machine (SCRIM). It is collected for
both wheel paths and reported for each separately and their aver-
age in terms of Side-ways force Coefficient (SFC) values, also for
100 m segments. Data documented by SCRIM is positive integer
equivalent to the SFC*100.
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For the analysis performed herein, data of each condition
parameter for each site was averaged over a length of 500 m cov-
ering the intersection centre and a maximum of 400 m of its
approaches. It is important to note that surface treatments of pave-
ments at intersections and their approaches are currently triggered
by surface distress ratings, referred to as Surface Inspection Rating
(SIR), regardless of roughness level. SIR of an asphalt surfacing is a
composite index of the ratings for cracking, stone loss, texture loss,
patching and deformation (VicRoads, 2004).

Geometric characteristics and speed limit data have been col-
lected for the treated approaches of the selected sample through
site maps and special tools such as Google Earth. The geometric
characteristics that have been collected are: approach width,

number of approach lane, intersection depth, presence of median,
presence of shared lane, presence of bus stop, presence of parking
and type of intersection. Detailed explanation of these variables is
shown in Fig. 2. The intersection depth is the distance travelled by
an approaching vehicle to reach to the opposite approach (Turner
et al., 2012). There were 36 four legged intersections and 13
three-legged intersection that used for geometrics characteristics
assessment. When the treated approach was on the major leg of
four-legged or three-legged intersections, the intersection depth
was measured from the limit line of the approach leg to that of
the exit leg. In the case of three-legged intersections, when the
treated approach was on the minor leg of the intersection, the
intersection depth was the distance from the limit line of the
approach leg to the opposite edge of the intersection.

Data for phase time of each intersection approach during morn-
ing peak hours (7–9 am) and afternoon peak hours (4–6 pm), for
the year after treatment year were obtained. A phase time is the
summation of the displayed green time and inter-green time (yel-
low time plus all-red time) (Akçelik, 2006). A detailed description
of cycle-by-cycle of the operational characteristics of signalised
intersections during a 24-hour period can be obtained through
SCATS (Sydney Coordinated Adaptive Traffic System).

For assessing safety performance of intersections before and
after treatment, other explanatory variables have been considered
together with pavement conditions parameters and their
interactions. They include light condition (day/night), road surface
moisture condition (wet/dry), traffic volume and speed limit. Light
and surface moisture condition were obtained from relevant crash
database. For each site, traffic volumes were collected for the 3–
5 years before and after treatment i.e. covering the same number
of years of available crash data. Traffic volume data used in the
analysis is in terms of Annual Average Daily Traffic (AADT) that
uses the section of road where the intersection site is located i.e.
not peak traffic at the intersection.

5. Assessing the effect of pavement surface condition

Pavement surface condition parameters in terms of roughness,
rutting and skid resistance (averaged over a length of 500 m cover-
ing the intersection and a maximum of 400 m of its approaches),

Fig. 1. Sketch of an intersection and approaches of immediate of 200 m illustrating
the treated length.

Fig. 2. Data collection of different geometric characteristics.
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traffic volume in terms of AADT, speed limit, light condition (day
coded as 1 and night coded as 0) and surface moisture condition
(dry coded as 1 and wet coded as 0) were explored for their effect
on crash occurrence before and after resurfacing. Summary statis-
tics of crash data and the continuous variables used in this study
for before and after treatment are given in Table 1 for before and
after treatment. Light and surface moisture conditions are categor-
ical variables.

The assessment approach adopted herein to assess how pave-
ment surface condition affects crash occurrence is to develop
regression models linking each crash data set to corresponding
variables and their interactions. Variables contributing to crash
occurrence are then identified as those that have statistically sig-
nificant effects in the models. In this study, several criteria were
used to choose the appropriate probability model for crash data
analysis. The following subsections present the testing performed
to establish the best approach for modelling each data set.

5.1. Evaluation of over dispersion for casualty crashes

Numerous studies have been carried out to analyse crash occur-
rence at intersections by applying statistical approaches including
Poisson and NB regression models and using Maximum Likelihood
Estimation (MLE). One of the characteristics of crash frequency
data is that the variance of crash counts is greater than the mean
(over dispersion). The assumption of Poisson regression (equi-
dispersion) is that the mean and variance of crash count data is
equal. In the case of over-dispersion in crash frequency data, using
a common Poisson model can lead to biased parameter estimates
and erroneous conclusions concerning factors related to crash fre-
quency data (Park & Lord, 2007). Milton and Mannering (1998)
suggested that the negative binomial regression is an appropriate
predictive model for applying in crash frequency studies.

In this study, several criteria were used to choose the appropri-
ate probability model for crash data analysis. These criteria are:
examining goodness of fit of the data to the probability mass func-
tion, examining whether the dispersion statistic is greater than one
and testing whether the dispersion parameter > 0 using the
Lagrange multiplier test.

Histograms of crash data sets for before and after treatment
include high number of zero values and the variance of observed
crash counts is greater than the mean (over dispersion). To choose
the probability model for casualty crash data, goodness of fit was
examined by plotting the observed crash data against both NB
and Poisson Probability Mass Functions (PMFs) as given in Fig. 3.
To construct the figure, first the mean and dispersion parameter
for the Poisson and NB models were estimated. Then, these values

were substituted into the formulas for their respective PMFs to
compute the count probabilities over the range of the observed
data. Fig. 3 indicates that for both before and after treatment the
observed number of casualty crashes fitted substantially better to
the NB than the Poisson distribution.

The values of the dispersion statistic (Pearson chi square/degree
of freedom) for the Poisson model with no covariates (intercept
only) of 4.19 for before treatment and 3.84 for after treatment
are greater than 1 which suggest that the dependent variable
(crash frequency) is over dispersed. In addition, the dispersion
parameter (alpha, a) refers to the parameter used in NB2 model
to take account of over-dispersion which is assumed to be zero
in the Poisson model. However, the negative binomial model
allows it to be greater than zero. The dispersion parameters for

Table 1
Descriptive statistics of crash data and continuous variables for before and after treatment.

Variables Min Max Mean Std. Deviation Interquartile range
(75%–25%)

Before treatment
Casualty crashes (3–5 years) 0 14 1.94 2.85 2–0
Roughness 1.55 5.25 3.03 0.83 3.6–2.41
Rutting 2.50 15.25 6.08 2.65 6.8–4.5
Skid resistance 0.39 0.70 0.51 0.07 0.55–0.47
AADT 1,600 27,136 13,955 5,853 17,786–10,000
Speed limit 60 80 71.23 6.59 80–70

After treatment
Casualty crashes (3–5 years) 0 13 1.42 2.33 1–0
Roughness 1.81 4.78 2.88 0.59 3.26–2.48
Rutting 2.80 10.40 5.48 2.32 6.2–4
Skid resistance 0.48 0.71 0.60 0.06 0.64–0.58
AADT 1,600 28,550 14,689 6,183 19,000–10,000
Speed limit 60 80 71.23 6.59 80–70

Fig. 3. Observed casualty crash frequency against Poisson and NB probability mass
function, before and after treatment.
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NB2 model with no covariates (intercept only) of 1.72 for before
treatment and 1.89 for after treatment are greater than zero which
again indicate that the dependent variable (casualty crash fre-
quency) is over dispersed.

Another commonly used statistic to quantify the amount of
over dispersion in crash data is Lagrange multiplier test. This test
provides a p-value for which a decision can be made on whether
to use Poisson or Negative Binomial model. Results of the Lagrange
multiplier test for both before and after treatment crash data
showed that the Z-score test is 5.328 for before treatment and
3.839 for after treatment with a t-probability of P < 0.001 for both.
The significant Lagrange tests for both data sets indicates that the
model dispersion parameter is different from zero. These results
prove that the hypothesis of no over dispersion is rejected and
the real over dispersion exists in both data sets. Therefore, casualty
crash data, for before and after treatment, should be modeled as
negative binomial as it is preferred over Poisson model.

5.2. Results and discussion

The crash data are not independent owing to the repeated
observation of each intersection on four occasions (night-wet,
night-dry, day-wet and day-dry). This clustering needs to be taken
account of in the statistical analysis, e.g. to compute appropriate
standard errors. The GEE method is an extension of the Generalised
Linear Model (GLM) that accounts for the correlation among clus-
tered data (Liang & Zeger, 1986).

Based on the goodness of fit evaluation of the model described
in the previous section, this section applies the traditional NB
regression as an initial step to estimate the dispersion parameter
for the largest possible model including all predictors and signifi-
cant interactions. GEE with NB distribution and log link function
was used to analyse casualty crash data as the response variable.
The explanatory variables including roughness, rutting and skid
resistance were factors of interest in analysing casualty crash data.
Natural log of traffic volume in terms of AADT (LogAADT), speed
limit, light condition and surface moisture condition were included
as control variables. This is done to focus the analysis and deal with
interactions. With a small range of skid resistance from 0.39 to 0.7
for before treatment and 0.48 to 0.71 for after treatment (refer to
Table 1), the effect of skid resistance � 100 was used to increase
in the interpretability of regression coefficients.

Sometimes the effect of an independent variable, on a depen-
dent variable, changes with the change in another variable which
is called the interaction effect. To limit the number of interactions,
all first order interactions (two-way interactions) among factors of

interest and all first order interactions between each factors of
interest and each control variable were examined. It was necessary
to transform the continuous independent variables to centered
variables by subtracting their mean values from their actual values.
It is suggested that using centered variables in regression analysis
leads to an increase in the interpretability of regression coefficients
(Afshartous & Preston, 2011). The variables that were centered in
this analysis are roughness, rutting, skid resistance and logAADT.
Speed limit was not centered to the mean value, but to 60 km/h,
which was the slowest speed limit.

For modelling GEE with NB distribution and log link function, a
traditional negative binomial with all predictors and interactions
was used to estimate the maximum likelihood value of (a) as a dis-
persion parameter. This value was inserted to GEE negative bino-
mial model with all predictors and interactions.

By using GEE with the chosen correlation matrix (exchange-
able), non-significant interactions were excluded and only predic-
tors with main effect and significant interactions remained in the
final model. Crash data was modelled using GEE for both before
and after treatment. This working correlation matrix was based
on a total of 57 clusters (number of signalised intersections). This
resulted in a 4 � 4-dimension correlation matrix and the total
number of observations = 57 � 4 = 228. The GEE was fitted using
the value of a = 0.593 for before treatment and a = 0.661 for after
treatment. Modelling outputs are presented next, separately, for
before and after treatment casualty crashes.

1) Before treatment: The output results for before treatment is
given in Table 2. The results show that not all predictors are statis-
tically significant in explaining the variation in crash frequency.
The factors with significant contributions are light condition, road
surface moisture condition, their interaction product and interac-
tion of skid resistance with traffic volume were the significant con-
tributors to crash occurrence. The intercept is the expected number
of crashes when all variables in the model are evaluated at zero.
That is, during the day when it is dry, the expected total crash
count is exp (1.432) = 4.2 crashes for an intersection with a speed
limit of 60 km/h, if all other centered variables take their mean val-
ues. The main effect of light condition indicates that night time
condition is associated with lower crashes as indicated by negative
coefficient �1.01. In addition, the significant effect of surface mois-
ture condition with negative coefficient of �1.699 implies that wet
surface condition has lower crash frequency than dry surface
condition.

To interpret the interaction effect between these two categori-
cal variables, constructing a table is helpful. The predicted mean
number of crashes for before period using GEE with NB model by

Table 2
GEE regression with NB and log link-before treatment.

Parameter Coefficients b Std. Error P-Value Exp (b) 95% Wald Confidence
Interval for Exp (b)

Lower Upper

Intercept 1.432 0.233 0.000 4.189 2.651 6.617
Light condition, Night = 0 �1.010 0.116 0.000 0.364 0.290 0.457
Light condition, Day = 1* 0 . . 1 . .
Surface MC, Wet = 0 �1.699 0.168 0.000 0.183 0.132 0.254
Surface MC, Dry = 1* 0 . . 1 . .
CRoughness 0.088 0.143 0.537 1.092 0.825 1.446
CRutting �0.044 0.056 0.428 0.957 0.857 1.067
CSkid resistance � 100 �0.037 0.022 0.089 0.964 0.923 1.006
Speed Limit 0.021 0.183 0.907 1.022 0.714 1.462
CLogAADT 0.006 0.2 0.977 1.006 0.679 1.488
Light condition = 0 � Surface MC = 0 0.800 0.231 0.001 2.225 1.416 3.498
CSkid resistance � CLogAADT �0.064 0.030 0.035 0.938 0.884 0.996
(Negative binomial) 0.593
Number of observations 57*4 = 228

*Reference case for category variable.
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light and surface moisture condition setting all other centered vari-
ables to their mean values are given in Table 3.

The results indicate that crash frequency is highest in dry/day
conditions followed by dry/night, wet/day with the lowest being
wet/night conditions. To plot the effect of interaction between skid
resistance and traffic volume on crash frequency, it is necessary to
calculate the predicted value of crashes for before period as a func-
tion of skid resistance with representative values of traffic volume
as shown in Fig. 4. Fig. 4 indicates that crash frequency increases

with skid resistance for low traffic volume category. These findings
could be attributed to the fact that both smoothness and skid resis-
tance improvement following resurfacing may encourage drivers
to drive faster hence leading to an increase in crash occurrence
(Cleveland, 1987).

2) After treatment: The output results for after treatment is
given in Table 4. Results illustrate that not all predictors are signif-
icant in crash occurrence. The intercept is the expected number of
crashes when all variables in the model are evaluated at zero. That
is, during the day when it is dry, the expected total crash count for
after period is exp (1.31) = 3.7 crashes for an intersection with a
speed limit of 60 km/h, if all other centered variables take their
mean values. The main effect of light condition illustrates that
night time condition is associated with lower crashes as indicated
by the negative coefficient �1.457. In addition, the significant
effect of surface moisture condition with negative coefficient of
�1.869 implies that wet surface condition has lower crash fre-
quency than dry surface condition.

For interpretation of interaction between these two categorical
variables, the predicted mean number of crashes for after period,
using GEE with NB model by light and surface moisture condition
setting all other centered variables to their mean values are given
in Table 5. The results indicate that the crash frequency increased
in dry surface conditions and at day time as compared to wet sur-
face conditions during night time. The effect of light condition on
crash occurrence has changed by the effect of surface moisture
condition.

The significant interaction term between roughness and light
condition and roughness and surface moisture condition suggests
that the relationship between crash frequency and roughness dif-
fers with light condition (day/night) and surface moisture condi-
tion (dry/wet). However, it is not entirely clear how it varied
with day and night and with dry and wet surface condition. For
interpretation of the significant interaction term between rough-
ness and light condition the effect of this interaction was plotted
as shown in Fig. 5.

Fig. 5 indicates that when the surface was rough, crash fre-
quency was higher during day time than night time, because of
higher traffic volume during the day as compared to night condi-
tion. Similar findings have been reported in Yan, Radwan, and
Abdel-Aty (2005) and Clague and Baran (2005). However, the neg-
ative coefficient of the interaction term implies that at night time
there is slightly less crash frequency at higher values of roughness.
This finding is supported by a recent study by Buddhavarapu,

Table 3
Effect of light condition � surface moisture condition interaction on casualty crashes-
before period.

Predicted value of crash frequency

Wet Dry

Night 0.62 1.53
Day 0.77 4.19

Fig. 4. Effect of skid resistance � traffic volume interaction on casualty crashes.

Table 4
GEE regression with NB and log link-after treatment.

Parameter Coefficients b Std. Error P-Value Exp (b) 95% Wald Confidence
Interval for Exp (b)

Lower Upper

(Intercept) 1.310 0.212 0.000 3.707 2.445 5.620
Light condition, Night = 0 �1.457 0.136 0.000 0.233 0.178 0.304
Light condition, Day = 1* 0 . . 1 . .
Surface MC, Wet = 0 �1.869 0.182 0.000 0.154 0.108 0.221
Surface MC, Dry = 1* 0 . . 1 . .
CRoughness 0.343 0.222 0.122 1.409 0.913 2.175
CRutting �0.061 0.052 0.234 0.941 0.850 1.040
CSkid resistance � 100 �0.027 0.019 0.150 0.973 0.938 1.01
Speed Limit �0.009 0.186 0.963 0.991 0.689 1.427
CLogAADT �0.009 0.166 0.958 0.991 0.716 1.373
Light condition = 0 � Surface MC = 0 1.567 0.283 0.000 4.792 2.752 8.344
Light condition = 0 � CRoughness �0.490 0.199 0.014 0.613 0.414 0.907
Surface MC = 0 � CRoughness 0.514 0.202 0.011 1.672 1.124 2.486
CRoughness � CLogAADT 0.762 0.288 0.008 2.142 1.217 3.770
(Negative binomial) 0.661
Number of observations 57*4 = 228

*Reference case for category variable.
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Banerjee, and Prozzi (2013), who related this to that drivers are
more cautious while driving at night time conditions.

Similarly, for interpretation of the significant interaction term
between roughness and surfacemoisture condition, the effect of this
interaction was plotted as shown in Fig. 6. Fig. 6 indicates when the
surface was rough crash frequency was higher at dry surface condi-
tion than wet surface condition. Crash frequency increased with
increasing roughness at both wet and dry surface condition.

The results are consistent with previous studies. As pavement
roughness increases, the crash rate increases which is related to
the fact that the drivers are likely to lose control of their vehicles
due to the presence of defective road conditions which affects
the driver decision in changing driving speed suddenly (Al-
Masaeid, 1997). Furthermore, as pavement condition deteriorates
especially in wet weather condition, the crash rate increases
(Chan et al., 2009). The probable explanation for this is that when
the pavement surface is rough, the driver has more difficulty with
the visibility of the road surface in adverse conditions which
increases the likelihood of crash occurrence. The significant inter-
action term between roughness and traffic volume suggests that
the relationship between crash frequency and roughness differs
according to the levels of traffic volume as shown in Fig. 7. Fig. 7
indicates that crash frequency reduces with increasing roughness
for low traffic volumes.

This finding may be explained by the reduction in operating
speed as a result of reduction in the ride quality which is more evi-
dent at low volume intersections as drivers can easily drive at low
speeds in intersections or change lanes to avoid defective road con-
ditions. Similar findings have been reported by Al-Masaeid (1997)
and Rodegerdts, Nevers, Robinson, Ringert, Koonce, Bansen,
Nguyen, Mcgill, Stewart, and Suggett (2004). However, crash fre-
quency increased as roughness increased for intersections with

high traffic volumes which could be due to the presence of defec-
tive road condition and possible aggregate polishing. Similar
results have been reported in Ihs (2004) and Larson et al. (2008).

6. Assessing the effect of geometric characteristics

The main purpose of this part of study was to assess the effects
of geometric characteristics on safety performance of approaches
of signalised intersections post resurfacing to control for the effect
of pavement surface condition. The study aim was achieved
through observing general trends and suitable statistical analysis.
Descriptive analyses are performed to study the distribution of
crash frequency with different geometric characteristics. A sum-
mary of observations from the analysis is provided in Table 6.

Table 5
Effect of light condition � surface moisture condition interaction on casualty crashes-
after period.

Predicted value of crash frequency

Wet Dry

Night 0.64 0.86
Day 0.57 3.71

Fig. 5. Effect of roughness � light condition interaction on casualty crashes.

Fig. 6. Effect of roughness � surface moisture condition interaction on casualty
crashes.

Fig. 7. Effect of roughness � traffic volume interaction on casualty crashes.
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Geometric characteristics including approach width, number of
approach lanes, intersection depth, intersection type, presence of
median, presence of shared lane, presence of bus stop, and pres-
ence of parking were initially considered to predict the number
of crashes at signalised intersections after resurfacing. It is impor-
tant to note that there were <10% of approaches with presence of
parking in the sample set, so this factor was not considered in
the statistical analysis. Among the highly correlated predictors,
only the most significant variables were considered in the analysis.
For example, because the number of approach lanes and approach
width were found to be correlated, the former was dropped from
the analysis. Also, intersection type was found to be correlated
with phase time and therefore was dropped from the analysis.

In before and after assessment shown in previous section, sur-
face roughness of treated approaches was found to have a signifi-
cant effect on crash occurrence in the after treatment period,
hence it is also considered in this assessment. In addition, traffic
volume, speed limit, light condition (day coded as 1 and night
coded as 0), surface moisture condition (dry coded as 1 and wet
coded as 0) and phase time have been explored for their effects
on total crash occurrences after resurfacing. Summary statistics
of crash frequency and the continuous variables used in this part
of study are given in Table 7. A related point to speed limit to con-
sider, is that 28 observations are with speed limit of 60 km/h, 96
observations with speed limit of 70 km/h and 72 observations with
speed limit of 80 km/h.

6.1. Evaluation of over dispersion in crash data post resurfacing

Similar criteria explained in Section 5.1 were used to choose the
appropriate probability model for crash data. The histogram of

crash data includes high number of zero values and a long positive
skewness of the dependent variable (DV i.e. crash frequency). Fur-
thermore, the variance of observed crash counts is greater than the
mean suggesting over dispersion in a Poisson model. To choose the
probability model for crash data, goodness of fit was examined by
plotting the observed crash data against both NB and Poisson prob-
ability mass functions (PMFs) as given in Fig. 8. Fig. 8 indicates that
the observed number of crashes fitted substantially better to the
NB than the Poisson distribution.

The value of the dispersion statistic (Pearson chi square/degree
of freedom) for the Poisson model with no covariates (intercept
only) of 3.44 is greater than 1 which suggests that the dependent
variable (crash frequency) is over dispersed. In addition, the dis-
persion parameter (alpha, a) refers to the parameter used in NB2
model to take account of over-dispersion. Poisson model assumes
it to be zero, however, the negative binomial model allows it to
be greater than zero. The dispersion parameter for NB2 model with
no covariates (intercept only) of 1.9 is greater than zero which
indicates that the dependent variable (crash frequency) is over dis-
persed. Results of the Lagrange multiplier test for crash data illus-
trate that the Z-score test is 3.568 with a t-probability of P < 0.001.
A significant Lagrange indicates that the model dispersion param-
eter is different from 0. These results prove that the hypothesis of
no over dispersion is rejected and that real over dispersion exists in
the data set. Therefore, crash data should be modeled as negative
binomial.

Based on the goodness of fit evaluation of the model described
in the previous section, this section refers to the application of GEE
with NB distribution and log link function used to assess the effect
of geometric characteristics and other control factors. To limit the
number of interactions, first order interactions (two-way interac-
tions) among factors of interest and between factors of interest
and each control variable were examined. To increase the inter-
pretability of regression coefficients it was necessary to transform
the continuous independent variables to centered variables by sub-
tracting their mean values from their actual values. The variables
that were centered in this analysis were roughness, phase time
and logAADT. Speed limit was not centered to the mean value,
but to 60 km/h, which was the lowest speed limit among the inter-
sections studied.

To assess the effect of geometric characteristics and other con-
trol factors, GEE with NB distribution and log link function was
used. The explanatory variables including approach width, pres-
ence of median, presence of shared lane, presence of bus stop,
intersection depth and pavement roughness were factors of inter-
est in analysing of crash frequency data. Traffic volume in terms of
Annual Average Daily Traffic (AADT), speed limit, phase time, light
condition and surface moisture condition were included as control
variables. Crash data was modelled using GEE with working corre-
lation matrix based on a total of 49 clusters (number of signalised
intersections). This resulted in a 4 � 4-dimension correlation
matrix and the total number of observations = 49 � 4 = 196. The
GEE was fitted using the value of a = 0.321. The detail output
results using exchangeable correlation structure are given in
Table 7.

Table 6
Summary of observations from descriptive analysis.

Geometric
characteristics

Summary of observations from descriptive analysis

Width of
approaches

� Up to 50% of intersections in the sample have
approaches 10–15 m wide

� Crash frequency decreases as the approach width
increases beyond 15 m

Intersection
depth

� The depths of selected intersections range between
25 m and 49 m with about 63% of intersections have
depths ranging between 30–40 m

� Crash frequency increases at intersections with
greater depths (i.e. ˃30 m)

Presence of
median

� Medians are present at 88% of approaches in the sam-
ple set

� Approaches with medians are associated with higher
crash frequency than approaches with no medians

Presence of bus
stop

� Bus stops are present at 33% of approaches in the
sample set

� Approaches with bus stops are associated with lower
crash frequencies than approaches with no bus stops

Presence of
shared lane

� Shared lanes are present at 49% of approaches in the
sample set

� Approaches with shared lanes are associated with
higher crash frequency than approaches without
shared lanes

Table 7
Descriptive statistics of crash data and continuous variables post resurfacing.

Variables Minimum Maximum Mean Std. Deviation Interquartile range (75%–25%)

Crash frequency (4 years) 0 12 1.30 2.116 2–0
Roughness 1.77 3.86 2.8384 0.54355 3.21–2.46
AADT 1,600 28,438.00 15,983.20 5,696.81 19,321–10,000
Speed limit 60 80 71.23 6.59 80–70
Phase time 10.00 90.00 40.47 17.41 47–28
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6.2. Results and discussion

This section interprets the results of analysing the effect of geo-
metric characteristics and other control factors on crash data. It is
important to note that the models include the significant and non-
significant independent variables with main effect and only signif-
icant interaction products between explanatory variables. A
summary of results from Table 8 is provided below.

1. Results in Table 8 illustrate that, intersection depth, roughness,
speed limit, traffic volume and phase time are not significant in
crash occurrence. However, light condition (day vs. night), sur-
face moisture condition (dry vs. wet) and approach width in
interactions with presence of shared lane, bus stop and median
are significant in crash occurrence with p values of <0.05. It is
important to note that as the overall p-value of the interaction
product between approach width and presence of shared lane,

Fig. 8. Observed crash frequency against Poisson and NB probability mass function.

Table 8
GEE regression with NB and log link for crash data post resurfacing.

Parameter Coefficients b Std. Error P-Value Exp (b) 95% Wald Confidence
Interval for Exp (b)

Lower Upper

Intercept 0.749 0.555 0.178 2.114 0.712 6.276
Approach width < 12 m = 0 �1.858 1.392 0.766 0.156 0.010 2.388
Approach width 12 m–15 m = 1 1.690 0.607 5.420 1.650 17.804
Approach width � 15 m = 2* 0 . 1 . .
Shared lane, not present = 0 0.660 0.552 0.322 1.934 0.656 5.703
Shared lane, present = 1* 0 . 1 . .
Bus stop, not present = 0 0.028 0.379 0.855 1.028 0.488 2.165
Bus stop, present = 1* 0 . 1 . .
Median, not present = 0 0.127 0.734 0.170 1.135 0.270 4.779
Median, present = 1* 0 . 1 . .
Intersection depth < 35 m = 0 �0.703 0.417 0.209 0.495 0.219 1.120
Intersection depth 35 m–40 m = 1 �0.606 0.405 0.546 0.247 1.207
Intersection depth � 40 m = 2* 0 . 1 . .
Light condition, Night = 0 �0.980 0.172 0.000 0.375 0.268 0.526
Light condition, Day = 1* 0 . 1 . .
Surface MC, Wet = 0 �1.514 0.158 0.000 0.220 0.162 0.300
Surface MC, Dry = 1* 0 . 1 . .
CRoughness 0.007 0.3128 0.982 1.007 0.546 1.859
Speed limit �0.014 0.234 0.951 0.986 0.623 1.560
CLogAADT 0.848 0.616 0.169 2.334 0.698 7.805
CPhase time 0.005 0.007 0.481 1.005 0.992 1.018
Approach width = 0*Shared lane = 0 0.925 1.102 0.048 2.522 0.291 21.875
Approach width = 1.0* Shared lane = 0 �1.396 0.635 0.248 0.071 0.860
Approach width = 0* Bus stop = 0 0.921 0.724 0.019 2.511 0.607 10.382
Approach width = 1.0 * Bus stop = 0 �1.137 0.511 0.321 0.118 0.873
Approach width = 0 * Median = 0 2.260 0.925 0.015 9.583 1.564 58.720
(Negative binomial) 0.321
Number of intersections (number of clusters) 49
Size of cluster 4
Number of observations 49*4 = 196
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bus stop and median are statistically significant with p value of
0.048, 0.019 and 0.015 respectively, the interpretation of indi-
vidual categories is reasonable. The correlation estimated by
exchangeable structure is 0.142. This value indicates that the
correlation among repeated observations should be accounted
for.

2. The intercept is the expected number of crashes when all vari-
ables in the model are evaluated at zero. That is, at an approach
with speed limit of 60 km/h, a width greater than 15 m, a
shared lane, bus stop and median, during a dry day and an
intersection depth greater than 40 m, the expected total crash
count is exp (0.749) = 2.11 crashes per 4-year (the total over
4 years is used), if all other centered variables take their mean
values.

3. The main effect of light condition indicates that night time is
associated with lower crashes as indicated by the negative coef-
ficient of �0.98. In addition, the significant effect of surface
moisture condition with negative coefficient of �1.541 implies
that wet surface has lower crash frequency than dry surface.
These findings are more likely to be capturing exposure owing
to higher number of vehicles entering intersections during
day time and dry weather conditions.

4. To interpret the interaction effect between approach width and
presence of a shared lane, constructing a table is helpful. The
predicted number of total crashes over four years using the
GEE with NB model by approach width and presence of shared
lane, bus stop and median setting all other centered variables to
their mean values are given in Table 9.

� Interaction between approach width and presence of shared
lane: The pattern of predicted crashes shown in Table 9 indi-
cates that generally wider approaches tend to have higher crash
frequency than narrower approaches. The crash frequency is
higher at approaches having widths between 12 m and 15 m
and with the presence of a shared lane as compared to others.
The pattern of the numbers in this table shows a clear interac-
tion between approach width and presence of a shared lane. The
effect of presence of shared lane varies for different categories
of approach width. For approaches without shared lane, there
is an increase in the predicted number of crashes from
approaches with width < 12 m to approaches with widths
between 12 m and 15 m. However, it reduces slightly for
approaches with widths � 15 m. This is because the middle cat-
egory (approach width between 12 m and 15 m) exists in a
major proportion of intersections that carry high traffic
volumes.

� This pattern is not the exact case for the other category of
shared lane. With the presence of shared lanes and at narrow
approaches (width < 12 m), lower crash number is obtained.
This is related to the small proportion of such intersections that
have shared lanes in addition that they carry low traffic vol-
umes. Furthermore, the results illustrate that predicted number
of crashes increases substantially when approach width

increases from 12 to 15 m and decreases substantially when
approach width increases �15 m. Similar results were reported
by Turner et al. (2012) who stated that presence of shared lane
had mixed effect on crash occurrence. The effect was positive in
peak hours at intersections with higher traffic volume and neg-
ative at low volume intersections.

� Interaction between approach width and presence of bus
stop: The pattern of predicted crashes shown in Table 9 is sim-
ilar to that of the interaction effect between approach width
and presence of shared lane. The high crash frequency for
approach width 12–15 m is due to the fact that presence of
bus stops can decrease the effective width of the approach.
The on-street bus stop at intersection approaches causes vehi-
cles following the bus to stop completely or change lane when
realise that the bus is stopping. This stop and go condition and
changing lane affect the moving traffic and results in an
increase in crash occurrence. These findings are consistent with
previous studies (Chimba, Sando, & Kwigizile, 2010; Chin &
Quddus, 2003). Conversely, there is a big reduction in the num-
ber of crashes at wider approaches (approach width � 15 m).
This is owing to the fact that when the bus stop is located at
upstream of intersection (the case for intersections considered
in this study) and in the course of red light, the queue behind
the intersection becomes an obstacle to the movement of stop-
ping bus that is waiting upstream the stop line. Therefore,
longer queue will develop by the stopping bus and more vehi-
cles accumulate upstream the bus stop. The stop and go condi-
tion of the following vehicles and changing lanes results in
conflicts between vehicles. Such behaviour has minor effect
on the crash occurrence at wider approaches as compared to
narrower approaches. Bauer and Harwood (1996), Brewer,
Bonneson, and Zimmerman (2002) and Yan (2009) stated that
crash frequency decreases with increasing approach width.
Brewer et al. (2002) concluded that fewer red light running is
likely to occur at wider intersections. Similar results are
reported in Yan (2009) in that drivers are more careful in run-
ning a red light at wider approaches.

� Interaction between approach width and presence of med-
ian: The pattern of predicted crashes shown in Table 9 indi-
cates that approaches having width < 12 m with no median
are associated with high crash occurrence and there is a
slight reduction in the predicted number of crashes when
approach width increases from 12 to 15 m. Then it reduces
slightly with wider approaches (width � 15 m). Furthermore,
the results illustrate that the presence of median at narrow
approaches contributes to lower crash frequency as compared
to others. Similar results are reported in Wang and Abdel-Aty
(2006). However, the reverse of this trend is predicted for
approaches having widths of 12 m–15 m which is consistent
with findings of Chin and Quddus (2003). Again, there is a
big reduction in the predicted number of crashes when
approach width increases �15 m.

Table 9
Effect of approach width � presence of shared lane, bus stop and median interaction on total crashes over 4-years.

Variable categories Predicted value of crash frequency over 4-years

Shared lane not
present = 0

Shared lane
present = 1*

Bus stop not
present = 0

Bus stop
present = 1*

Median not
present = 0

Median
present = 1*

Approach width < 12 m = 0 1.61 0.33 0.85 0.33 3.5 0.33
Approach width 12 m–

15 m = 1
5.49 11.46 3.78 11.46 2.57 11.46

Approach
width � 15 m = 2*

4.09 2.11 2.17 2.11 2.4 2.11

*Reference case for category variable.
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7. Summary and conclusion

Pavement surface condition parameters, geometric characteris-
tics and other factors that influence casualty crashes at signalised
intersections have been identified through analysing crash data
by GEE with NB and log link function. The key findings from these
analyses are summarised below:

1. For casualty crash analysis, GEE with NB regression and log link
function was the appropriate model in predicting crash fre-
quency for both before and after treatment.

2. Generally, the results indicate that crash frequency increased in
dry surface conditions and during day time as compared to wet
surface conditions during night time. This finding was consis-
tent for both before and after treatment.

3. For before treatment, crash frequency was higher at higher val-
ues of skid resistance for sites with low traffic volumes, How-
ever, there was a clear reduction in crash frequency as skid
resistance increased for sites with high traffic volumes.

4. For after treatment, crash frequency increased with increasing
roughness during day time, however, at night time there was
slightly lower crash frequency at higher values of roughness.
Further, crash frequency increased with increasing roughness
in both wet and dry surface condition. Additionally, crash fre-
quency reduced with increasing roughness at intersections with
low traffic volumes but increased at intersections with high
traffic volumes.

5. Crash occurrence is not solely dependent on any of the geomet-
ric elements considered in this study, rather it is dependent on
the interactions between the variables considered. It was found
that the effects of presence of shared lane, bus stop or median
on crash frequency vary for different categories of approach
width.

Overall the findings of this study shed considerable light on the
effects of pavement surface condition on safety performance of sig-
nalised intersections. Pavement surface condition parameters,
roughness and rutting, need to be considered in either intervention
criteria or treatment selection to ensure that they are reduced to
acceptable levels for users’ comfort and safety. The results also
confirm the importance of considering interaction effects in crash
analysis. The approach used in selecting the sites and analyses
approaches used herein proved to be successful in addressing the
study objectives with reasonable accuracy. The results reported
herein highlight that when modelling crash data, both dispersion
and correlation among repeated observations should not be
ignored due to biased parameters that lead to erroneous estimates.
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a b s t r a c t

Introduction: Speed cameras have been implemented to improve road safety over recent decades in the
UK. Although the safety impacts of the speed camera have been estimated thoroughly, the criteria for
selecting camera sites have rarely been studied. This paper evaluates the current speed camera sites
selection criteria in the UK based on safety performance. Method: A total of 332 speed cameras and
2,513 control sites with road traffic accident data are observed from 2002 to 2010. Propensity score
matching method and empirical Bayes method are employed and compared to estimate the safety effects
of speed cameras under different scenarios. Results: First, the main characteristics of speed cameras meet-
ing and not meeting the selection criteria are identified. The results indicate that the proximity to school
zones and residential neighborhoods, as well as population density, are the main considerations when
selecting speed camera sites. Then the official criteria used for selecting camera sites are evaluated,
including site length (a stretch of road that has a fixed speed camera or has had one in the past), previous
accident history, and risk value (a numerical scale of the risk level). The results suggest that a site length
of 500 m should be used to achieve the optimum safety effects of speed cameras. Furthermore, speed
cameras are most effective in reducing crashes when the requirement of minimum number of historical
killed and seriously injured collisions (KSIs) is met. In terms of the risk value, it is found that the speed
cameras can obtain optimal effectiveness with a risk value greater than or equal to 30, rather than the
recommended risk value of 22.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

About 1.35 million road traffic deaths occur every year globally,
placing a great burden on individuals, property, and society (World
Health Organization, 2018). A number of safety measures have
been proposed to improve road safety, such as traffic calming
devices, road signs, and speed limit enforcement cameras (e.g., Li
& Graham, 2016; Montella et al., 2015; Oviedo-Trespalacios et al.,
2019). A critical issue when implementing these safety measures
concerns which road sections or sites should be selected. As dis-
cussed in previous studies, the identification and selection of
high-risk locations for highway safety management are mostly
based on crash frequency and severity (e.g., Cheng &
Washington, 2005; Montella, 2010; Manepalli & Bham, 2016). For
example, specific rules for proposing speed camera sites are
described in the handbook produced by the UK’s Department for

Transport (DfT, 2005). Speed camera sites selection criteria in the
UK mainly depend on the number and severity of collisions. In
addition, as reported by Transportation Research Board (NCHRP
Report 729, 2012), selecting sites by the potential to reduce
crashes, both for speed and red light cameras deployment, can be
accomplished by reviewing crash frequency and crash rate.

Previous studies usually involve the evaluation of the safety
effect of speed cameras, however, it remains unknown how much
site selection criteria actually influence: (a) subsequent compli-
ance with the specific criteria and (b) effectiveness of the imple-
mentation of speed cameras. Currently in the UK, site selection
criteria for fixed speed camera sites exist (Gains et al., 2005; DfT,
2005) as shown: (1) number of killed and serious collisions (KSIs):
at least 3 KSIs per km in the baseline period; (2) risk value
required: at least 22 per km; (3) site length: between 400–
1500 m; (4) 85th percentile speed at collision hot spots: 85th per-
centile speed at least 10% above speed limit; (5) percentage over
the speed limit: at least 20% of drivers are exceeding the speed
limit. In fact, the criteria for selecting camera sites was published
in 2004 and improved in 2005 (DfT, 2004, 2005). It is still unclear
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how these rules are implemented in practice and whether the cur-
rent criteria can achieve optimum safety benefits. For example,
according to the handbook published in 2004, one of the criteria
was at least 4 KSIs per km in the baseline period, while the number
of KSIs was at least 3 in the 2005 version. More sites have been
selected into the speed camera program due to the change of selec-
tion criteria. However, why the selection criteria were changed has
not been discussed in the handbook. In addition, it is often the case
that the criteria are not strictly met in practice, and sites not meet-
ing the criteria may still be selected as exceptional sites for other
safety concerns. Thus, it is also interesting to investigate the char-
acteristics and safety performance of those sites that do not meet
the stated criteria.

This study aims to evaluate the current UK speed camera sites
selection criterion by analyzing the safety effects. In addition, this
study investigates the variation in treatment effects due to the dif-
ferences in site characteristics, specifically the extent to which the
sites meet the selection criteria. The evaluation results can help to
improve the safety performance of the current speed camera pro-
gram, and hence will make the travel environment safer. In addi-
tion, this study will contribute to policy-making and legislation
by providing new evidences and practical recommendations on
enhancing the effectiveness of speed camera assignment. More-
over, the output from this research may be helpful to the improve-
ments in economic performance of speed cameras. However, the
cost-effectiveness of current speed camera deployment strategies
cannot be evaluated due to the data restriction.

The propensity score matching (PSM) method and empirical
Bayes (EB) method are both used in this study. The PSM method
can control for the regression to the mean (RTM) and confounding
factors, which cannot be fully addressed by the conventional
before-after or cross-sectional studies (Rosenbaum & Rubin,
1983; Sasidharan & Donnell, 2013). RTM is a statistical phe-
nomenon that occurs in before-after study designs that target
‘‘high risk” groups (e.g., sites with a high number of historical road
casualties). To control for the RTM effects, the total number of acci-
dents at the site in the before period has been considered in the
propensity score model. The propensity score model can match
the treated and untreated groups with comparable historical acci-
dent records in the pre-treatment period. ‘‘Similar” groups can be
defined clearly as those with similar propensity scores, thereby
avoiding selection bias and RTM and thus ensuring that the differ-
ence in the outcomes between the treatment and control groups
can be attributed to the treatment. The PSM method also provides
a solution to the problem of similarity in the EB method. The EB
approach can be improved by using a propensity score matched
data sample. Hence, the PSM and improved EB approaches are both
employed in this study to ensure validity of the estimation results.

The paper is organized as follows. A literature review is pre-
sented in the next section. The methods and data used in this study
are described in Sections 3 and 4. The estimation results are pre-
sented in Section 5, followed by conclusions in the final section.

2. Literature review

A number of studies have been conducted to examine the safety
effects of speed cameras in recent years (Carnis & Blais, 2013;
Christie et al., 2003; Gains et al., 2004; Graham et al., 2019;
Montella et al., 2015; Mountain et al., 2005; Li et al., 2013; Li &
Graham, 2016). For instance, the safety effectiveness of 65 fixed
speed cameras on highways in Flanders-Belgium was evaluated
(De Pauw et al., 2014). The estimate of the severe crash reduction
was 27% (within 250 m from the camera site) and 23% (within
250–500 m from the camera site). In addition, a study based on
38 fixed cameras in Cali, Colombia studied accidents and traffic

violations within circles of 250 m of the camera. The reduction in
all crashes was estimated to be 5.3% per year (Martínez-Ruíz
et al., 2019). Another study of French Automated Speed Enforce-
ment Program (ASEP) concluded that the ASEP was associated with
a reduction of 19.7% in traffic fatalities and crashes with injuries
(Blais & Carnis, 2015). It has been found that speed cameras can
effectively reduce the incidence of crashes. However, there is a lack
of studies on how speed camera sites are selected and whether
these selection criteria are reasonable.

Regarding the selection of speed cameras sites, most previous
studies have focused on identification of crash hotspots, mostly
based on crash frequency, rate, and severity (Cheng &
Washington, 2005; Manepalli & Bham, 2016; Wang et al., 2018).
The objective of identifying hotspots is to find sites (road segments,
intersections, ramps, etc.) with potential high risk and these sites
can then be considered as candidates for safety countermeasures
later. More recently, Wang et al. (2018) applied five hotspot iden-
tification methods to find hazardous locations for road segments
under municipal jurisdiction in Connecticut. In this study, the
roadway hotspots are identified and ranked based on the crash fre-
quency and relative severity index. In addition, the study by Borsos
et al. (2016) employed Empirical Bayes method to localize high
accident concentration sites in Italy and Hungary. Two conven-
tional indicators, the absolute number of accidents and the acci-
dent rate, are adopted for the purpose of site ranking. Although
these studies rank the sites based on crash frequency, rate and
severity, there is no instruction on how to select appropriate can-
didates for implementation of safety countermeasures.

Recently, a few studies have been conducted on site selection
criteria. For instance, the study performed by Newstead (2016)
showed that sites with the highest number of total crashes are
viewed as the most appropriate candidates for speed camera
implement. Ko et al. (2013) evaluated the impact and site selection
criteria for the red light camera systems in Texas in 2008 using an
empirical Bayes methodology. This study suggested that the safety
effect can vary when the criteria change. There is even a negative
effect on road crashes when the cameras sites are selected inappro-
priately. Another relevant study by Lord and Kuo (2012) examined
how site selection criteria influence the estimation of safety effec-
tiveness of treatments. The general idea of site selection bias is that
setting entry criteria will convert the original population distribu-
tion into a truncated sample distribution leading to changes in the
characteristics of the new distribution. Hence, ignoring these
changes will create a biased estimator for the safety effectiveness.
Their results showed that when estimating the performance of the
treatment, higher entry criteria will cause a larger site selection
bias, which could lead to larger values of the safety effectiveness.

Regarding methods for road safety evaluation studies, several
approaches have been proposed and applied in previous studies
(Christie et al., 2003; Guo et al., 2018; Hauer et al., 2002; Wood
& Donnell, 2017). The before-after study with control groups is
one of the most common approaches to investigate the impacts
of speed cameras (Bar-Gera et al., 2017; De Pauw et al., 2014).
However, the traditional before-after method usually ignores the
RTM. For this reason, EB method has been used as an effective
approach in controlling for the limitation of before-after studies
(Elvik et al., 2017; Hauer et al., 2002; Høye, 2015). The EB method
can be regarded as a statistically defensible means of increasing
the precision of estimation and accounting for the RTM bias. How-
ever, it is also known that the similarity problem between treated
and control units can adversely affect the performance of the EB
approach, based on empirical results from previous studies (Lord
& Kuo, 2012; Wood & Donnell, 2017). Thus, an alternative
approach, the PS method, is proposed to overcome the challenges
related to the EB method in the road safety evaluation studies
recently (e.g., Hou et al., 2019; Sasidharan & Donnell, 2013;

H. Li, M. Zhu, D.J. Graham et al. Journal of Safety Research 76 (2021) 90–100

91



Wood & Donnell, 2016). The PS method is a causal inference
method using the observed covariates of each unit to predict the
probabilities that the units received the treatment, which has been
widely studied and applied in many evaluations of social, eco-
nomic and medical programs (e.g., Chattopadhyay et al., 2016;
Kowaleski-Jones et al., 2018; Shahidi et al., 2019).

3. Methods

In this section, we first introduce the speed camera sites selec-
tion criteria and the scenarios designed in this study. Then the PSM
and EB methods are introduced respectively. Both approaches are
employed in this study to compare the accuracy and reliability of
estimation.

3.1. Selection criteria

The ‘‘Handbook of Rules and Guidance for the National Safety
Camera Programme for England and Wales” defines the rules and
guidelines for speed camera site selection (DfT, 2005). According
to the handbook, the main rules related to the historical crashes
data for proposed core sites are:

Criterion 1: number of killed and seriously injured collisions
(KSIs): at least 3 KSIs per km in the baseline period. Baseline period
is a three-year-period before the installation of all speed cameras,
and in our study the baseline period is from 2002 to 2004.

Criterion 2: risk value required: 22 per km. Risk value is intro-
duced in the handbook for new camera sites selection. That is ‘‘new
camera sites will be selected using an assessment that includes the
level of fatal, serious and slight collisions. The combined level of
collisions will be expressed as a numerical scale and assessed rel-
ative to the road classification for the site” (DfT, 2005). For
instance, fatal or serious injury collision = 5 (i.e. 2 serious colli-
sions = 10), slight injury collision = 1 (i.e. 5 slight collisions = 5).

In this study, the KSI crashes and risk values are calculated over
a three-year period before the implementation of speed cameras,
and the road sections are categorized into three types according
to the treatment status: camera sites meeting and not meeting
the selection criteria, and sites without speed cameras. According
to the handbook (DfT, 2005), ‘‘a site length is the distance between
two points within which collisions, casualties and speeds are mea-
sured and camera enforcement takes place.” Although, site length
is defined in the handbook, there is no description on how the site
length is determined when calculating the criteria. In this study,
we also evaluated the criteria of site length with different ranges
of distance to camera sites on both directions. It is noteworthy that
if a site length meets a major junction, the length is terminated.
And if a site length overlaps any other site length with an earlier
camera deployment date, it will be excluded to avoid double
counting or misclassification of before-after status of crashes.

3.2. Scenarios design

This study evaluates the camera site selection criteria by esti-
mating and comparing the effectiveness of speed cameras in vari-
ous scenarios.

(1) We first compare the characteristics between different types
of camera sites. The factors potentially influencing the
installment of speed cameras are compared via pair-wise
T-test.

(2) Then the effectiveness of speed camera sites meeting and
not meeting criterion 1 are evaluated, respectively, using
the PSM method and EB method. As regards to criterion 2,
the same procedure is applied.

(3) Another issue that is not clearly stated in the handbook is
which site length should be chosen when calculating crite-
rion 1 and 2. It is possible that different length may be used
by local authorities, hence affecting the effectiveness of
speed cameras. Thus, we calculate the criteria using different
site length, including 500 m, 1000 m, and 1500 m. Then the
effectiveness of speed camera sites is compared based
whether they meet the criteria or not.

(4) Finally, we evaluate and make suggestions on the current
criteria by comparing the effects of speed cameras with dif-
ferent possible KSI numbers and risk values.

3.3. Propensity score matching method

The propensity score matching methods are based on the idea
that the control or reference group should have similar character-
istics with the treated ones. The propensity score can be con-
structed as a scalar value to account for the probability that a
unit is assigned to treated status (i.e., to a speed camera)
(Rosenbaum & Rubin, 1983).

The PSM method is applied under the potential outcomes
framework. Each unit is associated with two potential outcomes
corresponding to two treatment conditions: Di = 1 if unit i receives
the treatment (e.g., speed camera sites) and Di = 0 otherwise,
where i = 1, . . ., N, and N represents the total number of units. In
this study, the treatment groups are further separated into several
subgroups according to criterion 1 and 2. Yi(D) represents the
potential outcome for unit i. The treatment impact of unit i can
be described as:

/i ¼ Yi 1ð Þ � Yi 0ð Þ ð1Þ
In practice, the parameter of interest is usually the average

treatment effect on the treated (ATT), which can be described as:

/ATT ¼ E / D ¼ 1jð Þ ¼ E Y 1ð Þ D ¼ 1jð Þ � E Y 0ð Þ D ¼ 1jð Þ ð2Þ
A fundamental problem is that it is not possible to observe the

outcomes of the same unit i for two treatment conditions at the
same time (Holland, 1986). Instead, a control group with similar
characteristics to the treated units is usually selected to model
the counter-factual outcomes.

The propensity score is estimated based on a vector of control
covariates X. Conditional on the propensity score, the differences
between the treated and untreated units can be accounted for
and solely attributed to the treatment effects. Three crucial
assumptions need to be satisfied to ensure the validity of the
PSM method (Rosenbaum & Rubin, 1983). The first assumption is
stable unit treatment value assumption (SUTVA), which defines
the treatment assigned to a unit have no impact on the outcomes
of others. The second is the conditional independence assumption
(CIA), which requires that the potential outcomes are conditionally
independent of the treatment assignment conditional on the
observable covariates. The last is common support condition
(CSC). This assumption is also known as the overlap condition,
ensuring the probability of being treated and untreated is positive
for the units with the same X values.

It is important to verify these assumptions when assessing the
performance of the propensity score matching estimation. The
CIA assumes that there should be no statistically significant differ-
ences between the covariate means of the treatment and compar-
ison units. Therefore, a balancing test is conducted to check the
validity of conditional independence assumption. When verifying
the CSC, there are several ways to check the overlap and the region
of common support between treatment and control groups and in
this study a visual inspection of the propensity score distribution
for both groups is presented.
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In this paper, a binary logit model is used to estimate the
propensity score:

P Y ¼ 1 Xjð Þ ¼ exp aþ bXð Þ
1þ exp aþ bXð Þ ð3Þ

where P is the propensity score for each observation, X is the vector
of covariates, a is the intercept, and b is the vector of parameters to
be estimated.

Following estimation of the propensity scores, a matching algo-
rithm is selected. Several matching algorithms have been discussed
in previous studies, including nearest neighbor matching, kernel
and local linear matching, caliper and radius matching, maha-
lanobis matching and genetic matching. For detailed discussions
of these matching algorithms, please refer to the work by
Heinrich et al. (2010) and Wood and Donnell (2016).

There is no theoretical rule on how to choose the most appro-
priate matching algorithm for estimations. Given a large sample,
the results from different algorithms should be similar and there-
fore the choice is not essential. It is good practice to try several
matching methods for more credible results. In this study, K-
nearest neighbor matching, kernel and local linear matching, and
caliper and radius matching are used. A number of programs are
available to estimate the treatment effects and psmatch2 in STATA
developed by Leuven and Sianesi (2003) program is used in this
study.

3.4. Empirical Bayes

EB methods have been widely used in before-after road safety
countermeasures evaluation studies (Elvik et al., 2017; Høye,
2015; Wood et al., 2015). A Poisson-Gamma (negative binomial)
model is usually applied:

z � Poisson keð Þ ð4Þ

ln kð Þ ¼ aþ bX þ e ð5Þ
where z is the observed number of accidents, k is the expected num-
ber of accidents, e is a Gamma distributed random effect, a; b are
the vector of estimable regression parameters and X is the vector
of covariates.

Using this model, the predicted number of crashes in the before

period, M̂B can be obtained as

M̂B ¼ qk̂B þ 1� qð ÞXB ð6Þ

where XB is the observed number of crashes in the before period, k̂B
is the EB estimate of total number of crashes based on SPF before
treatment, and q is a weight factor.

To take account of the trend in accidents between the before
and after periods, the predicted accidents in the after period are
calculated using a reference group. The estimate of accidents in

the after period had treatment not occurred, M̂A, can be evaluated
after adjusting the time trend effect using:

M̂A ¼ NA�P

NB�P

� �
M̂B ð7Þ

where NA-P and NB-P are the numbers of accidents for total popula-
tion in the before and after periods.

Then the crash number in the after period can be estimated as:

M̂0
A ¼ f A

f A�P=f B�P � f B

� �b

M̂A ð8Þ

where fA is the observed traffic flow, fA-P and fB-P are the traffic flow
for whole population in the before and after periods, fB is the
observed traffic flow in the before period.

It has been shown that the EB approach can be improved by
using a propensity score matched data sample (Li et al., 2013). In
this study, the control group is refined via matching. Then the EB
method is applied to the refined control group.

4. Data

4.1. Sample size

The available data allow us to observe 332 speed camera sites
from 10 English administrative districts, including Cheshire, Dor-
set, Hertfordshire, Lancashire, Leicester, London, Manchester, Mer-
seyside, Sussex, and Westmiddle. Since the criteria for selecting
camera sites in UK have been published in 2004 and improved in
2005 (DfT, 2004, 2005) and the associated safety effects may
change as time goes by (Høye, 2015), it is necessary to limit our
study to a short period. Therefore, the research period should be
appropriate in order to control the impact resulted from the time
span. In this study, only speed cameras installed between 2005
and 2007 are chosen due to the time varying effects and the criteria
published time. In addition, as suggested in previous studies (Gains
et al., 2004, 2005; Høye, 2015; Li & Graham, 2016; Mountain et al.,
2005), accident data from 2002 to 2010 are used to ensure that
three years of data are observed before and after the installment
of all speed camera sites.

It is worth noting that a sufficient number of control candidates
should be included to guarantee matching quality (Kurth et al.,
2006; Peikes et al., 2008). A total number of 2,513 potential control
sites are included in this study, which are chosen randomly within
the 10 districts mentioned before. These sites have no camera
before 2010 to avoid misclassification of before-after status of
crashes and are at least 2 km away from any camera sites to avoid
double counting of crashes and the treatment effects. Fig. 1 shows
an example of treatment and control sites (site length = 500 m) in
London.

4.2. Covariates

Both factors affecting the treatment assignment and safety
effects of speed cameras are included in the models (Gains et al.,
2005; Høye, 2015; Li & Graham, 2016; Mountain et al., 2005):

(1) KSIs: the number of killed and seriously injured collisions in
the baseline years (total number between 2002 and 2004)

(2) PICs: the number of personal injury collisions in the baseline
years (total number between 2002 and 2004)

(3) AADF: the annual average daily traffic flow around the site
(4) Speed limits: focusing on sites with speed limits of 30 mph

and 40 mph throughout the UK
(5) Junctions/km: the number of minor road junctions per kilo-

meter within the site length
(6) Road class: e.g. A road, B road, Minor road

In addition, site selection should be centered on locations where
speed is a contributing factor in crashes. And it is necessary to
assess sites where speeding is particularly hazardous to road users
(NCHRP Report 729, 2012). Thus, we further include covariates
such as population density, school zones, percentage of residential
area, and the index of multiple deprivation (IMD) to compare the
factors of different types of sites. The IMD integrates data on the
following seven deprivation domain indices into one overall depri-
vation score: income deprivation, employment deprivation, educa-
tion, skills and training deprivation, health deprivation and
disability, crime, barriers to housing and services, and living envi-
ronment deprivation. IMD has previously been shown to be
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positively related to road traffic casualties (e.g., Dissanayake et al.,
2009; Feleke et al., 2018; Graham & Stephens, 2008). In summary,
the covariates included are shown in Table 1.

5. Results

In this section, the following issues are discussed: (1) the com-
parison of the characteristics of speed camera sites meeting and
not meeting the criteria; (2) the difference in the safety effective-
ness of speed camera sites meeting and not meeting the criteria;
(3) the optimal site length when calculating the criteria; and (4)
the optimum threshold values for criterion 1 and 2 to achieve
maximum safety effects of speed cameras.

5.1. Comparison of the sites characteristics

The characteristics of different types of sites are compared via a
pair-wise T-test. Table 2 shows the results for speed camera sites
meeting and not meeting the criteria. Significant differences can

be observed for all covariates except speed limits for both criterion
1 and 2. This is probably because the potential sites for speed cam-
era installment are usually those with a speed limit of 30 mph and
40 mph throughout the UK. And about 81.1% of speed cameras are
installed on roads with a speed limit of 30 mph. As shown in
Table 2, there are critical differences in the percentage of A road,
the number of junctions, the percentage of sites in urban area,
the percentage of residential area, and population density. The
camera sites meeting the criteria tend to be located on roads with
more complex environment and densely populated areas. In addi-
tion, proximity to schools is a major consideration for both sites
meeting and not meeting the criteria.

Table 3 presents the differences between the sites not meeting
the selection criteria and the control sites. According to the hand-
book (DfT, 2005), in addition to sites that meet the criteria, speed
cameras can be also installed on roads ‘‘where the local community
requests the partnership enforce at a particular site because traffic
speeds there are causing concern for road safety.” As shown in
Table 3, there are significant differences in factors including IMD,
percentage of residential area, population density, and school
zones, all of which are related to the community concern.

5.2. Estimation of propensity scores

The results in Table 4 show that the covariates included in the
propensity score model are all significant. As Westreich et al.
(2011) suggested, however, the main purpose of the PSM is not
to predict the treatment assignment, but to control for confound-
ing via balancing the control covariates. So, it is important to test
the matching quality.

Two approaches are used to examine the validity of the PSM
method, one of which is a visual inspection of the propensity score
distributions for both the treatment and control groups. The his-
tograms in Fig. 2 presents an example of the distributions of the
propensity scores, indicating the overlap assumption is plausible.
There are 332 speed camera sites and 2,513 potential control sites.
Depending on different scenarios, the ratio of the number of

Fig. 1. An example of treatment and control sites (site length = 500 m) in London.

Table 1
Covariates included in the significance test.

Covariates Description

A road (%) Percentage of A roads
B road (%) Percentage of B roads
Speed limit 30

mph (%)
Percentage of sites with the speed limit of 30 mph

Speed limit 40
mph (%)

Percentage of sites with the speed limit of 30 mph

AADF The annual average daily traffic around the site
Junction The number of road minor junctions per kilometer within

a effective length of the site
Urban (%) Percentage of sites in urban area
Rural (%) Percentage of sites in rural area
IMD The index of multiple deprivation
Residential (%) Percentage of residential area
Population

density
Residential population per km2

School zones (%) Percentage of sites within school zones
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control candidates to the treated ones ranges from 6:1 to over 10:1
in order to obtain a sufficient overlapping.

It is also recommended that a balance test be conducted to
check the validity of conditional independence assumption. Theo-
retically, there should be no significant differences in the covari-
ate means between the treated and untreated groups after
matching. Table 5 shows an example of the t-test of the differ-
ences in covariate means before and after matching. The results
show that significant differences can be observed for all covari-
ates before matching and all covariates are well balanced after
matching.

5.3. Evaluating speed camera sites selection criteria

In this section, we investigate how speed camera sites are
selected and evaluate whether these selection criteria are reason-
able and effective. The safety effects of three types of sites are eval-

uated and compared by the PSM and EB methods. In addition,
different site length is used to calculate the criteria. Finally, alter-
native threshold values for criterion 1 and 2 are compared in order
to find optimal criteria.

Table 6 and Table 7 show the estimation results of the effects of
speed cameras on annual PICs and KSIs per kilometer for criterion
1 and 2, respectively. The estimation results by the PSM method
based on different matching algorithms and EB method are very
similar. In Table 6, the reduction in the absolute number of PICs
ranges from 0.597 to 1.147 per km per year, while the number var-
ies from 0.313 to 0.357 for sites not meeting the criterion. Simi-
larly, in Table 7, the average reductions are 0.845 for up to 500
meters, 0.767 for up to 1,000 meters and 0.569 for up to 1,500
meters respectively in the annual PICs per km. For the sites not
meeting criterion 2, the reductions in the annual PICs per km are
0.293 for up to 500 meters, 0.203 for up to 1,000 meters and
0.186 for up to 1,500 meters, respectively.

Table 2
Comparison of the sites characteristics (sites meeting criteria VS sites not meeting criteria).

Criterion 1 (KSIs � 3) Criterion 2 (Risk Value � 22)

Not meet meet Diff Std. Err. T-test Not meet meet diff Std. Err. T-test

A road (%) 61.33 87.35 �26.02* 5.41 �4.81 66.67 82.81 �16.15* 6.31 �2.56
B road (%) 23.68 5.99 17.70* 4.29 4.13 19.61 9.38 10.23* 5.01 2.04
Speed limit 30mph (%) 84.13 83.23 0.90 5.54 0.16 77.50 84.78 �7.28 6.49 �1.12
Speed limit 40mph (%) 14.29 14.29 0.00 5.22 0.00 22.50 12.50 10.00 6.10 1.64
AADF 28,267 30,628 �2361 3126 �0.76 22,886 31,750 �8864* 3517 �2.52
Junction 6.39 10.17 �3.77* 0.61 �6.14 5.43 9.93 �4.50* 0.69 �6.49
Urban (%) 82.89 96.41 �13.51* 3.63 �3.73 78.43 95.83 �17.40* 4.10 �4.25
Rural (%) 17.11 3.59 13.51* 3.63 3.73 21.57 4.17 17.40* 4.10 4.25
IMD 23.70 29.20 �5.51* 2.30 �2.40 18.16 29.96 �11.80* 2.54 �4.65
Residential (%) 57.89 70.06 �12.17** 6.52 �1.87 49.02 70.83 21.81* 7.35 �2.97
Population density 2813.3 6848.0 �4034.7* 547.6 �7.37 2033.6 6529.8 �4496.1* 626.4 �7.18
School zones (%) 64.47 89.22 �24.75* 5.16 �4.80 54.90 88.54 �33.64* 5.75 �5.85

Notes: Figures are significant at: *95%, **90%.

Table 3
Comparison of the sites characteristics (sites not meeting criteria VS untreated sites).

Criterion 1 (KSIs � 3) Criterion 2 (Risk Value � 22)

Not meet Untreated Diff Std. Err. T-test Not meet Untreated diff Std. Err. T-test

A road (%) 61.84 99.08 �37.24* 1.98 �18.81 66.67 99.07 �32.41* 2.09 �15.47
B road (%) 23.68 0.92 22.76* 1.81 12.56 19.61 0.93 18.68* 1.91 9.80
Speed limit 30mph (%) 77.63 51.61 26.02* 5.91 4.40 68.63 51.45 17.18* 7.18 2.39
Speed limit 40mph (%) 13.16 19.20 �6.04 4.67 �1.29 19.61 19.24 0.37 5.69 0.07
AADF 28,267 20,983 7284* 2133 3.41 22,886 20,973 1913 2455 0.78
Junction 6.39 7.07 �0.68 0.69 �0.98 5.43 7.10 �1.67* 0.84 �1.99
Urban (%) 85.14 70.68 14.45* 5.43 2.66 78.43 70.68 7.75 6.53 1.19
Rural (%) 14.86 29.32 �14.45* 5.43 �2.66 21.57 29.32 �7.75 6.53 �1.19
IMD 24.34 20.98 3.36** 1.96 1.72 18.16 20.98 �2.82 2.30 �1.22
Residential (%) 59.46 34.30 25.16* 5.77 4.36 49.02 34.30 14.72* 6.87 2.14
Population density 2813.3 2008.7 804.6* 276.2 2.91 2033.6 2014.1 19.5 329.8 0.06
School zones (%) 64.47 28.51 35.97* 5.43 6.62 54.90 28.62 26.28* 6.56 4.01

Notes: Figures are significant at: *95%, **90%.

Table 4
Results of the propensity score model.

Treatment Coef. Std. Err. z P > z [95% Conf. Interval]

PICs in baseline years 0.069 0.019 3.69 <0.001 0.032 0.106
KSIs in baseline years �0.787 0.151 �5.21 <0.001 �1.084 �0.491
AADT in baseline years 3.30E-05 7.54E-06 4.38 <0.001 1.82E-05 4.77E-05
Junction 0.041 0.025 3.39 0.001 �0.008 0.089
A road 2.777 0.362 �7.67 <0.001 �3.487 �2.067
B road �1.373 0.399 �3.44 0.001 �2.154 �0.591
Speed limit 30mph 1.070 0.418 2.56 0.010 0.251 1.889
Speed limit 40mph 1.383 0.452 3.06 0.002 0.497 2.269
_cons �1.865 0.501 �3.72 <0.001 �2.847 �0.882
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Table 8 shows the average effects of speed cameras on annual
PICs per km in percentages. Similarly, the results suggest that the
speed camera sites are most effective when the criteria are calcu-

lated using a road length of 500 meters (15.63% for criterion 1
and 16.85% for criterion 2). For both criterion 1 and 2, the speed
camera sites meeting the criteria perform better in reducing the
annual PICs per km in percentages. The results suggest that the
speed cameras are more effective when the selection criteria are
met. In addition, a road length of 500 meters is recommended
when calculating criterion 1 and 2.

Table 9 and Fig. 3 present the safety effects of speed cameras at
sites with different number of KSIs in the baseline years. For the
reduction in annual PICs per km, the estimates ranges from 0.653
for sites with more than one KSI to 0.838 for sites with more than
six KSIs. In terms of the effects on KSIs, the annual reduction per
km in KSIs ranges from 0.232 to 0.297. In terms of the reduction
in percentages, however, the results suggest that the speed cam-
eras are most effective at sites with at least 3 KSIs in the baseline
years, where the reduction is 13.20%.

Table 10 and Fig. 4 show the average effects of speed cameras
given different risk values. The results also show increasing effects
on reducing the absolute number of PICs and KSIs when the risk
values increase. The annual reductions in PICs vary from 0.614 to
1.149 per km for different risk values, while the annual reductions
per km in KSIs range from 0.220 to 0.285. In terms of the reduction
in percentages, however, the speed cameras are most effective at

Fig. 2. Propensity score distribution.

Table 5
Checking the covariates balance between groups before and after using nearest neighbors (k = 3) matching.

Covariates Sample Mean %bias %reduced t-test

Treated Control |bias| t p > |t|

PICs in baseline years Unmatched 48.866 25.66 90.1 10.29 <0.001
Matched 48.866 50.955 �8.1 91 �0.53 0.594

KSIs in baseline years Unmatched 8 3.6643 120.3 13.57 <0.001
Matched 8 7.9851 0.4 99.7 0.03 0.977

AADT in baseline years Unmatched 30,239 24,050 38 4.21 <0.001
Matched 30,239 30,499 �1.6 95.8 �0.11 0.916

Junction Unmatched 10.791 8.1804 49.7 5.01 <0.001
Matched 10.791 10.575 4.1 91.7 0.35 0.73

A road Unmatched 0.7228 0.9487 �63.8 �8.44 <0.001
Matched 0.7228 0.7525 �8.4 86.9 �0.48 0.633

B road Unmatched 0.1881 0.0443 45.9 5.88 <0.001
Matched 0.1881 0.1485 12.6 72.5 0.75 0.454

Speed limit 30mph Unmatched 0.8438 0.7122 32 3.77 <0.001
Matched 0.8438 0.8646 �5.1 84.2 �0.58 0.564

Speed limit 40mph Unmatched 0.1198 0.1775 �16.3 �1.95 0.052
Matched 0.1198 0.1302 �2.9 82 �0.31 0.758

Table 6
Average effects of speed cameras on annual PICs/KSIs per km in absolute number for criterion 1.

Criterion 1 (KSIs � 3)

Meet criterion 1 Not meet criterion 1

500 m 1000 m 1500 m 500 m 1000 m 1500 m

Changes in annual PICsr per km in absolute number
Unmatched �2.882* �2.049* �1.652* �0.368 �0.633** �0.368
K-nearest Neighbors Matching (K = 1) �1.357* �0.871* �0.611** �0.438 �0.397 �0.338
K-nearest Neighbors Matching (K = 3) �1.181* �0.856* �0.589** �0.394 �0.231 �0.294
Kernel Matching (Bandwidth = 0.05) �1.011* �0.807** �0.593** �0.303 �0.314 �0.303
Radius Matching (Caliper = 0.05) �1.089* �0.819* �0.605** �0.321 �0.332 �0.321
EB �1.093* �0.828* �0.59 �0.327 �0.315 �0.311
Average Effect �1.147 �0.836 �0.597 �0.357 �0.318 �0.313

Changes in annual KSIs per km in absolute number
Unmatched �1.742* �0.833* �0.508* 0.147 �0.141 0.035
K-nearest Neighbors Matching (K = 1) �0.622* �0.279* �0.239* 0.067 �0.108 0.034
K-nearest Neighbors Matching (K = 3) �0.635* �0.235* �0.241* 0.158 �0.100 0.025
Kernel Matching (Bandwidth = 0.05) �0.637* �0.270* �0.214** 0.141 �0.114 0.021
Radius Matching (Caliper = 0.05) �0.687* �0.278* �0.223* 0.147 �0.122 0.027
EB �0.612* �0.256* �0.205* 0.124 �0.114 0.023
Average Effect �0.638 �0.264 �0.224 0.128 �0.112 0.026

Notes: Figures are significant at: *95%, **90%.
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Table 7
Average effects of speed cameras on annual PICs/KSIs per km in absolute number for criterion 2.

Criterion 2 (Risk value � 22)

Meet criterion 2 Not meet criterion 2

500 m 1000 m 1500 m 500 m 1000 m 1500 m

Changes in annual PICsr per km in absolute number
Unmatched �2.278* �2.082* �1.886* �0.238 �0.591** 0.102
K-nearest Neighbors Matching (K = 1) �0.951* �0.740* �0.687** �0.209 �0.192 �0.260
K-nearest Neighbors Matching (K = 3) �0.815* �0.734** �0.549** �0.344 �0.166 �0.119
Kernel Matching (Bandwidth = 0.05) �0.814* �0.803* �0.548** �0.320 �0.221 �0.194
Radius Matching (Caliper = 0.05) �0.830* �0.811 * �0.513** �0.314 �0.229** �0.185
EB �0.812* �0.747 * �0.547 �0.275 �0.208 �0.168
Average Effect �0.845 �0.767 �0.569 �0.293 �0.203 �0.186

Changes in annual KSIs per km in absolute number
Unmatched �1.165* �0.707* �0.477* 0.020 �0.107 �0.047
K-nearest Neighbors Matching (K = 1) �0.402* �0.224** �0.193** 0.020 �0.009 �0.027
K-nearest Neighbors Matching (K = 3) �0.539* �0.213* �0.183** �0.024 �0.024 �0.018
Kernel Matching (Bandwidth = 0.05) �0.528* �0.229* �0.156** 0.012 �0.028 �0.041
Radius Matching (Caliper = 0.05) �0.550* �0.233* �0.157** 0.024 �0.029 �0.034
EB �0.491* �0.228* �0.165** �0.081 �0.027 �0.027
Average Effect �0.502 �0.226 �0.171 �0.010 �0.024 �0.029

Notes: Figures are significant at: *95%, **90%.

Table 8
Average effects of speed cameras on annual PICs per km in percentage.

Changes in annual PICs per km in Percentage

500 m 1000 m 1500 m 500 m 1000 m 1500 m

Criterion 1 (KSIs � 3) KSIs < 3

Unmatched �20.99* �19.46* �17.72* �18.32* �18.44* �15.32*
K-nearest Neighbors Matching (K = 1) �16.10* �13.70* �7.84** �12.42* �9.47** �8.29**

K-nearest Neighbors Matching (K = 3) �17.62* �12.22* �7.38** �11.45* �8.40** �8.51**

Kernel Matching (Bandwidth = 0.05) �14.31* �13.22* �8.64 ** �12.72* �10.86** �8.51**

Radius Matching (Caliper = 0.05) �14.50* �13.65* �8.80* �12.87 * �11.53* �8.70*
Average �15.63 �13.20 �8.17 �12.37* �10.06 �8.51

Criterion 2 (Risk value � 22) Risk value < 22

Unmatched �21.12* �19.15* �18.28* �17.89* �17.97* �17.63*
K-nearest Neighbors Matching (K = 1) �16.67* �12.57* �9.81** �10.24 �10.61 �10.16*
K-nearest Neighbors Matching (K = 3) �17.69* �11.72* �9.60 �11.68 �10.23 �9.38**

Kernel Matching (Bandwidth = 0.05) �16.20* �12.52* �9.74 �12.01 �10.20 �10.95*
Radius Matching (Caliper = 0.05) �16.86* �11.94* �10.22** �12.81** �11.14 �10.07*
Average �16.85 �12.19 �9.84 �11.68 �10.54 �10.14

Notes: Figures are significant at: *95%, **90%.

Table 9
Average effects of speed cameras by KSIs in the baseline years.

The number of KSIs �1 �2 �3 �4 �5 �6

Changes in annual PICs per km in absolute number
Unmatched �1.447* �1.777* �2.049* �2.390* �2.550* �2.731*
K-nearest Neighbors Matching (K = 1) �0.528** �0.834* �0.871* �0.907* �0.818** �0.842**

K-nearest Neighbors Matching (K = 3) �0.790* �0.547** �0.856* �0.857* �0.827** �0.827**

Kernel Matching (Bandwidth = 0.05) �0.637* �0.851* �0.807* �0.795* �0.851** �0.846**

Radius Matching (Caliper = 0.05) �0.656* �0.835* �0.819* �0.797* �0.865* �0.835**

Average Effect �0.653 �0.767 �0.838 �0.839 �0.840 �0.838

Changes in annual KSIs per km in absolute number
Unmatched �0.615* �0.715* �0.833* �0.942* �1.037* �1.099*
K-nearest Neighbors Matching (K = 1) �0.233* �0.182** �0.279* �0.321* �0.303* �0.294**

K-nearest Neighbors Matching (K = 3) �0.231* �0.223* �0.235* �0.262** �0.287** �0.293**

Kernel Matching (Bandwidth = 0.05) �0.233* �0.271* �0.270* �0.288** �0.291** �0.296**

Radius Matching (Caliper = 0.05) �0.233* �0.272* �0.278* �0.299* �0.294* �0.303*
Average Effect �0.232 �0.237 �0.266* �0.293 �0.294 �0.297

Changes in annual PICs per km in percentage
Unmatched �17.68* �19.65* �19.46* �18.84* �16.82* �14.32*
K-nearest Neighbors Matching (K = 1) �11.56* �11.03* �13.70* �9.96** �7.58* �5.87
K-nearest Neighbors Matching (K = 3) �12.09* �10.31* �12.22* �9.95* �7.21* �5.94**

Kernel Matching (Bandwidth = 0.05) �11.50* �13.21* �13.22* �10.67* �7.14** �5.53
Radius Matching (Caliper = 0.05) �11.77* �13.74* �13.65* �11.38* �7.71** �5.75**

Average Effect �11.73 �12.07 �13.20 �10.49 �7.41 �5.77

Notes: Figures are significant at: *95%, **90%.
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sites with a risk value greater than or equal to 30, where the esti-
mate is approximately 13.58%.

6. Discussion and conclusion

Speed camera is an important road safety intervention that has
been found to be effective in regulating driving speeds and reduc-
ing casualties. However, there is limited research on issues sur-
rounding the selection criteria for speed camera sites, including
how these selection criteria are decided and whether the current
criteria can achieve optimum safety benefits. This study evaluate
the current speed camera sites selection criteria in the UK under
different scenarios via propensity score matching and empirical
Bayes methods.

In terms of the characteristics between different types of sites,
the pairwise comparison results indicate that factors including
IMD, percentage of residential area, population density, and school
zones are the main considerations when selecting speed camera
sites. It is suggested that speed camera sites are more likely to be
those with more complex environment and in densely populated
areas, which are consistent with the rules about selecting excep-

tional sites with community concern in the handbook (DfT,
2005). In addition, a comparison of the safety effects of speed cam-
era sites meeting and not meeting the criteria is conducted. The
results show that speed camera sites are more effective in reducing
crashes when the selection criteria are satisfied and a road length
of 500 m should be used by the local authorities to achieve the
optimum safety effects of speed cameras.

We further investigate the possible alternative critical values
for criterion 1 and 2. The results show that as the number of KSIs
and the risk value in the baseline years increases, the effects of
speed cameras in reducing the absolute number of road casualties
also increase. In terms of the reduction in percentages, however,
the speed cameras achieve the optimal effect at sites with at least
3 KSIs in the baseline period. This finding is consistent with crite-
rion 1. However, for criterion 2, the speed cameras are most effec-
tive when the risk value is greater than or equal to 30, which is
higher than the current value of 22.

In summary, this paper contributes to the literature by evaluat-
ing the existing speed camera sites selection criteria in the UK. Sev-
eral critical issues of ‘‘Handbook of Rules and Guidance for the
National Safety Camera Programme for England and Wales” have

Fig. 3. Average effects by KSIs in the baseline years.

Table 10
Average effects of speed cameras by risk value.

Risk value �10 �22 �30 �40 �50 �60

Changes in annual PICs per km in absolute number
Unmatched �1.697* �2.082* �2.347* �2.692* �2.879* �3.117*
K-nearest Neighbors Matching (K = 1) �0.502 ** �0.740** �0.949* �0.999* �0.983* �1.152*
K-nearest Neighbors Matching (K = 3) �0.629* �0.734** �0.954* �0.922* �1.114* �1.095*
Kernel Matching (Bandwidth = 0.05) �0.656* �0.803* �0.976* �1.094* �1.115* �1.157*
Radius Matching (Caliper = 0.05) �0.668* �0.811* �1.003* �1.087* �1.085* �1.194*
Average Effect �0.614 �0.772 �0.971 �1.025 �1.074 �1.149

Changes in annual KSIs per km in absolute number

Unmatched �0.621* �0.707* �0.762* �0.883* �0.922* �0.957*
K-nearest Neighbors Matching (K = 1) �0.226* �0.224** �0.237* �0.271* �0.274* �0.286**

K-nearest Neighbors Matching (K = 3) �0.222* �0.213* �0.254* �0.277* �0.288* �0.281*
Kernel Matching (Bandwidth = 0.05) �0.213* �0.229* �0.279* �0.280* �0.281* �0.286*
Radius Matching (Caliper = 0.05) �0.218* �0.233* �0.281* �0.276* �0.287** �0.288
Average Effect �0.220 �0.225 �0.263 �0.276 �0.283 �0.285

Changes in annual PICs per km in percentage

Unmatched �19.48* �19.15* �20.30* �18.80* �16.47* �14.79*
K-nearest Neighbors Matching (K = 1) �11.14* �12.57* �13.45* �9.89* �8.05** �7.15*
K-nearest Neighbors Matching (K = 3) �11.97* �11.72* �13.69* �9.60* �7.58** �6.19**

Kernel Matching (Bandwidth = 0.05) �11.86* �12.52* �13.48* �10.63* �7.44 �6.46
Radius Matching (Caliper = 0.05) �12.34* �11.94* �13.72* �10.10* �7.48 �6.66**

Average Effect �11.83 �12.19 �13.58 �10.06 �7.64 �6.61

Notes: Figures are significant at: *95%, **90%.

Fig. 4. Average effects by risk values.
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been discussed in the paper, which will be helpful to policy-
making and legislation by providing new evidences and practical
recommendations on enhancing the effectiveness of speed camera
assignment. First, this study identifies the characteristics of speed
camera sites not meeting the criteria, which can help to under-
stand the community concern when selecting potential camera
sites. Second, an optimal site length is suggested for the local
authorities when calculating the criteria. Third, we propose an
optimum threshold value for risk value to achieve maximum safety
effects when selecting the speed camera sites.

There are also some limitations in this study. First, only the
fixed speed camera sites selection criteria in the UK are analyzed.
Due to the data restriction in this study, it is difficult to evaluate
the criteria for selecting mobile speed camera sites. Second, only
30 mph and 40 mph speed limitation are taken into considerations.
In fact, the results may be different on the road with a higher speed
limitation because cameras at locations with a lower speed limit
generate greater effects (De Pauw et al., 2014). In addition, many
studies have been limited to the modelling of safety benefits. This
study may contribute to the improvements in economic perfor-
mance of speed cameras generally. Further research could focus
on the evaluation of the cost-effectiveness of current speed camera
deployment strategies, which is difficult to conduct in this study
due to the data restriction.
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Introduction: National estimates for nonfatal self-directed violence (SDV) presenting at EDs are calculated
from the National Electronic Injury Surveillance System – All Injury Program (NEISS–AIP). In 2005, the
Centers for Disease Control and Prevention and Consumer Product Safety Commission added several
questions on patient characteristics and event circumstances for all intentional, nonfatal SDV captured
in NEISS–AIP. In this study, we evaluated these additional questions along with the parent NEISS–AIP,
which together is referred to as NEISS–AIP SDV for study purposes. Methods: We used a mixed methods
design to evaluate the NEISS–AIP SDV as a surveillance system through an assessment of key system attri-
butes. We reviewed data entry forms, the coding manual, and training materials to understand how the
system functions. To identify strengths and weaknesses, we interviewed multiple key informants. Finally,
we analyzed the NEISS–AIP SDV data from 2018—the most recent data year available—to assess data
quality by examining the completeness of variables. Results: National estimates of SDV are calculated
from NEISS–AIP SDV. Quality control activities suggest more than 99% of the cause and intent variables
were coded consistently with the open text field that captures the medical chart narrative. Many SDV
variables have open-ended response options, making them difficult to efficiently analyze. Conclusions:
NEISS–AIP SDV provides the opportunity to describe systematically collected risk factors and character-
istics associated with nonfatal SDV that are not regularly available through other data sources. With some
modifications to data fields and yearly analysis of the additional SDV questions, NEISS–AIP SDV can be a
valuable tool for informing suicide prevention. Practical Applications: NEISS-AIP may consider updating
the SDV questions and responses and analyzing SDV data on a regular basis. Findings from analyses of
the SDV data may lead to improvements in ED care.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Every year in the United States nearly 50,000 people die due to
suicide and nearly 500,000 present in emergency departments
(EDs) for nonfatal self-directed violence (SDV) (also referred to as
self-harm or self-inflicted injuries; Centers for Disease Control

and Prevention National Centers for Injury Prevention and
Control, 2020). This public health problem is worsening, as the
age-adjusted rate of suicides and nonfatal SDV increased by 33%
and 40%, respectively, between 2001 and 2018 (Centers for
Disease Control and Prevention National Centers for Injury
Prevention and Control, 2020). In 2018, suicide was the tenth lead-
ing cause of death in the United States (Centers for Disease Control
and Prevention National Centers for Injury Prevention and Control,
2020). The direct and indirect costs for suicides and suicide
attempts in the United States was estimated at $93.5 billion in
2013 (Shepard et al., 2016).

National estimates for nonfatal SDV presenting at EDs are calcu-
lated from the National Electronic Injury Surveillance System – All
Injury Program (NEISS–AIP). NEISS–AIP is a collaboration between
the U.S. Consumer Product Safety Commission (CPSC) and the U.S.
Centers for Disease Control and Prevention (CDC) with the purpose

https://doi.org/10.1016/j.jsr.2020.12.002
0022-4375/� 2020 National Safety Council and Elsevier Ltd. All rights reserved.
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of tracking first-time, nonfatal injury-related ED visits on all types
and causes of injuries; deaths are excluded from the surveillance
system. NEISS–AIP is a nationally-representative sample of 24-
hour EDs with at least six beds. NEISS–AIP included 66 EDs when
it started in 2000 and has decreased over time as more hospitals
have dropped out than have been replaced; the 2018 sample
included 59 hospitals.

CPSC and CDC train hospital coders to review ED medical
records and abstract the necessary information on all injuries. CPSC
manages and cleans the database with support from CDC. Select
NEISS–AIP variables are available for querying through the
WISQARSTM website (https://www.cdc.gov/injury/wisqars/index.
html) within one year. Within 3–4 years the public version of the
NEISS–AIP dataset can be accessed free through the Inter-
University Consortium for Political and Social Research website
(https://www.icpsr.umich.edu/web/ICPSR/series/198/studies)
(Fig. 1).

In 2005, CDC and CPSC added several questions on patient char-
acteristics and event circumstances for all intentional, nonfatal
SDV cases captured in NEISS–AIP. The additional questions along
with the parent NEISS–AIP constitute the NEISS–AIP SDV surveil-
lance system for purposes of this study.

While aspects of NEISS–AIP and its other special studies have
been evaluated in the past (Davis, Annest, Powell, & Mercy,
1996; Jhung et al., 2007; Thompson, Wheeler, Shi, Smith, &
Xiang, 2014), NEISS–AIP SDV data have not been evaluated, so little
is known about their usefulness. In this project, we evaluated
NEISS–AIP SDV in terms of overall quality and utility.

2. Methods

CDC defines a surveillance system as ‘‘the ongoing, systematic
collection, analysis, interpretation, and dissemination of data
regarding a health-related event.” These data are then used to
inform prevention efforts ‘‘to reduce morbidity and mortality and
to improve health” (Buehler, 1998; German, Horan, Lee, Milstein,
& Pertowski, 2001; Teutsch & Thacker, 1995; Thacker, 2000). We
used a mixed methods design to evaluate the NEISS–AIP SDV as a
surveillance system through an assessment of 10 system attri-
butes: usefulness, simplicity, flexibility, data quality, acceptability,
sensitivity, predictive value positive, representativeness, timeli-
ness, and stability (Table 1).

We reviewed data entry forms, the coding manual, and training
materials to understand how the system functions. To identify
strengths and weaknesses of the surveillance system attributes,
we interviewed multiple key informants, including CDC users,
CPSC managers, and hospital and quality assurance coders of the
data. Finally, we analyzed the NEISS–AIP SDV data from 2018—

Fig. 1. National Electronic Injury Surveillance System – All Injury Program data flow.

Table 1
Definitions of surveillance system attributes (German et al., 2001).

Attribute Definition

Usefulness A public health surveillance system is useful if it
contributes to the prevention and control of adverse
health-related events, including an improved
understanding of the public health implications of such
events

Simplicity The simplicity of a public health surveillance system
refers to both its structure and ease of operation.
Surveillance systems should be as simple as possible
while still meeting their objectives

Flexibility A flexible public health surveillance system can adapt
to changing information needs or operating conditions
with little additional time, personnel, or allocated funds

Data Quality Data quality reflects the completeness and validity of
the data recorded in the public health surveillance
system.

Acceptability Acceptability reflects the willingness of persons and
organizations to participate in the surveillance system.

Sensitivity Sensitivity refers to the proportion of cases of a disease
(or other health-related event) detected by the
surveillance system (Weinstein & Fineberg)

Predictive Value
Positive

Predictive value positive (PVP) is the proportion of
reported cases that actually have the health-related
event under surveillance (Weinstein & Fineberg)

Representativeness A public health surveillance system that is
representative accurately describes the occurrence of a
health-related event over time and its distribution in
the population by place and person

Timeliness Timeliness reflects the speed between steps in a public
health surveillance system

Stability Stability refers to the reliability (i.e., the ability to
collect, manage, and provide data properly without
failure) and availability (i.e., the ability to be
operational when it is needed) of the public health
surveillance system
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the most recent data year available—to assess data quality by
examining the completeness of variables; specific variables
included time of arrival at the ED, patient self-reported SDV intent
(e.g., intent to die, intent to harm oneself, intent to escape), staff
description/diagnosis, patient SDV risk factors (e.g., previous epi-
sodes of self-harm, depression, bipolar disorder, anxiety), use of
alcohol at time of injury, use of recreational drugs at time of injury,
substances used (if poisoning), and final disposition (if admitted or
transferred).

3. Results

3.1. Attributes

NEISS–AIP SDV allows for the calculation of national estimates
of SDV. In addition, the system captures SDV-related variables that
are not regularly available through other data sources, such as the
Healthcare Cost and Utilization Product – Nationwide Emergency
Department Sample. Compared to surveillance systems that rely
on administrative codes alone, this system relies on medical record
review, and, as such, might capture more cases. One study found
that SDV-related administrative codes are frequently not recorded
because, in part, they tend to not be billable; as a result, SDV events
would be undercounted even though often there is enough infor-
mation in the medical record to identify the SDV (Stanley et al.,
2018). Sensitivity and predictive value positive were difficult to
assess due to a lack of a gold standard for comparison. However,
quality control activities suggest more than 99% of the cause and

intent variables were coded consistently with the open text field
that captures the medical chart narrative. In addition, hospital
reporting to CPSC is timely as it occurs within a week of the ED
visit, but data are not usually analyzed until after the calendar
year’s data have been cleaned and final weights have been
assigned. Cleaning is completed about a year after data collection,
which limits the ability to identify real-time changes in SDV-
related trends. Findings from other system attributes can be found
in Table 2.

3.2. Data quality (Completeness)

In 2018, NEISS–AIP SDV recorded 8,752 unweighted cases trea-
ted in EDs for nonfatal SDV injuries. Some variables (e.g., sex, age)
do not have missing or unknown values but others (e.g., race, loca-
tion where injury occurred, use of alcohol, use of recreational
drugs, blood alcohol concentration (BAC)) have unknown values
for more than 20% of observations (Table 3). Some variables only
offer open-ended responses (e.g., BAC, poisoning substances and
their respective quantities). A few variables (e.g., patient risk fac-
tors, BAC, poisoning substances and their respective quantities,
patient disposition at ED discharge) have large numbers of missing
data because responses are not required.

4. Discussion

NEISS–AIP SDV provides the opportunity to describe systemat-
ically collected risk factors and characteristics associated with non-

Table 2
Findings from the evaluation of attributes of the National Electronic Injury Surveillance System – All Injury Program Self-directed Violence surveillance system.

Attribute Strengths Weaknesses

Usefulness � Provides annual national SDV estimates.
� Captures SDV-related variables (e.g., risk factors, poisoning sub-
stances) that are not regularly available through other data
sources.

� Open-ended responses used for many SDV-related variables make
analysis time-consuming.

Simplicity � Relatively few people involved in the data entry (generally just 1–2
coders per hospital).

� Overall system data flow appears straightforward.

� NEISS–AIP (and by extension NEISS–AIP SDV) is not integrated with
other data systems.

� Data are manually abstracted from medical records.

Flexibility � Relatively simple to add additional questions and responses onto
existing NEISS–AIP structure, as evidenced by multiple additions
that became effective in 2019.

� Changes require approval by multiple departments at CPSC, updates
to the electronic data abstraction forms and new training for staff,
all of which require funds as well.

Data Quality � <1% of injuries had contradictory information in other dataset
fields.

� Certain variables have many observations with no information
because it is unknown or missing from the ED medical records.

Acceptability � Hospital data are submitted complete and within seven days of ED
visit, on average.

� �1–3 hospitals drop out per year and need to be replaced (decline
from 66 hospitals in 2000 to 59 in 2018).

Sensitivity � Not possible to assess because medical records were not available.
� Cases are captured through medical record review, which might
identify more cases than would be captured by administrative
codes alone.

Predictive Value
Positive

� Not possible to assess because medical records were not available.
� <1% of injuries classified as SDV had contradictory information in
other dataset fields.

Representativeness � Representative of U.S. hospitals having 24-hour EDs and a mini-
mum of 6 inpatient beds that serve the general population (ex-
cludes Department of Veterans Affairs hospitals and special-
purpose hospitals (e.g., correctional facilities, psychiatric-only
hospitals)).

� Does not capture patients who do not seek medical treatment, those
treated in physicians’ offices or urgent care facilities and those trea-
ted in hospitals excluded from the sampling frame.

Timeliness � Hospital data are submitted within seven days of ED visit, on
average.

� Weighted data cannot be queried until approximately 1 year after
data collection.

� Public dataset not available until 3–4 years after data collection.

Stability � CPSC’s data reporting system is reliable.
� CDC’s WISQARSTM is reliably available for querying.

� Laptop problems and turn-over of hospital coders can lead to data
entry delays.

CPSC = Consumer Product Safety Commission.
ED = Emergency department.
NEISS–AIP = National Electronic Injury Surveillance System – All Injury Program.
SDV = Self-directed violence.
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fatal SDV that are not regularly available through other data
sources, which, in turn, would be useful for prevention purposes.
While this surveillance system has the potential to be useful, this
evaluation suggests that there are challenges with many of its sys-
tem attributes.

The NEISS–AIP SDV surveillance system attributes of simplicity
and stability benefit from being a part of the larger NEISS–AIP
surveillance system. Another system strength is the focus on med-
ical record review to capture cases, which is likely more sensitive
than if the system relied only on administrative codes. Despite
these strengths, NEISS–AIP has its limitations, particularly because
it is currently reliant on human resources to manually abstract
information from ED medical records and then enter the data into
the NEISS–AIP data collection system. CPSC is exploring machine
learning to help automate data abstraction from electronic medical
records, but currently NEISS–AIP is not integrated with other data
systems like electronic medical records.

NEISS–AIP SDV has aspects that are timely, including data
reporting from the hospitals to CPSC (within a week of the ED visit)
and feedback from CPSC and CDC to hospitals flagging certain

errors (within about a week). However, it takes nearly a year after
the end of the calendar year for the weighted data to be available
for internal use at CDC and for select variables to be available to the
general public through WISQARSTM. Historically, the publicly avail-
able data set for NEISS–AIP was only available after 3–4 years. CDC
is in the process of expediting the release of the public dataset that
will allow for more timely analysis of the NEISS–AIP data by public
health partners. The SDV data captured from the additional ques-
tions added in 2005 have not been and currently are not available
to the public as we continue to evaluate their utility.

The usefulness of the NEISS–AIP SDV data requires further con-
sideration due to a couple of system challenges. First, medical
records that are incomplete or that do not require the same fields
as NEISS–AIP SDV leads to unknown values being entered into
NEISS–AIP SDV. For example, race is not always included in hospi-
tal ED records, which results in this variable frequently being miss-
ing and thus limiting the ability to look at associations between
SDV and race.

In addition, many of the SDV-specific variables (e.g., patient
self-reported intent, staff diagnosis, patient risk factors, BAC, poi-

Table 3
Description, type and evaluation findings of select 2018 National Electronic Injury Surveillance System – All Injury Program Self-directed Violence surveillance variables (8752
observations).

Variable Description Variable Type Findings

Age (in years) Numeric 100% of observations have age.

Sex Multiple Choice 100% of observations have sex.

Race Multiple Choice 6572 (75%) of observations have race.

Location where injury occurred Multiple Choice 5556 (63%) of observations have location.

Time of arrival to ED Numeric 8708 (99%) of observations have time of arrival.

How did the patient describe his/her intent to the
staff, other people, or in a (suicide) note?

Multiple Choice 100% of observations have patient-described intent.

Other description of intent Open-ended 501 (6%) of observations have ‘‘other” descriptions

How did the staff describe or diagnose the injury event
(at the time of discharge)?

Multiple Choice 100% of observations have staff description of injury.

Other staff description or diagnosis Open-ended 837 (10%) of observations have ‘‘other” descriptions/diagnoses.

Depression Checkbox 5379 (62%) of observations have this risk factor.

One or more previous episodes of self-harm Checkbox 3235 (37%) of observations have this risk factor.

Anxiety, panic attacks, post-traumatic stress disorder Checkbox 2048 (23%) of observations have this risk factor.

History of other substance(s) abuse Checkbox 1091 (13%) of observations have this risk factor.

Other psychological/psychiatric problem, e.g., schizophrenia Checkbox 1000 (11%) of observations have this risk factor.

Bipolar disorder Checkbox 786 (9%) of observations have this risk factor.

History of alcohol abuse Checkbox 697 (8%) of observations have this risk factor.

Borderline personality disorder Checkbox 199 (2%) of observations have this risk factor.

Other specified risk factor(s) (e.g., argument with loved one,
abuse or neglect, death of a loved one, illness, money
or legal problems

Checkbox 3254 (37%) of observations have this risk factor.

Please specify the other risk Open-ended 3254 (37%) of observations have a specific ‘‘other” risk factor.

Was alcohol used by the patient at the time of the injury event? Multiple Choice 6753 (77%) of observations have information related to alcohol use.

Blood alcohol concentration (BAC) level Open-ended 2042 (23%) of observations have BAC levels.

Were recreational drugs (e.g., cocaine, heroin, marijuana, ecstasy)
used by the patient at the time of the injury event?

Multiple Choice 6580 (75%) of observations have information
related to recreational drug use.

If the self-harm method was poisoning, please record up to four
medications, drugs or substances taken by the patient.
(4 ‘‘Substance” variables)

Open-ended 6123 (70%) of observations have ‘‘Substance 1”.
1881 (22%) of observations have ‘‘Substance 2”.
709 (8%) of observations have ‘‘Substance 3”.
283 (3%) of observations have ‘‘Substance 4”.

Amount substance taken (4 ‘‘Amount” variables) Open-ended 6123 (70%) of observations have ‘‘Amount 1” (pertaining to ‘‘Substance 1”).
1881 (22%) of observations have ‘‘Amount 2” (pertaining to ‘‘Substance 2”).
709 (8%) of observations have ‘‘Amount 3” (pertaining to ‘‘Substance 3”).
283 (3%) of observations have ‘‘Amount 4” (pertaining to ‘‘Substance 4”).

If the patient was admitted or transferred, please
specify where s/he went

Multiple Choice 6453 (74%) of observations have information on patient disposition.
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soning substances and their respective quantities) use open text
fields for large proportions of responses, making data entry time-
consuming and data analysis difficult and inefficient. These vari-
ables should be examined to determine which questions and
responses can be modified to reduce the amount of open-ended
responses. For example, the poisoning substances variables could
be displayed in a drop-down list by drug/substance class.

In addition to reducing the number of open-ended responses,
there could be a review of which NEISS-AIP SDV variables should
be maintained—either as is or with modifications—and which
could be dropped because they are no longer relevant or because
the data can be obtained elsewhere. For example, the NEISS–AIP
SDV variable that captures staff description or diagnosis of the
SDV injury is important to have a clinical assessment of self-
harm intent but may need to be updated to avoid outdated termi-
nology (e.g., suicide gesture) that has been in place since 2005. In
addition, in 2019, NEISS–AIP added new variables to its core and
modified the medical narrative field to collect more information
regarding alcohol use, perhaps allowing for elimination of other
alcohol use-related variables.

This evaluation was subject to at least two limitations. First,
data were collected primarily through review of manuals and
interviews with CPSC and CDC stakeholders. A standardized survey
of all members of the NEISS–AIP surveillance team and a system-
atic review of medical records to validate the NEISS–AIP SDV data
would have made this evaluation more robust. However, this was
not possible due to time, financial, and planning constraints. Sec-
ond, sensitivity and predictive value positive were difficult to
assess due to a lack of a gold standard.

In summary, NEISS–AIP SDV is a unique surveillance system
based on medical record review that collects SDV-related risk fac-
tors and characteristics that are not collected in other data sources.
With some modifications to data fields and yearly analysis of the
additional SDV questions, NEISS–AIP SDV can be a valuable tool
for informing suicide prevention.
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a b s t r a c t

Introduction: Bicyclists are more vulnerable compared to other road users. Therefore, it is critical to inves-
tigate the contributing factors to bicyclist injury severity to help provide better biking environment and
improve biking safety. According to the data provided by National Highway Traffic Safety Administration
(NHTSA), a total of 8,028 bicyclists were killed in bicycle-vehicle crashes from 2007 to 2017. The number
of fatal bicyclists had increased rapidly by approximately 11.70% during the past 10 years (NHTSA, 2019).
Methods: This paper conducts a latent class clustering analysis based on the police reported bicycle-
vehicle crash data collected from 2007 to 2014 in North Carolina to identify the heterogeneity inherent
in the crash data. First, the most appropriate number of clusters is determined in which each cluster has
been characterized by the distribution of the featured variables. Then, partial proportional odds models
are developed for each cluster to further analyze the impacts on bicyclist injury severity for specific crash
patterns. Results: Marginal effects are calculated and used to evaluate and interpret the effect of each sig-
nificant explanatory variable. The model results reveal that variables could have different influence on
the bicyclist injury severity between clusters, and that some variables only have significant impacts on
particular clusters. Conclusions: The results clearly indicate that it is essential to conduct latent class clus-
tering analysis to investigate the impact of explanatory variables on bicyclist injury severity considering
unobserved or latent features. In addition, the latent class clustering is found to be able to provide more
accurate and insightful information on the bicyclist injury severity analysis. Practical Applications: In
order to improve biking safety, regulations need to be established to prevent drinking and lights need
to be provided since alcohol and lighting condition are significant factors in severe injuries according
to the modeling results.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Compared to other transportation modes, cycling is considered
to be an environmentally friendly and sustainable means of travel-
ling since it can help relieve the congestion pressure (Behnood &
Mannering, 2017), reduce energy consumption and emissions
(Pucher et al., 2011), and provide potential benefits in terms of
environment, health, and society (Rojas-Rueda et al., 2011; Xia
et al., 2013; Kelly et al., 2014; Macmillan et al., 2014; Götschi
et al., 2016). Therefore, city planners and policy makers have been
continuously encouraging and promoting cycling, and improving

the bicycle facilities in order to construct a bicycle-friendly city
and provide better cycling environment (Nabors et al., 2012).

As cycling has become more popular among citizens, especially
for recreation and short-distance commuting trips (Klassen et al.,
2014), there are certain issues that need to be addressed. One of
the most critical concerns is cycling safety, which is highly associ-
ated with the fact that bicyclists are more vulnerable in compar-
ison to other road users (Vanparijs, et al., 2015; Nilsson et al.,
2017). From 2007 to 2017, there were 8,028 bicyclists killed in
bicycle-motor vehicle crashes. The number of fatalities has
increased by approximately 11.70% for the past 10 years. And in
2017, 50,000 bicyclists were injured accounting for 1.82% of total
injuries in traffic crashes (NHTSA, 2019). In addition, bicyclists
are found to be fatally injured with high probability especially in
the United States (Pucher & Dijkstra 2003). Based on this situation,
it is essential to identify and analyze the contributing factors to
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bicyclist injury severity resulting from bicycle-vehicle crashes
using reasonable and appropriate modeling methods.

This paper aims to investigate the potential factors that signifi-
cantly affect bicyclist injury severity using latent class clustering
analysis and the partial proportional odds (PPO) model. The police
reported bicycle-involved crash data collected from 2007 to 2014
in North Carolina were used in this study. Information including
bicyclist, driver, vehicle, crash, roadway, temporal, and environ-
mental characteristics was recorded in the database. Based on
the crash data, latent class clustering analysis is conducted first
to separate the whole data into homogenous segmentations, and
PPO models are developed within each cluster to model the bicy-
clist injury severity. The contribution of this paper is the applica-
tion of latent class clustering analysis to reduce the
heterogeneity revealed in the bicycle-motor vehicle crash data
and the method of combining it with a PPO model to explore the
significant contributing factors to each type of crashes.

The remainder of this paper is structured as follows. Section 2
reviews previous studies on the relevant research topics. Section 3
describes the bicycle-motor vehicle crash data collected for this
research study and the explanatory variables considered in bicy-
clist injury severity analysis. Section 4 explains the methodology
used for this study including latent class clustering analysis and
partial proportional odds model. Section 5 discusses the model
results in detail. Finally, Section 6 summarizes this paper with a
conclusion and provides recommendations for future work.

2. Literature review

Many researchers have conducted studies on the impact of dif-
ferent explanatory variables on bicyclist injury severity utilizing
discrete choice models (Kim et al., 2007; Eluru et al., 2008; Yan
et al., 2011; Kröyer, 2015; Behnood & Mannering, 2017; Chen
et al., 2017; Robartes & Chen, 2017). However, some underlying
conditions might exist in traffic crashes due to the heterogeneity,
which results from the unobserved impact factors that cannot be
reported or revealed from the collected data (Valent et al., 2002;
Ulfarsson & Mannering, 2004; Pai & Saleh, 2007). This issue makes
it difficult to analyze and evaluate the effects of significant factors
on bicyclist injury severity resulting from such traffic crashes. In
addition, the model bias cannot be neglected, which might lead
to inaccurate conclusions (Shaheed & Gkritza, 2014; Mannering &
Bhat, 2014). To overcome this problem, researchers have applied
the segmentation method to resolve the heterogeneity issue by
concentrating on specific crashes including crashes that occurred
at different locations (Moore et al., 2011; Rash-ha Wahi et al.,
2018; Lin & Fan, 2019a, 2019b), certain types of crashes (Decker
et al., 2016), and different age groups (Gong & Fan, 2017; Li &
Fan, 2019). However, the segmentation method mentioned above
is usually based on the research need or the experience from the
previous studies, which may not be able to guarantee the homoge-
nous groups of the data (Depaire et al., 2008). Therefore, cluster
analysis has been leveraged to separate the whole data and iden-
tify homogenous crash segmentations. Recently, latent class clus-
tering analysis has been utilized (Depaire et al., 2008; Yasmin
et al., 2014a, 2014b; Liu & Fan, 2020; Li & Fan, 2019) as the data
clustering techniques to preprocess the distribution of data. While
analyzing the injury severity considering the heterogeneity within
each cluster, researchers adopted different models such as binary
logit model (Sasidharan et al., 2015; Sivasankaran &
Balasubramanian, 2020), multinomial logit model (Depaire et al.,
2008; Sun et al., 2019), mixed logit model (Liu & Fan, 2018), and
ordered probit model (Mohamed et al., 2013). To examine the
unobserved heterogeneity underlying in the crash data, other data
mining techniques including k-means clustering (Mohamed et al.,

2013), decision tree and Bayesian networks (Prati et al., 2017),
and classification and regression tree (Kashani & Mohaymany,
2011) are also utilized.

To model bicyclist injury severity, there are two categories of
model structures that are ordered framework and unordered
framework (Eluru, 2013). The basic discrete choice model within
ordered framework is ordered logit model, which is employed for
outcomes in ordinal nature (Mooradian et al., 2013). Based on this
model, the partial proportional odds model relaxes the propor-
tional odds assumption, which allows for variable coefficients
across different levels. In addition to ordered framework models,
the multinomial logit model and mixed logit models within unor-
dered framework are also employed by researchers to conduct
bicyclist injury severity analysis. However, the unordered models
might neglect the inherent ordinal nature of injury severity.

By reviewing the previous relevant research studies, it can be
concluded that there is a need to develop an innovative and com-
bined method, which sequentially conducts the latent class clus-
tering analysis and develops the partial proportional odds
models, to model bicyclist injury severity in bicycle-vehicle
crashes. The necessity of applying latent class clustering is to
uncover the unobserved or latent features within the crash data,
and to classify the bicycle-vehicle crashes into optimal homoge-
nous groups for further analysis of heterogeneity between categor-
ical segmentations. To explore the impact of various explanatory
variables on bicyclist injury severity within each cluster, the partial
proportional odds model can be developed in order to consider
both the ordinal nature of injury severity levels and the limitation
of proportional odds assumption associated with standard ordered
logit models.

3. Data

The data utilized in this research study are the police reported
bicycle-involved crash data collected from 2007 to 2014 in North
Carolina, which record information including bicyclist injury sever-
ity, driver and bicyclist demographics, vehicle type and traveling
speed, crash types and locations, roadway and environmental char-
acteristics, and crash time, etc. The potential explanatory variables
considered in this paper are carefully selected based on numerous
previous studies as well as the availability of this dataset.

After data cleaning by removing the missing, unknown, and
obviously incorrect data, a total of 4,012 bicycle-involved crash
data are kept for descriptive analysis and model development.
The bicyclist injury severity is categorized into five levels, which
are no injury, possible injury, evident injury, disabling injury, and
fatal injury, accounting for 8.85%, 38.96%, 43.62%, 5.76%, 2.81%
total crashes, respectively. The same categorization method of
injury severity levels can be found in research studies conducted
by Eluru et al. (2008), and Liu et al. (2020).

Table 1 presents a descriptive analysis of the crash dataset,
which contains the detailed information on the distribution of
bicyclist injury severity levels and specific crashes. In addition,
the potential factors obtained from the dataset are classified into
eight categories to describe crashes from different aspects. The
percentages of each injury severity level with different characteris-
tics are presented in the table. The explanatory variables of the
models are coded as dummy variables (0–1), which are listed in
Table 1.

According to the data presented in Table 1, some potential vari-
ables that might be associated with severe injuries can be discov-
ered. Alcohol usage for both bicyclists and drivers is a critical factor
impacting bicyclist injury severity. Comparing the different effects
on bicyclists and drivers, it can be seen that the percentage of fatal
injuries associated with drivers in alcohol usage (16.00%) is higher
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Table 1
Descriptive statistics of bicycle-motor vehicle crashes severity outcomes and explanatory variables.

Variable Categories Injury Severity

Description Total No injury Possible injury Evident injury Disabling injury Fatal injury

Bicycle-vehicle crashes 4012 8.85% 38.96% 43.62% 5.76% 2.81%

Cyclist characteristics
Gender Male 3426 9.28% 38.35% 43.70% 5.78% 2.89%

Female 586 6.31% 42.49% 43.17% 5.63% 2.39%
Age <16 726 9.37% 38.57% 45.04% 6.34% 0.69%

16–24 860 9.88% 39.65% 42.56% 6.16% 1.74%
25–54 1916 8.77% 39.25% 43.42% 5.22% 3.34%
55+ 510 6.67% 37.25% 44.12% 6.27% 5.69%

Alcohol usage Yes 280 8.57% 30.36% 43.21% 10.00% 7.86%
No 3732 8.87% 39.60% 43.65% 5.44% 2.44%

Driver characteristics
Gender Male 2194 8.48% 37.42% 44.80% 5.70% 3.60%

Female 1818 9.30% 40.81% 42.19% 5.83% 1.87%
Age <25 824 7.89% 37.74% 44.54% 5.83% 4.00%

25–59 2418 9.47% 37.80% 44.13% 6.00% 2.61%
60+ 770 7.92% 43.90% 41.04% 4.94% 2.21%

Alcohol usage Yes 75 4.00% 28.00% 38.67% 13.33% 16.00%
No 3937 8.94% 39.17% 43.71% 5.61% 2.57%

Vehicle characteristics
Veh_Type Passenger Car 3015 9.59% 39.97% 42.82% 5.37% 2.26%

Pickup 586 4.61% 38.05% 44.20% 8.19% 4.95%
Van 221 4.98% 37.10% 50.23% 5.43% 2.26%
Bus 25 24.00% 32.00% 36.00% 0.00% 8.00%
Single Unit Truck 46 4.35% 21.74% 58.70% 6.52% 8.70%
Motorcycle 26 15.38% 19.23% 61.54% 0.00% 3.85%
Others 93 17.20% 32.26% 39.78% 6.45% 4.30%

Veh Speed <20 mph 2052 10.87% 46.64% 40.11% 2.00% 0.39%
20–30 mph 534 8.43% 33.71% 51.12% 5.62% 1.12%
30–40 mph 650 6.62% 34.31% 46.92% 8.31% 3.85%
40–50 mph 516 5.62% 26.94% 47.29% 13.18% 6.98%
50–60 mph 251 5.58% 24.30% 41.04% 15.14% 13.94%
60 + mph 9 11.11% 33.33% 22.22% 0.00% 33.33%

Crash characteristics
Bike Direction With traffic 2968 7.99% 35.14% 46.93% 6.70% 3.23%

Facing traffic 1044 11.30% 49.81% 34.20% 3.07% 1.63%
Crash Type Motorist overtaking bicyclist 839 5.96% 32.66% 45.77% 8.70% 6.91%

Backing vehicle 34 23.53% 38.24% 38.24% 0.00% 0.00%
Bicyclist failed to yield 610 8.69% 35.90% 43.77% 9.67% 1.97%
Bicyclist Turn/Merge 367 10.08% 33.79% 43.60% 8.72% 3.81%
Bicyclist overtaking motorist 55 16.36% 32.73% 49.09% 0.00% 1.82%
Head-On 121 4.96% 32.23% 43.80% 9.92% 9.09%
Motorist Failed to Yield 816 9.68% 52.94% 35.54% 1.47% 0.37%
Motorist Turn/Merge 674 7.42% 36.05% 52.82% 3.12% 0.59%
Crossing Paths 211 14.69% 46.45% 34.60% 3.79% 0.47%
Parallel Paths 69 14.49% 30.43% 44.93% 7.25% 2.90%
Other Crash Types 216 10.19% 37.96% 44.44% 4.17% 3.24%

Speeding Yes 90 6.67% 22.22% 45.56% 12.22% 13.33%
No 3922 8.90% 39.34% 43.57% 5.61% 2.58%

Rural/Urban Urban 2700 9.78% 41.67% 42.59% 4.19% 1.78%
Rural 1312 6.94% 33.38% 45.73% 8.99% 4.95%

Crash Location Intersection 2329 9.32% 42.12% 42.81% 4.68% 1.07%
Non-intersection 1683 8.20% 34.58% 44.74% 7.25% 5.23%

Roadway characteristics
Road Geometry Curve 230 5.65% 29.13% 52.17% 6.52% 6.52%

Straight 3782 9.04% 39.56% 43.10% 5.71% 2.59%
Road Type One-way 143 14.69% 46.15% 32.17% 4.90% 2.10%

Two-way 3869 8.63% 38.69% 44.04% 5.79% 2.84%
Divided Road Yes 801 9.11% 39.83% 43.07% 4.24% 3.75%

No 3211 8.78% 38.74% 43.76% 6.14% 2.58%
Road Condition wet, water, ice, snow, mud 323 8.05% 38.39% 44.89% 7.43% 1.24%

dry 3689 8.92% 39.01% 43.51% 5.61% 2.95%
Traffic Control Yes 2502 7.99% 41.49% 43.01% 5.44% 2.08%

No 1510 10.26% 34.77% 44.64% 6.29% 4.04%
No. of Lanes 1 61 8.20% 40.98% 44.26% 6.56% 0.00%

2 2395 8.89% 37.33% 44.51% 6.43% 2.84%
3 316 10.13% 43.35% 41.14% 2.85% 2.53%
4 611 8.84% 39.44% 42.88% 5.56% 3.27%
5 394 7.11% 43.91% 40.61% 5.33% 3.05%
6 127 8.66% 42.52% 42.52% 3.15% 3.15%
7 38 7.89% 36.84% 50.00% 5.26% 0.00%

(continued on next page)
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than that for bicyclists (7.86%). In addition, vehicle speed is another
variable that is related to bicyclist injury severity. Based on the
bicyclist injury severity for different vehicle speeds shown in
Table 1, the percentage of fatal injuries corresponding to each vehi-
cle speed range increases with a higher vehicle speed. Similarly,
speeding has a strong relationship with severe bicyclist injuries,
as the percentage of fatal injuries resulting from speeding is
13.33%. Furthermore, environmental characteristics are the exter-
nal causes to bicyclist injury severity. From the data presented in
Table 1, the percentages of fatal injuries under adverse weather
and dark not lighted roadway conditions are high.

4. Methodology

4.1. Latent class clustering (LCC)

Latent class clustering is a probability based cluster analysis
approach (Depaire et al., 2008; Collins & Lanza, 2010), which has
been widely used recently for traffic crash data segmentation in
order to identify optimal homogenous groups. It is assumed that
the whole crash dataset is divided into exclusive latent classes
with each cluster being classified by an unobserved or latent cate-
gorical variable, which maximizes the homogeneity within each
class and the heterogeneity between classes (Lanza & Rhoades,
2013; Sasidharan et al., 2015). Therefore, to uncover the unob-
served and latent features underlying the bicycle-vehicle crash
data, latent class clustering analysis is conducted. By applying this
innovative method, the impact of various factors within the iden-
tified latent clusters on bicyclist injury severity can be investigated
without omitting the potential heterogeneity between each seg-
mentation. This method can be employed to conduct similar stud-
ies on injury severities of other road users. Compared to other
clustering methods, latent class clustering does not require the
number of clusters to be predetermined (Sun et al., 2019;
Depaire et al., 2008). In addition, it allows different types of vari-
ables (e.g., numerical, categorical variables) (Sasidharan et al.,

2015; Sun et al., 2019), and accepts different statistical criteria to
determine the number of clusters (Sasidharan et al., 2015).

Let us consider a crash data sample where C latent clusters are
assumed to be estimated based on K categorical items. Let c = 1, 2,
. . ., C denote the latent class membership, and Yi (=Yi1, . . ., Yik) rep-
resent crash i’s responses to K categorical items in which Yi is a cat-
egorical variable with possible values being 1, . . ., rk. Let I(yk = rk) be
an indicator factor that equals to 1 when yk equals to rk, and 0
otherwise. Then, the probability function describing the response
of crash is shown as follows:

P Yi ¼ yð Þ ¼
XC
c¼1

cc
YK

k¼1

YRk
rk¼1

qIðyk¼rkÞ
k;rk jc ð1Þ

where cc represents the probability of latent class membership for
cluster c, and q denotes the item-response probability conditional
on latent class membership. In this study, the latent class clustering
analysis is conducted using the LCA procedure installed in SAS 9.4,
which is developed by the Penn State Methodology Center (Lanza
et al., 2007).

To determine the appropriate number of clusters, different
number of clusters need to be tested by trying multiple models.
Information criteria including Akaike Information Criterion (AIC),
Bayesian Information Criteria (BIC), Consistent Akaike Information
Criterion (CAIC), and entropy-based measures can be utilized to
select the optimal number of clusters. The minimal values of AIC,
BIC, CAIC indicate the best number of clusters. In addition, some
researchers believe that BIC is better compared to AIC and CAIC
for identifying the number of clusters (Biernacki & Govaert,
1999). However, it is also found that increasing the number of clus-
ters might not always result in a minimum value, especially for
large samples (e.g., traffic crash data) (Bijmolt et al., 2004). There-
fore, the percentage reduction in BIC between tested models can be
utilized (Sasidharan et al, 2015). As for the entropy measure, it is a
weighted average of the posterior membership probability of an
individual ranging from 0 to 1. Larger entropy values are associated
with better latent class segmentation and 0.9 is suggested as a sat-
isfied entropy value (McLachlan & Peel, 2000). In this paper, AIC,

Table 1 (continued)

Variable Categories Injury Severity

Description Total No injury Possible injury Evident injury Disabling injury Fatal injury

8 40 12.50% 35.00% 47.50% 2.50% 2.50%
9+ 30 13.33% 36.67% 43.33% 6.67% 0.00%

Land characteristics
Work Zone Yes 17 11.76% 29.41% 47.06% 11.76% 0.00%

No 3995 8.84% 39.00% 43.60% 5.73% 2.83%

Temporal Characteristics
Crash Time 0:00–5:59 137 7.30% 32.85% 39.42% 12.41% 8.03%

6:00–9:59 547 7.31% 38.76% 46.98% 4.57% 2.38%
10:00–14:59 1066 9.76% 42.78% 40.99% 4.13% 2.35%
15:00–17:59 1093 9.15% 39.89% 43.37% 5.58% 2.01%
18:00–23:59 1169 8.64% 35.41% 45.17% 7.19% 3.59%

Environmental Characteristics
Weather Clear 3326 8.81% 38.82% 44.11% 5.53% 2.74%

Cloudy 511 8.61% 40.51% 40.90% 6.26% 3.72%
Fog, smog, smoke 9 11.11% 33.33% 22.22% 0.00% 33.33%
Rain 161 9.94% 36.02% 44.72% 9.32% 0.00%
Snow 5 20.00% 80.00% 0.00% 0.00% 0.00%

Light Condition Daylight 2970 8.99% 40.27% 43.80% 5.02% 1.92%
Dusk or Dawn 176 6.82% 38.64% 44.32% 9.09% 1.14%
Dark - lighted roadway 442 9.50% 37.33% 44.12% 6.79% 2.26%
Dark - roadway not lighted 424 8.02% 31.60% 41.51% 8.49% 10.38%
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BIC, CAIC, and entropy measures are used for identifying the appro-
priate number of clusters.

4.2. Partial proportional odds model (PPO)

The partial proportional odds model is developed based on the
ordered logit model. In the ordered logit model, the proportional
odds (PO) assumption is subjected. It can be interpreted that the
estimated parameters are restricted to be the same across all the
alternatives. However, this assumption is unrealistic. To relax the
assumption, the PPO model is developed.

The explanatory variables associated with each bicycle-vehicle
crash are categorized into two groups. One contains parameters
satisfying the PO assumption, which is presented as vector Xi;
the other includes parameters that violate the PO assumption,
which is shown as vector Zi. The variables that violate the PO
assumption are able to affect the response variables differently,
while others remaining fixed parameters have the same effect
across different levels. Thus, the PPO model with logit function is
presented as follows (Peterson & Harrell, 1990):

P Yi � jð Þ ¼
exp hj � X

0
ibj þ Z

0
icj

� �h i

1þ exp hj � X
0
ibj þ Z

0
icj

� �h i ð2Þ

where j denotes the level of bicyclist injury severity and Yi repre-
sents the crash injury resulting from bicycle-motor vehicle crash i,
b and c represent the coefficients that will be estimated, and hj
demonstrates the threshold for jth cumulative logit.

To examine whether or not the explanatory variables violate the
PO assumption, the Wald Chi-square tests are utilized during the
model development (Wang & Abdel-Aty, 2008; Sasidharan &
Menéndez, 2014). This procedure helps divide the explanatory
variables into two groups that belong to either vector Xi or vector
Zi.

Before developing the PPO models, ordered logit models are
built to help select the explanatory variables that will be consid-
ered later for the PPO models, and all parameters are assumed to
violate the PO assumption as the base for PPO model development
for each cluster. SAS 9.4 is used to conduct the PPO model estima-
tion procedure. Since the sign of the estimated coefficient may not
always explain the effect of explanatory variables on the bicyclist
injury severity (Wooldridge, 2010; Washington et al., 2010), the
marginal effects are applied for the PPO model result
interpretation.

4.3. Marginal effect

To examine the impact of significant variables included in the
partial proportional odds models on the likelihood of bicyclist
injury severity, the marginal effect of each significant variable is
calculated. Since all the variables in this research study are
dummy-coded, it is not appropriate to apply the marginal effect
equation for continuous variables (Yu et al., 2019). Therefore, the
marginal effects of all the explanatory variables for each bicyclist
i and severity level j are expressed as follows:

E
Pij
Xijk

¼ PijðXijk ¼ 1Þ � PijðXijk ¼ 0Þ ð3Þ

where E
Pij
Xijk

represents the marginal effects of the k-th dummy vari-

able Xijk, PijðXijk ¼ 1Þ and PijðXijk ¼ 0Þ denote the probability when
dummy variable Xijk equals to 1 and 0, respectively.

The marginal effect of each significant explanatory variable for
different bicyclist injury severity levels is calculated when the k-th
dummy variable Xijk varies from 0 to 1 based on the corresponding

probabilities. Then, the average of marginal effects is computed for
each parameter over all observations.

5. Results and discussions

5.1. Latent class clustering results

Several models are examined using the bicycle involved crash
data including all the explanatory variables to identify the optimal
number of clusters by testing from cluster 1 to cluster 10. Entropy
value and information criteria including AIC, BIC, and CAIC are uti-
lized to determine the most appropriate number of clusters and
the variation of these values are shown in Fig. 1. Based on the val-
ues of AIC, BIC, and CAIC presented in this figure, all information
criteria decrease with the increase of the number of clusters. How-
ever, no minimum value is reached for all the tested models.
Hence, the reduction percentage of less than 1% in all three infor-
mation criteria is applied to select the number of clusters for this
study following the research conducted by Chang et al. (2019).
From seven clusters afterwards, little improvement (<1%) of AIC,
BIC, and CAIC is shown and the entropy has reached a high value
of 0.97, which indicates a good separation between the clusters.
Therefore, the bicycle-motor vehicle crashes are classified into
seven clusters for further partial proportional odds analysis.

Following the research study conducted by Depaire et al.
(2008), the final seven-cluster models can be described by the
skewed feature distributions of each variable in each cluster, which
can be found in Table 2. To characterize each cluster as a specific
crash pattern, some featured variables are identified based on the
variable distribution across clusters, and the variables with signif-
icantly different percentages are set to be bold in Table 2.

For cluster 1, 50.29% of the crashes occurred with estimated
vehicle speed ranging from 20 to 30 mph. In addition, 55.32% of
the crashes occurred when bicyclists failed to yield. Therefore,
cluster 1 can be referred to as ‘‘crashes occurred with vehicle speed
ranging from 20 to 30 mph when the bicyclist failed to yield.” All
the crashes in cluster 2 are caused by drivers aged from 25 to 59
with low estimated vehicle speed, which is less than 20 mph.
One can define this cluster as ‘‘crashes caused by drivers from 25
to 59 years old with less than 20 mph vehicle speed.” For cluster
3, 86.34% of the crashes occurred at non-intersection locations,
and 61.8% occurred on dark roadway without light. Cluster 3 can
be described as ‘‘crashes occurred on not lighted non-intersection
roadways in dark.” In cluster 4, only one variable is found to have
significantly different distribution (63.81%) from that in other clus-
ters, which is dark – lighted roadway. Hence, cluster 4 is named as
‘‘crashes occurred on lighted roadways in dark.” Cluster 5 and clus-
ter 6 overlap with cluster 3 on the same crash location, which is
non-intersection location, but differ from it by the skewed feature
of vehicle type (pickup) and lighting condition (daylight) respec-
tively. It is noted that 65.43% of the crashes in cluster 5 are caused
by pickups, and all the crashes in cluster 6 are occurred in daylight.
Therefore, cluster 5 and cluster 6 can be referred to as ‘‘crashes
caused by pickups at non-intersection locations” and ‘‘crashes
occurred at non-intersection locations in daylight,” respectively.
Cluster 7 shares an overlapped variable (vehicle speed less than
20 mph) with cluster 2. All the crashes occurred with the estimated
vehicle speed less than 20 mph, but none of them are caused by
drivers aged from 25 to 59. Instead, 50.4% of the crashes are caused
by old drivers (more than 60 years old). So, cluster 7 is described as
‘‘crashes caused by drivers elder than 60 years old with less than
20 mph vehicle speed.” Finally, Table 3 summarizes the definition,
key variables and the distribution of each cluster.

Z. Lin and Wei (David) Fan Journal of Safety Research 76 (2021) 101–117

105



5.2. Partial proportional odds model results

Based on the LCC results, PPO models are developed for each
cluster. However, for cluster 4, cluster 6, and cluster 7, all the vari-
ables are found to pass the Wald Chi-square tests for the PO
assumption, which make these three PPO models collapse into
ordered logit models. To compare the restricted model developed
based on the whole data and the sub-models developed based on
latent class clustering, a PPO model is developed using the whole
dataset, and a likelihood ratio test is conducted. According to the
model estimation results, the log likelihood value at convergence
for the restricted PPO model is �4530.08, while the sum of the
log likelihood values at convergence for all seven sub-models is
�4411.21. The value of v2 test statistics is 237.75 with 48 degrees
of freedom, which indicates a better fitness for seven sub-models.
Therefore, the PPO/ORL model results for each cluster and the
whole data are presented in Tables 4a–4h.

As is mentioned in Section 4.2., the sign of the estimated param-
eters may not accurately reveal the effect of bicyclist injury sever-
ity, marginal effects need to be calculated for the interpretation of
the variable impacts. The marginal effects of significant variables in
each model for each cluster and the whole data are presented in
Tables 5a–5h.

Comparing the significant factors for the whole dataset and sep-
arate clusters, three critical findings can be discussed. First, differ-
ences can be found between the significant explanatory variables
for the whole dataset and the seven clusters. Some variables that
do not significantly affect the bicyclist injury severity in the whole
dataset are found to have significant impacts in specific clusters

Fig. 1. Variation of entropy and information criteria for different number of clusters.

Table 2
Distribution of variables describing each cluster (bold).

Variable Description Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7

Bicycle-vehicle crashes 12.89% 24.08% 8.02% 13.81% 11.46% 14.21% 15.53%
Driver Age 25–59 61.9% 100% 62.11% 58.12% 63.7% 55.61% 0%

60+ 16.63% 0% 14.29% 16.06% 24.13% 21.75% 50.4%
Veh_Type Pickup 12.19% 11.59% 0% 9.03% 65.43% 0% 9.63%
Veh Speed <20 mph 0% 100% 4.35% 71.12% 5% 5.61% 100%

20–30 mph 50.29% 0% 11.18% 12.82% 11.74% 19.82% 0%
Crash Type Bicyclist failed to yield 55.32% 13.15% 1.86% 19.49% 0% 0.18% 13.16%
Crash Location Non-intersection 2.13% 27.95% 86.34% 13.54% 91.74% 84.56% 23.27%
Light Condition Daylight 99.81% 100% 0% 0% 64.13% 100% 100%

Dark - lighted roadway 0% 0% 20.81% 63.18% 5.43% 0% 0%
Dark - roadway not lighted 0% 0% 61.8% 19.31% 25.65% 0% 0%

Table 3
Definition and distribution of each cluster.

Cluster Key Variables Description Percentage

Cluster
1

Vehicle speed
20–30 mph
Bicyclist
failed to yield

Crashes occurred with vehicle speed
from 20 to 30 mph when the
bicyclist failed to yield

12.89%

Cluster
2

Driver age
25–59
Vehicle speed
less than 20
mph

Crashes caused by drivers from 25
to 59 years old with less than 20
mph vehicle speed

24.08%

Cluster
3

Crash
location non-
intersection
Dark -
roadway not
lighted

Crashes occurred on not lighted
non-intersection roadways in dark

8.02%

Cluster
4

Dark - lighted
roadway

Crashes occurred on lighted
roadways in dark

13.81%

Cluster
5

Vehicle type
pickup
Crash
location non-
intersection

Crashes caused by pickups at non-
intersection locations

11.46%

Cluster
6

Crash
location non-
intersection
Daylight

Crashes occurred at non-
intersection locations in daylight

14.21%

Cluster
7

Driver age
over 60
Vehicle speed
less than 20
mph

Crashes caused by drivers elder than
60 years old with less than 20 mph
vehicle speed

15.53%
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(i.e., types of bicycle-vehicle crashes). This finding confirms the
necessity and importance of conducting the latent class clustering
analysis, which can provide the insight into the differences
between various types of crashes and reveal the heterogeneity
within the data. Second, the significant explanatory variables vary
across the seven clusters, indicating that different types of crashes
are affected by distinctive factors. Third, significant variables in the

PPO model that are developed based on the whole dataset can still
be found in the sub-models, which provides clear evidence that the
sub-models can interpret the effects of bicyclist injury severity
more exhaustively.

Differences of the impacts of significant variables identified
across seven clusters will be discussed in detail in the following
sections.

Table 4a
PPO model for cluster 1 in bicyclist-vehicle crashes.

Cluster 1 All Levels Fatal Injury Disabling Injury Evident Injury Possible Injury

Variable Coef. Sig. Coef. Sig. Coef. Sig. Coef. Sig. Coef. Sig.

Intercept �3.0494 0.0010** �1.1260 0.1405 0.0559 0.9474 0.5546 0.5538

Vehicle characteristics
Veh Speed 20–30 mph �3.1930 0.0025** �2.6773 <0.0001** �0.7646 0.2706 0.7874 0.3418

30–40 mph �5.4050 0.0004** �2.5565 <0.0001** �1.1038 0.1131 0.2602 0.7511
40–50 mph �4.0777 0.0120** �1.3928 0.0352** �0.3270 0.6606 2.2216 0.0828*

Crash characteristics
Bike Direction Facing traffic 1.5879 0.0837* �0.3658 0.3682 �0.5812 0.0119** �0.0941 0.8110
Crash Type Bicyclist Turn/Merge 1.0534 0.0458**

Bicyclist overtaking motorist �2.8403 0.0325**

Motorist Failed to Yield �0.5971 0.0500*

Roadway characteristics
Road Geometry Curve 4.1579 0.0011** 0.4645 0.4458 0.6454 0.2220 13.4334 0.9851
Road Type Two-way 1.0816 0.0170**

Model Performance Results
Log Likelihood with Constant Only �619.40
Log Likelihood at Convergence �577.81
AIC 1213.63

* Level of significance >90%.
** Level of significance >95%.

Table 4b
PPO model for cluster 2 in bicyclist-vehicle crashes.

Cluster 2 All Levels Fatal Injury Disabling Injury Evident Injury Possible Injury

Variable Coef. Sig. Coef. Sig. Coef. Sig. Coef. Sig. Coef. Sig.

Intercept �18.8777 0.9821 �4.2560 <0.0001** �0.6332 0.1332 2.8783 <0.0001**

Cyclist characteristics
Gender Male 11.7300 0.9889 �0.1434 0.8007 �0.2588 0.1502 �1.6871 0.0003**

Vehicle characteristics
Veh_Type Passenger Car 0.8759 0.0089**

Pickup 1.1659 0.0020**

Van 0.9009 0.0284**

Single Unit Truck 2.1506 0.0052**

Motorcycle 2.4802 0.0436**

Crash characteristics
Bike Direction Facing traffic �13.0156 0.9877 �1.1769 0.0370** �0.7558 <0.0001** �0.2122 0.3103
Crash Type Motorist Turn/Merge 0.3634 0.0309**

Rural/Urban Urban �0.4694 0.0080**

Roadway characteristics
Road Geometry Curve 0.7416 0.0384**

Road Condition wet, water, ice, snow, mud 0.8671 0.0028**

Traffic Control Yes 0.3975 0.0042**

Temporal Characteristics
Crash Time 0:00–5:59 1.9987 0.0377**

6:00–9:59 �0.3212 0.0635*

Environmental Characteristics
Weather Fog, smog, smoke, rain, snow �0.4284 0.0279**

Model Performance Results
Log Likelihood with Constant Only �1029.52
Log Likelihood at Convergence �971.68
AIC 1993.37

* Level of significance >90%.
** Level of significance >95%.
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5.2.1. Bicyclist characteristics
Bicyclist characteristic factors that have significant impacts on

bicyclist injury severity include the gender of bicyclists, bicyclist
age, and bicyclists under the influence of alcohol. Differences of
impact variables exist between each cluster. For example, male
bicyclists in cluster 2 are found to be more likely to have fatal
injury or no injury with marginal effects being 0.0012 and
0.1079, respectively.

Young bicyclists (<16) have a lower probability of suffering
from severe injuries (fatal injury, disabling injury, and evident
injury) in cluster 4 (marginal effects �0.0042, �0.0167, and
�0.0822) and cluster 5 (marginal effects �0.06, �0.0512, and
�0.114). Similarly, bicyclists (16–24 and 25–54) in cluster 5 are
less likely to sustain severe injury, including fatal injury, disabling

injury, and evident injury (marginal effects �0.0476, �0.038, and
�0.0697; and marginal effects �0.0748, �0.054, and �0.053). This
result is in line with a previous research study conducted by
Kaplan et al. (2014).

In cluster 7, bicyclists under the influence of alcohol have a
higher likelihood to be severely injured (fatal injury, disabling
injury, and evident injury). It can be noted that, although the esti-
mated driving speed is relatively low, the injury severity level can
be high. This result is probably valid because drinking alcoholmight
decrease the reaction speed of a bicyclist to an incident and there-
fore have a negative impact on his/her physical condition. In addi-
tion, the influence of elderly drivers cannot be neglected. Therefore,
regulations can be made to prevent bicyclists from drinking alcohol
while riding a bicycle, so that biking safety might be improved.

Table 4c
PPO model for cluster 3 in bicyclist-vehicle crashes.

Cluster 3 All Levels Fatal Injury Disabling Injury Evident Injury Possible Injury

Variable Coef. Sig. Coef. Sig. Coef. Sig. Coef. Sig. Coef. Sig.

Intercept �3.1950 <0.0001** �1.9005 <0.0001** 0.3748 0.0197** 2.5665 <0.0001**

Driver characteristics
Age <25 0.7157 0.0039**

Alcohol usage Yes 1.2941 0.0104**

Vehicle characteristics
Veh Speed 50–60 mph 1.5335 0.0004** 1.0300 0.0026** 0.1141 0.7237 �0.1120 0.8345

Crash characteristics
Bike Direction Facing traffic �1.3387 0.1420 0.4606 0.3477 �0.8320 0.0499** �1.2660 0.0239**

Speeding Yes 1.4298 0.0154**

Roadway characteristics
Road Condition wet, water, ice, snow, mud �0.8877 0.0296**

Temporal Characteristics
Crash Time 15:00–17:59 1.5150 0.1110 �1.0948 0.0808* �0.6792 0.0783* �1.0940 0.0366**

Environmental Characteristics
Weather Fog, smog, smoke, rain, snow 0.9195 0.0053**

Model Performance Results
Log Likelihood with Constant Only �454.59
Log Likelihood at Convergence �971.68
AIC 879.97

* Level of significance >90%.
** Level of significance >95%.

Table 4d
ORL model for cluster 4 in bicyclist-vehicle crashes.

Cluster 4 All Levels Fatal Injury Disabling Injury Evident Injury Possible Injury

Variable Coef. Sig. Coef. Sig. Coef. Sig. Coef. Sig. Coef. Sig.

Intercept �3.3756 <0.0001** �1.6385 <0.0001** 1.2704 <0.0001** 3.6950 <0.0001**

Cyclist characteristics
Age <16 �0.4630 0.0710*

Vehicle characteristics
Veh Speed <20 mph �1.3416 <0.0001**

20–30 mph �0.8078 0.0106**

Crash characteristics
Crash Type Bicyclist overtaking motorist �1.4275 0.0723*

Motorist Failed to Yield �0.6251 0.0008**

Parallel Paths �1.7609 0.0029**

Speeding Yes �1.4821 0.0455**

Model Performance Results
Log Likelihood with Constant Only �637.81
Log Likelihood at Convergence �607.89
AIC 1237.78

* Level of significance >90%.
** Level of significance >95%.
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5.2.2. Driver characteristics
Young drivers might increase the probability of severe injuries

(fatal injury, disabling injury, and evident injury) suffered by bicy-
clists in crashes that occurred on not lighted, non-intersection
locations in dark with marginal effects being 0.0673, 0.0513, and
0.027. Similar results can be found in cluster 5, where mid-aged
drivers (25–59) are more likely to cause severe injuries including
fatal, disabling, and evident injury in crashes involving pickups at
non-intersection locations.

Unsurprisingly, drivers under the influence of alcohol can prob-
ably increase the likelihood of getting severe injuries such as fatal

and disabling injuries (marginal effects 0.1501 and 0.0976) for
crashes occurred on not lighted non-intersection locations in dark.
This result is in line with previous research in (Kim et al., 2007;
Moore et al., 2011). Policies can be implemented to prohibit drivers
from drinking alcohol to avoid severe injuries to bicyclists in
bicycle-vehicle crashes.

5.2.3. Vehicle characteristics
Several types of vehicles are found to have significant impacts

on bicyclist injury severity, especially in cluster 2 and cluster 5,
which are crashes caused by drivers from 25 to 59 years old with

Table 4e
PPO model for cluster 5 in bicyclist-vehicle crashes.

Cluster 5 All Levels Fatal Injury Disabling Injury Evident Injury Possible Injury

Variable Coef. Sig. Coef. Sig. Coef. Sig. Coef. Sig. Coef. Sig.

Intercept �0.8829 0.0416** �0.0170 0.9678 2.4620 <0.0001** 5.0348 <0.0001**

Cyclist characteristics
Age <16 �1.0458 0.0022**

16–24 �0.7379 0.0214**

25–54 �0.9294 0.0002**

Driver characteristics
Age 25–59 0.4041 0.0348**

Vehicle characteristics
Veh_Type Single Unit Truck 0.8254 0.0665*
Veh Speed <20 mph �1.1364 0.0076**

20–30 mph �0.9011 0.0021**

30–40 mph �0.5539 0.0112**

Crash characteristics
Speeding Yes 1.6194 0.0046** 1.2554 0.0160** 0.9392 0.1619 �1.1144 0.1742

Roadway characteristics
No. of Lanes <=4 �0.7549 0.0247**

Environmental Characteristics
Light Condition Daylight �0.3785 0.0611*

Dark - lighted roadway �0.8676 0.0487**

Model Performance Results
Log Likelihood with Constant Only �584.12
Log Likelihood at Convergence �552.88
AIC 1143.76

* Level of significance >90%.
** Level of significance >95%.

Table 4f
ORL model for cluster 6 in bicyclist-vehicle crashes.

Cluster 6 All Levels Fatal Injury Disabling Injury Evident Injury Possible Injury

Variable Coef. Sig. Coef. Sig. Coef. Sig. Coef. Sig. Coef. Sig.

Intercept �0.4500 0.7383 0.8233 0.5412 3.2915 0.0151** 5.4747 <0.0001**

Vehicle characteristics
Veh Speed 30–40 mph 0.4648 0.0262**

40–50 mph 0.7711 0.0004**

50–60 mph 1.0369 0.0002**

Crash characteristics
Crash Type Bicyclist Turn/Merge �0.4803 0.0074**

Head-On 1.2955 0.0005**

Roadway characteristics
Road Type Two-way �2.8927 0.0266**

Traffic Control Yes 0.3239 0.0514*
No. of Lanes <=4 �0.5629 0.0661*

Environmental Characteristics
Weather Fog, smog, smoke, rain, snow �0.3908 0.0882*

Model Performance Results
Log Likelihood with Constant Only �718.46
Log Likelihood at Convergence �692.91
AIC 1411.81

* Level of significance >90%.
** Level of significance >95%.
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less than 20 mph vehicle speed, and crashes caused by pickups at
non-intersection locations. To be specific, passenger cars, pickups,
vans, single unit trucks, and motorcycles are types of vehicles that

might increase the probability of severe injuries (fatal, disabling,
and evident injuries). Similar results can be found in Gårder
(1994), Gårder et al. (1998), and Stone and Broughton (2003).

Table 4g
ORL model for cluster 7 in bicyclist-vehicle crashes.

Cluster 7 All Levels Fatal Injury Disabling Injury Evident Injury Possible Injury

Variable Coef. Sig. Coef. Sig. Coef. Sig. Coef. Sig. Coef. Sig.

Intercept �4.6780 <0.0001** �3.6478 <0.0001** 0.2588 0.1795 3.2116 <0.0001**

Cyclist characteristics
Alcohol usage Yes 2.0006 0.0115**

Crash characteristics
Bike Direction Facing traffic �0.3601 0.0435**

Crash Type Motorist Turn/Merge 0.5508 0.0044**

Crossing Paths �1.4198 <0.0001**

Parallel Paths �2.5955 0.0241**

Roadway characteristics
Road Geometry Curve 0.8632 0.0394**

Divided Road Yes �0.4608 0.0164**

Temporal Characteristics
Crash Time 10:00–14:59 �0.6423 0.0017**

15:00–17:59 �0.5938 0.0050**

Model Performance Results
Log Likelihood with Constant Only �626.19
Log Likelihood at Convergence �589.05
AIC 1204.11

*Level of significance >90%.
** Level of significance >95%.

Table 4h
PPO model for the whole data in bicyclist-vehicle crashes.

Whole Data All Levels Fatal Injury Disabling Injury Evident Injury Possible Injury

Variable Coef. Sig. Coef. Sig. Coef. Sig. Coef. Sig. Coef. Sig.

Intercept �3.3425 <0.0001** �2.3343 <0.0001** 0.0064 0.9756 2.2166 <0.0001**

Cyclist characteristics
Age <16 �1.6649 0.0007** �0.5829 0.0025** �0.2271 0.0585* �0.3235 0.0640*

16–24 �0.9676 0.0011** �0.2544 0.1355 �0.1984 0.0797* �0.3341 0.0358**

25–54 �0.2531 0.0085**

Alcohol usage Yes 0.5943 0.0192** 0.5355 0.0031** 0.2172 0.1061 �0.1600 0.4877

Driver characteristics
Age <25 0.2511 0.0092**

25–59 0.1332 0.0909*
Alcohol usage Yes 1.5997 <0.0001** 1.1884 <0.0001** 0.4384 0.0922* 0.6569 0.2690

Vehicle characteristics
Veh Speed <20 mph �2.1048 <0.0001** �1.5920 <0.0001** �0.5245 <0.0001** �0.3628 0.0196**

20–30 mph �1.0894 0.0107** �0.8127 <0.0001** �0.0567 0.6307 �0.1684 0.4075
40–50 mph 0.3912 0.0005**

50–60 mph 1.1516 <0.0001** 0.9503 <0.0001** 0.4712 0.0034** 0.1895 0.5353
Veh_Type Pickup 0.3012 0.1733 0.2610 0.0761* 0.1139 0.2343 0.7111 0.0006**

Van 0.2453 0.0599*
Single Unit Truck 0.7171 0.0136**

Crash characteristics
Bike Direction Facing traffic �0.1770 0.5107 �0.4532 0.0092** �0.4762 <0.0001** �0.1654 0.2090
Speeding Yes 0.3182 0.1275
Crash Type Bicyclist Failed to Yield 0.2613 0.4250 0.8624 <0.0001** 0.3064 0.0018** 0.1970 0.2342

Head-On 0.7386 <0.0001**

Motorist Turn/Merge �0.6942 0.1939 �0.1762 0.4417 0.4386 <0.0001** 0.3913 0.0210**

Roadway characteristics
Road Geometry Curve 0.4310 0.0012**

Road Type Two-way 0.2931 0.0772*

Temporal Characteristics
Crash Time 10:00–14:59 �0.1334 0.0535*

Model Performance Results
Log Likelihood with Constant Only �4848.98
Log Likelihood at Convergence �4530.08
AIC 9178.16

* Level of significance >90%.
** Level of significance >95%.
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Another significant impact factor of vehicle characteristic is the
estimated vehicle speed, which is highly associated with the bicy-
clist injury severity. Low vehicle speed (less than 30 mph) is less
likely to result in severe injuries including fatal, disabling, and evi-
dent injuries in cluster 4 and cluster 5 (i.e., crashes occurred on
lighted roadways in dark and crashes caused by pickups at non-
intersection locations, respectively). Interestingly, the estimated
vehicle speed from 30 to 40 mph has different effects for cluster
5 and cluster 6. In cluster 5, this range of vehicle speed is less likely
to cause severe injuries for crashes caused by pickups at non-
intersection locations, while in cluster 6, the vehicle speed might
increase the probability of severe injuries for crashes occurred at

non-intersection locations in daylight. For vehicle speed from 40
to 60 mph, it is clear that the likelihood of suffering from severe
injuries is increased for crashes occurring at non-intersection loca-
tions in daylight. It can be seen that even in daylight, driving fast
may increase the probability of severe injuries of bicyclists result-
ing from crashes occurred at non-intersection locations. Therefore,
speed limit is critical for providing safer cycling environment.
When determining the speed limit for roadways that are popular
among bicyclists, one needs to carefully consider avoiding setting
the speed limit over 40 mph based on the model estimation results
since high speed may increase the likelihood of severe injuries of
bicyclists.

Table 5a
Average marginal effects for cluster 1.

Variable Cluster1

F D E P N

Vehicle characteristics
Veh Speed 20–30 mph �0.1230 �0.1726 0.1349 0.2164 �0.0558

30–40 mph �0.1100 �0.1214 �0.0145 0.2641 �0.0182
40–50 mph �0.0470 �0.0463 0.0197 0.1546 �0.0811

Crash characteristics
Bike Direction Facing traffic 0.0385 �0.0687 �0.1042 0.1277 0.0067
Crash Type Bicyclist Turn/Merge 0.0273 0.1042 0.0682 �0.1498 �0.0499

Bicyclist overtaking motorist �0.0228 �0.0786 �0.4150 0.0600 0.4564
Motorist Failed to Yield �0.0099 �0.0348 �0.0933 0.0878 0.0502

Roadway characteristics
Road Geometry Curve 0.2642 �0.2161 0.0842 �0.0501 �0.0822
Road Type Two-way 0.0150 0.0530 0.1821 �0.1404 �0.1096

N - No Injury.
P - Possible Injury.
E - Evident Injury.
D - Disabling Injury.
F - Fatal Injury.

Table 5b
Average marginal effects for cluster 2.

Variable Cluster2

F D E P N

Cyclist characteristics
Gender Male 0.0012 �0.0045 �0.0551 �0.0496 0.1079

Vehicle characteristics
Veh_Type Passenger Car 0.0008 0.0161 0.1621 �0.0732 �0.1058

Pickup 0.0021 0.0380 0.2177 �0.1711 �0.0867
Van 0.0014 0.0274 0.1614 �0.1212 �0.0690
Single Unit Truck 0.0073 0.1203 0.2974 �0.3209 �0.1041
Motorcycle 0.0105 0.1610 0.2910 �0.3550 �0.1075

Crash characteristics
Bike Direction Facing traffic �0.0017 �0.0197 �0.1499 0.1499 0.0215
Crash Type Motorist Turn/Merge 0.0004 0.0080 0.0741 �0.0486 �0.0339
Rural/Urban Urban �0.0006 �0.0111 �0.0954 0.0652 0.0418

Roadway characteristics
Road Geometry Curve 0.0011 0.0209 0.1472 �0.1113 �0.0578
Road Condition wet, water, ice, snow, mud 0.0013 0.0253 0.1701 �0.1298 �0.0669
Traffic Control Yes 0.0004 0.0076 0.0794 �0.0454 �0.0420

Temporal Characteristics
Crash Time 0:00–5:59 0.0061 0.1049 0.2934 �0.3040 �0.1005

6:00–9:59 �0.0003 �0.0060 �0.0638 0.0353 0.0348

Environmental Characteristics
Weather Fog, smog, smoke, rain, snow �0.0004 �0.0079 �0.0842 0.0449 0.0476

N - No Injury.
P - Possible Injury.
E - Evident Injury.
D - Disabling Injury.
F - Fatal Injury.
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5.2.4. Crash characteristics
Biking direction is a significant impact factor that affects bicy-

clist injury severity. Since bicyclists will have the ability to prepare
while biking facing traffic, the probability of suffering from severe
injury severities is decreased, which is consistent with the model
results revealed in cluster 2, cluster 3, and cluster 7 (i.e., crashes
caused by mid-aged drivers with low speed, crashes occurred on
not lighted non-intersection locations in dark, and crashes caused
by elderly drivers with low speed). However, in cluster 1, bicyclists
are more likely to sustain fatal injury (marginal effect 0.0385),
which is related to the specific crash pattern (crashes occurred
with vehicle speed from 20 to 30 mph when bicyclists failed to
yield). This result indicates that severe injuries might occur due
to the fault of bicyclists in bicycle-vehicle crashes. This is consis-
tent with a research study conducted by Kim et al. (2007). Consid-
ering this model results, it is necessary to specify the right of way
when there is a conflict between drivers and bicyclists. A yield sign
will help remind drivers of yielding to bicyclists to reduce the
probability of a collision. Furthermore, bicyclists need to wear
reflective materials so as to be clearly seen by other road users.

Different crash types will affect bicyclist injury severity distinc-
tively, and different effects may exist for specific crash patterns. In
cluster 1, more severe injuries might be suffered by bicyclists when
bicyclists turn or merge, while in cluster 6, the opposite results can
be concluded that bicyclists are less likely to be severely injured in
crashes occurred at non-intersection locations in daylight. That is
probably associated with the crash locations (non-intersection)
and the lighting condition (daylight). When bicyclists overtake
motorist, the likelihood of bicyclists getting severe injuries (includ-
ing fatal, disabling, and evident injuries) is low for both cluster 1
(marginal effects �0.0228, �0.0786, and �0.415) and cluster 4
(marginal effects �0.0082, �0.0344, and �0.2374), which is prob-
ably related to the driving speed of a driver. Similar results can be
found when motorists failed to yield in cluster 1 and cluster 4. In
contrast, head on crashes and motorists turning or merging might
increase the likelihood of suffering severe injuries for crashes
occurred at non-intersection locations in daylight, and crashes
caused by mid-aged drivers (25–59) and elderly drivers (60+) with
low speed (20 mph), respectively, based on the marginal effects
shown in Table 5. For crashes occurred at crossing paths and par-

Table 5c
Average marginal effects for cluster 3.

Variable Cluster3

F D E P N

Driver characteristics
Age <25 0.0673 0.0513 0.0270 �0.1040 �0.0415
Alcohol usage Yes 0.1501 0.0976 �0.0241 �0.1675 �0.0560

Vehicle characteristics
Veh Speed 50–60 mph 0.1708 0.0098 �0.1565 �0.0320 0.0079

Crash characteristics
Bike Direction Facing traffic �0.0785 0.1541 �0.2622 0.0588 0.1277
Speeding Yes 0.1744 0.1046 �0.0416 �0.1792 �0.0582

Roadway characteristics
Road Condition wet, water, ice, snow, mud �0.0606 �0.0526 �0.0814 0.1155 0.0791

Temporal Characteristics
Crash Time 15:00–17:59 0.1785 �0.3097 �0.0211 0.0497 0.1026

Environmental Characteristics
Weather Fog, smog, smoke, rain, snow 0.0890 0.0663 0.0247 �0.1273 �0.0527

N - No Injury.
P - Possible Injury.
E - Evident Injury.
D - Disabling Injury.
F - Fatal Injury.

Table 5d
Average marginal effects for cluster 4.

Variable Cluster4

F D E P N

Cyclist characteristics
Age < 16 �0.0042 �0.0167 �0.0822 0.0563 0.0468

Vehicle characteristics
Veh Speed <20 mph �0.0178 �0.0688 �0.2189 0.2107 0.0948

20–30 mph �0.0070 �0.0277 �0.1360 0.0798 0.0910

Crash characteristics
Crash Type Bicyclist overtaking motorist �0.0082 �0.0344 �0.2374 0.0777 0.2023

Motorist Failed to Yield �0.0056 �0.0227 �0.1153 0.0840 0.0596
Parallel Paths �0.0092 �0.0385 �0.2786 0.0572 0.2692

Speeding Yes �0.0085 �0.0355 �0.2430 0.0745 0.2125

N - No Injury.
P - Possible Injury.
E - Evident Injury.
D - Disabling Injury.
F - Fatal Injury.
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allel paths, bicyclists are more likely to have possible injury or no
injury.

Speeding can affect bicyclist injury severity differently in clus-
ter 3–5. For crashes that occurred on not lighted non-intersection
locations in dark (cluster 3), and crashes caused by pickups at
non-intersections (cluster 5), speeding could increase the probabil-
ity of fatal and disabling injuries, while for crashes that occurred on
lighted roadways in dark (cluster 4), speeding could only be more
likely to cause possible injury or even no injury. Comparing cluster
3 and cluster 4, it can be concluded that lighting condition could be
a critical impact factor to the severe injury severities. Therefore, it
is important to provide better light condition to reduce the likeli-
hood of bicyclists suffering from severe injuries. Street lights are
recommended to be built to ensure good light condition for
bicyclists.

For crashes that occurred in urban areas, bicyclists are less
likely to suffer severe injuries including fatal, disabling, and evi-
dent injuries (marginal effects �0.0006, �0.0111, and �0.0954)
in cluster 2 (i.e., crashes caused by mid-aged drivers with low vehi-
cle speed). This is reasonable since low speed usually has negative
impacts on severe injuries. In addition, roadways in urban areas
have better access control and road conditions.

5.2.5. Roadway characteristics
Curved roadway has a positive impact on severe injury severi-

ties, especially for cluster 1, cluster 2, and cluster 7, which indi-
cates a higher probability of severe injuries for particular crash
patterns including crashes occurred with vehicle speed from 20
to 30 mph when the bicyclists failed to yield and crashes caused
by mid-aged drivers (25+) with low vehicle speed (<20 mph).

Table 5e
Average marginal effects for cluster 5.

Variable Cluster5

F D E P N

Cyclist characteristics
Age < 16 �0.0600 �0.0512 �0.1140 0.1612 0.0640

16–24 �0.0476 �0.0380 �0.0697 0.1150 0.0403
25–54 �0.0748 �0.0540 �0.0530 0.1420 0.0398

Driver characteristics
Age 25–59 0.0294 0.0230 0.0311 �0.0656 �0.0179

Vehicle characteristics
Veh_Type Single Unit Truck 0.0825 0.0523 0.0112 �0.1206 �0.0254
Veh Speed <20 mph �0.0590 �0.0522 �0.1394 0.1754 0.0751

20–30 mph �0.0527 �0.0453 �0.0984 0.1447 0.0516
30–40 mph �0.0379 �0.0306 �0.0477 0.0896 0.0266

Crash characteristics
Speeding Yes 0.2066 0.0162 �0.0606 �0.2360 0.0738

Roadway characteristics
No. of Lanes <=4 �0.0721 �0.0471 �0.0181 0.1125 0.0247

Environmental Characteristics
Light Condition Daylight �0.0298 �0.0224 �0.0234 0.0604 0.0153

Dark - lighted roadway �0.0498 �0.0422 �0.0968 0.1372 0.0517

N - No Injury.
P - Possible Injury.
E - Evident Injury.
D - Disabling Injury.
F - Fatal Injury.

Table 5f
Average marginal effects for cluster 6.

Variable Cluster6

F D E P N

Vehicle characteristics
Veh Speed 30–40 mph 0.0193 0.0326 0.0500 �0.0704 �0.0316

40–50 mph 0.0340 0.0561 0.0784 �0.1201 �0.0483
50–60 mph 0.0556 0.0837 0.0728 �0.1574 �0.0547

Crash characteristics
Crash Type Bicyclist Turn/Merge �0.0162 �0.0301 �0.0644 0.0738 0.0369

Head-On 0.0814 0.1146 0.0508 �0.1892 �0.0577

Roadway characteristics
Road Type Two-way �0.3554 �0.2037 0.1903 0.2946 0.0742
Traffic Control Yes 0.0125 0.0220 0.0386 �0.0508 �0.0223
No. of Lanes <=4 �0.0262 �0.0428 �0.0516 0.0876 0.0330

Environmental Characteristics
Weather Fog, smog, smoke, rain, snow �0.0129 �0.0239 �0.0532 0.0591 0.0310

N - No Injury.
P - Possible Injury.
E - Evident Injury.
D - Disabling Injury.
F - Fatal Injury.
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Different effects are identified for the impact of two-way road
on bicyclist injury severities. To be specific, this factor could
increase the likelihood of severe injuries including fatal, disabling,
and evident injuries in cluster 1, while decreasing the probability
of fatal and disabling injuries in cluster 6. This result indicates

the necessity of conducting latent class clustering analysis to
reveal and interpret the variation of the effect of variables across
different clusters.

Furthermore, divided roadway is found to be less likely to result
in severe injuries (fatal, disabling, and evident injuries) in cluster 7

Table 5g
Average marginal effects for cluster 7.

Variable Cluster7

F D E P N

Cyclist characteristics
Alcohol usage Yes 0.0366 0.0552 0.3050 �0.3259 �0.0708

Crash characteristics
Bike Direction Facing traffic �0.0021 �0.0036 �0.0749 0.0542 0.0264
Crash Type Motorist Turn/Merge 0.0038 0.0065 0.1159 �0.0911 �0.0350

Crossing Paths �0.0050 �0.0087 �0.2565 0.1117 0.1585
Parallel Paths �0.0059 �0.0104 �0.3518 �0.0408 0.4089

Roadway characteristics
Road Geometry Curve 0.0082 0.0136 0.1720 �0.1482 �0.0456
Divided Road Yes �0.0026 �0.0044 �0.0942 0.0651 0.0360

Temporal Characteristics
Crash Time 10:00–14:59 �0.0039 �0.0066 �0.1313 0.0937 0.0480

15:00–17:59 �0.0036 �0.0061 �0.1191 0.0828 0.0460

N - No Injury.
P - Possible Injury.
E - Evident Injury.
D - Disabling Injury.
F - Fatal Injury.

Table 5h
Average marginal effects for the whole dataset.

Variable Whole Data

F D E P N

Cyclist characteristics
Age <16 �0.0265 �0.0098 �0.0162 0.0246 0.0279

16–24 �0.0193 0.0024 �0.0290 0.0173 0.0286
25–54 �0.0065 �0.0112 �0.0407 0.0381 0.0202

Alcohol usage Yes 0.0175 0.0256 0.0069 �0.0634 0.0134

Driver characteristics
Age <25 0.0066 0.0118 0.0394 �0.0390 �0.0188

25–59 0.0033 0.0059 0.0216 �0.0201 �0.0107
Alcohol usage Yes 0.0714 0.0464 �0.0184 �0.0590 �0.0404

Vehicle characteristics
Veh Speed <20 mph �0.0365 �0.0606 �0.0276 0.0964 0.0282

20–30 mph �0.0197 �0.0278 0.0345 �0.0009 0.0140
40–50 mph 0.0104 0.0189 0.0609 �0.0629 �0.0273
50–60 mph 0.0390 0.0461 0.0223 �0.0934 �0.0140

Veh_Type Pickup 0.0080 0.0112 0.0071 0.0191 �0.0454
Van 0.0067 0.0117 0.0379 �0.0385 �0.0178
Single Unit Truck 0.0234 0.0390 0.0961 �0.1155 �0.0430

Crash characteristics
Bike Direction Facing traffic �0.0042 �0.0245 �0.0834 0.0986 0.0135
Speeding Yes 0.0089 0.0156 0.0483 �0.0505 �0.0223
Crash Type Bicyclist Failed to Yield 0.0071 0.0652 �0.0020 �0.0555 �0.0148

Head-On 0.0240 0.0402 0.0992 �0.1190 �0.0443
Motorist Turn/Merge �0.0137 0.0020 0.1119 �0.0721 �0.0280

Roadway characteristics
Road Geometry Curve 0.0124 0.0215 0.0643 �0.0690 �0.0292
Road Type Two-way 0.0065 0.0121 0.0492 �0.0420 �0.0258

Temporal Characteristics
Crash Time 10:00–14:59 �0.0032 �0.0059 �0.0218 0.0201 0.0108

N - No Injury.
P - Possible Injury.
E - Evident Injury.
D - Disabling Injury.
F - Fatal Injury.
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with marginal effect being �0.0026,�0.0044, and �0.0942, respec-
tively. Therefore, in order to improve cycling safety, constructing
divided roadways is recommended. Bad road conditions could
result in different bicyclist injury outcomes in cluster 2 and cluster
3. Bicyclists might be more likely to be severely injured in cluster 2,
while being less likely to have severe injuries in cluster 3, which
indicates the heterogeneity between clusters. Some similarities
can be found in cluster 2 and cluster 6, where traffic control has
a positive impact on the high level of bicyclist injury severity. This
is probably because traffic control is always related to the intersec-
tion areas, which may be a reason for severe injuries outcomes. For
the impact of the number of lanes on bicyclist injury severity, a
smaller number of lanes has a negative effect on severe injuries,
which means that severe bicyclist injuries could be less likely to
occur on fewer lanes, especially in cluster 5 and cluster 6.

5.2.6. Temporal characteristics
Different times of day could have various impacts on bicyclist

injury severity according to the marginal effects in Table 5. Biking
during midnight (0:00–5:59) may increase the likelihood of suffer-
ing severe injury severities including fatal, disabling, and evident
injuries especially in cluster 2. Also, in cluster 2, different effects
can be found during 6:00 to 9:59 in the morning, when bicyclists
are less likely to be severely injured. Similar trend can be seen in
cluster 7, where bicyclists are at a lower risk to get severe injuries
during midday from 10:00 to 14:59. However, for crashes occurred
during 15:00 to 17:59, bicyclists are more likely to be fatally
injured in cluster 3, while being less likely to have fatal injury in
cluster 7, which shows the heterogeneity features between differ-
ent clusters. This result might correspond to the characterization of
cluster 7, which is described as crashes caused by elderly drivers
(60+) with low vehicle speed (<20 mph). Summarizing the results
regarding the various impact of temporal characteristics on bicy-
clist injury severity for different clusters, several findings can be
concluded. First, temporal characteristics are to a great extent
associated with the light condition. The effects of the time periods
reflect a part of the influence of light condition in another aspect.
Second, the traffic volume varies during different time periods,
which is related to the bicyclist injury severities.

5.2.7. Environmental characteristics
Adverse weather conditions are found to have a negative impact

on bicyclist injury severity in cluster 2 and cluster 6, while it could
increase the probability of severe injuries in cluster 3 (marginal
effects 0.089, 0.663, and 0.0247). Since cluster 3 is characterized
as crashes occurring on not lighted non-intersection locations in
dark, the high probability of severe bicyclist injuries might result
from the dark lighting condition. It can be inferred that adverse
weather conditions are not the determining factors to severe
injuries.

Lighting condition is a significant impact factor to bicyclist
injury severity especially for cluster 5. Compared to dark, not
lighted roadways, daylight and lighted roadways could decrease
the likelihood of severe bicyclist injuries in cluster 5. Maintaining
clear sight is essential to enhance cycling safety. As previously
mentioned, building appropriate street lights and wearing reflec-
tive materials may decrease the risk of collisions.

6. Conclusions and recommendations

This study aims to investigate the differences of the effects of
impact factors on bicyclist injury severity existing in various crash
patterns. Since bicyclists are more vulnerable compared to other
road users, it is essential to evaluate the variables contributing to
severe bicyclist injuries. Based on the police reported data col-

lected from 2007 to 2014 in North Carolina, latent class clustering
analysis and the subsequent partial proportional odds models and/
or ordered logit models are developed. Seven clusters are identi-
fied, and four PPO models and three ORL models are built to
observe and interpret the impacts on bicyclist injury severity for
certain patterns of crashes. It is tested that the sub-models have
better goodness of fit compared to the single model developed
with the whole dataset, which is consistent with the results of
other research studies conducted by Depaire et al. (2009) and
Sun et al. (2019).

To better analyze and interpret the bicyclist injury outcomes,
marginal effects are calculated to reveal the accurate effect of each
significant variable. Results show that some variables only have
significant influence in specific clusters, and the impact of the same
variable for various clusters can be different, which indicate that
latent class clustering provides as a more accurate and insightful
method to explore the information on the impact of contributing
factors for further analysis of bicyclist injury severity and the
improvement of bicyclist safety.

In addition, the findings of the model results provide somemore
useful information and guidance to help mitigate severe bicyclist
injuries and improve biking safety. To be specific, since bicyclists
under the influence of alcohol are found to be more likely to suffer
severe injuries, it is critical to establish relative regulations to pre-
vent bicyclists from drinking alcohol while riding a bicycle. Similar
enforcement should be enhanced for drivers to inhibit driving
under the influence of alcohol. Furthermore, the lighting condition
is a significant contributing factor to severe injuries. Therefore,
constructing lights in the areas with high bicyclist activities might
help improve biking safety.

However, there are still some limitations in this research study.
It should be noted that it is possible to model the latent class and
the bicyclist injury severity simultaneously, for example, by com-
bining latent class and multinomial logit models that could be
more effectively compared to the sequential approach adopted in
this study (Yasmin et al., 2014a, 2014b). In addition, although
latent class clustering tries to maximize the homogeneity within
clusters, the unobserved heterogeneity might be neglected when
developing PPO/ORL models. Therefore, in the future study, the
authors will try to apply mixed effect PPO model (Eluru &
Yasmin, 2015) for the analysis of bicyclist injury severity.
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a b s t r a c t

Introduction: With the increasing trend of pedestrian deaths among all traffic fatalities in the past decade,
there is an urgent need for identifying and investigating hotspots of pedestrian-vehicle crashes with an
upward trend.Method: To identify pedestrian-vehicle crash locations with aggregated spatial pattern and
upward temporal pattern (i.e., hotspots with an upward trend), this paper first uses the average nearest
neighbor and the spatial autocorrelation tests to determine the grid distance and the neighborhood dis-
tance for hotspots, respectively. Then, the spatiotemporal analyses with the Getis-Ord Gi* index and the
Mann-Kendall trend test are utilized to identify the pedestrian-vehicle crash hotspots with an annual
upward trend in North Carolina from 2007 to 2018. Considering the unobserved heterogeneity of the
crash data, a latent class model with random parameters within class is proposed to identify specific con-
tributing factors for each class and explore the heterogeneity within classes. Significant factors of the
pedestrian, vehicle, crash type, locality, roadway, environment, time, and traffic control characteristics
are detected and analyzed based on the marginal effects. Results: The heterogeneous results between
classes and the random parameter variables detected within classes further indicate the superiority of
latent class random parameter model. Practical Applications: This paper provides a framework for
researchers and engineers to identify crash hotspots considering spatiotemporal patterns and contribu-
tion factors to crashes considering unobserved heterogeneity. Also, the result provides specific guidance
to developing countermeasures for mitigating pedestrian-injury at pedestrian-vehicle crash hotspots
with an upward trend.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Compared to other entities in traffic crashes, pedestrians are
more vulnerable to suffer severe injuries. According to one report
from the National Highway Safety Administration (NHTSA, 2019),
in the United States there were 5,977 pedestrian fatalities in traffic
crashes in 2017. From 2008 to 2017, the percentage of pedestrian
deaths in total traffic fatalities has constantly increased from 12%
to 16%. In recent years, more and more efforts have been put into
investigating contributing factors of the pedestrian injury severity
at specific hazardous locations (Anderson, 2009; Dai, 2012). Mean-
while, existence of the temporal variation and tendency of the
pedestrian crash data might affect the model result in different

ways (Behnood & Mannering, 2016), and neglecting the fundamen-
tal temporal features could result in erroneous conclusions
(Mannering, 2018). One previous research study has identified
the instability of different time scales among the pedestrian
crashes, and the annual variation mainly shows an increasing/de-
creasing trend (Dai, 2012). Hence, there is an urgent need to
develop a proper approach to identifying the contributing factors
at crash hotspots with annual uptrends.

Previous studies have applied several methods to explore the
factors to crash severity. A detailed review was summarized in
(Mannering & Bhat, 2014), and this review also pointed out that
the heterogeneity inherent in the crash observations could result
in biased parameter estimations and incorrect inferences. To
obtain more accurate and specific model results, it is important
to investigate the pedestrian injury severity by considering the
heterogeneity both within and between the pedestrian crash
observations.

https://doi.org/10.1016/j.jsr.2020.12.008
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To identify specific contributing factors and provide guidance
for improving the deteriorative tendency of pedestrian-vehicle
crashes at hotspots, this paper uses the spatiotemporal trend anal-
ysis with the Getis-Ord Gi* index and the Mann-Kendall trend test
to explore the annual spatial clustering and the temporal tendency
of pedestrian-vehicle crashes in North Carolina from 2007 to 2018.
Meanwhile, the grid distance interval and the neighborhood dis-
tance are determined by the average nearest neighbor and the spa-
tial autocorrelation test, respectively. Then, a sequential process by
combining latent class clustering with random parameter logit
approaches are used to identify contributing factors considering
the heterogeneity within and between the classes.

2. Literature review

2.1. Crash locations considering spatiotemporal patterns

To identify aggregated/high-frequency traffic crash locations,
point pattern analyses, such as the kernel density estimation
(KDE) (Ouni & Belloumi, 2018) and Getis-Ord Gi* index
(Songchitruksa & Zeng, 2010), were commonly used in previous
studies. However, KDE is not feasible for the statistical significance
test and the density pattern will certainly be influenced by the
choice of bandwidth (Plug, Xia, & Caulfield, 2011). Hence, the
Getis-Ord Gi* index, which is a statistical-based test for high/low
value clusters, was then deployed to identify the spatial patterns
in several studies. Ulak, Kocatepe, Ozguven, Horner, and
Spainhour (2017) employed the Getis-Ord Gi* index to identify
hotspots with the optimized neighborhood distance that was
determined by the Global Moran’s I test. Results showed that the
accessibility to hospitals of hotspots is one of the major reasons
for severe injuries. Considering that the Getis-Ord Gi* and the glo-
bal Moran’s I could identify spatial patterns from local and global
perspectives, respectively (Blazquez, Picarte, Calderón, & Losada,
2018), this paper employs the Getis-Ord Gi* for hotspots identifica-
tion and utilizes the global Moran’s I to provide a reference for the
neighborhood distance. Meanwhile, the average nearest neighbor
(ANN) was employed to calculate the distance interval between
traffic crashes (Yalcin & Sebnem Duzgun, 2015).

For the temporal trend analysis, the Mann-Kendall trend test,
which is a statistical-based non-parametric rank correlation analy-
sis method, has been widely used in previous studies (Gudes,
Varhol, Sun, & Meuleners, 2017; Wang & Chan, 2016). Gudes
et al. (2017) evaluated temporal patterns of the hot/cold spot
regions of the heavy-vehicle crashes by the Mann-Kendall trend
test. Results showed inconsistency of temporal patterns in hot-
spots over time. With such analyses, the temporal tendency of hot-
spots could be further investigated.

2.2. Identification of injury-severity factors considering unobserved
heterogeneity

As summarized in Table 1, statistics-based methods, such as an
ordered/unordered response model with a logit/probit link func-
tion, have been widely used because of their good performance
in parameter calibration and outcome interpretation (Mannering
& Bhat, 2014). Moreover, to avoid biased parameters estimation
and incorrect inferences caused by the unobserved heterogeneity,
random parameter models, which can potentially capture unob-
served heterogeneity by allowing parameters to vary across obser-
vations, were proposed (Mannering & Bhat, 2014). Abay (2013)
compared the pedestrian severity outcomes with ordered logit,
mixed ordered logit, multinomial logit, and mixed logit. The result
revealed that mixed models can accommodate flexible variable

effects to some extent while fixed-parameters injury severity mod-
els underestimated the effect of some important behavioral attri-
butes of the crashes.

For a heterogeneity-based data segmentation approach
employed in pedestrian injury severities, Table 1 also shows many
sequential processes of combining the Latent Class Clustering (LCC)
with other models, such as the Multinomial Logit model (MNL)
(Sun, Sun, & Shan, 2019), Partial Proportional Odds model (PPO)
(Li & Fan, 2019a), and Mixed Logit Model (Behnood & Mannering,
2016). Iranitalab and Khattak (2017) compared the crash severity
prediction performance of the LCC and k-means clustering with
the MNL and three machine learning methods. Results indicated
that LCC could well improve the performance of the multinomial
logit model. Behnood and Mannering (2016) analyzed differing
injury-severity levels sustained by pedestrians in Chicago using
both latent class and mixed logit models, which better accounts
for unobserved heterogeneity compared to conventional models.
Hence, a random parameter model (mixed logit model), which
accounts for the heterogeneity across the observations, is consid-
ered after the implementation of LCC.

3. Methodology

3.1. Spatiotemporal analysis

3.1.1. Spatiotemporal trend analysis
The basic idea of conducting the spatiotemporal trend analysis

is to first divide the map into square bins with a specific distance
interval and time interval. The Getis-Ord Gi* index (Getis & Ord,
2010) and the Mann-Kendall test (Kendall & Gibbons, 1990;
Mann, 1945) are used to investigate spatial hot/cold (i.e., aggregat-
ing of high/low values) pattern and the temporal tendency of these
patterns, respectively. The formula of Getis-Ord Gi* index is:

G�
i ¼

Pn
j¼1xi;jxj � X

Pn
j¼1xi;j

SDðxjÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n

n�1

Pn
j¼1

x2
i;j � 1

n�1 ð
Pn
j¼1

xi;jÞ
2

s ð1Þ

where xj represents the attribute value of the jth bin. xi;j ¼ 1 if the
jth bin is within the spatiotemporal neighborhood distance of the
ith bin and 0 otherwise. n denotes the total number of bins within
the spatiotemporal neighborhood distance. X is the mean value for
xj. SDðxjÞ means the standard deviation for xj. G

�
i is also a Z-score.

When the p-value is statistical significance, G�
i > 0 represents a

clustering pattern of the high values (hotspot), G�
i ¼ 0 denotes a

random pattern of the values, and G�
i < 0 means a clustering pattern

of the lower values (cold spot).
Then the Mann-Kendall trend test is performed on every loca-

tion/grid with data within a specified time interval. For the Gi*
value within each time interval fNt : t ¼ 1;2; � � � ; Tg, the trend test
statistic S is:

S ¼
XT�1

i¼1

XT
j¼iþ1

aij ð2Þ

aij ¼ sign Nj � Ni
� � ¼

1Ni < Nj

0Ni ¼ Nj

�1Ni > Nj

8><
>: ð3Þ

where aij is a symbolic variable which counts the rank/trend of the
Getis-Ord Gi* index.

The null hypothesis for S is zero, which means no trend in the
values over time. Based on the variance of the values in the bin
time series, Z statistic is used for the statistical significance test.
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ZS ¼
S�1
SDðSÞ ; S > 0

0; S ¼ 0
Sþ1
SDðSÞ ; S < 0

8><
>: ð4Þ

When T � 10, statistic S follows the normal distribution approxi-
mately. SDðSÞ denotes the stand error of the S. For a given confi-
dence level a, if ZSj j � ZS;1�a=2

�� ��, then the null hypothesis is
rejected. Also, ZS > 0 and ZS < 0 indicate the uptrend and down-
trend in bin values.

3.1.2. Average nearest neighbor
The average nearest neighbor analysis is used to provide a rea-

sonable reference for the distance interval of the grid. If the aver-
age distance of the data is less than the average distance for a
hypothetical random distribution, the distribution of the data
being analyzed is considered clustered (Ebdon, 1985). The average
nearest neighbor ratio (ANN) can be expressed as:

ANN ¼ DO

DE
¼

Pn
i¼1di=n

0:5=
ffiffiffiffiffiffiffiffiffi
n=A

p ¼ 2
Pn

i¼1diffiffiffiffiffiffi
nA

p ð5Þ

ZANN ¼ DO � DE

SD
ð6Þ

where DO represents the observed average distance between each
data point and its nearest neighbor. DE means the expected average
distance for the randomly distributed data points. di denotes the

distance between data i and its nearest neighboring data. n corre-
sponds to the total number of data, and A is the area of a minimum
enclosing rectangle around all data points. If ANN is less than 1, the
point pattern exhibits clustering. If ANN equals 1, there has no
trend. If ANN is greater than 1, the trend is dispersion.

3.1.3. Spatial autocorrelation test
The Global Moran’s I is a spatial autocorrelation test and can be

used to evaluate the clustered, dispersed, or random spatial pattern
in observations (Moran, 1948). This paper utilizes the I index to
provide a reasonable reference for the neighborhood distance of
bins used in the spatial–temporal analysis.

I ¼
Pn

i¼1

Pn
j¼1wij � CijPn

i¼1

Pn
j¼1wij � DðxiÞ

¼
Pn

i¼1

Pn
j¼1wij � ðxi � xÞðx� xÞPn

i¼1

Pn
j¼1wij � 1

n

Pn
1ðxi � xÞ2

ð7Þ

ZI ¼ I � EðIÞffiffiffiffiffiffiffiffiffi
DðIÞp ð8Þ

where xi is the attribute value of j spatial location/grid. wij ¼ 1 if the
jth grid is within the spatial neighborhood distance of the ith grid
and 0 otherwise. Cij denotes the attribute similarity matrix.

E Ið Þ ¼ �1=ðn� 1Þ: D Ið Þ ¼ E I2
� �

� E Ið Þ2: If I is positive and close to

1, it denotes the incremental spatial autocorrelation (clustered pat-
tern) between neighborhoods; if I is equal to 0, it means a random
pattern of features; and if I is less than 0, it represents a dispersed
pattern of features.

Table 1
Summary of methodological approaches in pedestrian injury severity studies.

Model Specific scenario Year Location Data Literature

Multinomial logit model (MNL) – 2005–2012 North
Carolina

3,553 (Chen & Fan, 2019)

Partial proportional odds model (PPO) pedestrian 2007–2014 North
Carolina

10,875 (Li & Fan, 2019b)

Support vector machine and MNL time of day 2010–2014 California 8,573 (Mokhtarimousavi, 2019)
Binary logistic regression and tree-based models – 2014–2016 Changsha,

China
791 (Hu, Wu, Huang, Peng, & Liu,

2020)
Classification and regression tree with random

forest approach.
weather 2013 Britain 14,174 (Li, Ranjitkar, Zhao, Yi, &

Rashidi, 2017)
Extracted rules from Bayesian networks urban and suburban 2009–2011 Jordan 21,852 (Mujalli, Garach, López, & Al-

Rousan, 2019)

Considering unobserved heterogeneity
Mixed logit model signalized and non-signalized

locations
2008–2010 Florida 7,630 (Haleem et al., 2015)

Mixed logit model � 1997–2000 North
Carolina

5,808 (Kim et al., 2010)

Random-parameter (mixed) logit – 2002–2006 New York
City

4,666 (Aziz et al., 2013)

Artificial neural network and random parameter
ordered response models

day of week 2010–2014 California 10,146 (Mokhtarimousavi, Anderson,
Azizinamini, & Hadi, 2020)

Ordered logit, mixed ordered logit, multinomial
logit, mixed logit

– 1998–2009 Denmark 4,952 (Abay, 2013)

Ordered logit model, generalized ordered logit
model, and latent class ordered logit model

– 2002–2006 New York
City

4,701 (Yasmin et al., 2014)

Latent class clustering and MNL whole and each cluster 2006–2015 Louisiana 14,236 (Sun et al., 2019)
Latent class clustering and binary logit whole and each cluster 2009–2012 Switzerland 9,659 (Sasidharan et al., 2015)
Latent class with ordered probit method, k-means

with MNL
whole and each cluster 2002–2006 (NYC),

2003–2006 (M)
New York
City,
Montreal

5,820 (Mohamed et al., 2013)

Latent class clustering and PPO each cluster 2007–2014 North
Carolina

10,875 (Li & Fan, 2019a)

Latent-class logit and mixed logit models. period (pre-recession,
recession, and post-
recession)

2005–2012 Chicago 19,895 (Behnood & Mannering, 2016)

Considering spatial and temporal patterns
Bernoulli model and logistic regression spatial clusters 2000–2007 Georgia 7,763 (Dai, 2012)
Kernel density estimation analysis and MNL Spatiotemporal patterns 2001–2013 Tunisia 1,922 (Ouni & Belloumi, 2018)
Geographically and temporally weighted ordinal

logistic regression
– 2007–2014 North

Carolina
13,854 (Liu, Hainen, Li, Nie, &

Nambisan, 2019)
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3.2. Latent class random parameters model

3.2.1. Latent class clustering
The latent class clustering (LCC) is a statistical model-based

approach that can classify the dataset into homogenous subsets
by maximizing the heterogeneity between classes (Lanza, Collins,
Lemmon, & Schafer, 2007). It is assumed that the LCC segments
the whole dataset with J discrete category variables into M classes.
The probability of response Y can be calculated as:

P Yi ¼ jð Þ ¼
XM
m¼1

cm
YJ
j¼1

YRj
rj¼1

qIðyj¼rjÞ
k;rj jm ð9Þ

where each observation i contains J categorical variables, Yi denotes
the response of the observation i for J category, and Yi = 1, 2, . . .rj. cm
is the membership probability for latent class cluster m (m = 1, 2,

. . ., M). qIðyj¼rjÞ
k;rj jm represents the item-response probability that obser-

vation i has response rj being conditioned on latent class member-
ship m. q means the correspondence between observed and
unobserved classes. Iðyj ¼ rjÞ denotes the indicator function that
equals to 1 when yj ¼ rj, and 0 otherwise.

To determine an appropriate number of classes, four commonly
used criteria including Akaike Information Criterion (AIC), Consis-
tent Akaike Information Criterion (CAIC), Bayesian Information Cri-
teria (BIC) and Entropy-based Measures (EM) are utilized (Song &
Fan, 2020). Smaller values of the AIC, BIC, and CAIC indicate a bet-
ter clustering result. Meanwhile, the EM indicates the information
quality of the cluster and closing to 1 means a better clustering
result (McLachlan & Peel, 2004).

3.2.2. Random parameter logit model
Following the LCC, random parameter logit model (or mixed

logit model) is developed to further explore the unobserved
heterogeneity for each segmented crash data. The utility function
is defined as a linear function for individual i with severity level j:

Uij ¼ biXij þ nij þ eij ð10Þ

where Xij is a vector of independent variables, bi denotes the corre-
sponding parameter. nij represents the error component that has a
general distribution correlated among severity levels and
heteroscedastic for individuals, and eij is the random term with
independently and identically distributed Gumbel distribution over
severity levels and individuals (McFadden & Train, 2000).

The probability of individual i for injury severity j is the integral
of the condition choice probability PiðjjnijÞ over the distribution of
nij.

PiðjjnijÞ ¼
exp biXij þ nij

� �
PJ

j¼1exp biXij þ nij
� � ð11Þ

Since the PiðjÞ does not always have a closed-form solution, 200
Halton draws are used in the simulation-based maximum likeli-
hood method for parameter estimation. All the random parameters
are assumed to be normally distributed since the parameters could
be positive and negative. Marginal effects are used to illustrate the
impact of the explanatory variable in the changing values of sever-
ity probability outcomes (Derr, 2013).

4. Data description

The data used in this paper are obtained from the North Caro-
lina Department of Transportation (NCDOT), which include
33,707 pedestrian-vehicle crash observations in North Carolina
from 2007 to 2018. The whole spatiotemporal analysis process
uses a 5% significant level. The distance interval for the temporal

trend analysis is set as 382 m, which is obtained by the average
nearest neighbor test (ANN ratio: 0.286; Z-score: �250.845; P-
value <0.0001). The inverse neighborhood distance is set as
8,000 m, which is determined by the empirical results of the spatial
autocorrelation test and the total number of hotspots detected. As
shown in Fig. 1, the Moran’s Index at 8,000 m is 0.36, which
denotes a clustering pattern within the neighborhood distance,
and the z-score reaches 322. Meanwhile, the total number of hot-
spots reaches 5,810 with a change rate less than 5% after 8,000 m.
A total number of 17,013 pedestrian-vehicle crashes at hotspots
with upward annual trend are detected and is shown in Fig. 2.

To further model the contributing factors to pedestrian injury
severity at hotspots with an upward trend, 13,303 pedestrian
injury observations are filtered after selecting the pedestrian with
the highest injury severity in single vehicle involved crashes and
deleting observations with missing variables. The pedestrian sever-
ity is classified into three levels (i.e., fatal/incapacitating injury (F/
I), non-incapacitating injury (NI), and no/possible injury (N/P)) by
considering both the severity features and crash frequency. As
shown in Appendix Table A1, explanatory variables are classified
into the human, vehicle, crash, locality and roadway, environment
and time, and traffic control categories.

5. Results and discussions

5.1. Latent class clustering results

The LCC is implemented to maximize the heterogeneity
between the datasets. As shown in Fig. 3. The values of AIC, CAIC,
and BIC all decrease with the increase of the class numbers, and
the rate of change is less than 3% after four classes. Meanwhile,
the entropy value for the 4-class model reaches a local maximum
of 0.91, which is close to 1 and denotes a good segmentation of
the data. Hence, this paper uses the LCC to segment the crash data
into four latent classes.

All explanatory variables in Appendix Table A1 are utilized in
the LCC analysis. Table 2 only shows the featured variables having
a proportion that is significantly different from other latent classes,
while other variables are not shown in Table 3 since the propor-
tions of them are comparatively small and less descriptive. The
combination of these featured variables is utilized as a latent vari-
able/label to describe each class. For example, according to the fea-
ture variables in class 1, about 87.78% of the crashes happened in
rural areas, 49.53% occurred in state secondary routes, 56.59% hap-
pened in dark without roadway lights, and 44.79% are set with
double yellow lines, no passing zone sign. Hence, class 1 could be
labeled as a condition of rural, state secondary route, dark without
roadway lights, and double yellow line, no passing zone sign con-
trol. Similarly, class 2 can be specified as a circumstance of urban,
public vehicular area, daylight, and without traffic control. Class 3
can be described as a scenario of urban, local street and driveway,
daylight, and no traffic control. Class 4 can be defined as a situation
of urban, dark with lighted roadway, and no traffic control.

5.2. Random parameter logit model results

After obtaining the LCC results, the heterogeneity within the
crash is further investigated with four random parameter logit
models. To obtain significant variables in each latent class, all
explanatory variables are first utilized as the inputs in the random
parameter logit model. The Chi-square test is applied as the selec-
tion criterion for both significant fixed variables and random
parameter variables at a 5% significance level. Final variable coeffi-
cient estimation results are shown in Appendix Tables A2–A5.
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Fig. 1. Number of hotspots and the Moran’s Index for different neighborhood distance.

Fig. 2. Spatiotemporal trend analysis result for hotspots with upward trend in North Carolina.

Fig. 3. Latent class results of AIC, BIC CAIC, and Entropy value for different class numbers.
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5.3. Marginal effects

The marginal effect results of the explanatory variables at a 5%
significance level are shown in Tables 3 and 4. Variations of such
impacts at the different severity levels and different latent classes
are also detected. It is also noted that even though some variables
have comparatively small proportions in the latent class subsets,
they are still found to be a significant factor in the final results.
The following subsections provide specific analyses and compar-
ison for the impacts of factors on F/I and NI severity across differ-
ent latent classes.

5.3.1. Pedestrian characteristics
Age and alcohol involvement are identified as significant vari-

ables. Compared to the young pedestrians (age <24), the results
in classes1, 3, and 4 indicate an increasing tendency in which the
probability of pedestrian suffering F/I and NI injury would both
increase with the increase of the age stage. For example, the prob-
ability of pedestrians being F/I in class 4 increases from 0.035 to
0.086 and 0.175 with the increase of age stage. A similar result
could be found in (Yasmin, Eluru, & Ukkusuri, 2014). However,
class 2 shows heterogeneity results as the middle-age pedestrians
(age within 24 to 54) and the elder pedestrians (age >65) could
decrease the F/I injury by �0.019 to �0.007, respectively. Such

heterogeneity within the demographical variables (age or gender)
among different latent classes can also be supported by some pre-
vious studies (Abay, 2013; Aziz, Ukkusuri, & Hasan, 2013). Besides,
for pedestrians under the influence of the alcohol, the possibility of
pedestrians being F/I injured increases by 0.079 and 0.071 in
classes 3 and 4, respectively. This result is in line with (Abay,
2013; Sasidharan, Wu, & Menendez, 2015), and more specific
enforcements to limit/protect intoxicated pedestrians are needed.

5.3.2. Vehicle characteristics
This study shows that pedestrians are more vulnerable with the

increase of the vehicle weight during pedestrian-vehicle crashes.
For example, compared to small vehicles, the probability of pedes-
trians suffering F/I injury involving the middle and heavy vehicles
in class 2 increases from 0.022 to 0.111, respectively.

5.3.3. Crash characteristics
Compared to ambulance rescue situations, situations without

an ambulance rescue are found to have less F/I and NI injuries in
all classes. This could be possibly explained by the situation under
which people might not call the ambulance when the pedestrian
has no/possible injury. For the hit and run situation, heterogeneous
results show that there are a �0.024 probability decrease and a
0.033 probability increase for the F/I injury in classes 3 and 4,

Table 2
Distributions of featured variables (bold) and statistics for each latent class.

Variable No. Description Class 1 Class 2 Class 3 Class 4

Locality 2 Urban 12.22% 91.92% 97.64% 97.98%

RdClass 4 State Secondary Route 49.53% 0% 0.05% 0.31%
5 Local Street, Driveway 6.55% 9.97% 93.95% 87.09%
6 Public Vehicular Area 1.16% 89.89% 1.14% 3.33%

LightCond 1 Daylight 37.05% 77.62% 91.87% 2.59%
3 Dark – Lighted Roadway 3.06% 17.42% 2.28% 70.86%
4 Dark – Roadway Not Lighted 56.59% 1.21% 0.22% 22.49%

Control 1 No Control Present 48.25% 95.26% 50.62% 66.68%
4 Double Yellow Line, No Passing Zone 44.79% 0.15% 1.4% 1.7%

Table 3
Marginal effects of explanatory variables in class 1 and class 2.

Variable Description Class 1 Class 2

Severity level F/Ia NIb N/Pc F/Ia NIb N/Pc

PedAge2 24 < PedAge � 54 (base: <24) �0.019 �0.048 0.067
PedAge4 PedAge � 65 0.231 �0.136 �0.095 �0.007 0.096 �0.090
DrvrVehTyp2 Middle (base: small) 0.022 0.029 �0.051
DrvrVehTyp3 Heavy 0.235 �0.139 �0.096 0.111 0.070 �0.181
AmbulanceR2 No ambulance rescue (base: yes) �0.197 �0.185 0.382 �0.043 �0.143 0.186
CrashGrp2 Crossing roadway with vehicle not turning (base: walking along roadway) 0.160 �0.096 �0.064
CrashGrp4 Off roadway �0.010 0.142 �0.132
CrashGrp6 Dash/dart-out 0.221 �0.130 �0.090
CrashGrp7 Backing vehicle 0.137 �0.325 0.188 �0.011 0.152 �0.142
CrashGrp10 Other/unusual circumstances 0.014 0.259 �0.272
Locality2 Urban (base: rural) �0.025 0.009 0.016
Development2 Commercial (base: residential) �0.015 �0.069 0.084
RdGrad2 Grade (base: level) �0.040 0.091 �0.052
RdClass2 Interstate (base: US route) 0.158 �0.094 �0.064
RdClass5 Local street, driveway 0.038 0.054 �0.092
RdConfig3 Two-way, divided (base: one-way, not divided) 0.143 �0.004 �0.139
LightCond4 Dark – roadway not lighted (base: daylight) 0.111 �0.067 �0.044
Hour6 0:00–5:59 (base 6:00–9:59) 0.032 0.124 �0.156

Note:
a F/I – Fatal/ Incapacitating injury.
b NI – Non-incapacitating injury.
c N/P – No/Possible injury.
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respectively. Meanwhile, both two classes show a probability
decrease for NI injury and a probability increase for N/P injury.

For crash type factors, the situation when the pedestrian is
walking along the roadway is set as the base. Pedestrians crossing
the roadway with the vehicle not turning would result in a 0.16
and 0.089 probability increase for the F/I injury in classes 1 and
4, respectively. In comparison, results show a probability decrease
of �0.078 and �0.105 for the F/I injury when crossing a roadway
with the turning vehicle in classes 3 and 4, respectively. One pos-
sible reason for explaining such a difference might be that the
speed of the vehicles is much lower when turning than when vehi-
cles are traveling straight. Also, the situation when vehicles are off
the roadway decreases the probability with �0.01 for F/I injury in
class 2. This result is also in line with Kim, Ulfarsson, Shankar, and
Mannering (2010) as the driver would reduce the speed when driv-
ing off the roadway. For the situation when the pedestrian is in the
roadway, a 0.109 probability increase for the F/I injury is found in
class 4. A similar conclusion was also drawn in (Mohamed, Saunier,
Miranda-Moreno, & Ukkusuri, 2013). In multiple threat/trapped
situation, a �0.022 probability decrease for the F/I injury and a
0.15 probability increase for the NI injury are identified.

Heterogeneities also exist in variables of dash/dash-out, backing
vehicle, and bus-related cases across different latent classes. In the
dash/dart-out case, heterogeneity results are found in the probabil-
ity of F/I injury. While, the probability of N/P injury decreases in all
classes, which indicate that a severe injury outcome would occur

under the dash/dart-out situation, and the results are in accord
with Sun et al. (2019). Also, for the backing vehicle case, there is
a 0.137 and 0.057 probability increase for the F/I injury in classes
1 and 4, respectively, while case 2 shows a �0.011 probability
decrease for the F/I injury. For the bus-related case, heterogeneity
results are also observed in the F/I injury, while the probability
decrease for the N/P injury indicates an increase in the severe out-
come in bus-related crashes. All these heterogeneities indicate a
need to analyze the influences of these factors under the specific
scenario, which again shows the superiority of using latent class
random parameter models.

5.3.4. Locality and roadway characteristics
Compared to the rural area, crashes that occurred in the urban

area also show heterogeneous results for the F/I injury. Similar
conclusions on such heterogeneity were also made in Li and Fan
(2019a). Debates on whether pedestrian-vehicle crashes happened
in the urban area are safer than those in the rural area could be
found in past studies. Some scholars concluded that rural is more
dangerous because of the higher speed of vehicles and lack of med-
ical resource (Sasidharan et al., 2015; Ulak et al., 2017), while
others argued that urban has more complex traffic conditions with
sufficiently high speed for fatality (Sun et al., 2019). These two
explanations could well illustrate the heterogeneity in severe inju-
ries that occurred in complex urban areas. In regard to land devel-
opment, heterogeneous results could also be found in commercial

Table 4
Marginal effects of the explanatory variables in class 3 and class 4.

Variable Description Class 3 Class 4

Severity level F/Ia NIb N/Pc F/Ia NIb N/Pc

PedAge2 24 < Pedage � 54 (base: <24) 0.035 �0.021 �0.014
PedAge3 55 < Pedage � 64 0.033 �0.015 �0.017 0.086 �0.050 �0.035
PedAge4 Pedage � 65 0.082 �0.038 �0.044 0.175 �0.102 �0.073
PedAlcFlag2 PedAlcFlag = ‘yes’ (base: no) 0.079 0.083 �0.161 0.071 0.024 �0.095
DrvrVehTyp2 Middle (base: small) 0.034 �0.016 �0.018
DrvrVehTyp3 Heavy 0.160 �0.093 �0.067
HitRun2 Hit and run (base: no) �0.024 �0.072 0.096 0.033 �0.102 0.069
AmbulanceR2 No ambulance rescue (base: yes) �0.066 �0.248 0.315 �0.081 �0.177 0.258
CrashGrp2 Crossing roadway with vehicle not turning (base: walking along roadway) 0.089 �0.011 �0.078
CrashGrp3 Crossing roadway with vehicle turning �0.078 �0.063 0.142 �0.105 �0.067 0.172
CrashGrp5 Pedestrian in roadway 0.109 �0.064 �0.045
CrashGrp6 Dash/dart-out �0.030 0.204 �0.174 0.092 0.016 �0.108
CrashGrp7 Backing vehicle 0.057 �0.177 0.119
CrashGrp8 Multiple threat/trapped �0.022 0.150 �0.128
CrashGrp9 Bus related vehicle �0.030 0.206 �0.176 0.212 �0.123 �0.089
Locality2 Urban (base: rural) 0.023 �0.153 0.131
Development2 Commercial (base: residential) 0.043 �0.026 �0.018
Development4 Institutional 0.046 �0.141 0.095
RdCurve2 Curve (base: straight) 0.046 �0.021 �0.024 0.104 �0.061 �0.043
RdGrad2 Grade (base: level) 0.023 �0.011 �0.012 0.076 �0.045 �0.031
RdClass2 Interstate (base: US route) 0.046 �0.272 0.226
RdClass5 Local street, driveway �0.031 �0.130 0.161 �0.106 0.063 0.044
RdClass6 Public vehicular area �0.068 �0.249 0.317 �0.089 �0.100 0.189
RdConfig2 Two-way, not divided (base: one-way, not divided) 0.024 �0.074 0.050
RdConfig3 Two-way, divided 0.020 �0.010 �0.011 0.098 �0.057 �0.041
LightCond3 Dark – lighted roadway (base: daylight) 0.197 �0.091 �0.106
LightCond4 Dark – roadway not lighted 0.061 �0.036 �0.025
Weather2 Cloudy (base: clear) 0.073 �0.043 �0.030
Hour2 10:00–14:59 (base 6:00–9:59) �0.029 0.014 0.015
Hour3 15:00–17:59 �0.018 0.009 0.010 �0.096 0.058 0.038
Hour5 21:00–23:59 �0.017 0.052 �0.035
Hour6 0:00–5:59 0.053 0.039 �0.092
TraffCntrl2 Signs (base: no control) �0.016 �0.074 0.091 0.028 �0.086 0.059
TraffCntrl4 Double yellow line, no passing zone 0.084 �0.039 �0.045 0.093 �0.055 �0.039

Note:
a F/I – Fatal/ Incapacitating injury.
b NI – Non-incapacitating injury.
c N/P – No/Possible injury.
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land. Both commercial and institutional land show about a 0.04
probability increase for F/I injury in class 4, and class 4 denotes a
latent class of urban local street without traffic control.

Roadway alignment, class level, and settlement are three major
significant factors within the category of roadway features
detected in this study. Compared to the straight-road, the curve-
road shows a 0.046 and a 0.104 probability increase for the F/I
injury in classes 3 and 4, respectively. Results on the grade-road
show that the probability of pedestrians being F/I injured is
increased by 0.023 and 0.076 compared to the level-road in classes
3 and 4, respectively. These locations are accident-prone areas as
the driver has bad sight condition and the vehicle is difficult to
control. Similar results could be referred to Sasidharan et al.
(2015). Compared to the U.S. route, results on the interstate roads
indicates a 0.158 and 0.046 probability increase for the F/I injury in
classes 1 and 3. Also, the public vehicular area shows a �0.068 and
�0.089 probability decrease for the F/I injury in classes 3 and 4.
The reason for this might be that the public vehicular area (e.g.,
parking lot) has much lower traveling speeds than the U.S. route
(Li & Fan, 2019b). Heterogeneities are also found in local streets
and driveways. Classes 3 and 4 decrease the probability of pedes-
trians being F/I injured by �0.031 and �0.106, respectively, while
class 2 shows a 0.038 increase in the F/I injury.

5.3.5. Environment and time characteristics
Compared to the daylight environment, both with/without

lighting in the dark environment increase the probability of pedes-
trians being F/I injured in classes 1, 2, and 3 by 0.111, 0.197, and
0.061, respectively. The significant possibility decrease of the F/I
injury requires a better lighting facility in these hotspots and this
finding is in accordance with Yasmin et al. (2014). In comparison
with the clear weather, the cloudy weather situation increases
the probability of pedestrians being F/I injured by 0.073. A similar
result could be referred to Aziz et al. (2013), and one possible rea-
son for this is the decrease of sight in cloudy condition.

Though previous research has already pointed out the positive
correlation between the vehicle-vehicle crash injury severity level
with the peak hour (Mohamed et al., 2013), pedestrian-vehicle
crash frequency in this study does not show a significant difference
between the peak and non-peak hours as vehicle-vehicle crash
does. Hence, this paper categorizes the crash time into six different
periods mainly according to different features of the light condi-
tion, the frequency of the total crashes, and frequency of F/I inju-
ries. Compared to the ‘‘morning” period (6:00–9:59), the ‘‘early
morning” (0:00–5:59) shows a 0.053 probability increase for the
F/I injury in class 4. Similar conclusions are showed in Haleem,
Alluri, and Gan (2015). The ‘‘noon” (10:00–14:59), ‘‘afternoon”
(15:00–17:59), and ‘‘early night” (21:00–23:59) in class 3 and class
4 all show a probability decrease of pedestrians being F/I injured.
Furthermore, comparing the periods within class 3, results show
that the afternoon hour has a higher probability of pedestrians
being F/I injured than the noon hour. Result in class 4 indicates that
pedestrian-vehicle crashes during the early night hour have a
higher probability of being F/I injured for pedestrians compared
to the afternoon hour. The increase of the F/I injury in the early
morning might be caused by the combined impacts of dark envi-
ronment, high speed, and fatigue of the driver in the early morning.

5.3.6. Traffic control characteristics
Compared to the situation of no traffic control, heterogeneity is

found under the traffic sign control situation. Results on traffic sign
control indicate a 0.016 probability decrease for the F/I injury in
class 3, and a 0.028 probability increase for the F/I injury in class
4. The downward tendency of the probability of the NI injury in

classes 3 and 4 is also detected. There are debates on the heteroge-
neous effects of traffic sign control on the safety of pedestrians.
Kim et al. (2010) observed heterogeneity for traffic sign control
in pedestrian fatalities, and the correlation between pedestrian
age and traffic sign was detected. Possible explanations for such
a difference in the effect of this factor could be concluded as fol-
lows: (a) the mitigatory outcome might result from the warning
function of the traffic signs; and (b) the deteriorative result might
be the consequence of the dangerous and complex environment
where the traffic signs were installed.

6. Conclusions

This study explores factors of pedestrian-injury severity in
pedestrian-vehicle crashes at hotspots with an upward trend con-
sidering the heterogeneity within and between the datasets.
Twelve years of the police-reported pedestrian-vehicle crash data
from 2007 to 2018 in North Carolina are used. Spatiotemporal
trend analysis combined with the average nearest neighbor analy-
sis and the spatial autocorrelation test are implemented to test the
spatial clustering pattern and the temporal tendency of the
crashes. The latent class clustering and four random parameter
logit models are implemented to further investigate the hetero-
geneity within each class. Marginal effects are further calculated
for better interpreting the impacts of categorical variables on the
severity levels.

The random parameter variables detected across observations
and the heterogeneous results between the subgroups indicate
the superiority of combining the latent class clustering with ran-
dom parameter logit models. Significant impacts of pedestrian
behaviors, such as dash/dart-out and crossing or staying in the
roadway, also require more attention to improve the transporta-
tion facilities to provide better protection for pedestrians. Mean-
while, there is a need to strengthen law enforcement and
education to prohibit playing in roadways, crossing divided road-
ways without permission, and drunk walking in/across the road-
ways. Also, more appropriate traffic control management, such as
adjusting the signal phase to decrease the behavior of crossing
with the red light, is needed for both drivers and pedestrians.
Besides, the zebra crossing sign could be equipped with flashing
lights to alert the driver when the pedestrian is crossing since early
night hour (0:00–5:59) is found to be the most dangerous period
for pedestrians. Furthermore, a patrol route considering hotspots
with an upward trend could help to reduce the response time to
reach crash locations.

This paper provides a framework for researchers and engineers
to identify crash hotspots considering spatiotemporal patterns and
explore contribution factors to crashes considering unobserved
heterogeneity. However, the temporal fluctuations may still exist
in different time scales and may be caused by different factors such
as the global recession (Behnood & Mannering, 2016). Further
studies are still needed to investigate the heterogeneities within
the time–space scale, spatial and temporal correlations of the fac-
tors, and the temporal fluctuation and instability of the crash data.
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Appendix A

Table A1
Statistics of explanatory variables for pedestrian-vehicle crashes at hotspots with an upward trend.

Variable Description Total F/Ia NIb N/Pc

Number of observations 13303 1415(10.64%) 5046(37.93%) 6842(51.43%)

Pedestrian Characteristics
PedAge PedAge � 24 1 4305 395(9.18%) 1788(41.53%) 2122(49.29%)

24 < PedAge � 54 2 6459 680(10.53%) 2330(36.07%) 3449(53.4%)
55 < PedAge � 64 3 1299 164(12.63%) 449(34.57%) 686(52.81%)
PedAge � 65 4 1240 176(14.19%) 479(38.63%) 585(47.18%)

PedSex Male 1 7593 972(12.8%) 2978(39.22%) 3643(47.98%)
Female 2 5710 443(7.76%) 2068(36.22%) 3199(56.02%)

PedAlcFlag PedAlcFlag = ’No’ 1 11867 1026(8.65%) 4416(37.21%) 6425(54.14%)
PedAlcFlag = ’Yes’ 2 1436 389(27.09%) 630(43.87%) 417(29.04%)

Vehicle Type
DrvrVehTyp Small 1 7998 754(9.43%) 3045(38.07%) 4199(52.5%)

Middle 2 4940 593(12%) 1865(37.75%) 2482(50.24%)
Heavy 3 365 68(18.63%) 136(37.26%) 161(44.11%)

Crash Characteristics
AmbulanceR Ambulance Rescue 1 9880 1287(13.03%) 4225(42.76%) 4368(44.21%)

No Ambulance Rescue 2 3423 128(3.74%) 821(23.98%) 2474(72.28%)

HitRun No Hit and Run 1 11653 1279(10.98%) 4494(38.57%) 5880(50.46%)
Hit and Run 2 1650 136(8.24%) 552(33.45%) 962(58.3%)

CrashGrp Walking Along Roadway 1 845 117(13.85%) 346(40.95%) 382(45.21%)
Crossing Roadway with Vehicle Not Turning 2 2692 502(18.65%) 1079(40.08%) 1111(41.27%)
Crossing Roadway with Vehicle Turning 3 2092 60(2.87%) 718(34.32%) 1314(62.81%)
Off Roadway 4 1632 59(3.62%) 486(29.78%) 1087(66.61%)
Pedestrian in Roadway 5 696 135(19.4%) 256(36.78%) 305(43.82%)
Dash/Dart-Out 6 1182 175(14.81%) 632(53.47%) 375(31.73%)
Backing Vehicle 7 1325 54(4.08%) 342(25.81%) 929(70.11%)
Multiple Threat/Trapped 8 214 15(7.01%) 113(52.8%) 86(40.19%)
Bus related Vehicle 9 134 12(8.96%) 64(47.76%) 58(43.28%)
Other/Unusual Circumstances 10 2491 286(11.48%) 1010(40.55%) 1195(47.97%)

Locality and Roadway Characteristics
Locality Rural 1 1282 276(21.53%) 485(37.83%) 521(40.64%)

Urban 2 12021 1139(9.48%) 4561(37.94%) 6321(52.58%)

Development Residential 1 4584 484(10.56%) 1897(41.38%) 2203(48.06%)
Commercial 2 7705 768(9.97%) 2769(35.94%) 4168(54.09%)
Industrial 3 76 3(3.95%) 37(48.68%) 36(47.37%)
Institutional 4 485 27(5.57%) 172(35.46%) 286(58.97%)
Farms, Woods, Pastures 5 453 133(29.36%) 171(37.75%) 149(32.89%)

RdCurve Straight 1 12770 1306(10.23%) 4846(37.95%) 6618(51.82%)
Curve 2 533 109(20.45%) 200(37.52%) 224(42.03%)

RdGrad Level 1 10996 1055(9.59%) 4116(37.43%) 5825(52.97%)
Grade 2 1718 277(16.12%) 685(39.87%) 756(44%)
Hillcrest 3 502 66(13.15%) 203(40.44%) 233(46.41%)
Bottom 4 87 17(19.54%) 42(48.28%) 28(32.18%)

RdClass US Route 1 415 128(30.84%) 170(40.96%) 117(28.19%)
Interstate 2 241 103(42.74%) 72(29.88%) 66(27.39%)
State Route 3 329 78(23.71%) 138(41.95%) 113(34.35%)
State Secondary Route 4 465 100(21.51%) 196(42.15%) 169(36.34%)
Local Street, Driveway 5 8479 882(10.4%) 3521(41.53%) 4076(48.07%)
Public Vehicular Area 6 3374 124(3.68%) 949(28.13%) 2301(68.2%)

(continued on next page)
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Appendix A (continued)

Variable Description Total F/Ia NIb N/Pc

RdConfig One-Way, Not Divided 1 1275 69(5.41%) 421(33.02%) 785(61.57%)
Two-Way, Not Divided 2 9119 820(8.99%) 3395(37.23%) 4904(53.78%)
Two-Way, Divided 3 2909 526(18.08%) 1230(42.28%) 1153(39.64%)

Environment and Temporal Characteristics
LightCond Daylight 1 7977 519(6.51%) 2923(36.64%) 4535(56.85%)

Dawn/Dusk Light 2 604 62(10.26%) 207(34.27%) 335(55.46%)
Dark – Lighted Roadway 3 3336 456(13.67%) 1390(41.67%) 1490(44.66%)
Dark – Roadway Not Lighted 4 1386 378(27.27%) 526(37.95%) 482(34.78%)

Weather Clear 1 10242 1075(10.5%) 3909(38.17%) 5258(51.34%)
Cloudy 2 1800 204(11.33%) 643(35.72%) 953(52.94%)
Rain 3 1141 125(10.96%) 440(38.56%) 576(50.48%)
Snow, Sleet, Hail, Freezing Rain/Drizzle 4 80 4(5%) 38(47.5%) 38(47.5%)
Fog, Smog, Smoke 5 40 7(17.5%) 16(40%) 17(42.5%)

Hour 6:00–9:59 1 1889 174(9.21%) 709(37.53%) 1006(53.26%)
10:00–14:59 2 3252 199(6.12%) 1107(34.04%) 1946(59.84%)
15:00–17:59 3 2805 200(7.13%) 1064(37.93%) 1541(54.94%)
18:00–20:59 4 2668 330(12.37%) 1036(38.83%) 1302(48.8%)
21:00–23:59 5 1598 269(16.83%) 671(41.99%) 658(41.18%)
0:00–5:59 6 1091 243(22.27%) 459(42.07%) 389(35.66%)

Traffic Control Type
TraffCntrl No Control Present 1 8876 996(11.22%) 3351(37.75%) 4529(51.03%)

Signs 2 1126 73(6.48%) 367(32.59%) 686(60.92%)
Signal 3 2613 220(8.42%) 1056(40.41%) 1337(51.17%)
Double Yellow Line, No Passing Zone 4 548 119(21.72%) 230(41.97%) 199(36.31%)
Human Control 5 140 7(5%) 42(30%) 91(65%)

Note: variables in bold and numbered with 1 are set as the base for the explanatory variables.
a F/I – Fatal/Incapacitating injury. bNI – Non-incapacitating injury. c N/P – No/Possible injury.

Table A2
Random parameter logit model’s significant variable coefficients for class 1.

Variable Description F/Ia NIb

Coef. t value Coef. t value

Intercept �1.0814 �5.05 0.3277 3.11
PedAge4 PedAge � 65 1.2747 3.68
PedAlcFlag2 PedAlcFlag = ’Yes’ 0.4824 1.92
DrvrVehTyp3 Heavy 1.2946 2.97
HitRun2 Hit and Run �0.8608 �1.89
AmbulanceR2 No ambulance rescue �2.2402 �5.24 �1.5076 �6.97
CrashGrp2 Crossing roadway with vehicle not turning 0.9042 3.32
CrashGrp6 Dash/Dart-Out 1.2366 3.46
CrashGrp7 Backing vehicle �2.2548 �2
Locality2 Urban �0.6561 �1.8
RdGrad2 Grade 0.4057 2.11
RdClass2 Interstate 0.8898 2.41
RdConfig3 Two-Way, Divided 1.1638 3.57 0.5615 2.52
LightCond4 Dark – Roadway Not Lighted 0.7111 2.85
Std. dev. 1.2284 1.81

Note: Number of observations: 901. Log-likelihood at convergence: �862.41. Log-likelihood (constant only): �989.85.
a F/I – Fatal/Incapacitating injury. b NI – Non-incapacitating injury.
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Table A3
Random parameter logit model’s significant variable coefficients for class 2.

Variable Description F/Ia NIb

Coef. t value Coef. t value

Intercept �1.9696 �5.98 �1.395 �4.94
PedAge2 24 < PedAge � 54 �0.6698 �3.34 �0.309 �3.09
PedAge4 PedAge � 65 0.4966 3.84
DrvrVehTyp2 Middle 0.681 3.41 0.2114 2.34
DrvrVehTyp3 Heavy 1.9061 4.97 0.6345 2.61
AmbulanceR2 No Ambulance Rescue �1.9317 �6.46 �0.9216 �8.56
CrashGrp4 Off Roadway 0.7939 2.35
Std. dev. 1.3123 2.3
CrashGrp7 Backing Vehicle 0.8114 3
CrashGrp10 Other/Unusual Circumstances 0.9622 4.6 1.3561 4.97
Locality2 Urban �0.5765 �2.05
Development2 Commercial �0.5448 �2.63 �0.4106 �4.09
RdClass5 Local Street, Driveway 0.9522 3.09 0.3767 2.32
Weather2 Cloudy �0.5732 �1.79
Hour6 0:00–5:59 1.0055 2.92 0.7169 3.92
TraffCntrl4 Double Yellow Line, No Passing Zone 2.463 1.95

Note: Number of observations: 3517. Log-likelihood at convergence: �2432. Log-likelihood (constant only): �3864.

Table A4
Random parameter logit model’s significant variable coefficients for class 3.

Variable Description F/Ia NIb

Coef. t value Coef. t value

Intercept �0.7485 �3.1 1.4015 4.23
PedAge3 55 < PedAge � 64 0.4373 2.48
PedAge4 PedAge � 65 0.9448 5.5
PedAlcFlag2 PedAlcFlag = ’Yes’ 1.2401 5.04 0.6698 2.3
DrvrVehTyp2 Middle 0.4965 4.23
HitRun2 Hit and Run �0.6081 �2.67 �0.4504 �2.4
AmbulanceR2 No Ambulance Rescue �1.8857 �8.92 �1.5342 �5
CrashGrp3 Crossing Roadway with Vehicle Turning �1.7686 �9.54 �0.5091 �3.74
CrashGrp6 Dash/Dart-Out 0.9431 3.69
CrashGrp8 Multiple Threat/Trapped 0.7118 2.47
CrashGrp9 Bus related Vehicle 0.973 2.3
Locality2 Urban �0.7269 �2.86
Std. dev. 2.1824 2.86
Development5 Farms, Woods, Pastures 3.7492 3.47 2.2967 1.71
RdCurve2 Curve 0.5734 2.5
RdGrad2 Grade 0.3173 2.17
RdClass2 Interstate �1.9342 �2.84
RdClass5 Local Street, Driveway �0.8247 �3.69 �0.7765 �2.96
RdClass6 Public Vehicular Area �2.7034 �2.64 �1.875 �2.72
RdConfig3 Two-Way, Divided 0.2928 2.29
LightCond2 Dawn/Dusk Light �0.3717 �1.66
LightCond3 Dark – Lighted Roadway 1.728 4.33
Weather4 Snow, Sleet, Hail, Freezing Rain/Drizzle 1.6402 1.92
Hour2 10:00–14:59 �0.4597 �3.21
Hour3 15:00–17:59 �0.2804 �1.98
TraffCntrl2 Signs �0.4593 �2.24 �0.4451 �2.57
TraffCntrl4 Double Yellow Line, No Passing Zone 0.9243 2.56

Note: Number of observations: 5255. Log-likelihood at convergence: �4358. Log-likelihood (constant only): �5773.
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Table A5
Random parameter logit model’s significant variable coefficients for class 4.

Variable Description F/Ia NIb

Coef. t value Coef. t value

Intercept �1.7074 �8.05 0.3974 3.75
PedAge2 24<PedAge � 54 0.28 2.27
PedAge3 55<PedAge � 64 0.6125 3.44
PedAge4 PedAge � 65 1.1367 5.39
PedAlcFlag2 PedAlcFlag = ’Yes’ 0.7554 6.28 0.365 3.1
Std. dev. 1.3175 1.93
DrvrVehTyp3 Heavy 1.0348 2.8
HitRun2 Hit and Run �0.4551 �2.08
Std. dev. 1.5665 1.88
AmbulanceR2 No Ambulance Rescue �1.3145 �8.11 �1.1283 �9.9
CrashGrp2 Crossing Roadway with Vehicle Not Turning 0.8225 5.94 0.2264 2.21
CrashGrp3 Crossing Roadway with Vehicle Turning �1.4071 �5.24 �0.6261 �4.98
CrashGrp5 Pedestrian in Roadway 0.7605 4.16
CrashGrp6 Dash/Dart-Out 0.9161 4.9 0.4135 2.88
CrashGrp7 Backing Vehicle �0.843 �2.81
CrashGrp9 Bus related Vehicle 1.317 2.17
Development2 Commercial 0.3504 3.08
Development4 Institutional �0.6541 �2.42
RdCurve2 Curve 0.717 3.13
RdGrad2 Grade 0.5511 4.07
RdClass5 Local Street, Driveway �0.7426 �5.06
RdClass6 Public Vehicular Area �1.2944 �3.36 �0.7613 �2.59
RdConfig2 Two-Way, Not Divided �0.3195 �3.71
RdConfig3 Two-Way, Divided 0.7398 6.45
LightCond4 Dark – Roadway Not Lighted 0.4588 3.98
Weather2 Cloudy 0.534 3.74
Hour3 15:00–17:59 �0.9898 �3.06
Hour5 21:00–23:59 0.2262 2.56
Hour6 0:00–5:59 0.6473 5.02 0.3936 3.34
TraffCntrl2 Signs �0.3854 �2.59
TraffCntrl4 Double Yellow Line, No Passing Zone 0.6512 1.99

Note: Number of observations: 3630. Log-likelihood at convergence: �3361. Log-likelihood (constant only): �3988.
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a b s t r a c t

Introduction: Safety of pedestrians depends, among other factors, on their behavior while crossing the
road. This study aims to assess behaviors of pedestrians at signalized crosswalks. Method: Following a lit-
erature review and a pilot study, 25 vital pedestrian crossing factors and behaviors were determined.
Then data was randomly collected for 708 pedestrians at 10 lighted crossings in Sharjah (UAE), five at
road intersections and five mid-block crossings. Results: Results indicated that 17.4% of pedestrians
observed crossed partly or fully on red and that crossing speed was 1.22 m/s, on the average, which is
slightly faster than most speeds recorded in the literature. Moreover, female pedestrians were more likely
to cross while chatting with others, less likely to cross on red, and more likely to walk slower than male
pedestrians. Results also showed that pedestrians who crossed at road intersections walked slower than
those who crossed at mid-block crossings. It was also found that longer red pedestrian times and nar-
rower roads tended to encourage pedestrians to cross on red and that the majority of pedestrians did
not look around before crossing. Practical implications: Use of the Health Belief Model for pedestrian
safety are discussed.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Of the 1.35 million deaths due to road traffic collisions annually,
nearly one-quarter (23%) are pedestrians. Traffic crashes involving
pedestrians constitute a major road safety problem in the entire
world, especially in developing countries. Pedestrians are among
the most often neglected groups in many countries when designing
road traffic systems. This can mainly be attributed to the rapid
increase in population, increase in the number of motor vehicles
in urban centers, and to disobedience of traffic regulations by
pedestrians, drivers and other road users. Therefore, there is a dire
need to understand risk factors that affect the safety of pedestrians
on the roads (Alhajyaseen & Iryo-Asano, 2017; Choi et al., 2019;
Jain et al., 2014; Tezcan et al., 2019; WHO, 2018; Zegeer &
Bushell, 2012).

Signalized crosswalks are designated walking paths for pedes-
trians with red-green signal lights. They are widely used on roads
where traffic volume is high and involve stopping motor vehicles
to allow pedestrians to cross safely from one side of the road to

the other side. These signalized crossings usually are located at
road junctions or at mid-blocks (i.e., at middle section of the road).
Although these crossings are meant to serve as a measure allowing
pedestrians and drivers safe passage, disobeying them can lead to
the opposite. In other words, if pedestrians or drivers opt to violate
pedestrian crossing signals for any reason, these crossings can lead
to crashes.

A glance at the published scientific literature indicates that
many studies stressed on the importance of microanalysis of
pedestrian behaviors on crosswalks as a way to improve traffic
safety (Alhajyaseen & Iryo-Asano, 2017; Koh et al., 2014;
Papadimitriou et al., 2013; Tezcan et al., 2019). For example,
Papadimitriou et al. (2013) reported that when a pedestrian is in
a hurry and/or it is observed as harmless to unlawfully cross a road
(i.e., there is slight or no contradictory traffic), he or she feels that
they have an upper hand affinity to cross. In other instances, it
might be as a result of following the crowd where the pedestrian
just follows the crowd who is crossing unlawfully. The authors also
reported that male pedestrians are further likely to begin unlaw-
fully as compared to female pedestrians while mature pedestrians
have the uppermost proportion of unlawful crossers when com-
pared to young and elderly individuals. Overall, the authors found
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that female pedestrians were more compliant with traffic regula-
tions and that they exhibited more positive attitude and behaviors
in relation to pedestrian traffic regulations than male pedestrians.
The authors concluded that the road safety of pedestrians depends
on their behavior, which is based on their beliefs, culture, percep-
tions and attitude.

In line with this last conclusion by Papadimitriou et al. (2013);
Nordfjærn and S�ims�ekoğlu (2013) analyzed cultural and social-
cognitive factors of risky pedestrian behaviors among pedestrians
in Turkey using the Hofstede theory. The authors stated that this
theory defines culture through its consequences for attitude, val-
ues and beliefs. They used uncertainty avoidance in Hofstede the-
ory, defined as the level at which a person feels uncomfortable
with ambiguity, to explain pedestrian attitude and behaviors when
crossing roads. Moreover, they found that collectivism (which
emphasizes norms) and individualism (which emphasizes atti-
tude) are relevant in explaining pedestrian behaviors when cross-
ing roads because these two cultural dimensions influence
individual’s conformity with regulations set by authorities. Uncer-
tainty avoidance was also found to be relevant in evaluating pedes-
trian road crossing behaviors because people who score high in the
cultural dimension are more risk-aversive, hence less likely to dis-
play risky road crossing behaviors. Their results showed also that
vertical collectivism is associated with a low level of risk when
crossing roads, while horizontal collectivism is related to greater
risks when crossing roads.

Mwakalonge et al. (2015) investigated the effect of distractions
on road crossing behaviors of pedestrians. The authors postulated
that distractions affecting pedestrians at uncontrolled crossings
in the United States root from their engagements in multitasking
activities such as snacking, using hand-held devices, reading and
listening to music. The authors found that out of 1,102 pedestrians,
29.8% showed distractive activities when crossing roads and con-
cluded that distractive activities are related to pedestrian behav-
iors. Jain et al. (2014) reported similar conclusions in India and
added that uncontrolled pedestrian crossings require high atten-
tion because pedestrians need to cross roads at a speed faster than
vehicular movements.

The current study is conducted in the city of Sharjah, United
Arab Emirates (UAE). Similar to the rest of the world, crashes
involving pedestrians form a major road safety problem in UAE
where the population exceeds nine million and the number of
motor vehicles is around three million (FCSA-UAE, 2017). Number
of pedestrians that died or got injured in UAE due to traffic crashes
over three years is given in Table 1 (FCSA-UAE, 2017). As can be
seen in that table, the average percentage of pedestrians killed
among all traffic related fatalities is 24.2%, which is slightly higher
than the world average of 23% (WHO, 2018).

Although the scientific literature included studies that aimed to
capture pedestrian behaviors while crossing roads, most of those
studies focused on specific behaviors. For Example, Koh et al.
(2014) focused on analyzing violations at signalized crosswalks
while Thompson et al. (2013) focused on capturing the effects of
social and technological distractions on road crossing behaviors
among pedestrians. Accordingly and as suggested by
Mwakalonge et al. (2015) and Thompson et al. (2013), this study
aims to capture and analyze a multitude of pedestrian behaviors

at signalized crosswalks to provide a comprehensive and empirical
view of the problem. It is anticipated that results of the current
study would help in determining factors that shape the behavior
of pedestrians at signalized crosswalks and be useful in managing
and designing signalized crosswalks so that the safety of pedestri-
ans would be enhanced.

2. Methodology

Recorded methods of pedestrian behavior on the road in the
published scientific literature include direct roadside observations,
questionnaire surveys, pedestrian crash analysis, or a mixture of
them (Choi et al., 2019; Jain et al., 2014; Mwakalonge et al.,
2015; Papadimitriou et al., 2013; Tezcan et al., 2019). It was
thought in the current study that direct unobstructive roadside
observations would be a reliable and objective way for data collec-
tion knowing that detailed data on pedestrian crashes are not
available in UAE.

2.1. Data collection

There is a wide range of behaviors of pedestrians that can be
observed at crosswalks. As discussed earlier and based on previous
studies (specifically Jain et al., 2014; Koh et al., 2014; Mwakalonge
et al., 2015; Thompson et al., 2018) a wide and comprehensive
array of pedestrian behaviors, socio-demographic factors, distrac-
tive factors and other relevant road details were compiled and cap-
tured in the current study as follows:

1. Pedestrian gender
2. Day of week (weekday; weekend) (weekends consist of

Thursday evenings, Fridays and Saturdays)
3. Number of pedestrians waiting for the green light at the curb

(5 or less; 6 or more)
4. Ambient temperature (�C)
5. Type of crosswalk (road intersection; in-block)
6. Green time (sec)
7. Red time (sec)
8. Cycle time (sec)
9. Number of lanes each way

10. Age group (years) (less than 15; 16–39; 40 or more)
11. Carrying a load (yes/no)
12. Child walking with adults (yes/no)
13. Walking with a pedestrian child (yes/no)
14. Carrying a child (yes/no)
15. Pedestrian pushing pram or wheelchair (yes/no)
16. Riding a bicycle (yes/no)
17. Talking over mobile phone (handheld) (yes/no)
18. Talking over mobile phone (earphones) (yes/no)
19. Text messaging (yes/no)
20. Walking inside pedestrian designated area (yes/no)
21. Chatting with other pedestrians while walking (yes/no)
22. Crossing duration (s)
23. Crossing speed (m/s)
24. Crossing on red (yes/no)
25. Looking left and right prior to crossing (yes/no)

Table 1
Number of injuries and deaths due to road traffic crashes in UAE (FCSA-UAE, 2017).

Year Total no. of injuries No. of pedestrian injuries Total no. of deaths No. of pedestrian deaths

2014 7108 1084 712 174
2015 6865 995 675 157
2016 6681 1061 706 176
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The first 16 factors were considered as input variables in the
statistical analysis while the remaining nine factors reflected
pedestrian behaviors while crossing.

Based on information solicited from Sharjah Road Traffic
Authority, there are 38 signalized junctions with (red-green) sig-
nalized crosswalks and 46 in-block signalized crosswalks in Shar-
jah. In this study, it was decided to collect data at five
signalized crosswalks at road intersections and at five in-block sig-
nalized crosswalks. Some of these 84 crossings were barely used
based on prior knowledge and initial observations of the research-
ers. Accordingly, the 10 crosswalks chosen for this study were
selected semi-randomly while making sure that the flow volume
of pedestrians crossing the road is relatively high. Also, the timing
of observations was decided to coincide with high pedestrian flow
rate (usually 5–8 p.m. in Sharjah). It should be noted also that all of
the 10 chosen crosswalks were on two-way, busy and, relatively
speaking, wide streets with medians where pedestrian curbs were
at least three meters wide on both sides.

Similar to some other studies like that of Choi et al. (2019), this
study utilized unobtrusive video recording of pedestrians to ana-
lyze their crossing behaviors. Crossing pedestrians were video
recorded in the following road intersections:

1. Institute of Banking junction (King Abdul Aziz St)
2. Gold Souq junction (University City Rd)
3. End of Esteqlal Rd (University Bookshop)
4. Dubai Islamic Bank Junction (King Abdul Aziz St)
5. Al-Intifadah Road and Al-Khan St junction

They were also recorded at the following in-block
signalized crosswalks:

1. Al-Hilal Bank (after Institute of Banking) (King Abdul Aziz St)
2. Al-Zahra Hospital (Al-Zahra Rd roundabout) (Al-Zahra St)
3. Al-Majaz Theatre (Al-Buhaira) (Corniche St)
4. Pizza Hut Al-Buhaira (Corniche St)
5. Al-Intifadah Road (Near Al-Buhaira police station)

The 10 crosswalks are pinpointed on the Google Earth map
given in Fig. 1. It was decided to collect data on pedestrians cross-
ing over two to three traffic signal cycles at peak times on three dif-
ferent days at each of the above listed crosswalks. Two traffic
signal cycles were recorded if the cycle duration was more than
200 s and three cycles were recorded if the duration was less than
200 s. Such a data volume (10 crosswalks X 2 (or 3) cycles X 3 rep-
etitions) was anticipated to generate several hundred data points
(based on previous studies like Jain et al. (2014) and
Papadimitriou et al. (2013) and on initial observations by the
researchers), which was thought to be a reasonable sample size.
It should be noted that pedestrian crossing time countdown dis-
plays are not used in Sharjah.

2.2. Data analysis

The null hypothesis to be tested for all independent variables
was that the medians of treatments of a given output variable
across all levels of a given input variable are the same. Due to cat-
egorical nature of some of the variables (namely using mobile
phone while walking, walking inside designated area, chatting
with other pedestrians while walking, crossing on red, looking
right and left prior to crossing and riding a bicycle), it was decided
to use chi-square test for these variables. Moreover, normality test
was done on crossing (walking) speed (which was the only contin-
uous output variable) to determine the most suitable statistical
analysis option. All statistical analyses were done using SPSS ver-
sion 24.

3. Results and discussion

A pilot study was done at the beginning to monitor pedestrian
behaviors at three pedestrian lights in Sharjah. The aim of this pilot
study was to make sure that data on all important pedestrian
behaviors would be recorded. Pilot study results indicated that
many cyclists cross the street with pedestrians and that the per-
centage of people talking over the mobile phone (with either
mode) or texting while walking was small. It was decided, there-
fore, to merge all modes of mobile phone usage into one called
‘‘crossing while using mobile phone” and to add a behavior named
‘‘crossing on a bicycle.” Then data for the main study were
collected.

In total, behaviors of 708 pedestrians from 30 recordings (three
at each location) were recorded. Statistics on recorded tempera-
ture, crossing duration, green light time, red light time, and cycle
time are given in Table 2. As can be seen in Table 2, the average
walking speed at lighted intersections (calculated by dividing dis-
tance by duration) was found to be 1.22 m/s. Such a speed is
slightly considered faster than most speeds reported in the litera-
ture (Goh et al., 2012). This might be due to the fact that close to
85% of residents in UAE are expatriates who reside in the country
for work and, thus, tend to be younger than most other communi-
ties (FCSA, 2017).

In Table 3, more descriptive statistics of the data recorded are
given. Following Table 3, statistical analysis results and discussion
aregiven. It shouldbenoted thatnomotor vehiclewas recordedcross-
ing when pedestrian lights were green throughout the whole study.

3.1. Gender effects

Male and female pedestrians were found to be different in
terms of chatting while crossing the road (p = 0.01). It was
recorded that 20.4% of observed male pedestrians crossed the road
while chatting, while 30% of females were recorded chatting while
crossing. They were also found different in crossing on red pedes-
trian lights (p = 0.04) where males (19.2%) tended to cross partly or
fully on red pedestrian lights more often than females (13%). Pos-
sible reasons for this difference might include male pedestrians’
greater willingness to take risk in crossing the road on red pedes-
trian lights and their greater ability, on the average, to walk faster
than female pedestrians.

Crossing while riding a bicycle was also significantly different
between the two genders (p = 0.00): 13.4% of males crossing were
riding a bicycle, while only 1.9% of females were riding a bicycle.
Females were also found to cross the road slower than males
(p = 0.00), where the walking speed of female pedestrians was
found to be 1.1 m/s on the average while that of male pedestrians
was 1.27 m/s.

3.2. Age effects

Pedestrians between 16 and 39 years of age were found to sig-
nificantly use their mobile phones (25.7%) while crossing (p = 0.03)
compared to other age groups (9.8% for young pedestrians and
14.6% for older ones). Moreover, pedestrians between 16 and
39 years of age were found to significantly cross the road (partly
or fully) on red more often than other age groups (p = 0.00), as
the vast majority (94.3%) of the 123 pedestrians who crossed on
red were in that age group.

3.3. Day of week effects

Looking right and left before crossing was found to be affected
by day of week (p = 0.04), where 31.1% of pedestrians were

S. Bendak, A.M. Alnaqbi, M.Y. Alzarooni et al. Journal of Safety Research 76 (2021) 269–275

271



observed looking around before crossing on weekdays while 21.1%
looked around over weekends. One possible reason for this differ-
ence is that pedestrians feel that looking around before crossing
the road is less necessary on weekends when more pedestrians
cross the road than on weekdays.

Walking speed was also found to be significantly different
between weekdays and weekends (p = 0.00) where the average
walking speed on weekdays was 1.26 m/s while it was 1.12 m/s
on weekends. A likely reason for this difference is that on week-

ends, more families with children were observed crossing the
roads than on weekdays.

3.4. Number of people waiting effects

Walking speed was also found to be significantly affected by the
number of people crossing (p = 0.03). Pedestrians crossing with six
or more other individuals walked at a speed of 1.15 m/s, while
those with five or less pedestrians walked with an average speed

Fig. 1. Location of pedestrian crosswalks on Google Earth map.

Table 2
Descriptive statistics of temperature and crossing and light durations.

Statistic Temp (�C) Crossing duration (s) Crossing speed (m/s) Green time (s) Red time (s) Cycle time (s)

Mean 33.30 8.67 1.22 77.89 87.85 165.61
Std. Dev. 3.35 2.86 0.45 67.48 47.82 92.74
Minimum 27 2.19 0.64 15 27 45
Maximum 38 21.20 4.38 182 233 373
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of 1.27 m/s. In other words, it was observed that pedestrians cross-
ing with bigger crowds tend to walk slower than those crossing
with smaller groups of pedestrians or alone.

3.5. Effects of type of pedestrian lights

Looking right and left before crossing was found to be signifi-
cantly higher at mid-block pedestrian crosswalks (34.3%) than at
road intersection pedestrian crosswalks (20.2%) (p = 0.00). Another
difference was recorded in walking speed. Pedestrians who cross
the street at road intersections walked slower (1.14 m/s) than
those who crossed at mid-block signalized pedestrian lights
(1.3 m/s). One likely reason for both results is that the green time
at road junctions was longer, on the average, than that at mid-
block signalized pedestrian lights, which might be giving more
sense of security and leading to slower walking pace.

Using mobile phones while walking from one side of the road to
the other was significantly less at junction pedestrian crosswalks
(2.4%) than at mid-block crosswalks (10.6%) (p = 0.00). No mean-
ingful reason for this phenomenon could be postulated.

3.6. Effects of walking with children

As can be anticipated, no pedestrian walking with a child (out of
29) was observed using a mobile phone while crossing the road
while 8.1% of others (i.e., pedestrians not walking with children)
were using their mobile phone while crossing. This difference
was statistically significant (p = 0.04) and is believed to be the
result of usually using a hand for holding a child’s hand while
walking, which makes it less likely for people walking with chil-
dren to use their mobile phones, especially while crossing the road.

Pedestrians walking with child(ren) crossed the road, as
expected, at slower speeds than others walking without children
(p = 0.00). The average walking speed was 1.27 m/s for pedestrians
crossing without children and 0.83 m/s for those accompanying
children.

3.7. Effects of temperature

Pedestrians crossing the road were significantly less likely to
use a mobile phone (p = 0.01), more likely to cross on red
(p = 0.00) and more likely to walk faster (p = 0.00) at higher tem-
peratures than at lower temperatures. Such an outcome is
expected as people, in general, tend to do anything that would
shorten their exposure to hot weather conditions.

3.8. Effects of green light duration

Pedestrians tend to walk significantly more often outside desig-
nated areas at crosswalks with shorter green times (p = 0.00) and
longer red times (p = 0.00) than at other crosswalks. They also tend
to cross on red significantly more often at crosswalks with shorter
green times (p = 0.00) and longer red times (p = 0.00) than at other
crosswalks. Moreover, pedestrians tend to walk significantly faster
at crosswalks with shorter green times than at those with longer
times (p = 0.00). Such behaviors may be attributed to pedestrians’
less willingness to wait longer times at crosswalks.

3.9. Effects of number of lanes

With respect to the number of lanes, it was observed that 13.9%
of pedestrians crossed on red at two-lane, 19% at three-lane and
none at four-lane crosswalks. These differences were statistically
significant (p = 0.00). Pedestrians were also found to decrease their
walking speed when the number of lanes to be crossed decreased
(p = 0.00). The average observed walking speed was 0.89 m/s on
two-lane, 1.25 m/s on three-lane, and 1.37 m/s on four-lane
crosswalks.

3.10. Other findings

Comparing the walking speed of pedestrians crossing on red
and those crossing on green, it was observed that pedestrians
who crossed on red walked faster (1.34 m/s on the average) than
those crossing on green (1.16 m/s on the average). This difference
was assessed using an unpaired single-sided t-test and was found
to be statistically significant (p = 0.03).

Moreover, comparing those who crossed the road while carry-
ing loads with other pedestrians, it was noticed that pedestrians
carrying a load (63 or 8.9% out of 708 pedestrians) are more likely
to walk slower than others with an average of 1.19 m/s for the for-
mer and 1.43 m/s for the latter. This difference was statistically sig-
nificant using an unpaired single-sided t-test (p = 0.00).

Another finding was that only 207 (or 29.3%) out of the 708
pedestrians observed looked around before crossing the road. The
majority of those observed, especially those who crossed on green,
did not feel it was necessary to look around before crossing. More-
over and out of the 708 observed pedestrians, 569 (or 80.4%) were
observed crossing the road within the pedestrian crossing desig-
nated area with the remaining 139 (19.6%) crossing fully or partly
outside the designated area. As anticipated, pedestrians crossing
inside the designated area tended to walk slower (average being
1.18 m/s) than those who crossed outside the designated area (av-

Table 3
Descriptive statistics of data recorded.

Factor Level 1 Level 2 Level 3

Gender male 501 (70.8%) female 207 (29.2%)
Age �15 61 (8.6%) 16 to 39 544 (76.8%) �40 103 (14.5%)
Day of week weekend 123 (17.4%) weekday 585 (82.6%)
Number of lanes each way 2 lanes 72 (10.2%) 3 lanes 592 (83.6%) 4 lanes 44 (6.2%)
Number of pedestrians waiting �5 367 (51.8%) �6 341 (48.2%)
Using mobile phone talking (handheld) 24 (3.4%) talking (earphones) 5 (0.1%) texting 27 (3.8%)
Place of crossing inside designated area 569

(80.4%)
(partly or fully) outside designated area
139 (19.6%)

Crossing on red Crossed on green 585 (82.6%) crossed (partly or fully) on red 123 (17.4%)
Crossing while chatting with others not chatting 544 (76.8%) chatting 164 (23.2%)
Pedestrians walking with children/adults adult walking with children 29

(4.1%)
adult carrying a child 4 (0.1%) child walking with adults 31

(4.4%)
Pedestrian carrying a load, pushing others or

riding a bicycle
carrying load 63 (8.9%) riding bicycle 71 (10%) pushing a pram or a wheelchair 13

(1.8%)
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erage being 1.37 m/s). This difference was found to be statistically
significant using an unpaired single-sided t-test with p = 0.00.

Finally and taking the behavior of using mobile phones while
crossing into consideration, it was observed that pedestrians who
crossed outside the designated area were more likely (13.67%) to
use their mobile phone while crossing than those who were walk-
ing inside the area (6.33%). This difference was found to be statis-
tically significant using an unpaired single-sided t-test with
p = 0.01.

4. Discussion and conclusions

Analyzing pedestrian crossing behavior is important for ensur-
ing their safety while crossing the roads. This study reviewed
and examined the behaviors of a sample of 706 pedestrians cross-
ing the road at 10 different signalized crosswalks in the city of
Sharjah in UAE. The gender of pedestrians showed an effect on
crossing speed where males take greater risk, on average, than
females in crossing on red and walk, on average, faster than
females. With respect to age, younger pedestrians were found to
take greater risks than older pedestrians in terms of crossing on
red and in terms of showing a more distractive behavior visualized
in using the mobile phone while crossing the road.

The behavior of looking right and left before crossing was found
to be affected by day of week where significantly more pedestrians
were observed looking around before crossing on weekdays than
on weekends when more people cross the road on average. One
likely reason for this difference is that pedestrians feel that looking
around before crossing the road is less necessary on weekends
when more pedestrians cross the road than on weekdays. In other
words, the greater number of pedestrians on weekends gives peo-
ple crossing a greater sense of safety and, therefore, they feel look-
ing around before crossing is less necessary than on weekdays. This
possible reason goes along Le Bon’s theory on group behavior. Le
Bon (1895) said that when individuals join crowds, they become
‘‘deindividualized” where they take the behavior of the crowd. So
when pedestrians feel that the group started crossing the street,
they subconsciously join them with less time spent on perceiving
the environment and deciding to cross.

Moreover, pedestrians crossing with larger groups walked at
slower speeds, on the average, than those crossing with smaller
groups or alone. One likely reason for that is the relying of pedes-
trians on groups to guide them while taking less time to perceive
the environment (i.e., looking at the pedestrian light and for
incoming traffic). This possible reason also goes along Le Bon’s the-
ory. So when pedestrians feel that a bigger crowd starts crossing
the road, they subconsciously join them with less time spent on
perceiving the environment and deciding to cross.

Results of the current study also showed that pedestrians tend
to walk significantly more often outside designated areas and to
cross on red more often at crosswalks with shorter green times
and longer red times. It seems that longer red pedestrian lights
lead to less willingness among pedestrians to wait longer times
at crosswalks and, consequently, cross more often on red or out-
side the designated area (especially when they start crossing at
the middle or towards the end of the green time) in order not to
wait for the next green pedestrian light. Similar results were found
in a study by Jain et al. (2014). The authors stated that red lights
that were more than 40 s long made pedestrians look for alterna-
tives to waiting at red, including crossing the road on red. Besides
this, results of the current study indicated that pedestrians tend to
walk significantly faster at crosswalks with shorter green times
than at those with longer times. All such results clearly indicate
that cycle time and red-green distribution affect the behavior of
pedestrians and can lead them to disobey traffic rules. Such find-

ings suggest that traffic authorities should keep red pedestrian
lights duration to a minimum. If such an alternative is not feasible
for any reason, then they should seek alternatives to signalized
crosswalks like pedestrian bridges or underpasses.

With respect to the number of lanes, it was observed that some
pedestrians are prepared to cross on red at two- and three-lane
crosswalks but not at four-lane crosswalks. They were also found
to walk faster as roads become wider. A likely reason for these dif-
ferences is that wider roads make pedestrians feel more vulnerable
and less safe if they walk slowly or cross on red, unlike narrower
roads. Results indicate that the latter type of roads gives pedestri-
ans greater, often false, confidence in their ability to cross safely,
even on red pedestrian lights.

Results of the current study also indicated that pedestrians who
crossed on red walked faster than those crossing on green. Such an
outcome is anticipated as those crossing on green are more likely
to walk at a normal pace, while those crossing on red are more
likely to walk faster to avoid being hit by incoming motor vehicles.
Moreover and as expected, pedestrians carrying loads and those
walking with children are more likely to walk slower than others.
It is therefore recommended that road designers take provisions
(such as longer green duration) to ensure the safe crossing of
pedestrians at signalized crosswalks where more children are
likely to cross, like at schools and nurseries, and at those where
more pedestrians are expected to carry loads, like in front of shop-
ping centers.

One worrying and widespread behavior observed in the current
study was that the majority (70.7%) of pedestrians observed did
not look around before crossing the road. Another observed behav-
ior by a small, but significant, proportion (or 19.6%) of pedestrians
observed crossed the road fully or partially outside the designated
area. Besides this, those crossing outside the designated area
tended to walk faster than those who crossed outside the desig-
nated area. One likely reason for this difference in walking speed
is that pedestrians walking outside the designated pedestrian area
start crossing at the middle of the green time and feel the need to
rush so that they can complete crossing before the light turns red.

One last finding was that almost 8% of pedestrians were
observed crossing while using their mobile phones. In relation to
this behavior, it was also observed that pedestrians who crossed
outside the designated area were significantly more likely to use
their mobile phone while crossing than those who were walking
inside the area. This reflects that some pedestrians who are willing
to take greater risk than others while crossing the road show this
willingness in more than one way (i.e., using the phone and walk-
ing outside designated area in this case).

The Health Belief Model (HBM) can help in understanding the
motivation of pedestrians in engaging in risky behaviors found in
the current study (i.e., crossing on red, not looking around while
crossing, and distracted crossing) and finding solutions that would
minimize those risky behaviors. This model is a widely used behav-
ioral change model that focuses on cognitive determinants of
behavior. It states that people, in this case pedestrians, conduct
an internal cognitive assessment to find out the net pros and costs
of changing a certain behavior, and then decide whether or not to
change this behavior (Carpenter, 2010). The original HBM has two
components, threat perception and behavioral evaluation (Janz &
Becker, 1984; Rosenstock et al., 1994). Then the model was
extended by Sheeran and Abraham (1996) to include two more
components, cues to action and health motivation. This model is
occasionally used in understanding road users’ behavior and
proposing incentives to change them, like rear seatbelt use
(Mehri et al., 2011) and bicycle helmet use (Lajunen & Räsänen,
2004).

To improve internal cognitive assessment and threat perception
among pedestrians while crossing the road based on HBM, it is
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vital to improve their situation awareness. This can be done
through rigorous public awareness campaigns to promote safe
pedestrian road crossing behaviors and discouraging unsafe cross-
ing behaviors using TV advertisements, social media, radio chan-
nels, newspapers, school curriculum, etc. Also, tightening road
crossing laws, increasing police presence at pedestrian crosswalks,
and increasing penalties would serve as vital incentives.
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a b s t r a c t

Introduction: Predicting crash counts by severity plays a dominant role in identifying roadway sites that
experience overrepresented crashes, or an increase in the potential for crashes with higher severity
levels. Valid and reliable methodologies for predicting highway accidents by severity are necessary in
assessing contributing factors to severe highway crashes, and assisting the practitioners in allocating
safety improvement resources. Methods: This paper uses urban and suburban intersection data in
Connecticut, along with two sophisticated modeling approaches, i.e. a Multivariate Poisson-Lognormal
(MVPLN) model and a Joint Negative Binomial-Generalized Ordered Probit Fractional Split (NB-GOPFS)
model to assess the methodological rationality and accuracy by accommodating for the unobserved fac-
tors in predicting crash counts by severity level. Furthermore, crash prediction models based on vehicle
damage level are estimated using the same two methodologies to supplement the injury severity in esti-
mating crashes by severity when the sample mean of severe injury crashes (e.g., fatal crashes) is very low.
Results: The model estimation results highlight the presence of correlations of crash counts among sever-
ity levels, as well as the crash counts in total and crash proportions by different severity levels. A com-
parison of results indicates that injury severity and vehicle damage are highly consistent. Conclusions:
Crash severity counts are significantly correlated and should be accommodated in crash prediction mod-
els. Practical application: The findings of this research could help select sound and reliable methodologies
for predicting highway accidents by injury severity. When crash data samples have challenges associated
with the low observed sampling rates for severe injury crashes, this research also confirmed that vehicle
damage can be appropriate as an alternative to injury severity in crash prediction by severity.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

1.1. Motivation

Each year there are over 38,000 motor-vehicle crashes related
fatalities in the United States of America, and traffic collisions are
one of the most significant causes of untimely death (NHTSA,
2016). Traffic safety is a top priority for both Federal and State
transportation agencies and there is still a critical need for effective
strategies to reduce crashes and improve highway safety.

Crash prediction models are one of the most effective
approaches to help identify roadway locations with overrepre-
sented crashes or the potential for crashes in the future. These pre-
dictive model results can then be used to implement
countermeasures to improve highway safety. Therefore, selecting
an appropriate and effective crash prediction model is critical
when trying to identify roadway sites to prioritize for safety
improvement. The use of inaccurate or invalid modeling
approaches and assumptions might result in biased crash predic-
tion results and thus lead to the inefficient use of safety improve-
ment resources and reduce the effectiveness of the safety
management process. Given the limited safety improvement
resources available, sites that experience overrepresented high
severity crashes should be our top priority. The development of
reliable crash prediction methodologies, based on crash severity,
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is imperative for helping to identify hazardous roadway locations
and crash contributing factors. This allows for the efficient alloca-
tion of highway safety improvement strategies to assist in prevent-
ing crashes from occurring in the future.

The first edition of the Highway Safety Manual (HSM, 2010)
introduces the crash prediction models for total crashes, which
are then multiplied by several constant severity proportions to pre-
dict the crashes by different severity levels. This approach might
not be feasible as crash severity distributions may vary across sites
due to potential variations related to roadway geometric, traffic,
and environmental characteristics (Ma & Kockelman, 2006; Ma,
Kockelman, & Damien, 2008; Wang, Ivan, Burnicki, & Mamun,
2017; Wang, Zhao, & Jackson, 2018, 2019; Wang, Ivan,
Ravishanker, & Jackson, 2017). Therefore, crash prediction models
by severity have been widely investigated to improve the predic-
tion performance of crash counts by different severity levels
(Abdel-Aty & Radwan, 2000; Dixon et al., 2015; Liu & Sharma,
2018; Lord & Persaud, 2000; Oh, Washington, & Choi, 2004;
Russo, Busiello, & Dell, 2016; Tarko, Inerowicz, Ramos, & Li,
2008; Ulfarsson & Shankar, 2002). In general, two types of method-
ological frameworks of crash prediction models have been imple-
mented by researchers to achieve a better crash severity count
prediction. The first alternative is to estimate crash counts by dif-
ferent severity levels directly. The second alternative, which is usu-
ally referred to as the two-stage model, is first to estimate crash
counts in total, followed by estimating crash severity distributions,
and then combine the latter with the former for crash count pre-
diction by severity.

Estimating crash prediction models by severity might be chal-
lenging due to the small sample size and low sample mean
(Anarkooli, Persaud, Hosseinpour, & Saleem, 2019), especially for
the fatal and severe injury crashes. This alternative creates an issue
for identifying locations with overrepresented severe crashes when
the safety improvement resources are limited. To this end, one
objective indicator of crash consequences – the extent of vehicle
damage based on the destruction/deformation of the vehicle
involved in the crash might be used – to represent the crash con-
sequence as a supplement of injury severity. The rationality of
modeling crashes by vehicle damage level is because: (a) the sam-
ple mean of crashes with severe vehicle damage levels is higher
than the crashes with severe injuries; and (b) the vehicle damage
is found to be positively correlated with the injury severity in mul-
tiple studies (Qin, Sultana, Chitturi, & Noyce, 2013; Wang et al.,
2015, 2019). For this reason, roadway locations experienced over-
represented crashes with severe vehicle damage levels have a very
high potential to experience more severe injury crashes in the
future.

1.2. Literature review

With regard to the methodologies that directly estimate crash
counts by severity, the Poisson regression model has been initially
used to model crashes by each severity level since the crash fre-
quencies are non-negative integers (Lord & Mannering, 2010).
The Poisson model has its implicit restriction – the variance of
the data is assumed to be equal to the mean. This assumption
might not always be valid as the variance of crash data usually is
higher than the mean, which is also known as the over-
dispersion (Washington, Karlaftis, & Mannering, 2011). To address
this issue, the Univariate Poisson Lognormal regression and Nega-
tive Binomial regression models are then used to predict crash
counts by severity (Mannering & Bhat, 2014; Washington et al.,
2011). However, traditional Univariate Poisson Lognormal and
Negative Binomial models assume crash counts by crash severity
to be independent. However, this might not be true due to the
presence of shared unobserved factors across different severity

levels for each observational record. Modeling crash severity
counts together without accounting for their correlations might
yield biased parameter estimates, and reduce model prediction
accuracy (Ma & Kockelman, 2006; Ma et al., 2008; Mannering &
Bhat, 2014; Mannering, Shankar, & Bhat, 2016; Wang et al., 2017,
2018).

To address correlations among crash counts across different
severity levels, a large number of methodologies have been imple-
mented to estimate crash counts by severity jointly. These include,
but are not limited to, Simultaneous Equations Model (Ye,
Pendyala, Shankar, & Konduri, 2013); Multivariate Generalized
Poisson Model (Chiou & Fu, 2013, 2015; Chiou, Fu, & Chih-Wei,
2014); Joint-Probability Model (Pei, Wong, & Sze, 2011); and Arti-
ficial Neural Network (Zeng, Huang, Pei, & Wong, 2016). Recently,
the Multivariate regression models have been extensively applied
to simultaneously estimate crash counts by severity by accounting
for the correlations between crashes among different crash sever-
ity levels. Multivariate models have been verified to be superior to
the Univariate models in terms of the parameter estimation and
crash prediction accuracy. For instance, Ma et al. (2008) applied a
Multivariate Poisson-Lognormal model to estimate the crash
counts by severity, and they found the crash counts highly corre-
lated among different severity levels. Park and Lord (2007) applied
a Multivariate Poisson-Lognormal model to jointly estimate the
crash frequencies by severity using the California data. The study
implied that the crash frequencies are highly correlated among
severity levels, and the Multivariate model obtains more accurate
parameter estimates. Wang, Ivan, Ravishanker, and Jackson
(2017) used a Multivariate Lognormal approach to estimate crash
count models for rural two-lane undivided highways, and the
results were compared to the Univariate models. The study verified
that the Multivariate Lognormal model provides unbiased param-
eter estimates and significantly enhances the prediction accuracy.
A similar study was conducted by Wang, Zhao, and Jackson
(2018) for freeway crash prediction, and the results highlighted
that freeway crashes significantly correlated among different levels
of crash severity. Anastasopoulos, Shankar, Haddock, and
Mannering (2012) used both Multivariate Tobit and Multivariate
Negative Binomial models to predict crash rate by severity on mul-
tilane divided highways in Washington State. The study found that
the prediction accuracy between the two approaches are very
close, and both methods outperform the univariate models.

Furthermore, the Multivariate models have also been extended
by researchers for particular perspectives. For instance, to account
for the issues of excess zero, unobserved heterogeneity and spa-
tial–temporal correlation in crash data, methodologies (including
but are not limited to) Multivariate Random-Parameter Zero-
Inflated model (Dong, Clarke, Yan, Khattak, & Huang, 2014), Multi-
variate Poisson Lognormal Spatial model (Aguero-Valverde, 2013;
Barua, El-Basyouny, & Islam, 2014) , Multivariate Spatial-
Temporal Bayesian model (Liu & Sharma, 2018), Multivariate Pois-
son Lognormal Conditional-Autoregressive model (Wang &
Kockelman, 2013; Xie, Ozbay, & Yang, 2019) and Multivariate Ran-
dom Parameter Spatial Poisson Lognormal model (Barua, El-
Basyouny, & Islam, 2016) were then used to estimate the crash
counts by severity. Lord and Mannering (Lord & Mannering,
2010) provided comprehensive guidance on model selection and
assessment in crash count prediction.

Now on to the second alternative approach described above.
Qin, Wang, and Cutler (2013) used a Negative Binomial model
and a Multinomial Logit model to predict total truck crashes and
crash counts by each severity level. Chiou and Fu (2013, 2015))
and Chiou et al. (2014) examined the use of a Multinomial model
and a Generalized Poisson model to predict crash frequencies by
severity. Anarkooli et al. (2019) applied a Negative Binomial model
and a Generalized Ordered Probit model to estimate crashes by
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severity on horizontal curves. Geedipally, Bonneson, Pratt, and
Lord (2013) used a Multinomial Logit model to estimate the sever-
ity distributions for freeway segments and interchanges. Wang,
Quddus, and Ison (2011) applied a Bayesian spatial model and a
mixed logit model to estimate crashes by severity for the major
roads in England. Savolainen, Mannering, Lord, and Quddus
(2011) provided comprehensive guidance on model selection and
assessment of prediction of crash severity distributions.

However, all of these studies modeled the total crash counts
and crash severity distributions separately and independently,
which might be inappropriate due to the common observed and
unobserved factors that affect both crash counts and crash severity
distributions. Yasmin, Eluru, Lee, and Abdel-Aty (2016) introduced
a new modeling framework – The Joint Negative Binomial-Ordered
Probit Fractional Split (NB-OPFS) model to estimate the total
crashes and crash severity distributions simultaneously. In their
method, a Negative Binomial component was employed for esti-
mating crashes in total, and an Ordered Probit fractional split com-
ponent was employed for estimating crash proportions by severity.
Unlike previous studies, their modeling framework jointly esti-
mates the Negative Binomial component and the Ordered Probit
component, by accounting for the unobserved heterogeneity across
and within the crash count and crash severity proportion modeling
components. Further, by implementing the Ordered Probit frame-
work, the method also accounts for the ordinal nature of crash
severity in the crash proportion estimation.

The authors then further extended their methodology (Yasmin
& Eluru, 2018) to a Joint Negative Binomial-Generalized Ordered
Logit Fractional Split modeling framework to estimate crash counts
by severity at a zonal level for Florida State. This method allowed
the correlation between total crash counts and crash severity pro-
portions to vary across zones. The study highlighted the superiority
of the joint model framework in terms of the prediction accuracy
compared to the independent model framework. Bhowmik,
Yasmin, and Eluru (2019) applied a Panel Mixed Generalized
Ordered Probit Fractional Split model to examine the contributing
factors to vehicle operating speed. The study found that roadway
related characteristics significantly affect the vehicular speed,
and the proposed model framework performs adequately for the
speed prediction.

1.3. Problem statement, study objectives and contributions

Although different methodologies have been applied in predict-
ing crashes by severity, multiple issues are still existent and need
to be addressed. For instance:

1. Most of the previous studies focused on implementing one of
the two options for crash prediction by severity, i.e. either pre-
dicting crash severity counts simultaneously or predicting total
crash counts and crash severity proportions together. There is a
lack of study in assessing and comparing these two options in
highway safety research, which can offer insights on the pros
and cons of each method, and shed light on method selection
under different data conditions and research needs.

2. Although previous research has verified that the low sample
mean of severe crashes (e.g., fatal crashes) leads to difficulties
in crash prediction by severity level, limited research provided
effective alternatives to address this issue. The shortage of crash
prediction capability for severe crashes creates troubles to prac-
titioners for identifying target roadway locations, when the
highway safety improvement resources are limited.

Accordingly, three major objectives and contributions are
addressed and made by this study respectively. They are:

1. Assess and identify the most reliable methodology in predicting
crashes by severity, using and extending the two advanced sta-
tistical methodologies, i.e. the Multivariate Poisson-Lognormal
(MVPLN) model and the Joint Negative Binomial-Generalized
Ordered Probit Fractional Split (NB-GOPFS) model.

2. Identify and interpret the contributing factors to severe crashes.
3. Evaluate the rationality of using the vehicle damage as an alter-

native to injury severity in crash prediction models by severity
level, to provide practitioners with capabilities of effectively
allocating safety improvement resources when the low sample
mean leads to difficulties in predicting severe crashes.

The remaining parts of this paper are as follows: the second sec-
tion describes the two methodological frameworks and the model
estimation methods; the third section describes the data used in
model estimation; and the fourth section discusses the model esti-
mation results. Model comparisons are provided in the fifth section
and conclusions are discussed in the final section.

2. Methodologies

2.1. Framework for Multivariate Poisson-Lognormal (MVPLN) model

The first method used to estimate crash counts by severity is

the MVPLN model. Assume yi ¼ Y1i;Y2i � � � ;YJi
� �0

for i ¼ 1;2; � � � ;N
be a J-dimensional vector (i.e. J crash severity levels) of crash
counts across all N sites. In the MVPLN model, we assume the crash
counts are correlated among all severity levels. The MVPLN model
can be derived as (Serhiyenko, Mamun, Ivan, & Ravishanker, 2016):

Yjijkji PoissonðkjiÞ ð1Þ
where kji is the mean of Poisson distribution, which is estimated as:

lnðkjiÞ ¼ Offset þ bjxji þ eji ð2Þ

where Offset is the log exposure for total observation days in the
data set for intersection models (i.e., in this study, the offset for both
sign-controlled and signalized intersections is log(365*5) = 7.51). xji
is a vector of independent variables and bj is a vector of coefficients
to be estimated. eji is a random term. Assume a vector of the random

term ei ¼ e1i; e2i � � � ; eJi
� �0

at site i follows a J-dimensional normal dis-
tribution, i.e.

ei Normalð0;RÞ ð3Þ
where 0 is a J-dimensional zero vector, R is a J *J variance–covari-
ance matrix and let’s define R = rrsð Þ1�r<s�J . Then the mean, variance
and covariance of the crash counts by each severity level at site i can
be derived as (Serhiyenko et al., 2016):

Mean ¼ E Yji
� � ¼ expðOffset þ bjxjiÞexpð

rjj

2
Þ ð4Þ

Variance ¼ Var Yji
� � ¼ exp Offset þ bjxji

� �
exp

rjj

2

� �

þexp 2 Offset þ bjxji
� �

ðexp2 rjj
� �� expðrjjÞ

� � ð5Þ

Covariance ¼ Cov Yri;Ysi½ �
¼ expðOffset þ bjxji

Þexpðrrr

2
Þexpðrss

2
Þðexp rrsð Þ � 1Þ ð6Þ

The correlations of crash counts between rth and sth crash sever-
ity can be accommodated by the covariance term in equation
(Wang et al., 2017) through the rrs, which is the off-diagonal entry
of the J *J variance–covariance matrix. A positive rrs represents a
positive correlation of crash counts between rth and sth crash sever-
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ity, and a negative rrs represents a negative correlation of crash
counts between rth and sth crash severity. The rrs can be further
derived as:

rrs ¼ qrs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rss � rrr

p ð7Þ
where rssandrrr are the diagonal entries of the J *J variance–covari-
ance matrix, and qrs is a traditional correlation coefficient to be esti-
mated which is between �1 and 1. The probability distribution of
the given total crash counts yi can be written as (Serhiyenko
et al., 2016):

g yijbjxji;R
� � ¼

Z
� � �

Z
f Normal;Jðeij0;RÞ

YJ
j¼1

f Poissonðyij eji;bjxji

			 �
dei

ð8Þ
where f Normal;J is a J-dimensional normal distribution function, and
f Poisson is a Poisson distribution. As noted from previous studies
(Serhiyenko et al., 2016; Wang et al., 2017), the probability distribu-
tion function shown in equation 8 has no closed algebraic solution,
and hence the Bayesian framework is used to estimate the coeffi-
cients in the MVPLN model. First assume every bj in equation 2 fol-

lows a prior normal distribution as Normal (0, W2) and every R�1 in
equation 3 follows a prior Wishart distribution as Wishart (c, -),
where W2, c and - are all hyperparameters for priors. We used the
default hyperparameter specifications in R-INLA (2020) for both

the Normal priorði:e:bj Normal 0;103
� �

Þ and the Wishart prior with

c = 7 (i.e. 2 J + 1) degrees of freedom and an identify matric as the
precision matrix -. The posterior distributions of the coefficients
are estimated using the Bayesian inference (Serhiyenko et al., 2016).

The Markov Chain Monte Carlo (MCMC) (Ma & Kockelman,
2006; Ma et al., 2008) simulation, which uses the Gibbs sampler
and Metropolis-Hasting (M-H) approach, is usually applied to carry
out the Bayesian inference on model estimation. However, studies
have noticed that the MCMC simulation approach is extremely
computationally challenging and time-consuming, especially for
a large data sample (Mannering & Bhat, 2014). To address this issue
and simplify the model estimation procedure, we applied the Inte-
grated Nested Laplace Approximation (INLA) approach proposed
by Rue, Martino, and Chopin (2009) to carry out the Bayesian infer-
ence of the MVPLN model estimation in this study. The INLA
approach doesn’t rely on the MCMC and it numerically approxi-
mates the posterior distributions of parameters. It has been veri-
fied to be able to significantly reduce the running time compared
to the MCMC approach by multiple studies (Serhiyenko et al.,
2016; Wang et al., 2017, 2018). The R-INLA (2020) package was
used to run the MVPLN models. The detailed discussions of the
INLA approach and model estimation procedures are referenced
in several previous studies (Rue et al., 2009; Serhiyenko et al.,
2016).

2.2. Framework for Joint Negative Binomial-Generalized Ordered
Probit Fractional Split (NB-GOPFS) Model

In the NB-GOPFS model, the total crash counts and crash pro-
portions by each severity are jointly estimated, by accounting for
the correlations between total crashes and crash severity propor-
tions. Therefore, two model components are included in the NB-
GOPFS method, where a count model (i.e., a Negative Binomial
framework is used in this study) is used to estimate the total crash
counts, and a fractional split model (i.e., a Generalized Ordered Pro-
bit Fractional Split framework) is used to estimate the crash pro-
portions by each severity level. Similar to the MVPLN model
framework, assume i (i = 1, 2, 3 . . . N) to be the index for the road-

way site, and j (j = 1, 2, 3 . . . J) to be the index for the injury severity
category. The total crash counts yi at site i can be estimated using a
NB framework, which is derived as:

Prob yijli

� � ¼ pðyiÞ ¼
C rð Þ þ yi½ �
C rð Þyi!

r
rð Þ þ li


 �r li

rð Þ þ li


 �yi
ð9Þ

where C is a gamma function; r is the inverse overdispersion
parameter in the NB model, and li is the expected crash counts at
site i, which can be written as:

lnðliÞ ¼ Offset þ bþ fið Þxi þ ei þ gi ð10Þ
where xi is a vector of independent variables associated with site i
and b (not including a constant) is a vector of coefficients to be esti-
mated. fi (which follows a standard normal distribution: fi Nð0;p2))
is a vector of estimated coefficients which accounts for the unob-
served heterogeneity in crash count estimation at site i. exp(eiÞ is
a random term that follows a gamma distribution with mean 1
and variance r. gi is a random factor that accommodates the corre-
lations between total crash counts and crash severity proportions at
site i, due to the common unobserved factors.

Considering the ordinal nature of crash severity, the estimation
of proportions by each crash severity level is carried out by a Gen-
eralized Ordered Probit Fractional Split (GOPFS) framework. Let’s
define the pji be the actual proportion of crash severity j at site i,
which is assumed to be associated with a latent variable pi

�. The
latent variable can be specified as (Yasmin & Eluru, 2018):

pi
� ¼ cþ qið Þzi þ di þ gi; pji ¼ j if�i;j�1 < pi

� < �i;j ð11Þ
This latent propensity pi

� is mapped to the actual severity pro-
portion categories pji by the � thresholds (�0 = �1 and �j =1). zi is
a vector of attributes that influences the propensity associated
with crash severity proportions. c is a corresponding vector of
mean effects, and qi is a vector of unobserved factors on severity
proportion propensity for site i and its associated characteristics
assumed to be a realization from standard normal distribution:

qi Nð0;k2Þ. di is an idiosyncratic random error term assumed to
be identically and independently standard normal distributed
across observational unit i.gi is a random factor that accommo-
dates the correlations between total crash counts and crash sever-
ity proportions at site i, due to the common unobserved factors.

The GOPFS model relaxes the constant thresholds across obser-
vations to provide a flexible form of the OPFS model. The basic idea
of the GOPFS is to represent the threshold parameters as a linear
function of exogenous variables to account for the heterogeneity.
Thus, the thresholds are expressed as:

�i;j ¼ fn sij
� � ð12Þ

where, sij is a set of exogenous variables (including a constant) asso-

ciated with jth threshold. Further, to ensure the accepted ordering of
observed severity proportions �1 < �i;1 < �i;2 < � � � � � � � � � < �i;j�1

�
< þ1Þ, we use the following parametric form as employed by
Eluru, Bhat, and Hensher (2008):

�i;j ¼ �i;j�1 þ expððsj þ hjiÞsij þ gi ð13Þ
where, sj is a vector of parameters to be estimated. hji is another
vector of unobserved factors moderating the influence of attributes
in sij on the severity proportions for analysis unit i and injury sever-
ity category j. It is noted from equation 11 that pji is the actual pro-
portion of crash severity j, which is different from the traditional
generalized ordered Probit model framework where the dependent
variable is an indicator of crash severity level. In order to estimate
the generalized order Probit framework with a continuous depen-
dent variable, let’s assume (Yasmin & Eluru, 2018)
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E pjijxi
� � ¼ Hji c; �ð Þ; 0 � Hji � 1;

XJ

j¼1

Hji ¼ 1 ð14Þ

Hji accounts for the ordered Probit probability (Pji) form for the
crash severity level j, and it is defined as:

Pji ¼ / �i;j � cþ qið Þzi þ di þ gi½ �� 
� / �i;j�1 � cþ qið Þzi þ di þ gi½ ��  ð15Þ

where / is the cumulative standard normal distribution. It is noted
from previous research (Yasmin & Eluru, 2018) that the correlations
between total crash counts and crash proportions by severity may
vary across sites. Therefore, we parameterize the correlation param-
eter in this study as follows:

gi ¼ aci ð16Þ
where, ci is a vector of exogenous variables, a is a vector of
unknown parameters to be estimated (including a constant).

To jointly estimate the NB probability function (see equation 9)
for total crash counts and the GOPFS probability function (see
equation 15), let’s define a structure X for all vectors (i.e., f;q; h
and a) that account for unobserved heterogeneity, either in NB or

GOPFS model framework, and X Nð0; ðp2
;k2

;m2;n2ÞÞ. The likeli-
hood function of the Joint NB-GOPFS model can be written as:

Li ¼
Z
X
p yið Þ �

YJ
j¼1

P
xipji
ji dX ð17Þ

wherexi is a dummy indicator wherexi ¼ 1 represents site i has at
least one crash, otherwise xi ¼ 0. The log-likelihood function can
then be written as:

LL ¼
X
i

LnðLiÞ ð18Þ

Overall, the parameters to be estimated in the Joint NB-GOPFS
model are b, c, r, �, p, k, m and n. The Quasi-Monte Carlo simula-
tion approach based on the scrambled Halton sequence is applied
to estimate the log-likelihood function, using the GAUSS Matrix
Programming Software (Aptech, 2019). The detailed discussions
of the Joint NB-GOPFS approach and model estimation procedures
are referenced in several previous studies (Bhat, 2001; Bhowmik
et al., 2019; Eluru et al., 2008; Yasmin & Eluru, 2013, 2018;
Yasmin et al., 2016).

3. Data preparation

To estimate and compare the MVPLN and Joint NB-GOPFS mod-
els for crash prediction by severity, urban & suburban intersections
were collected from the State of Connecticut and five-year crash
data (2014–2018) were collected from the Connecticut
Transportation Crash Data Repository (CTCDR) (2019) and assigned
to the specific intersections.

A total of 895 intersections are sign-controlled and 1,178 are
signalized. To obtain sufficient observations in each crash severity
level, crash severity counts were aggregated into three categories
(Wang et al., 2017, 2018):

1) K + A which combines fatal (K) and incapacitating injury (A)
crashes;

2) B + C which combines non-incapacitating injury (B) and pos-
sible injury crashes (C), and

3) PDO which includes the property damage only (PDO)
crashes.

As mentioned earlier, vehicle damage is used as another crash
consequence indicator to supplement the crash injury severity in

this study to further address the low sample mean issue in crash
prediction models, especially for estimating models for crashes
with severe injuries such as K and A crashes. According to the
Model Minimum Uniform Crash Criteria (MMUCC) guideline
(2017), vehicle damage was categorized into five levels and vehicle
damage counts were aggregated into three categories in this study
(Qin et al., 2013; Wang et al., 2015, 2019):

1) Severe Damage Crashes which contain all crashes with dis-
abling (salvageable or total loss) damage;

2) Moderate Damage Crashes which contain all crashes with
broken or missing parts damage, and

3) Minor Damage Crashes which combine crashes with minor/-
cosmetic damage and crashes with no damage.

To validate the assumption of using vehicle damage to supple-
ment the injury severity to address the low sample mean issue in
crash prediction models, Fig. 1 presents the scatter plots and Pear-
son correlation coefficients between the injury severity and vehicle
damage for both sign-controlled and signalized intersections. The
Pearson correlation coefficients illustrated that the injury severity
and vehicle damage are highly correlated for both sign-controlled
and signalized intersections. Furthermore, intersection traffic and
geometric data were collected based on the urban & suburban arte-
rials chapter in the Highway Safety Manual (HSM) (2010) with
regard to both sign-controlled and signalized intersections. Table 1
summarizes the descriptive characteristics of the intersection and
crash data used in this study.

4. Model estimation results

Tables 2 and 3 show the estimation results for the MVPLN and
Joint NB-GOPFS models by different injury severity and vehicle
damage levels for urban & suburban sign-controlled and signalized
intersections, respectively. In each cell, the first value represents
the estimated coefficient, followed by the p-value of the coefficient
in parenthesis. ‘‘–” represents the coefficient is not statistically sig-
nificant at the 10% significance level, and the results only included
variables that are significant at least in one of the models. ‘‘NA”
represents the variable is not applicable in the specific model.

4.1. Urban & suburban sign-controlled intersections

Table 2 presents the model estimation results for urban & sub-
urban sign-controlled intersections. The upper part shows the esti-
mated coefficients of the crash prediction models by injury
severity level, and the lower part shows the estimated coefficients
of the crash prediction models by vehicle damage level.

4.1.1. Model estimation for injury severity component
With regard to the MVPLN model by injury severity, the crash

counts by three different severity levels (i.e. K + A, B + C and PDO
crashes) are simultaneously estimated using a Poisson-Lognormal
framework by accounting for their correlations due to the common
unobserved factors. Both the major and minor road AADT are found
to be statistically significant and are positively associated with all
three levels of crash severity counts. Compared with 3-leg intersec-
tions, 4-leg intersections are associated with increased crash
counts by all severity levels, which may be due to the fact that
there are more conflicting points at 4-leg intersections. As
expected, all-way stop-controlled intersections have experienced
decreased crashes with severe injuries because right-of-way is sep-
arated for all approaches, and the vehicle speed is lower as all vehi-
cles are ordered to stop first and then go at all-way stop-controlled
intersections. If a driveway (such as a driveway for gasoline, park-
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ing, or commercial store) is present at the intersection, crash
counts by all three severity levels are expected to decrease. This
might be because drivers tend to drive more carefully at these
intersections where vehicles may exit from the nearby driveway.
Exclusive left-turn lanes are associated with decreased crash
counts for all three severity levels, and exclusive right-turn lanes
are associated with increased crashes with less severe injuries.
These findings are consistent with the study conducted by Wang
et al. (2017) that exclusive left-turn lanes may reduce specific
crash types relating to severe consequences such as head-on
crashes, while exclusive right-turn lanes may increase some crash
types corresponding to less severe injuries such as read-end
crashes at sign-controlled intersections. The correlation coeffi-
cients from the MVPLN model highlight that the crash counts are
highly correlated among all crash severities, which indicates that
accounting for their correlations might yield more accurate estima-
tion results when simultaneously estimating crash counts by
severity level.

The Joint NB-GOPFS model has two components, where a NB
modeling framework is used to estimate the total crash counts,
and a GOPFS modeling framework is used to estimate the crash
proportions by each severity level. In the NB modeling framework,
a positive coefficient indicates a positive correlation between the
independent variable and total crash counts, and vice versa. In
the GOPFS modeling framework, a positive coefficient represents
that the independent variable is associated with increased propor-
tions of severe injury crashes, and vice versa. The coefficient esti-
mates in the NB modeling framework are consistent with the
MVPLN model, in which the major and minor road AADT, 4-leg
intersections and exclusive right-turn lanes are associated with
increased total crash counts, while all-way controlled intersections
and presence of driveways are associated with decreased total
crash counts. The coefficient estimates of GOPFS modeling frame-

work illustrate that more traffics in major road and 4-leg intersec-
tions are highly correlated with increased proportions of severe
injury crashes, and exclusive left-turn lanes are significantly asso-
ciated with decreased proportions of severe injury crashes. The
threshold parameters in the Joint NB-GOPFS model indicate the
demarcation points between severity categories, which have no
substantial interpretation (Yasmin & Eluru, 2018). One important
finding in the Joint NB- GOPFS model is that the total crash counts
and the threshold between the proportions of B + C and K + A
crashes are positively correlated. This finding implies that sites
with higher number of total crashes are more likely to incur higher
proportions of B + C crashes (as the threshold will move rightward
in the generalized ordered Probit fractional split framework, and
the thresholds for B + C and K + A are used to define the crash pro-
portions of B + C crashes), and their correlation is found to be con-
stant across different intersections. This verifies the presence of
common unobserved factors affecting both total crash counts and
the proportions of crashes by severity and accounting for the unob-
served factors when simultaneously estimating total crashes and
crash severity proportions may provide more accurate estimation
results.

4.1.2. Model estimation for vehicle damage component
As mentioned earlier, we also estimated crash prediction mod-

els by vehicle damage level to supplement the injury severity,
which can be used as an alternative to identify locations that
may experience severe injury crashes in the future when the cur-
rent sample mean of severe injury crashes is very low, which leads
to the difficulty of developing crash prediction models by injury
severity. As shown in the results, the MVPLN model coefficient
estimates regarding the vehicle damage component are highly con-
sistent with the injury severity component. The correlation coeffi-
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Fig. 1. Correlation between Injury Severity and Vehicle Damage.
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cients show that the crash counts by different vehicle damage
levels are significantly correlated.

Similarly, the coefficient estimates for the Joint NB-GOPFS
model are consistent with those for the injury severity component.
The correlation coefficients in the Joint NB-GOPFS demonstrate
that the total crash counts and the proportions of crashes by vehi-
cle damage are positively correlated, which implies that sites with
a higher number of crashes are more likely to incur higher propor-
tions of severe vehicle damage crashes. The consistent model esti-
mation results between injury severity and vehicle damage
components provide support to our initial hypothesis of using
vehicle damage as a supplemental indicator of injury severity for
estimating crash prediction models by different severity levels.

4.2. Urban & suburban signalized intersections

4.2.1. Model estimation for injury severity component
Table 3 presents the model estimation results for urban & sub-

urban signalized intersections. In terms of the injury severity com-
ponent, the estimated coefficients for major and minor road AADT
and 4-leg intersections are consistent with the urban & suburban
sign-controlled intersections, and are associated with increased
crash counts for all three levels of crash severity. Presence of drive-
way is found to be correlated with increased B and C and PDO
crashes at signalized intersections. The exclusive right-turn lanes
are found to be negatively associated with all severity counts at
signalized intersections. One interesting finding is that the pro-
tected left-turn signal phasing is correlated with decreased severe
injury crashes (K and A crashes), but is correlated with increased B,
C and PDO crashes. This might be because the protected left-turn
signal phasing can be effective at reducing the head-on crashes,

but it might increase the rear-end crashes when the leading vehicle
unexpectedly brakes and collided by the following vehicle when
the left-turn signal turns to yellow or red. The presence of no
right-turn-on-red at signalized intersections is correlated with
the increased PDO crashes only, which may be due to the driver’s
violation of this type of traffic control. The MVPLN model indicates
that the crash counts are highly correlated among all crash severity
levels at the urban & suburban signalized intersections.

With respect to the Join NB-GOPFS model, the estimation
results for total crashes in the NB modeling component are still
consistent with the MVPLN model. Three variables are found to
be significant for estimating crash proportions by severity level
in the GOPFS modeling component. 4-leg intersections are associ-
ated with increased proportions of severe injury crashes. If a
depressed median is present on any of the intersection approaches,
the proportions of severe injury crashes are expected to be
increased. The exclusive left-turn lanes are associated with
decreased proportions of severe injury crashes. Different from
the urban & suburban sign-controlled intersections, the estimated
correlation coefficients from the Joint NB-GOPFS model indicate
that the total crash counts and crash severity proportions are inde-
pendent at urban & suburban signalized intersections.

4.2.2. Model estimation for vehicle damage component
The model estimation results for the vehicle damage compo-

nent yield consistent parameters with the injury severity compo-
nent, and the crash counts are prone to be correlated among
crashes with all vehicle damage levels. For the Joint NB-GOPFS
model, higher traffic volumes yield decreased proportions of severe
damage crashes, which fits the expectation because vehicle speed
tends to be lower when the traffic is heavy. Protected left-turn sig-

Table 1
Descriptive Characteristics of Urban & Suburban Intersection and Crash Data.

Variables Sign-Controlled Intersections
(895 Intersections)

Signalized Intersections
(1,178 Intersections)

Crash Data
K + A Crash Min. = 0; Max. = 2;

Mean = 0.1; Std. Dev = 0.3
Min. = 0; Max. = 5;
Mean = 0.2; Std. Dev = 0.5

B + C Crash Min. = 0; Max. = 19;
Mean = 1.6; Std. Dev = 2.3

Min. = 0; Max. = 54;
Mean = 6.2; Std. Dev = 6.3

PDO Crash Min. = 0; Max. = 61;
Mean = 5.1; Std. Dev = 6.4

Min. = 0; Max. = 146;
Mean = 20.3; Std. Dev = 18.4

Severe Damage Crash Min. = 0; Max. = 22;
Mean = 2.4; Std. Dev = 2.7

Min. = 0; Max. = 60;
Mean = 5.9; Std. Dev = 5.1

Moderate Damage Crash Min. = 0; Max. = 23;
Mean = 1.4; Std. Dev = 2.0

Min. = 0; Max. = 40;
Mean = 5.0; Std. Dev = 5.3

Minor Damage Crash Min. = 0; Max. = 54;
Mean = 3.3; Std. Dev = 4.5

Min. = 0; Max. = 129;
Mean = 15.5; Std. Dev = 15.7

Intersection Data Frequency Percentage Frequency Percentage

3-Leg Intersection 687 76.8% 423 35.9%
4-Leg Intersection 208 23.2% 755 64.1%
Partial-Way Sign-Controlled Intersection 806 90.1% NA NA
All-Way Sign-Controlled Intersection 89 9.9% NA NA
Median Presence at Intersection Approaches 83 9.3% 285 24.2%
Illumination Presence 599 66.9% 877 74.4%
Driveway Presence 363 40.6% 478 40.6%
Exclusive Left-Turn Lane Presence 51 5.7% 766 65.0%
Exclusive Right-Turn Lane Presence 40 4.5% 586 49.7%
Protected Left-Turn Signal Phasing Presence NA NA 875 74.3%
No Right-Turn-On-Red NA NA 654 55.5%
Major Road AADT Min. = 550; Max. = 32,800;

Mean = 9,180;
Std. Dev = 4,842

Min. = 2,300; Max. = 68,200;
Mean = 15,769;
Std. Dev = 6,676

Minor Road AADT Min. = 20; Max. = 13,900;
Mean = 2,534;
Std. Dev = 2,212

Min. = 300; Max. = 43,300;
Mean = 7,482;
Std. Dev = 5,466

Intersection Skew Angle Min. = 0; Max. = 89;
Mean = 22;
Std. Dev = 20

Min. = 0; Max. = 90;
Mean = 22;
Std. Dev = 23
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nal phasing is associated with decreased proportions of severe
damage crashes. Same as the injury severity component, the total
crashes and crash proportions by each vehicle damage level are
found to be independent in the Joint NB-GOPFS model.

5. Model comparisons

In order to evaluate the model prediction capability between
the MVPLN and Joint NB-GOPFS models, we randomly selected
80% of the datasets (i.e., estimation datasets) to estimate the model
coefficients, and used the remaining 20% datasets (i.e., validation
datasets) to evaluate the model prediction accuracy, based on the
criteria of Mean Absolute Error (MAE) calculated as:

MAE ¼ PN
i¼i

Yi;pred:�Yi;obs:j j
N (19)where Yi;pred: represents the predicted

crash counts for intersection i corresponding to the specific injury
severity or vehicle damage; Yi;obs: represents the observed crash
counts for intersection i corresponding to the specific injury sever-
ity or vehicle damage; and N represents the sample size.

A smaller MAE value indicates a better prediction accuracy. The
MAE is calculated for both model estimation (EMAE) and validation
(VMAE) datasets. Figs. 2 and 3 present the model prediction com-

parison results. In general, the MVPLNmodel performs slightly bet-
ter in predicting severe crashes, while the Joint NB-GOPFS model
performs better in predicting less severe crashes. Specifically, in
terms of the crash prediction by injury severity for both sign-
controlled and signalized intersections, the MVPLN model slightly
outperforms the Joint NB-GOPFS model in predicting K and A
crashes, while the Joint NB-GOPFS model performs better in pre-
dicting B, C and PDO crashes. The Joint NB-GOPFS model has a
smaller prediction error than the MVPLN model based on the aver-
age MAE value across all severity levels. With regard to the crash
prediction by vehicle damage, the MVPLN model performs slightly
better than the GOPFS model in predicting severe and minor dam-
age crashes and the average crashes across all damage levels for
sign-controlled intersections, but it only outperforms the GOPFS
model in predicting severe damage crashes for signalized
intersection.

6. Summary and conclusions

This paper presents two advanced frameworks in predicting
crash counts by each severity level (i.e., either directly estimating

Table 2
Model Estimation Results for Sign-Controlled Intersections.

Variables Injury Severity Component

MVPLN Model Joint NB-GOPFS Model

K + A B + C PDO Total Crashes Severity
Proportions

Constant �17.11 (0.00) �17.59 (0.00) �18.24 (0.00) �9.84 (0.00) NA
Ln (Major AADT) 0.55 (0.03) 0.68 (0.00) 0.82 (0.00) 0.80 (0.00) 0.10 (0.10)
Ln (Minor AADT) 0.24 (0.05) 0.54 (0.00) 0.60 (0.00) 0.56 (0.00) –
4-Leg Intersection 0.46 (0.08) 0.77 (0.00) 0.46 (0.00) 0.64 (0.00) 0.11 (0.09)
All-Way Sign-Controlled �1.21 (0.06) �0.55 (0.00) – �0.31 (0.00) –
Driveway Presence �0.45 (0.07) �0.18 (0.02) �0.16 (0.00) �0.16 (0.01) –
Exclusive Left-Turn Lane

Presence
�1.71 (0.05) �0.41 (0.02) �0.19 (0.08) – �0.23 (0.04)

Exclusive Right-Turn Lane
Presence

– 0.59 (0.00) 0.37 (0.00) 0.35 (0.00) –

Overdispersion 0.65 (0.01) 0.47 (0.00) 0.33 (0.00) 0.24 (0.05) NA
Threshold 1 NA NA NA NA 1.10 (0.06)
Threshold 2 NA NA NA NA 0.43 (0.00)
Correlation Coefficients K + A B + C PDO Correlation Coefficients Total Crashes
K + A 1.00 0.79 (0.00) 0.53 (0.00) Propensity of proportions of severe injury crashes –
B + C 1.00 0.74 (0.00) Threshold between B + C and K + A proportions 0.31 (0.09)
PDO 1.00 Threshold between PDO and B + C proportions –

Variables Vehicle Damage Component

MVPLN Model Joint NB-GOPFS Model

Severe
Damage

Moderate
Damage

Minor
Damage

Total Crashes Damage
Proportions

Constant �12.64 (0.00) �16.69 (0.00) �15.73 (0.00) �7.10 (0.00) NA
Ln (Major AADT) 0.35 (0.00) 0.71 (0.00) 0.66 (0.00) 0.65 (0.00) –
Ln (Minor AADT) 0.35 (0.00) 0.34 (0.00) 0.41 (0.00) 0.39 (0.00) –
4-Leg Intersection 0.56 (0.00) 0.36 (0.00) 0.16 (0.02) 0.48 (0.00) 0.14 (0.02)
All-Way Sign-Controlled �0.33 (0.01) – – �0.18 (0.08) �0.01 (0.09)
Driveway Presence �0.18 (0.01) – – �0.09 (0.09) �0.10 (0.07)
Exclusive Right-Turn Lane

Presence
0.27 (0.05) 0.75 (0.00) 0.21 (0.08) 0.38 (0.00) �0.04 (0.04)

Overdispersion 0.33 (0.00) 0.38 (0.00) 0.34 (0.00) 0.04 (0.00) NA
Threshold 1 NA NA NA NA �0.96 (0.06)
Threshold 2 NA NA NA NA �0.69 (0.00)
Correlation Coefficients Severe

Damage
Moderate
Damage

Minor
Damage

Correlation Coefficients Total Crashes

Severe Damage 1.00 0.73 (0.00) 0.61 (0.00) Propensity of proportions of severe vehicle damage
crashes

0.47 (0.00)

Moderate Damage 1.00 0.78 (0.00) Threshold between moderate and severe damage
proportions

–

Minor Damage 1.00 Threshold between minor and moderate damage
proportions

–

Notes: the first value represents the estimated coefficient, followed by the p-value of the coefficient and the following value in parenthesis; ‘‘–” represents the variable is not
statistically significant at the 10% significance level; ‘‘NA” represents the variable is not applicable in the model.
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crash counts by different severity levels, or first estimating crash
counts in total, and then estimating crash severity distributions
to combine with the total crashes for crash count prediction by
severity). Two advanced methodologies are implemented with
regard to each of the frameworks. In terms of the first framework,
a MVPLNmodel is used to simultaneously estimate crash counts by
different severity levels, by accounting for their correlations due to
the common unobserved factors. In the second framework, a Joint
NB-GOPFS model is applied in which a NB modeling component is
used to estimate the total crash counts and a GOPFS modeling
component is used to estimate the crash proportions by each
severity level. The NB and GOPFS modeling components are jointly
estimated by accounting for the correlations between total crashes
and crash severity proportions due to the common unobserved
factors.

Both sign-controlled and signalized intersections at urban &
suburban areas are collected from the State of Connecticut and
used for model estimation. The estimated coefficients in the

MVPLN model show that crash counts are highly correlated among
all severity levels for both sign-controlled and signalized intersec-
tions, which indicates that accounting for their correlations might
yield more accurate estimation results when simultaneously esti-
mating crash counts by severity. The estimation results of the Joint
NB-GOPFS model show that the total crashes are significantly cor-
related with the proportions of B and C crashes at sign-controlled
intersections, and their correlations should be accommodated
when simultaneously estimating total crash counts and crash pro-
portions by severity. The total crash counts are found to be inde-
pendent with the crash proportions by severity at signalized
intersections.

In addition, we further estimated crash prediction models by
vehicle damage level to supplement the injury severity, which
can be used as an alternative to identify locations that may expe-
rience severe injury crashes in the future when the current sample
mean of severe injury crashes (such as K and A crashes) is very low,
which leads to the difficulty of developing crash prediction models

Table 3
Model Estimation Results for Signalized Intersections.

Variables Injury Severity Component

MVPLN Model Joint NB-GOPFS Model

K + A B + C PDO Total Crashes Severity
Proportions

Constant �22.12 (0.00) �17.56 (0.00) �17.37
(0.00)

�9.58(0.00) NA

Ln (Major AADT) 0.89 (0.00) 0.81 (0.00) 0.89 (0.00) 0.87 (0.00) –
Ln (Minor AADT) 0.60 (0.00) 0.40 (0.00) 0.43 (0.00) 0.48 (0.00) –
4-Leg Intersection 0.24 (0.10) 0.48 (0.00) 0.40 (0.00) 0.43 (0.00) 0.09 (0.00)
Intersection Approach Median

Presence
– – – – 0.07 (0.03)

Driveway Presence – �0.20 (0.00) �0.17 (0.00) �0.17 (0.01) –
Exclusive Left-Turn Lane Presence – – – – �0.09 (0.01)
Exclusive Right-Turn Lane Presence �0.32 (0.05) �0.17 (0.00) �0.10 (0.01) �0.08 (0.05) –
Protected Left-Turn Signal Phasing

Presence
�0.35 (0.07) 0.09 (0.06) 0.12 (0.00) – –

No Right-Turn-On-Red – – 0.07 (0.01) – –
Overdispersion 0.54 (0.00) 0.34 (0.00) 0.23 (0.00) 0.29 (0.00) NA
Threshold 1 NA NA NA NA 0.55 (0.14)
Threshold 2 NA NA NA NA 0.56 (0.00)
Correlation Coefficients K + A B + C PDO Correlation Coefficients Total Crashes
K + A 1.00 0.77 (0.00) 0.65 (0.00) Propensity of proportions of severe injury crashes –
B + C 1.00 0.83 (0.00) Threshold between B + C and K + A proportions –
PDO 1.00 Threshold between PDO and B + C proportions –

Variables Vehicle Damage Component

MVPLN Model Joint NB-GOPFS Model

Severe
Damage

Moderate
Damage

Minor
Damage

Total Crashes Damage
Proportions

Constant �15.32 (0.00) �19.37 (0.00) �18.98
(0.00)

�9.53 (0.00) NA

Ln (Major AADT) 0.67 (0.00) 0.95 (0.00) 0.93 (0.00) 0.86 (0.00) �0.08 (0.03)
Ln (Minor AADT) 0.33 (0.00) 0.44 (0.00) 0.53 (0.00) 0.47 (0.00) �0.08 (0.00)
4-Leg Intersection 0.48 (0.00) 0.42 (0.00) 0.42 (0.00) 0.43 (0.00) –
Driveway Presence �0.16 (0.00) �0.15 (0.00) �0.20 (0.00) �0.17 (0.00) –
Exclusive Left-Turn Lane Presence – �0.11 (0.05) – – –
Exclusive Right-Turn Lane Presence �0.22 (0.00) �0.15 (0.00) �0.12 (0.00) �0.09 (0.03) –
Protected Left-Turn Signal Phasing

Presence
�0.08 (0.09) 0.13 (0.03) 0.14 (0.01) – �0.10 (0.00)

Overdispersion 0.22 (0.00) 0.32 (0.00) 0.27 (0.00) 0.28 (0.00) NA
Threshold 1 NA NA NA NA �1.41 (0.00)
Threshold 2 NA NA NA NA �0.68 (0.00)
Correlation Coefficients Severe

Damage
Moderate
Damage

Minor
Damage

Correlation Coefficients Total Crashes

Severe Damage 1.00 0.69 (0.00) 0.67 (0.00) Propensity of proportions of severe vehicle damage
crashes

–

Moderate Damage 1.00 0.83 (0.00) Threshold between moderate and severe damage
proportions

–

Minor Damage 1.00 Threshold between minor and moderate damage
proportions

–
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by injury severity. The model estimation results for injury severity
component and vehicle damage component are highly consistent.
This finding verifies our initial assumption that when crash data
samples have challenges associated with the low observed sam-
pling rates for severe injury crashes, vehicle damage can be appro-
priate as an alternative to injury severity in crash prediction by
severity. An important finding from the model estimation is that
two methodologies may yield different variables that are statisti-
cally significant in predicting crashes by severity level. For exam-
ple, the traffic volumes are shown to be significant in all MVPLN
models when crash counts by severity are simultaneously model-
ing, while the traffic volumes seldom affect the prediction of crash
proportions by each severity level in the Joint NB-GOPFS model.
This may provide additional insight about variable selection in

crash prediction models by severity level regarding different
approaches. In the end, the prediction performance of the two
approaches is compared based on theMAE values. The comparisons
show that the MVPLN slightly outperforms the Joint NB-GOPFS
model in terms of predicting severe crashes, while the Joint NB-
GOPFS model significantly improves the prediction accuracy of less
severe crashes compared to the MVPLN model. This finding con-
tributes to the practical applications of both crash prediction
research and safety improvement effort through shedding light
on method selection under different data conditions and research
needs, in which the MVPLN is recommended when the analysis
target is severe crashes while the NB-GOPFS is preferred for less
severe crashes.
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Fig. 2. Model Performance Comparisons for Sign-Controlled Intersections.
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Fig. 3. Model Performance Comparisons for Signalized Intersections.
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7. Practical applications and future work

The findings of this research can offer additional insight into
selecting robust methodological modeling frameworks in estimat-
ing crash counts by different severity levels, and provide research-
ers and practitioners with the capabilities of estimating crash
prediction models when the low sample mean leads to difficulties
in predicting severe crashes. In this study, we used the intersection
data to test the proposed modeling frameworks. Future research
can focus on extending the modeling frameworks to roadway seg-
ments. Future research can also target on extending the MVPLN
model to the generalized MVPLN framework, and further extend-
ing the Joint NB-GOPFS modeling framework by accounting for
the temporal and spatial heterogeneity.
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a b s t r a c t

Introduction: In this study we explore the added value of bicycle crash descriptions from open text fields
in hospital records from the Aarhus municipality in Denmark. We also explore how bicycle crash data
from the hospital complements crash data registered by the police in the same area and time period.
Method: The study includes 5,313 Danish bicycle crashes, of which 4,205 were registered at the hospital
and 1,078 by the police. All crashes occurred from 2010 to 2015. We performed an in-depth analysis of
the open text fields on hospital records to identify factors associated with each crash using four cate-
gories: bicyclist, road, bicycle, and the other party. We employed the chi-squared test to compare the dis-
tribution of variables between crashes registered at the hospital and by the police. A binary logit model
was used to estimate the probability that a crash factor is identified, and that each crash factor is asso-
ciated with a single-bicycle crash. Results: The open-ended text fields in hospital records provide detailed
information about crash factors not available in police records, including riding speed, inattention, cloth-
ing, specific road conditions, and bicycle defects. The factors alcohol and curb had the highest odds of
being identified in relation to a single-bicycle crash. Crash data registered at the hospital included a larger
number of bicycle crashes, particularly single-bicycle crashes and crashes with slight injuries only.
Conclusion: Crash information registered at the hospital in Aarhus Municipality contributes to a better
understanding of bicycle crashes due to detailed information about crash-associated factors as well as
information about a larger number of bicycle crashes, particularly single-bicycle crashes. Practical impli-
cation: Efforts to improve access to detailed information about bicycle crashes are needed to provide a
better basis for bicycle crash prevention.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

The individual positive environmental (Xia et al., 2013) and
health benefits of bicycling generally outweigh the possible nega-
tive effects of increased exposure to air pollution (Woodward &
Samet, 2016). These and other positive impacts of bicycling have
contributed to a substantial increase in initiatives to promote bicy-
cling over the past decade (Schepers & Heinen, 2013), as bicycling
is considered a sustainable means of daily transport and is often
mentioned as an important element to ensure a sustainable trans-
port sector. Unfortunately, bicycling is related to a comparably
high risk of road traffic injury (Elvik, 2009). In Denmark, the risk
of being injured or killed in a bicycle crash is 13 times higher per
travelled kilometer than the risk related to car travel

(Christiansen & Warnecke, 2018). Research supports the idea of
safety in numbers for bicyclists, and thus that the number of bicy-
cle crashes does not increase proportionally with an increasing
number of cyclists (Elvik & Bjørnskau, 2017; Jacobsen, 2003). How-
ever, changes in bicycling patterns and frequency do lead to
changes in the type and severity of crashes (Schepers, Stipdonk,
Methorst, & Olivier, 2017). Information on risk factors associated
with bicycle crashes remains relevant to develop targeted preven-
tive measures.

Traditionally, knowledge of road traffic crashes relies upon
police registered data. However, due to the high level of underre-
ported bicycle crashes in such crash data (e.g. Elvik & Mysen,
1999) information about the occurrence and characteristics of
bicycle crashes is incomplete, particularly regarding single-
bicycle crashes (e.g., Juhra et al., 2012). In Denmark it is estimated
that the level of underreporting regarding bicycle crashes is
approximately 90%, as only approximately 10% of bicyclist crashes
are registered by the police and thus appear in the official national
road traffic crash statistics (Janstrup, Kaplan, Hels, Lauritsen, &
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Prato, 2016). Hospital data do not include all bicycle crashes either,
but previous studies have shown that the level of underreporting
of bicycle crashes in hospital data is lower than in crash data reg-
istered by the police (e.g., Janstrup et al., 2016; Watson, Watson, &
Vallmuur, 2015). Further insight into differences and similarities
between bicycle crashes registered at a hospital and by the police
is needed to fully understand the contribution and limitations of
these data.

The Danish national road traffic crash database includes infor-
mation about a number of factors systematically registered by
the police. The registration follows a template that includes aspects
such as time of day, weather condition, vehicles involved, crash sit-
uation, and crash location. However, information regarding the
behavior of the bicyclist, the road conditions and the interaction
between the bicyclist and the surroundings is limited and
restricted to aspects included in the template. Consequently, a
detailed understanding of factors associated with the crash is diffi-
cult. Moreover, exploring influence from aspects not included in
the template – such as distracted bicycling or an uneven surface
– is not possible. To further improve the understanding of bicycle
crashes, data sources that include more detailed information about
the crash, the surroundings, and the behavior of the bicyclist and
allow a more explorative approach is relevant. In line with the con-
ceptual framework for bicycle safety outlined by Schepers,
Hagenzieker, Methorst, van Wee, & Wegman (2014), previous
studies applying an explorative approach on more detailed data
sources (e.g., Møller & Haustein, 2016) have successfully catego-
rized crash associated factors into three categories: (a) the road
and its surroundings, (b) the vehicle, and (c) the behavior and con-
dition of the road user. This categorization will also be applied in
this study.

Based on the above, this study sets out to explore the added
value of bicycle crash descriptions in open text fields in hospital
records from Aarhus municipality. The study also explores how
bicycle crash data from the hospital complement police registered
crash data from the same area and time period, thereby improving
the basis for increasing bicycle safety. Exploring crash descriptions
in open text fields adds to previous research on bicycle crashes
including hospital data (e.g., Langley, Dow, Stephenson, & Kypri,
2003; Lujic, Finch, Boufous, & Hayen, 2008; Juhra et al., 2012;
Watson et al., 2015) by facilitating a more detailed understanding
of factors associated with a crash.

2. Method

2.1. Road traffic crash registration by the police and at Aarhus
municipality

In Denmark, the police only register a bicycle crash if the police
are notified about the crash and the crash occurred on a public
road. Bicycle crashes occurring in a forest or on a private road
are not registered. When notified, the police are only obligated to
register the crash if injuries or material damage on a motor vehicle
exceeds DKR 50,000 (EUR 6700) or other material damage exceeds
DKR 5000 (EUR 670). Due to these criteria, a high number of bicy-
cle crashes are not registered by the Danish police. Regarding
injury severity, the police use a scale with four levels: Fatalities,
the person dies within 30 days of the day of the crash; severe inju-
ries, temporary or permanent incapacity; slight injuries, the injuries
require medical treatment; and no injuries, bruises and/or property
damage only.

Only a few Danish hospitals register detailed information about
road traffic crashes and include open text fields. The hospital in
Aarhus Municipality has registered detailed information about
road traffic crashes systematically for many years. In addition to

open text fields, the hospital follows a template that partly over-
laps with the template used by the police, including the four-
level injury scale. Road traffic crashes registered at the hospital
include crash-involved persons arriving in an ambulance or similar
and persons with less severe injuries able to travel to the hospital
on their own for a medical check. There are no restrictions regard-
ing crash location for a road traffic crash to be registered at the
hospital.

2.2. Road traffic crash data in this study

This study includes all crashes involving bicyclists registered by
the police (N = 1,078) and at the hospital (N = 4,205) in the Danish
municipality of Aarhus from 2010 to 2015. Both data sources
include information on crash characteristics such as day of the
week, mode types, crash type (e.g., single-bicycle crash), road user
information (gender, age and injury severity) and road conditions
(e.g., surface and light conditions). In addition, the hospital data
included an open-ended description of the crash containing
detailed information about the crash location and cyclist behavior
prior to the crash.

2.3. Analysis

To explore the added value of bicycle crash descriptions in
open-ended text fields in hospital records, we performed a manual
three-step in-depth analysis; first, careful reading of the text; sec-
ond, identification of crash factors; and third, categorizing the
crash factors according to four categories: (a) the behavior and
condition of the bicyclist, (b) the road and its surroundings, (c)
the bicycle, and (d) the other party. A crash factor is a specific cir-
cumstance associated with the crash identified by the bicyclist or
hospital staff. Table 1 provides a description of the crash factors
regarding the bicyclist, the road and the bicycle. Regarding the cat-
egory ‘‘the other party,” the available information indicated that
the behavior of the other party was associated with the crash,
but the information was too limited to specify a crash factor. We
therefore decided to not include those crashes in the detailed anal-
ysis of the crash factors. In cases where the description of the crash
was missing or the information provided was too limited, a ‘‘no
crash factor” code was registered.

To explore how bicycle crash data from the hospital comple-
ment crash data registered by the police in the same area and time
period, we compared the distribution of relevant variables (e.g.,
injury severity, gender, age group, crash type, light condition, year
and season) between the two data sets using the chi-squared test.
We then employed a binary logit model to estimate the probability
that a crash factor, and a crash factor in a specific category, is iden-
tified, as well as the probability that each crash factor was associ-
ated with a single-bicycle crash. The binary logit model estimated
the probability, based on a function of a vector Xi of observable
variables. The observable variables included person and crash
characteristics. A significance level of 0.05 was used in all analyses.

3. Results

3.1. Differences between crash data registered at the hospital and by
the police

The number of crash-involved bicyclists is significantly higher
in the hospital data (N = 4,205, 45%) compared to the police data
(N = 1,078, 11%). We also identified significant differences regard-
ing the injury severity of the involved bicyclists. In the hospital
data, the percentage of bicyclists with slight injuries (N = 2,410,
57.3%) was significantly higher than in the police data (N = 113,
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10.5%). The police data include a higher percentage of bicyclist
fatalities, but the absolute number of bicyclist fatalities is higher
in the hospital data (Table 2). The only variable where no signifi-
cant differences were found was gender, but here the percentage
of bicyclists where gender information is missing is higher in the
police data (N = 108, 10.0%) than the hospital data (N = 9, 0.2%).
In general, the hospital data include a higher percentage of bicy-
clists in all age groups.

Regarding crash type, the distribution is significantly different
in the two data sets. The hospital data include a larger percentage
of single-bicycle crashes (N = 2,287, 54.4%) compared to the police
data (N = 36, 3.3%), whereas the police data include a larger per-
centage of intersection crashes. The percentage of crashes occur-
ring in twilight and darkness is higher in the hospital data (31.8%
vs. 18.8%), as is the percentage of crashes occurring during the
weekend (20.4% vs. 12.7%). Most crashes are registered in the
autumn for both data sets, but the distribution across seasons is
different.

3.2. Crash factors derived from crash descriptions in open text fields

For 1,274 (30%) of the bicycle crashes registered at the hospital,
a crash factor could not be identified due to missing or limited
information. Out of the 2,931 crashes with an identified crash fac-
tor, 1,025 (33%) regarded the bicyclist, 956 (31%) the road, 96 (3%)
the bicycle, and 1,038 (33%) the other party. Table 3 provides an
overview of the crash factors identified in the first three categories,
as well as the severity degree. In the bicyclist category, alcohol
(N = 262, 26%) and inattention (N = 259, 25%) were the most fre-
quently identified crash factors. Clothing, bags, and similar factors
were identified in 9% of cases and crowding in 9% of the cases.

Few crash factors were significantly associated with any partic-
ular severity degree (Table 3). For crashes where high riding speed
(N = 41, 36.6%) or road surface (N = 25, 31.6%) were identified as
crash factors, significantly more bicyclists than expected were
fatally or severely injured. For crashes where problems with a curb
(N = 45, 19.5%) or the road design (N = 41, 33.6%) were identified as
crash factors, more cyclists than expected sustained no injury after
the crash.

Regarding gender, we found a significant difference in the dis-
tribution of crash factors in the bicyclist category (p > 0.001), but
no significant gender differences in the distribution of crash factors

in the two other studied categories (road and bicycle). Regarding
the specific crash factors alcohol (N = 184, 70.2%) and bicycling
speed (N = 67, 59.8%), these are more common in crashes with a
male bicyclist, whereas handling the bicycle (N = 59, 62.8%) and
violations (N = 34, 68%) are more frequent crash factors in crashes
involving a female bicyclist (Table 4). For the categories inatten-
tion, crowding and illness, we found no significant gender
differences.

The odds of identifying a crash factor are lower than the odds of
not doing so (Table 5). However, compared to crashes with no
injury, the probability that a crash factor is identified is higher
for injury crashes, particularly for crashes involving severe injury.
Regarding crash type, the probability is lowest for single-bicycle
crashes and for crashes in ‘‘intersections, collision with vehicle
from same road.” The odds of identifying a crash factor are highest
for crashes with ‘‘collision with pedestrian or animal” (OR = 3.557),
but the 95% confidence interval is high (2.151–5.883) which indi-
cates some uncertainty in the model.

The binary logit model was also employed to see if some crash
factors were more likely to be associated with single-bicycle
crashes (see Table 6) compared to bicycle crashes involving other
parties (vehicle, animal or pedestrian). Some observations were
removed from the model due to missing information. The final
model is based on information from 2,989 bicyclists of which
1,499 were involved in a single-bicycle crash.

Many of the identified crash factors were significantly associ-
ated with the odds of a single-bicycle crash, but the odds ratio val-
ues, together with the 95% confidence intervals, show that the
uncertainty of these numbers is very high, especially for the vari-
ables slippery, objects on the road, road surface and bicycle chain.
This problem is due to the very low number of non-single-
bicycle crashes for which these variables were identified as a crash
factor.

Regarding the bicyclist category, we see that the crash factor
clothing has the highest estimate (5.761), and thus that the proba-
bility that the crash is a single-bicycle crash is highest when this
crash factor is identified. However, the 95% CI is very wide for this
crash factor. The crash factor alcohol also has a high estimate
(5.421), and the odds of having a single-bicycle crash is more than
200 times higher compared to a crash with another party involved.
For this crash factor, the 95% CI is not that big (130.651–391.055).
The lowest estimate is found for the crash factor inattention

Table 1
Description of Identified Crash Factors for Bicyclist, Road and Bicycle Categories.

Category Crash factor Description

Bicyclist Alcohol Cycling under the influence of alcohol
Inattention Non-cycling related activities or unspecified inattentiveness
Bicycling speed Bicycling speed too high for the conditions or 25+ km/h
Handling the bicycle Foot slipping on the pedal, stumbling getting on/off the bicycle, etc.
Clothing, etc. Clothing, bags, etc., getting stuck in the wheel
Crowding Too little space between the cyclist and other road users
Violations Not respecting right of way, red light riding, etc.
Loss of control Losing control over the bicycle for no specified reason
Illness Acute indisposition

Road Slippery Wet leaves, icy, etc.
Curb Pedal or wheel hitting the curb
Design Bike path too narrow for a bicyclist
Objects on road Wire, stone, etc., on the road,
Road surface Holes, bumpy surface
Road works Hitting or colliding with equipment related to road works
Weather Blinded by the weather condition (hard rain, snow, bright sunshine)
Crossing animal Crossing cat, etc.

Bicycle Bicycle chain Chain breaks
Various bicycle defects Saddle comes off, handlebar breaks, etc.
Brakes Brakes not working
Gear Shift of gears causes turbulence, etc.
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(1.425), but the odds of a single-bicycle crash increases by a factor
four compared to a crash with another party involved. The small
95% CI (2.751–6.287) for the OR-value for inattention shows that
the certainty of this number is quite high.

Regarding the road category, the highest probability of a crash
being a single-bicycle crash is found when the road is slippery
(6.314), there is an object on the road (6.220), or there are other
problems with the road surface (6.145). However, the 95% CI for
the OR-values of these variables shows a very high uncertainty.
Instead the focus should be on the estimates and OR-values for
curb (5.555, OR = 258.486), design (3.624, OR = 37.486), road works
(5.366, OR = 213.973) and weather (3.405, OR = 30.124). The odds
of being a single-bicycle crash are highest when the curb is identi-
fied as a crash factor.

For the bicycle category, the bicycle chain has the highest prob-
ability (5.960) but the 95% CI is very big and associated with a very
high degree of uncertainty.

4. Discussion

The purpose of this study was to explore the added value of
bicycle crash descriptions from open text fields in hospital records

from Aarhus municipality in Denmark. An additional purpose was
to explore how bicycle crash data from the hospital complement
crash data registered by the police in the same area and time per-
iod. The results suggest that crash data registered at the hospital
complement information about bicycle crashes, as these data allow
the identification of crash factors not available in the police regis-
tered crash data. In addition, hospital data include information
about a larger number of bicycle crashes than police crash data,
particularly regarding single-bicycle crashes.

The information provided in the open text fields of the medical
records allowed detailed insight into factors associated with each
crash, such as inattention and specific road conditions. Previous
studies have shown that errors are associated with crashes, as well
as near crashes, among bicyclists (e.g., Puchades, Pietrantoni,
Fraboni, Angelis, & Prati, 2017; Twisk, Commandeur, Vlakveld,
Shope, & Kok, 2015). Our results support this and add to the exist-
ing literature by identifying specific error types not available for
police registered crashes, such as clothing and bags getting stuck
in the wheel by mistake, feet slipping on the pedal when trying
to get on/off the bicycle, and bicycle defects. The available informa-
tion did not allow a detailed understanding of the reasons behind
the different behaviors associated with each crash, and this there-
fore remains a relevant topic for future research. In general, our

Table 2
Bicycle Crashes Registered by Police and at the Hospital in Aarhus Municipality from 2010 to 2015.

Police data Hospital data v2-test,
p-value

Variable Category N % N %

Severity Fatality 10 0.9 12 0.3
Severe injury 209 19.4 832 19.8
Slight injury 113 10.5 2410 57.3
No injury/N/A 746 69.2 951 22.6 <0.001*

Gender Male 491 45.5 2115 50.3
Female 479 44.5 2081 49.5
N/A* 108 10.0 9 0.2 0.9046

Age 0–8 years old 4 0.4 63 1.5
9–17 years old 51 4.7 351 8.3
18–29 years old 455 42.2 1636 38.9
30–45 years old 203 18.9 823 19.6
46–65 years old 219 20.3 1083 25.8
Older 65 years old 38 3.5 249 5.9
N/A* 108 10.0 0 0.0 <0.001

Crash type Single-bicycle crash 36 3.3 2287 54.4
Collision with pedestrian or animal 23 2.1 148 3.5
Collision with vehicle on straight road 140 13.0 601 14.3
Intersection, collision with vehicle on same road 494 45.8 656 15.6
Intersection, collision with vehicle from crossing road 385 35.8 513 12.2 <0.001*

Light Daylight 872 80.9 2827 67.2
condition Twilight 35 3.2 411 9.8

Darkness 168 15.6 926 22.0
N/A* 3 0.3 41 1.0 <0.001

Surface Dry 775 71.9 2096 49.8
Wet 224 20.8 679 16.1
Slippery 23 2.1 378 9.0
N/A* 56 5.2 1052 25.1 <0.001

Day Weekday 941 87.3 3348 79.6
Weekend 137 12.7 857 20.4 <0.001*

Season Winter 185 17.2 807 19.2
Spring 247 22.9 1010 24.0
Summer 284 26.3 1176 28.0
Autumn 362 33.6 1212 28.8 0.008*

Year 2010 130 12.1 616 14.6
2011 170 15.8 846 20.1
2012 195 18.1 723 17.2
2013 208 19.3 757 18.0
2014 188 17.4 696 16.6
2015 187 17.3 567 13.5 <0.001*

Note: * The N/A category is not included in the statistical test.
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results support the need for measures to reduce unsafe bicyclist
behavior and ensure a bicycle-friendly environment that reduces
errors and related consequences in case of a crash, as suggested
by the safe systems approach (Wegman, Zhang, & Dijkstra, 2012).

Regarding bicyclist behavior, our results confirm the results of
previous studies (e.g. Billot-Grasset, Amoros, & Hours, 2016),
which identified bicyclist behavior as a key factor in bicycle
crashes. Alcohol impairment and inattention were the most fre-

Table 3
Overview of Crash Factors and Injury Severity of the Involved Bicyclist.

Category Crash factor Fatality or severe
injury

Slight injury No injury Total v2-test,

N % N % N* % N % p-value

Bicyclist Alcohol 55 21.0 137 52.3 70 26.7 262 100 0.786
Inattention 60 23.2 148 57.1 51 19.7 259 100 0.120
Bicycling speed 41 36.6 51 45.5 20 17.9 112 100 <0.001
Handling the bicycle 24 25.5 56 59.6 14 14.9 94 100 0.061
Clothing, etc. 15 16.7 55 61.1 20 22.2 90 100 0.454
Crowding 22 24.7 51 57.3 16 18.0 89 100 0.248
Violations 6 12.0 27 54.0 17 34.0 50 100 0.207
Loss of control 10 20.4 25 51.0 14 28.6 49 100 0.853
Illnessa 3 15.0 9 45.0 8 40.0 20 100 -
Total 236 23.0 559 54.5 230 22.4 1025 100 0.011

Road Slippery road 54 17.5 170 55.2 84 27.3 308 100 0.469
Curb 40 17.3 146 63.2 45 19.5 231 100 0.034
Road design 14 11.5 67 54.9 41 33.6 121 100 0.021
Objects on the road 28 23.9 68 58.1 21 17.9 117 100 0.182
Road surface 25 31.6 39 49.4 15 19.0 79 100 0.040
Road works 13 24.5 31 58.5 9 17.0 53 100 0.362
Weathera 4 16.7 14 58.3 6 25.0 25 100 -
Crossing animala 4 18.2 13 59.1 5 22.7 22 100 -
Total 182 19.0 548 57.3 226 23.6 956 100 0.002

Bicycle Bicycle chain 6 14.0 28 65.1 9 20.9 43 100 0.363
Various bicycle defects 10 32.3 14 45.2 7 22.6 31 100 0.254
Brakesa 6 37.5 8 50.0 2 12.5 16 100 -
Geara 2 33.3 2 33.3 2 33.3 6 100 -
Total 24 25.0 52 54.2 20 20.8 96 100 0.1302

a Category not included in v2-test.

Table 4
Overview of Crash Factors in Bicyclist Category by Gender.

Category Crash factor Male Female Total v2-test,

N = 1463 Pct. = 49.9 N = 1461 Pct. = 49.8 N = 2931 Pct. = 100 p-value

Bicyclist Alcohol 184 70.2 78 29.8 262 100 <0.001
Inattention 125 48.4 133 51.6 259 100 0.626
Bicycling speed 67 59.8 45 40.2 112 100 0.042
Handling the bicycle 35 37.2 59 62.8 94 100 0.015
Clothing, etc. 45 50.0 45 50.0 90 100 0.995
Crowding 38 43.2 50 56.8 89 100 0.205
Violations 16 32.0 34 68.0 50 100 0.014
Loss of control 24 49.0 25 51.0 49 100 0.884
Illness 8 40.0 12 60.0 20 100 0.371

Table 5
Factors Influencing Probability a Crash Factor Was Identified.

Variable Category Estimate p-value OR 95% CI

Intercept 1.122 <0.0001 — —
Severity Fatality �0.934 0.1524 0.393 (0.109–1.412)

Severe injury �0.370 0.0008 0.690 (0.556–0.858)
Slight injury �0.589 <0.0001 0.555 (0.464–0.663)
No injury/NA — — — —

Type Single-bicycle crash — — — —
Collision with pedestrian or animal 1.269 <0.0001 3.557 (2.151–5.883)
Collision with vehicle on straight road 0.334 0.0013 1.398 (1.140–1.714)
Intersection, collision with vehicle on same road 0.164 0.0944 1.178 (0.972–1.427)
Intersection, collision with vehicle on crossing road 0.343 0.0021 1.409 (1.133–1.753)

Log-likelihood �2491
AIC 4998
Pseudo R-square 0.110

Note: 59 observations were deleted due to missing information.
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quently identified factors. Like Orsi, Ferraro, Montomoli, Otte, and
Morandi (2014), we found that female bicyclists were less likely to
be influenced by alcohol at the time of the crash, whereas inatten-
tion was more prevalent among female bicyclists. Alcohol is known
to decrease the ability to behave safely in traffic due to factors such
as decreased reaction times, increased error rates, tunnel vision,
and slower visual information processing (e.g., Friedman,
Robinson, & Yelland, 2011). Evidence has also been established
for the harmful effects of being inattentive to bicycling tasks
(e.g., De Waard, Edlinger, & Brookhuis, 2011; Terzano, 2013). Our
results indicate that efforts to prevent drunk bicycling, as previ-
ously suggested by Andersson and Bunketorp (2002), are still
highly relevant, particularly for male bicyclists. The data do not
allow conclusions regarding the reasons behind drunk cycling;
however, underestimation of personal risk has previously been
identified as a contributing factor (e.g., Hagemeister &
Kronmaier, 2017).

Regarding the environment, a few previous studies have found
that roads with poor surface conditions may lead to traffic disrup-
tion and increased crash risk (e.g., Corazza, Di Mascio, & Moretti,
2016; Janstrup, Møller, & Pilegaard, 2019; Pulugurtha, Ogunro,
Pando, Patel, & Bonsu, 2013). Our results add to this by showing
that aspects such as road work sites and slippery and/or bumpy
surfaces are also associated with crash involvement among bicy-
clists. The data do not allow us to draw conclusions regarding
specific causal effects; however, in line with the safe systems
approach (e.g., Wegman et al., 2012), the data do highlight the
importance of designing road environments that support safe
behaviors and allow bicyclists to compensate safely in case of
human error. Bicycle defects were only identified as a crash factor
in a small number of crashes, but nevertheless indicate that better
bicycle maintenance has the potential to improve bicyclists’ safety.

Our results indicate that females are involved in bicycle
crashes related to some type of violation (e.g., no lights, illegal
manoeuver) at the time of the crash more frequently than males.
This is somewhat surprising, as male road users are generally
found to engage in more traffic violations (e.g., Varet, Granié, &
Apostolidis, 2018), and a previous study found male bicyclists
to be less compliant with road traffic rules (Johnson et al.,
2011). It is possible, however, that the gender difference regard-
ing violations is partly related to the data registration procedure.
In general, persons identifying with the feminine gender role
expectations are more prone to guilt (Benetti-McQuoid & Bursik,

2005; Efthim et al., 2001). This may cause female cyclists to be
more willing to admit engaging in traffic violations compared to
male cyclists. However, additional studies looking specifically into
gender-based differences in bicycling skills, trip purpose, gender
role expectations, and other aspects that may explain or con-
tribute to the identified gender differences are relevant, as limited
information about gender differences and bicyclist safety exist
(Stipancic, Zangenehpour, Miranda-Moreno, Saunier, & Granié,
2016). Our results show that information about gender is more
complete in hospital data, which is thus a relevant data source
for studies on gender differences in bicycling crashes.

Significantly more crash-involved bicyclists were registered in
the hospital data than the police data, thereby confirming that
bicycle crash data from the police suffer from a high level of under-
reporting (e.g., Alsop & Langley, 2001; Langley et al., 2003), and
that both data types are relevant for improving bicyclist safety
(e.g., Short & Caulfield, 2014). This is particularly true for single-
bicycle crashes and crashes involving only slight injuries. Half of
the bicyclists registered at the hospital were injured in single-
bicycle crashes. This is in line with results from previous studies
(e.g., Beck et al., 2016), although the share of single-bicycle crashes
in our results was lower than elsewhere (e.g., Schepers, Agerholm
et al., 2014). Importantly, our results also showed that, for some
crash types, the number of crashes registered by the police was
higher than the crash data registered at the hospital. Thus, both
data sources are needed to get a complete picture of the prevalence
of bicyclist crashes, as neither source is complete.

In our study, the possibility of identifying a crash factor strongly
depended on the information provided by the hospital. The results
showed that the level of detail provided decreased with increasing
crash severity. The data did not allow conclusions regarding the
reasons behind this, but it is possible that the severely injured
bicyclists’ need for immediate care allowed hospital staff less time
to focus on gaining a description of the crash situation. Neverthe-
less, if trying to gain a detailed understanding of the factors asso-
ciated with bicycle crashes, our results indicate crash data
registered at a hospital may be more suitable for less severe
crashes than for police registered crashes. However, the probability
of identifying a crash factor was lower for single-bicycle crashes
compared to all other crash types, which indicates that although
more crash details are available in hospital data than police data,
efforts are needed to ensure that more information about these
and other types of bicycle crashes is registered. In addition, initia-

Table 6
Odds of a Single-Bicycle Crash Compared to Bicycle Crashes involving Several Parties for Each Crash Factor.

Variable Category Estimate p-value OR 95% CI

Intercept �2.939 <0.0001 — —
Bicyclist Alcohol 5.421 <0.0001 226.035 (130.651–391.055)

Inattention 1.425 <0.0001 4.159 (2.751–6.287)
Bicycling speed 3.364 <0.0001 28.890 (17.767–46.978)
Handling the cycle 4.575 <0.0001 97.063 (52.601–179.107)
Clothing, etc. 5.761 <0.0001 317.639 (124.094–813.046)
Loss of control 4.165 <0.0001 64.374 (30.338–136.595)

Road Slippery 6.314 <0.0001 552.183 (278.889->999.999)
Curb 5.555 <0.0001 258.486 (139.067–480.45)
Design 3.624 <0.0001 37.486 (23.157–60.683)
Objects on the road 6.220 <0.0001 502.536 (179.026->999.999)
Road surface 6.145 <0.0001 466.597 (142.819->999.999)
Road works 5.366 <0.0001 213.973 (74.489–614.646)
Weather 3.405 <0.0001 30.124 (12.617–71.921)

Bicycle Bicycle chain 5.960 <0.0001 387.575 (91.504->999.999)
Other defects 5.604 <0.0001 271.450 (81.805–900.74)

Log-likelihood �770
AIC 1572
Pseudo R-square 0.889

Note: 1307 observations were deleted due to missing information.
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tives to ensure that crash information is made available for road
safety researchers and practitioners are relevant to improve road
safety for cyclists.

5. Limitations

National hospital data regarding cyclist crashes are not avail-
able in Denmark. The data included in this study were therefore
limited to Aarhus municipality, one of the few Danish municipali-
ties that registered bicycle crash information at the hospital for
many years. To validate the results obtained in the present study
on a national level, studies including data from a larger share of
Danish municipalities would be relevant, but not possible at the
moment. Assessing the degree to which the results are trans-
ferrable to other countries is difficult; first, because access to the
information included is generally highly restricted, and second,
because data collection procedures most likely differ across coun-
tries. However, similar in-depth analysis would be relevant in
other countries as well.

As in other studies (Imprialou & Quddus, 2017), our results are
based on information registered by the hospital staff, which has
not been verified for accuracy. It has been shown that there is some
inconsistency between road traffic crash information registered by
the police and by hospital staff (e.g., Lopez, Rosman, Jelinek,
Wilkes, & Sprivulis, 2000), partly due to the different purpose for
which the data are collected (e.g., civil claims and trauma treat-
ment), which may influence the reporting (Imprialou & Quddus,
2017). Furthermore, like other studies including qualitative data
(see Aust, Fagerlind, & Sagberg, 2012; Møller & Haustein, 2016),
some variation was found in the type of information and the level
of detail provided. These variations may stem from several known
and unknown sources (e.g., time pressure or misinterpretations on
the part of the hospital staff and social desirability; Lajunen, Carry,
Summala, & Harley, 1997) on the part of the injured bicyclist, influ-
encing him or her to leave out certain types of information and pri-
oritize the inclusion of others. However, it was not possible to
control for this influence in the present study.

6. Conclusion

This study showed that crash data registered at the hospital
contribute significantly to our understanding of bicyclist crashes
both in terms of the number of crashes and associated factors.
The results showed that preventive measures to reduce inappro-
priate bicyclist behavior and poor road conditions are of key
importance to improve bicyclist safety. Measures to ensure well-
maintained bicycles are less crucial but are also relevant for crash
and injury prevention. This study confirmed that more bicyclist
crashes are registered at the hospital than by the police and that
hospital data are important to improve information about bicycle
crashes. As hospital data and police data are reported differently,
both are necessary to increase the understanding of crash factors
and improve crash prevention efforts.
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a b s t r a c t

Introduction: One of the challenging tasks for drivers is the ability to change lanes around large commer-
cial motor vehicles. Lane changing is often characterized by speed, and crashes that occur due to unsafe
lane changes can have serious consequences. Considering the economic importance of commercial trucks,
ensuring the safety, security, and resilience of freight transportation is of paramount concern to the
United States Department of Transportation and other stakeholders. Method: In this study, a mixed (ran-
dom parameters) logit model was developed to better understand the relationship between crash factors
and associated injury severities of commercial vehicle crashes involving lane change on interstate high-
ways. The study was based on 2009–2016 crash data from Alabama. Results: Preliminary data analysis
showed that about 4% of the observed crashes were major injury crashes and drivers of commercial
motor vehicles were at-fault in more than half of the crashes. Acknowledging potential crash data limi-
tations, the model estimation results reveal that there is increased probability of major injury when lane
change crashes occurred on dark unlit portions of interstates and involve older drivers, at-fault commer-
cial vehicle drivers, and female drivers. The results further show that lane change crashes that occurred
on interstates with higher number of travel lanes were less likely to have major injury outcomes. Practical
Applications: These findings can help policy makers and state transportation agencies increase awareness
on the hazards of changing lanes in the immediate vicinity and driving in the blind spots of large com-
mercial motor vehicles. Additionally, law enforcement efforts may be intensified during times and loca-
tions of increased unsafe lane changing activities. These findings may also be useful in commercial
vehicle driver training and driver licensing programs.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Safe and efficient freight movement is critical to sustain the
economic development of a nation. Based on the 2017 Commodity
Flow Survey, commercial motor vehicles (CMVs) account for the
majority of freight shipments in the United States – 71.5% tonnage
and 73% value (USDOT, 2019). Considering the economic impor-
tance of commercial vehicles, ensuring the safety, security, and
resilience of freight transportation is of paramount concern to
the United States and economies throughout the world. National
crash statistics show that a total of 4,440 CMVs were involved in
fatal crashes in 2016 and 32% of these crashes occurred on inter-
states and freeways (NHTSA, 2017; IIHS, 2018). The Federal High-
way Administration (FHWA, 2017) estimates the economic cost

of fatal CMV crashes to be more than $20 billion each year. As such,
there have been a myriad of previous studies into the occurrence
(frequency) and outcome (severity) of crashes involving CMVs
(e.g., Garber et al., 1992; Braver et al., 1996; Duncan et al., 1998;
Chang & Mannering, 1999; Zhu & Srinivasan, 2011; Islam &
Hernandez, 2013; Venkataraman et al., 2013; Wang & Shi, 2013;
Islam et al., 2014; Pahukula et al., 2015). Zhu and Srinivasan
(2011) reported CMV crashes are generally attributable to a range
of factors including their proportion of traffic stream and opera-
tional differences between them and other smaller vehicles such
as visibility, braking, and overall maneuverability.

The physical and operational characteristics of CMVs affect
driving activities such as lane changing. Lane changing poses a
major potential hazard for many drivers (both CMVs and non
CMVs) as the maneuver may require significant cognitive process-
ing and physically interrupting the flow of traffic in one or more
lanes (Antin et al. 2017). At higher speeds, as it is on interstates
and freeways, the potential hazard is increased. Although not a
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primary reason for a lane change maneuver, CMVs can generate
wind gusts that can push smaller vehicles into other lanes, forcing
an unintentional lane change (Federal Motor Carrier Safety
Administration, 2018). Indeed, it is estimated that more than
250,000 crashes occur annually in the United States because of lane
changing errors (Sen et al., 2003). The ability to successfully exe-
cute a lane change is therefore influenced by many factors, includ-
ing driver and vehicle characteristics, roadway features and
conditions, and traffic conditions. Due to its peculiarity and poten-
tial for serious injuries, this paper presents an analysis of factors
affecting severity outcomes of lane change crashes involving CMVs
on interstates in Alabama. A mixed logit modeling technique was
adopted to address the inherent problem of unobserved hetero-
geneity in crash data. Mixed logit has also been shown to be statis-
tically superior to the traditional fixed parameters logit models
(e.g., Anastasopoulos & Mannering, 2011; Chen & Chen, 2011;
Morgan & Mannering, 2011; Islam et al., 2014).

2. Methodology

Unobserved heterogeneity is an important concern in traffic
safety research. Failure to account for the effect of unobserved vari-
ables can lead to biased estimates and incorrect inferences if inap-
propriate methods are used (Mannering et al., 2016). Discrete-
outcome models, ordered (probit and logit models), and unordered
models (such as the multinomial logit model) have been used to
analyze crash severity due to the classification of the severities into
discrete outcomes (see Savolainen et al., 2011; Mannering & Bhat,
2014 for injury-severity methodology reviews). However, many of
the discrete ordered and unordered models are unable to account
for unobserved heterogeneity across injury-severity observations
(see Savolainen et al., 2011). To capture the effects of unobserved
heterogeneity due to randomness associated with some of the fac-
tors necessary to understand crash injury severity, this study used
mixed logit modeling techniques. Details of the mixed logit model
formulation are summarized in Table 1.

Mixed logit model is a generalization of the multinomial logit
model. Unlike the multinomial logit model, the mixed logit model
allows the parameter vector bi to vary across each observation in a
manner that the injury severity specific constant and each element
of the parameter vector bi can be fixed or randomly distributed
with fixed means, where the mixed logit weights for these random
parameters are determined by a known density function f bijuð Þ.
Statistically significant variance in u is an indication that the mod-
eled injury severity varies with respect to Xacross individual obser-
vations as defined by f bijuð Þ (Train, 2003). Many studies have used
normal distribution in model estimation (Milton et al., 2008).
Though recent studies have shown that mixed logit models with

heterogeneity in means and mixed logit models with heterogene-
ity in means and variances perform better than the conventional
mixed logit models (e.g. Greene et al., 2006; Venkataraman et al.,
2014; Kim et al., 2013; Seraneeprakarn et al., 2017; Behnood &
Mannering, 2017), the conventional mixed logit model was used
for this study because it has demonstrated a good fit of the data.

Maximum likelihood estimation of mixed logit models is com-
putationally complex. This is because of the difficulty associated
with the required numerical integration of the logit function over
the distribution of random, unobserved parameters. Simulation
based methods are therefore generally used. The Halton sequence
(or Halton draws), based on a methodology developed by Halton
(1960) to generate a systematic non-random sequence numbers,
is the widely used approach to achieve this. Bhat (2003) and
Train (1999) have shown Halton draws to be more efficient and
also achieve accurate probability approximations with less draws,
than purely random draws (Train, 1999; Bhat, 2003). As recom-
mended by Bhat (2003), Halton draws (200) was used to estimate
possible mixing distributions for this study.

Elasticities are commonly computed from the partial derivative
for each observation to investigate the effect of individual param-
eters on the injury-severity outcome probabilities (Washington
et al., 2011) as:

EPðijuÞ
xki

¼ @PðijuÞ
@xki

� xki
PðijuÞ

where, PðijuÞ is the probability of injury-severity outcome i and xki
is the value of variable k for outcome i. A pseudo-elasticity can also
be computed for indicator variables to show the percent effect of
the variable taking a value of zero to one on the injury-severity out-
come probability (e.g., Islam and Jones, 2014; Islam et al., 2014;
Shaheed et al., 2013). For example, a 0.12 average direct pseudo-
elasticity of a variable on a probability indicates that the probability
increases by 12% on average when the variable is changed from
0 to 1.

3. Data and empirical setting

The study was based on 2009–2016 crash data obtained from
the Critical Analysis Reporting Environment (CARE) system devel-
oped by the Center for Advanced Public Safety at the University of
Alabama. This is the primary database where crash records input
directly by all traffic safety law enforcement officers in the State
of Alabama are maintained. Each year the data goes through a rig-
orous QA/QC process consistent with typical traffic safety data-
bases maintained by state agencies throughout the United States.
The CARE database serves as the primary source of historical crash
data for research and policy decision-making in the State of Ala-
bama. The database was queried to select interstate crashes in
which the primary contributing factor was unsafe lane change
and involved at least one CMV. CARE defines commercial vehicle
as a motor vehicle designed or used to transport passengers or
property and meeting at least one of the following criteria:

a) Vehicle has a Gross Vehicle Weight Rating (GVWR) of 26,001
or more pounds, or

b) Vehicle is designed to transport 16 or more passengers,
including the driver, or

c) Vehicle is transporting hazardous materials and is required
to be placarded.

The need to accurately establish responsibility for crashes is
well documented (e.g., Carr, 1969; Roberston & Drummer, 1994)
and newmethods for doing so continue to be developed and tested
(e.g., Salmi et al., 2012; Garcia et al., 2019). Nonetheless, it is cur-
rently standard practice in road safety modeling to rely on data

Table 1
Equations used in mixed logit model formulation.

Equation Description

Sin ¼ biXin þ ein Sin = severity function for category i in crash n
bi = estimable severity parameters for category
i,
Xin = explanatory variables of severity category
i in crash n,
ein = error term – generalized extreme value
distributed (McFadden, 1981)

Pn ið Þ ¼ exp biXinð Þ
Rexp biXinð Þ Pn(i) = probability of ith outcome occurring in

the nth observation (Washington et al., 2011)

Pn ijuð Þ ¼ R exp biXinð Þ
Rexp biXinð Þ f bijuð Þbi Pn ijuð Þ = probability of injury severity i

conditional on f bijuð Þ
u = vector of parameters with known density
function (McFadden and Train, 2000; Train,
2003)
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recorded at the crash scene as reported by the responding police
officer to determine such characteristics as who was at-fault in
contributing to the crash (Chandraratna & Stamatiadis, 2009;
Montella et al., 2013). Crash records in the CARE data used in this
study indicate which vehicle (i.e., driver) was deemed to be at-fault
in the crash based on the judgement of the police officer respond-
ing to the scene and compiling the crash report. While such a des-
ignation in the data rests solely on the judgement of one
individual, it has been reported elsewhere (e.g., Braitman et al.,
2008) that police determination of fault is a reliable measure, cer-
tainly given that there are no available alternatives.

Observations with missing or ambiguous values were omitted
from the original dataset before performing the model estimation.
This yielded a total of 2,008 observed crashes. This study used
three injury-severity categories: major injury (fatal or incapacitat-
ing injury), minor injury (non-incapacitating injury or possible
injury), and property damage only.

Table 2 shows the distribution of the crash factors considered
for model estimation. In all, about 4% of the observed crashes were
major injury crashes, 13% were minor injury, and 83% were prop-
erty damage only crashes. Among explanatory variables, CMV dri-
vers were at-fault in 51% of the total crashes, meaning that about
49% of non-CMVs involved in lane change crashes were at-fault.
About 66% of the crash observations were sideswipe-same direc-
tion and 9% were rear end (front to rear) collisions. Side impact
(angled) collisions made up 8% of the crash observations. Further,
a gendered analysis shows that 24% of the at-fault drivers were
females. About 10% of the at-fault drivers were more than 65 years
old. In about 1% of the crashes, the at-fault driver did not buckle up.

4. Results

During model estimation, variables were included in the speci-
fication if they had t-statistics corresponding to the 90% confidence
interval or above on a two-tailed t-test and the random parameters
were included if their standard deviations had t-statistics corre-
sponding to the 90% confidence interval or above. Model estima-
tion results are presented in Table 3, where variables specified
for each injury category are denoted by MAJ (major injury), MIN
(minor injury), and NO (no injury). In all, 21 crash factors were
found to influence the injury severity outcomes of unsafe lane
change crashes involving at least one CMV on interstates in Ala-
bama. The McFadden pseudo-q2 value of the model is 0.53, indi-
cates a good fit of the data. According to Chen and Chen (2011),
estimated parameters in logit models are not enough to explore
the actual influence of a variable on the probability of an injury
severity category. Ulfarsson and Mannering (2004) suggests the
use of elasticities provided by the average pseudo-elasticity
instead of parameter values. The effects of individual factors on
injury severity probabilities were therefore explored using elastic-
ities as shown in Table 3. A positive elasticity indicates higher like-
lihood of a variable to be significantly associated with a particular
injury severity and a negative elasticity indicates lower likelihood
of a variable to be significantly associated with a particular injury
severity.

Four parameter estimates were found to be statistically signifi-
cant as random parameters: (1) summer; (2) crash location less
than 25 miles; (3) four-lane interstate indicator; and (4) CMV
driver at-fault. All of the random parameters were shown to be

Table 2
Proportions of crash-related variables used in model estimation.

Variables Description Number of observations Percentage

Dependent
Major injury Crash severity: fatal or incapacitating injury 81 4%
Minor injury Crash severity: non incapacitating or possible injury 261 13%
No injury Crash severity: property damage only 1,666 83%
Explanatory
Temporal characteristic
Summer Time of the year: Summer (1 = Yes, 0 = No) 563 28%
Environmental characteristic
Dark Lighting condition at time of crash: Dark/Unlit (1 = Yes, 0 = No) 321 16%
Location characteristics
Urban Crash location: Urban (1 = Yes, 0 = No) 823 41%
Close to home At-fault driver residence from crash location: <25mi (1 = Yes, 0 = No) 643 32%
Contributing circumstances
No seatbelt At-fault driver seatbelt use: No seatbelt (1 = Yes, 0 = No) 21 1%
Blind spot Contributing circumstance: At-fault driver in blind spot (1 = Yes, 0 = No) 181 9%
Speed Causal vehicle estimated speed prior to crash: Greater than 70 mph (1 = Yes, 0 = No) 462 23%
Manner of crash
Sideswipe Manner of crash: Sideswipe-same direction (1 = Yes, 0 = No) 1,326 66%
Rear end Manner of crash: rear end (front to rear) (1 = Yes, 0 = No) 181 9%
Side impact Manner of crash: side impact (angled) (1 = Yes, 0 = No) 161 8%
Roadway characteristics
Six-lane Number of lanes: Six-lane interstate (1 = Yes, 0 = No) 884 44%
Four-lane Number of lanes: Four-lane interstate (1 = Yes, 0 = No) 964 48%
Cable barrier Interstate median type: Cable barrier (1 = Yes, 0 = No) 121 6%
Straight slope Geometry: Straight with downward grade (1 = Yes, 0 = No) 241 12%
Driver characteristics
African American At-fault driver race: African American (1 = Yes, 0 = No) 643 32%
Female At-fault driver gender: Female (1 = Yes, 0 = No) 482 24%
Older driver At-fault driver age: more than 65 (1 = Yes, 0 = No) 201 10%
Driver not impaired At-fault driver condition at time of crash: Not DUI (1 = Yes, 0 = No) 1,948 97%
Vehicle characteristics
Major damage Causal vehicle damage: Major but not disabled (1 = Yes, 0 = No) 422 21%
Trailer Causal type: Semi-tractor/Semi-trailer (1 = Yes, 0 = No) 743 37%
CMV Commercial Motor Vehicle at fault (1 = Yes, 0 = No) 1,024 51%
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significantly different from zero with at least 90% confidence. The
normal distribution was found to provide the best fit of the mod-
eled random parameters.

The summer variable (specified for major injury) was found to
be random with a mean of �1.69 and standard deviation of 3.18.
Since the summer indicator variable was assumed to be normally
distributed, these numbers indicate that for 29.7% of the summer
crashes, the probability of major injury is low. Whereas for the
remaining 70.3% of the summer crashes the probability of major
injury is high. This shows that the chances of major injury are gen-
erally high in about two-thirds of lane change crashes that occur
during summer months. The variable for crash location less than
25 miles from the residence of the at-fault driver (specified for
minor injury) had mean of �0.66 and standard deviation of 2.89.
This means that for 59% of crashes that occurred less than 25 miles
from the residence of the at-fault driver, the probability of minor
injuries is low while the probability of minor injury is high for
the remaining 41% of the crashes. Similar interpretations of mean
and standard deviation values for the randomly varying parame-
ters for property damage only lane change crashes show that the
four-lane indicator variable increases the probability of property
damage only in 28.4% and the CMV driver being at-fault increases
the probability of property damage in 46.2% of the crashes. The
converse then, is that crashes that occur on four-lane facilities
and those that involve CMV drivers being at-fault were less likely
to result in property damage only (i.e., at least some form of injury

occured) in 71.6% and 53.8% of the lane change crashes,
respectively.

Interpretation of the elasticities for parameters specified for
major injuries reveal that lane change crashes that occurred during
the summer were 38.4% more likely to result in major injuries and
those that occurred at urban interstate settings were 25.3% less
likely to result in major injuries. Additionally, speed was estimated
to increase the probability of major injury by 12.7%, but not wear-
ing a seat belt only increased the probability by 1.5%. It should be
noted, however, that seatbelt usage may be under or misreported
for non-serious crashes and thus might bias these findings (e.g.,
Cummings, 2002). Nonetheless, the results reported here reinforce
the positive impacts of seatbelt usage. Lane change crashes
recorded as sideswipe crashes had 76.6% decreased probability of
resulting in major injury and there was a 9.8% increased probabil-
ity of major injury for lane change crashes that occurred on dark
portions of interstates. The probability of a major injury crash out-
come for a crash involving an at-fault trailer was found to decrease
by 37.6%.

Similar interpretations of elasticities for parameters found to
significantly affect (i.e., specified for) minor injury and property
damage only crash outcomes can be gleaned from Table 3. For
example, lane change crashes involving at-fault CMVs had an
increased (28.8%) probability of minor injury. These crashes also
exhibited a 27.3% increased probability of being major injury, indi-
cating higher likelihood of some form of injury when CMVs are

Table 3
Injury-severity model estimation results and elasticities.

Elasticity

Variables Coefficient t-Statistic MAJ MIN NO

Constant [NO] 1.92 3.82
Temporal characteristic
Summer [MAJ] �1.69 �0.88 38.4% �2.1% �1.9%
Standard deviation for Summer (normally distributed) 3.18 2.02
Location characteristics
Urban [MAJ] �0.73 �2.17 �25.3% 1.1% 0.8%
Close to home [MIN] �0.66 �0.73 �3.4% 23.8% �4.1%
Standard deviation for Close to home (normally distributed) 2.89 2.45
Contributing circumstances
Speed [MAJ] 0.68 1.83 12.7% �0.7% �0.6%
No seatbelt [MAJ] 2.92 4.09 1.5% �0.9% �0.9%
Blind spot [NO] �0.68 �2.19 3.5% 3.4% �0.9%
Manner of crash
Sideswipe [MAJ] �1.38 �4.63 �76.6% 3.4% 1.7%
Side impact [MIN] 1.47 4.12 �2.7% 6.0% 0.4%
Rear end [MIN] 1.10 3.48 �12.3% 8.9% �1.1%
Environmental characteristic
Dark [MAJ] 0.75 2.24 9.8% �1.1% �0.6%
Roadway characteristics
Straight slope [MAJ] 0.58 1.88 5.6% �0.6% �0.3%
Six-lane [MIN] 0.63 2.27 �4.1% 18.1% �2.8%
Four-lane [NO] �0.09 �0.17 30.4% 28.6% �4.8%
Standard deviation for Four-lane (normally distributed) 1.57 1.95
Cable barrier [NO] 0.93 1.95 �3.7% �3.6% 0.4%
Vehicle characteristics
Trailer [MAJ] �1.22 �3.18 �37.6% 2.0% 0.6%
Major damage [MIN] �1.03 �3.38 2.1% �15.4% 1.1%
CMV [NO] �0.13 �0.27 27.3% 28.8% �4.8%
Standard deviation for CMV (normally distributed) 1.37 1.75
Driver characteristics
Older driver [MIN] �0.84 �2.07 0.9% �6.0% 0.4%
Driver not impaired [NO] 1.32 2.93 �81.9% �76.0% 14.4%
African American [NO] �0.37 �1.85 6.8% 6.1% �1.5%
Female [NO] �0.33 �1.91 5.4% 4.4% �1.0%

Model statistics
Number of observations 2,008
Log-likelihood at constants �2206.013
Log-likelihood at convergence �1036.433
McFadden pseudoq2 0.530
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at-fault in lane changing crashes on interstates. Similarly, there
was increased probability of some form of injury (i.e., 3.5% and
3.4% increase in likelihood of major and minor injuries, respec-
tively) for lane change crashes that resulted from the at-fault dri-
ver driving in the blind spot of the other vehicle. The presence of
cable median barrier was found to decrease the probability of
major and minor injury outcomes by 3.7% and 3.6%, respectively.
Crashes involving at-fault female drivers had increased probability
of major and minor injury outcomes. This is an interesting finding
when viewed in terms of the fact that female drivers comprised
24% of at-fault drivers in the data.

5. Discussions

The results provide an enhanced understanding of how a range
of contributing factors affect the severity outcomes associated with
lane change crashes on interstates. That said, there are limitations
to this study presented by the very nature of the data on which it is
based. All of the parameters used in the model development were
obtained from reports that were compiled by police officers
responding to the crash scene. As such, some of the key parameters
(i.e., potentially contributing factors) are based solely on the judge-
ment and discretion of the individual officer at the time the crash
recorded. Much has been written on the accuracy and reliability of
police-reported crash data. For example, with respect to seat belt
usage, Schiff and Cummings (2004) reported that police typically
identify belted occupants correctly, but they often classify
unbelted occupants as belted when they were not actually at the
time of the crash. Whereas, Grant et al. (1998) reported that seat
belt usage as reported by police agreed with information reported
in both the ambulance and emergency room in more than 75% of
cases. Others have even documented that police reports sometimes
inaccurately record injury severity (Farmer, 2003; Brubacher et al.,
2019). On the other hand, Lee et al. (2012) reported good agree-
ment between the data reported by police and crash victim
accounts from interviews across a range of crash related character-
istics. Nonetheless, concerns over underreporting, inaccuracies,
and resulting potential biases in police-reported crash data are a
known concern (Abay, 2015; Imprialou & Quddus, 2019) and road
safety researchers must be cognizant of these when conducting
studies and reporting results.

In many cases, the findings of this study confirm similar results
reported elsewhere in the literature. For example, our results sug-
gest that lane change crashes that occur in the dark are more likely
to result in major injuries as has been reported in previous studies
(e.g., Duncan et al., 1998; Khorashadi et al., 2005; Zhu & Srinivasan,
2011; Islam & Hernandez, 2013; Cerwick et al., 2014). In other
cases, the results differed slightly from what has been previously
reported – both McGwin and Brown (1999) and Di Stefano and
Macdonald (2003) reported a stronger relationship between seri-
ous injury lane change crashes and older drivers than this study.

The results clearly indicated that four-lane interstates and the
presence of a vehicle in a blind spot are both associated with
increased probability of major injury crashes. While there is no
definite connection determined herein, it could be inferred that
some ‘‘unobserved” relationship between fewer travel lanes and
a higher occurrence of blind spots is reasonable as vehicles would
have less overall maneuverability than if there were additional tra-
vel lanes available.

6. Conclusions

This study examined relationships between risk factors and
crash outcomes for lane change crashes involving CMV on Alabama
interstates. The study used mixed logit modeling technique to

account for unobserved heterogeneity across injury severity obser-
vations. In all, 21 crash factors were identified to influence injury
severity outcomes and four of them were found to be random
parameters.

Whether lane change crashes are attributable to certain driver
types (older drivers), driving behaviors (speeding), or driving con-
texts (four-lane interstates), the results presented here reaffirm the
need to increase awareness of and ability to safely navigate lane
changes in the vicinity of large CMVs. Such efforts can be most
effective if they target specific populations of both CMV and non-
CMV drivers (Blower & Kostyniuk, 2007; Antin et al., 2017). This
study can also serve as foundation for future work on which to
base studies investigating the effectiveness of technology-
oriented solutions to mitigate lane change crashes, whether
vehicle-based systems such as blind spot warning or
infrastructure-based technologies that provide dynamic warnings
during times or locations of heavy mixed volumes and lane chang-
ing activity.
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a b s t r a c t

Introduction: It has been demonstrated that weather conditions have significant impacts on freeway
safety. However, when employing an econometric model to examine freeway crash injury severity, most
of the existing studies tend to categorize several different adverse weather conditions such as rainy,
snowy, and windy conditions into one category, ‘‘adverse weather,” which might lead to a large amount
of information loss and estimation bias. Hence, to overcome this issue, real-time weather data, the value
of meteorological elements when crashes occurred, are incorporated into the dataset for freeway crash
injury analysis in this study. Methods: Due to the possible existence of spatial correlations in freeway
crash injury data, this study presents a new method, the spatial multinomial logit (SMNL) model, to con-
sider the spatial effects in the framework of the multinomial logit (MNL) model. In the SMNL model, the
Gaussian conditional autoregressive (CAR) prior is adopted to capture the spatial correlation. In this
study, the model results of the SMNL model are compared with the model results of the traditional multi-
nomial logit (MNL) model. In addition, Bayesian inference is adopted to estimate the parameters of these
two models. Result: The result of the SMNL model shows the significance of the spatial terms, which
demonstrates the existence of spatial correlation. In addition, the SMNL model has a better model fitting
ability than the MNL model. Through the parameter estimate results, risk factors such as vertical grade,
visibility, emergency medical services (EMS) response time, and vehicle type have significant effects on
freeway injury severity. Practical Application: According to the results, corresponding countermeasures
for freeway roadway design, traffic management, and vehicle design are proposed to improve freeway
safety. For example, steep slopes should be avoided if possible, and in-lane rumble strips should be rec-
ommended for steep down-slope segments. Besides, traffic volume proportion of large vehicles should be
limited when the wind speed exceeds a certain grade.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Freeways, with large traffic volumes and high vehicle speeds,
play an important role in the comprehensive system of transporta-
tion. With the increase in freeway mileage worldwide, freeway
safety problems are becoming much more challenging than before.
According to the statistics from the Traffic Management Bureau of
the Public Security Ministry in China, 2010–2015, high fatality and
injury rates have been the key features of freeway crashes.
Currently, for the purpose of determining the freeway crash

mechanism and reducing the fatality and injury rate, it is popular
to establish an econometric model to explore the link between
freeway crash injury severity and risk factors (including human
factors, traffic flow characteristics, roadway factors, vehicle charac-
teristics, and environmental characteristics) (Golob et al., 1987;
Haleem & Gan, 2013; Ma et al., 2016; Mergia et al., 2013;
Shankar et al., 1996; Yu & Abdel-Aty, 2014; Zhang et al., 2011).
After identifying the hazardous factors, corresponding counter-
measures for engineering and management are proposed.

Weather conditions, an important part of the environmental
characteristics, have been demonstrated to significantly influence
freeway crash injury severity. For instance, through the data col-
lected in Florida, United States, Zhang et al. (2011) found that
when the weather is clear, the probability of no injury on freeway
diverging areas increases, and the probability for all levels of injury
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decreases. With the police-recorded crash data in Ohio, Mergia
et al. (2013) demonstrated that adverse weather is accompanied
by a higher risk for fatality when the crash occurs in the freeway
merging area. However, in the existing freeway crash severity anal-
ysis, the definition of weather condition indicator has some limita-
tions. For example, Mergia et al. (2013) defined foggy, rainy,
snowy, windy, and other weather conditions as ‘‘adverse weather
conditions.” Zhang et al. (2011) separated weather conditions into
two categories, ‘‘clear day” and ‘‘other.” The category ‘‘other”
includes rainy, snowy, and foggy conditions. It is well known that
weather conditions such as windy, rainy, and foggy conditions are
totally different from each other and have distinct impacts on dri-
vers’ driving behavior and vehicle operation. For example, on rainy
days, the roadway is wet, and the visibility is low, which adversely
impacts the friction of the vehicle tires and the driver’s field of
vision. In comparison, on windy days, it is easy for vehicles to over-
turn, but the friction of the vehicle tires and the driver’s vision are
not affected. Therefore, combining these weather conditions into
one category in the model might lead to a large amount of informa-
tion loss and biased results. To overcome this issue, incorporating
real-time weather data (the values of weather elements such as
wind speed and rainfall amount at the time of the accident) in a
crash analysis dataset might be a good alternative, with the advan-
tage of describing weather conditions more accurately and com-
prehensively. Researchers have evaluated crash injury severity
based on real-time weather data in some fields, for example, in
pedestrian crashes (Zhai et al., 2019), urban arterial crashes
(Theofilatos & Yannis, 2017), single-vehicle crashes (Jung et al.,
2010), and truck-related crashes (Naik et al., 2016). To the best
of the authors’ knowledge, to date, only Yu and Abdel-Aty (2014)
has explored the links between freeway crash injury severity and
hazardous factors incorporating real-time weather data. However,
Yu and Abdel-Aty (2014) only categorized freeway crash injury
into two levels: severe crashes and non-severe crashes. The infor-
mation provided is limited. Hence, in this paper, freeway crash
injury severity analysis with real-time weather data incorporated
is conducted, and the injury severity is divided into more than
two categories.

Regarding methodology, the multinomial logit (MNL) model has
been used frequently when analyzing crash injury severity with
more than two injury severity levels (Carson & Mannering, 2001;
Chen & Fan, 2019; Malyshkina & Mannering, 2010; Shankar &
Mannering, 1996; Ulfarsson & Mannering, 2004; Ye & Lord,
2014). However, few studies consider spatial effects when adopt-
ing the MNL model to analyze crash severity. To date, it has been
a trend to consider spatial effects in crash severity studies (Meng
et al., 2017; Xu et al., 2016; Zeng et al., 2019; Zeng, Hao, et al.,
2020) because some unobserved factors might commonly affect
adjacent segments, resulting in spatial correlations in roadway
crash data (Huang et al., 2016; Ma et al., 2017; Zeng et al., 2017;
Zeng & Huang, 2014a; Zeng, Wen, et al., 2020). Moreover, for this
research, there is another important reason to take into account
spatial correlation. As pointed out by Shankar et al. (1995), when
using the data observed by weather stations, several continuous
freeway segments sharing the data of one commonweather station
might lead to spatial correlation in the dataset. Ignoring the spatial
effect might result in estimate bias. To address this issue, this
paper presents a new approach, the spatial multinomial logit
(SMNL) model, with the MNL model serving as the basic frame-
work and the Gaussian conditional autoregressive (CAR) prior
employed to account for the spatial correlation. It has been demon-
strated by several studies (Meng et al., 2017; Xu et al., 2016; Zeng
et al., 2019) that the Gaussian CAR prior in the crash severity model
could well capture the spatial effect. Besides, with the help of the
free software WinBUGS, the CAR priors could be introduced to
multinomial logit model easily.

In summary, in this research, real-time weather data are incor-
porated when examining the relationship between freeway crash
injury severity and hazardous factors. To provide more information
about injuries, the injury severity is categorized into more than
two levels. In addition, a new method, the SMNL model, is pro-
posed and compared with the traditional MNL when fitting free-
way crash injury data.

The rest of this article is structured as follows. Section 2
describes the freeway crash analysis dataset. Section 3 outlines
the structure of the MNL model and the SMNL model, the estima-
tion process, and the calculation method of the marginal effect.
Section 4 presents the estimate results of the SMNL model and
the MNL model, the marginal effect of the significant factors and
the discussion. The conclusion and future research are shown in
Section 5.

2. Data

The freeway crash injury dataset analyzed in this study is from
Kaiyang Freeway, a 125.2 km long four-lane double carriageway
freeway in Guangdong Province, China. The data of 2014 and
2015 were collected. This dataset originates from three datasets:
(1) the freeway crash dataset, (2) freeway road geometry file,
and (3) meteorological dataset. The freeway crash dataset is
extracted from the Highway Maintenance and Administration
Management System, maintained by the Guangdong Transporta-
tion Group. The freeway road geometry file is maintained by the
Guangdong Province Communication Planning and Design Insti-
tute Company Limited. The meteorological dataset is collected
from the Meteorological Information Management System main-
tained by the Guangdong Climate Center.

There are 1,420 crashes reported in the freeway crash dataset.
Among them, 1,152 crashes are no injury crashes, 205 crashes
are minor injury crashes, 30 crashes are severe injury crashes,
and 33 crashes are fatal crashes. Since both the numbers of severe
injury crashes and fatal crashes are too small, in this paper, these
two injury levels are combined into one injury severity category.

In addition to the crash injury information, the freeway crash
dataset includes other detailed information for every crash record
as follows: the mileage of the crash location, the specific time
when the crash occurred, the collision type, whether the involved
driver is professional or not, the type of vehicle involved, the
license number, and the emergency medical services (EMS)
response time. According to this information, the exogenous vari-
ables are arranged, as shown in Table 1 and Table 2, and the
detailed explanations are in Table 1 and Table 2.

Concerning providing more information about the roadway
geometry of the crash location, we divide the Kaiyang freeway into
154 consecutive segments according to the homogeneity of the
horizontal curvature and vertical grade. Then, the road feature
dataset is sorted from the freeway road geometry file, including
the horizontal curvature value, vertical grade value of each seg-
ment, whether the segment is part of a bridge, and whether the
segment is close to the ramp. Finally, according to the mileage of
the crash location, the corresponding segment is matched, and
detailed road feature information is recorded in the road feature
dataset.

The meteorological dataset contains every hour of weather fac-
tor data including the wind speed, visibility, and rainfall amount
from three weather stations adjacent to the Kaiyang Freeway from
2014 to 2015. These three weather stations are the Kaiping station,
Enping station, and Yangjiang station. According to the crash loca-
tion and the specific time that the crash occurred, the meteorolog-
ical data from the same hour and location are matched. Since
precipitation, visibility and wind are the most commonly used
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weather characteristics when analyzing crash data (Theofilatos &
Yannis, 2014), in this paper, the maximum wind speed value, min-
imum visibility value, and rainfall amount value during the hour
that a crash occurred serve as explanatory variables in the models.
To avoid the strong correlations among meteorological elements,
Pearson correlation test is conducted and the result shows that
the correlation among the maximum wind speed value, minimum
visibility value, and rainfall amount value are weak (the coeffi-
cients are below 0.3 or over �0.3).

The data description of the freeway crash dataset is shown in
Table 1 and Table 2. The data description of the response variable
and binary explanatory variables is presented in Table 1. The data
description of the continuous variables is displayed in Table 2.

3. Methodology

In this section, first, the model structures of the multinomial
logit (MNL) model and spatial multinomial logit (SMNL) model
are presented. Then, the estimation processes of the MNL model
and SMNL model, the comparison criteria for model fitting, and
the method to calculate how the variation in the significant factors
impacts the probability of each injury severity level would be
shown.

3.1. Model specifications

3.1.1. Multinomial logit model
As mentioned in Section 2, the crash injury severity in this

study is categorized into three levels: 1 (no injury), 2 (minor
injury), and 3 (severe injury and fatality). For the three severity
levels, the probability of crash i with injury severity n can be writ-
ten as:

Pi;n ¼ PðUi;n P Ui;mÞ;8m–n ð1Þ
where Pi;n is the probability of crash i with injury level n, P denotes
the probability and Uin serves as the utility function that determines
the injury outcome of crash i to be severity level n. The utility func-
tion can be written as:

Ui;n ¼ bnXi þ ein ð2Þ
where Xi represents a vector of explanatory variables that deter-
mine the crash injury severity, bn represents the corresponding
coefficient for injury severity n, and ein is the error term that
accounts for the unobserved factors affecting the crash injury sever-
ity level. ein is assumed to be independently distributed. Based on
Eqs. (1) and (2), the following equation can be written as:

Pi;n ¼ PðbnXi � bmXi P eim � einÞ;8m–n ð3Þ

Table 1
Data description for response variable and binary variables.

Subtitle Variable Description count ratio

Response variable
Injury severity level No injury = 1

Minor injury = 2
Severe injury & fatality = 3

1 1,152 81.13%
2 205 14.44%
3 63 4.43%

Explanatory variable (binary variable)
Crash time Before dawn* Crash occurrence time is in the period from 12 a.m. to 6 a.m. = 1; otherwise = 0 1 260 18.31%

0 1,160 81.69%
Morning Crash occurrence time is in the period from 6 a.m. to 12 p.m. = 1; otherwise = 0 1 315 22.18%

0 1,105 77.82%
Afternoon Crash occurrence time is in the period from 12 p.m. to 6 p.m. = 1; otherwise = 0 1 529 37.25%

0 891 62.75%
Evening Crash occurrence time is in the period from 6 p.m. to 12 a.m. = 1; otherwise = 0 1 316 22.25%

0 1,104 77.75%

Vehicle type Coach At least one involved vehicle is a coach = 1; otherwise = 0 1 91 6.41%
0 1,329 93.59%

Truck At least one involved vehicle is a truck = 1; otherwise = 0 1 447 31.48%
0 973 68.52%

Other vehicle At least one other vehicle (such as a trailer) is involved = 1; otherwise = 0 1 142 10.00%
0 1,278 90.00%

Roadway feature Bridge The crash location is on a bridge = 1; otherwise = 0 1 762 53.66%
0 658 46.34%

Ramp The crash location is near a ramp = 1; otherwise = 0 1 347 24.44%
0 1,073 75.56%

Other Binary Variables Nonlocal vehicle All the involved vehicles are registered in Guangdong Province = 0; otherwise
(at least one involved vehicle is a non-local vehicle) = 1

1 142 10.00%
0 1,278 90.00%

Driver type None of the involved drivers are professional drivers = 0; otherwise = 1 1 55 3.87%
0 1,365 96.13%

Single-vehicle crash Only one car is involved in the crash = 1; otherwise = 0 1 650 45.77%
0 770 54.23%

* The reference category.

Table 2
Data description for continuous variables.

Explanatory variable Description Mean S.D. Max. Min.

EMS response time Duration between crash report time and the arrival time of EMS (min) 19.38 16.65 260 0
Horizontal curvature The horizontal curvature of the freeway segment where the crash occurred (0.1 km�1) 1.84 1.23 4.35 0
Vertical grade The vertical grade of the freeway segment where the crash occurred (%) 0.71 0.59 2.91 0
Max wind speed The maximum wind speed during the hour when the crash occurred (m/s) 3.83 2.06 17.3 0.7
Rainfall amount The total rainfall amount during the hour when the crash occurred (mm) 0.76 3.43 54.8 0
Min visibility The minimum visibility during the hour when the crash occurred (km) 18.10 18.73 80 0.1

X. Zhang, H. Wen, T. Yamamoto et al. Journal of Safety Research 76 (2021) 248–255

250



In Eq. (3), the error term ein is assumed to be a generalized
extreme value (GEV) distribution. Finally, the probability for crash
i with injury severity outcome ncan be calculated as follows:

Pi;n ¼ expðbnXiÞ=
XM
m¼1

expðbmXiÞ ð4Þ

Specifically, Eq. (4) can be rewritten as Eq. (5), with injury
severity 1 serving as the reference category for the other injury
severity levels, and M indicates the total number of injury severity
levels:

Pi;n ¼ expðbnXiÞ=
PM
m¼1

expðbmXiÞ

¼ ½expðbnXiÞ=expðb1XiÞ�=
PM
m¼1

½expðbmXiÞ=expðb1XiÞ�
� �

¼ exp½ðbn � b1ÞXi�= 1þ PM
m¼2

exp½ðbm � b1ÞXiÞ�
� �

¼
1=½1þ PM

m¼2
expðamXiÞ�;n ¼ 1

expðanXiÞ=½1þ PM
m¼2

expðamXiÞ�; n–1

8>>><
>>>:

ð5Þ

where an serves as the coefficient parameters to be estimated
instead of the original parameters bn.

3.1.2. Spatial multinomial logit model
As mentioned in section 1, the Gaussian CAR prior can capture

the spatial correlation well when evaluating crash severity (Meng
et al., 2017; Xu et al., 2016; Zeng et al., 2019). Specifically, in this
study, for a crash i occurring on the segment k with injury severity
level n, the utility function can be modified to:

Uin ¼ bnXi þ /nk þ ein ð6Þ

where the term /nk denotes the spatial correlation of each crash on
freeway segment k for injury severity n and is assumed to follow the
CAR Gaussian distribution:

/nk � Nð
P

k–j/njxkjP
k–jxkj

;
r/nP
k–jxkj

Þ ð7Þ

where xkj is the proximity weight between the freeway segments j
and k. The proximity weight is defined by the binary first-order
proximity structure, which has been widely used in previous
research (Meng et al., 2017; Xu et al., 2016; Zeng et al., 2019).
Specifically, if segments j and k are connected, xkj=1; otherwise,
xkj=0. r/n

is the variance parameter of the spatial term for each
injury severity level.

Similar to Eq. (5), the probability of crash i with injury outcome
n is calculated as follows (with injury severity level 1 serving as the
reference category):

Pi;n ¼ expðbnX i þ /nkÞ=
PM
m¼1

expðbmXi þ /mkÞ

¼ ½expðbnX i þ /nkÞ=expðb1Xi þ /1kÞ�=
PM
m¼1

½expðbmXi þ /mkÞ=expðb1Xi þ /1kÞ�
� �

¼ exp½ðbn�b1ÞX i þ /nk � /1k�= 1þ PM
m¼2

exp ðbm � b1ÞX i þ /mk � /1k½ �
� �

¼
1=½1þ PM

m¼2
expðamXi þ /mk � /1kÞ�; n ¼ 1

expðanXi þ /nk � /1kÞ=½1þ PM
m¼2

expðamX i þ /mk � /1kÞ�; n–1

8>>>>><
>>>>>:

ð8Þ

3.2. Model estimation

Because the maximum likelihood estimation cannot be used to
estimate models with Gaussian CAR priors, in this study, the Baye-
sian method is adopted to estimate the parameters of the model.
The Bayesian method is based on Markov Chain Monte Carlo
(MCMC) simulation with the Gibbs sampling algorithm, and
through the free software WinBUGS, this method can be realized
easily. To employ the Bayesian method to estimate the parameters,
first, the prior distribution of each parameter and hyperparameter
should be specified in the model. In this study, due to the lack of
additional knowledge, a noninformative prior distribution is used
for the parameters an and hyperparameters r/n

. Specifically, a dif-

fused normal distribution, Nð0;104Þ, is used as the priors of an, the
coefficient parameters. A diffuse gamma distribution denoted by
gammað0:001;0:001Þ for the priors of the precision parameters,
1=r/n would be adopted. For each model, a chain of 200,000 MCMC
simulation iterations is run, where the first 150,000 iterations
serve as the burn-in. To ensure that the simulation converges,
the MCMC trace plot for the parameters is checked.

3.3. Model comparison criterion

In this paper, deviance information criterion (DIC) and the clas-
sification accuracy for the entire dataset and for each injury sever-
ity n are used to compare the model fitting ability.

According to Spiegelhalter et al. (2002), the definition of DIC is
shown as Eq. (9):

DIC ¼ D
�
þpD ð9Þ

D
�
is the posterior mean deviance used to measure the fitness or

adequacy of the model, and a lower D
�
indicates better model fit-

ting. pD is the effective number of parameters, which is used to
measure the complexity of the model. Most of the time, the model

is preferred if it has a lower DIC value. The values of D
�
, pD and DIC

can be obtained directly from the software WinBUGS.
The classification accuracy for the entire dataset, defined as the

proportion of accurate prediction in the entire dataset, is calculated
as (Zeng et al., 2019; Zeng & Huang, 2014b):

CAt ¼
P

Yi

�
¼Yi

Yi=YiP
iY i=Yi

� 100% ð10Þ

where Yi represents the predicted crash severity level.
In addition, the classification accuracy for injury severity level n,

defined as the proportion of accurate predictions in the dataset
with observed injury severity level n, is calculated as:

CAn ¼
P

Yi

�
¼Yi¼n

Yi=YiP
Yi¼nYi=Yi

� 100% ð11Þ

3.4. The calculation process of the marginal effect

Through the parameter estimate results of the MNL model and
SMNL model, it is hard to see how the variation in the contributing
factors directly influences the probability of each injury severity
level. Therefore, the marginal effect is used to analyze this impact
in this study. Since the explanatory variable in this paper contains
continuous variables and binary indicator variables, the calculation
of the marginal effect for these two kinds of variables is shown
separately.

For continuous variables, the calculation of the marginal effect
for each crash injury severity n is calculated as follows (Scott
Long, 1997):
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@Pi;n

@x
¼

Pi;1ð�
PM
m¼2

ax
mPi;mÞ;n ¼ 1

Pi;nðax
n �

PM
m¼2

ax
mPi;mÞ; n–1

8>>><
>>>:

ð12Þ

where ax
n is the corresponding coefficient for the specific variable x

in the probability function of crash injury severity level n.
For binary indicator variables, the calculation of the marginal

effect for each crash injury severity n is shown in Eq. (13) (Scott
Long, 1997):

DPi;n

Dx
¼ Pi;nðx ¼ 1Þ � Pi;nðx ¼ 0Þ ð13Þ

4. Results

4.1. Model comparison

First, through Table 3, it can easily be found that the standard
deviation of the spatial terms for the no injury level and minor
injury level, sdð/1Þ and sdð/2Þ, are significant in the SMNL model,
suggesting the existence of spatial correlation. The spatial effect
might be attributed to several continuous freeway segments shar-
ing the data of one common weather station and the unobserved
factors that clustered spatially such as the lighting conditions
and terrain features.

Second, the fitting ability of these two models is compared in
this section. Comparison of the DIC values shows that the MNL
model has a lower DIC value (DIC value for MNL model = 1552.84)
than the SMNL model (DIC value for SMNL model = 1578.16). How-

ever, the SMNL model has a much lower D
�
value and a higher value

of pD than the MNL model because the SMNL model contains spa-
tial terms for three injury levels and thus has higher model com-

plexity. The lower D
�

value of the SMNL model suggests that the
goodness-of-fit of the SMNL model is better than that of the MNL
model. For the classification accuracy for the entire dataset, it
can be easily found that the SMNL model has higher classification
accuracy (82.39%) than the MNL model (80.99%). Additionally,

through the results of the classification accuracy for each injury
severity level, although having a lower classification accuracy for
no injury level, the SMNL model has higher classification accuracy
for the minor injury level (CA2=15.12%) and severe injury & fatality
level (CA3=14.29%) than the MNL model (CA2=2.44%,CA3 = 4.76%).
On the whole, although having a higher DIC value, the SMNL model

has better model fitting ability (lower D
�
value), higher classifica-

tion accuracy for the entire dataset and higher classification accu-
racy for the minor injury level and severe injury & fatality level
(which is important when reducing the injury and fatality rate),
indicating that the SMNL model outperforms the MNL model.

Moreover, from Table 3, the estimate results suggest that the
coefficients are generally consistent between the MNL model and
the SMNL model. Therefore, in this paper, the result of the SMNL
model is chosen as the main model to illustrate how the contribu-
tory factors influence the freeway crash injury severity level.

4.2. Parameter estimates

As mentioned above, the result of the SMNL model is selected as
the main model to discuss how the contributory factors influence
freeway crash severity. Additionally, with the purpose of showing
the impacts directly, in this section, the marginal effects of the sig-
nificant factors in the MNL model and SMNL model are calculated
and shown in Table 4.

The results of the SMNL model show that if the vertical grade of
crash location is enhanced by 1%, the probabilities of no injury and
minor injury decrease by 2.09% and 0.77%, respectively. In addition,
the probability of severe injury and fatality increases by 2.86%. This
result indicates that a steep freeway segment is accompanied by a
worse crash injury severity. This result is consistent with previous
studies. As pointed out by previous studies (Christoforou et al.,
2010; Savolainen & Mannering, 2007; Yu & Abdel-Aty, 2014), a
possible reason for this result is that a steeper segment causes a
shorter sight distance, leading to less time for drivers to respond
when a hazardous scene occurs. In addition, Lu et al. (2016) men-
tioned that a steep slope might result in two risky situations,
increasing vehicle speed and heating of pavement.

Table 3
Parameter estimation and model comparison result.

Model MNL model SMNL model

Injury level 2 Injury level 3 Injury level 2 Injury level 3

Afternoon �0.43 (0.25)* �1 (0.48)** – �1.08 (0.51)**

Coach 0.6 (0.27)** – 0.69 (0.3)** –
Truck 0.54 (0.18)** 1.1 (0.31)** 0.56 (0.2)** 1.17 (0.33)**

Other vehicle 0.45 (0.25)* – – –
Nonlocal vehicle 0.34 (0.18)* - 0.33 (0.2)* –
EMS response time 0.01 (0.005)** 0.02 (0.008)** 0.01 (0.006)* 0.02 (0.009)**

Max wind speed – �0.24 (0.1)** – –
Min visibility 0.008 (0.005)* – 0.01 (0.005)** –
Vertical grade – 0.58 (0.2)** – 0.71 (0.3)**

Single-vehicle crash �1.04 (0.19)** �1.09 (0.35)** �1.19 (0.21)** �1.23 (0.37)**

constant �1.46 (0.36)** �3.04 (0.62)** �9.44 (1.3)** �17.81 (1.60)**

sdð/1Þ – 0.33 (0.31)**

sdð/2Þ – 0.95 (0.46)**

sdð/3Þ – 0.49 (0.53)

D
� 1517.77 1455.83

pD 35.064 122.325
DIC 1552.84 1578.16
CA1 99.13% 98.09%
CA2 2.44% 15.12%
CA3 4.76% 14.29%
CAt 80.99% 82.39%

* Indicates significance at the 90% credibility level.
** Indicates significance at the 95% credibility level.
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Visibility is shown to have a significant effect on freeway crash
injury severity. In the results of the SMNL model, a one-unit
decrease in minimum visibility leads to a 0.1% increase in the prob-
ability of no injury and a 0.1% decrease in the probability of minor
injury, indicating that low visibility leads to less severe injury out-
comes. This result is consistent with previous results (Hou et al.,
2019). A possible reason might be drivers’ risk compensation.
When visibility decreases, drivers tend to be more cautious and
start to decrease speed. The gain in drivers’ alertness in low visibil-
ity conditions has been demonstrated by some previous studies
(Jeihani & Banerjee, 2018; Mueller & Trick, 2012) through conduct-
ing driving simulator experiments.

EMS response time is shown to significantly affect freeway
crash injury severity. With a one-minute increase in EMS response
time, the probabilities for minor injury and severe injury and fatality
increase by 0.1% and 0.07%, respectively, while the probability for
no injury decreases by 0.17%. This result is consistent with previous
studies (Gonzalez et al., 2009; Lee et al., 2018). Providing people
injured in freeway crashes with in-time first aid can help reduce
severe injury severity.

Althoughnot significant in the SMNLmodel,wind speed is shown
to have significant impacts on freeway injury severity in the MNL
model. As shown in Table 4, a one-unit increase in max wind speed
leads to a 0.7% increase in the probability of no injury, a 0.2% proba-
bility increase forminor injury, anda0.9%probabilitydecrease in sev-
ere injury and fatality. Although an increase in wind speed does not
increase the probability of severe injury and fatality, the increasing
risk of minor injury is still worth noting. As pointed out by previous
research, an increase inwind speedmight increase the difficulties in
handling large vehicles and thus cause a higher possibility for over-
turning crashes (Hou et al., 2018; Young & Liesman, 2007).

Regarding the vehicle types involved in the accident, when a
coach is involved, the possibility for minor injury increases 9.54%,
and the possibilities for no injury and severe injury and fatality
decrease 8.72% and 0.82%, respectively. When a truck is involved
in the accident, the risks forminor injury and severe injury and fatal-
ity increase by 5.8% and 4.3%, respectively. This result is in line with
previous studies (Huang et al., 2011; Zeng et al., 2016). A possible
reason might be that coaches and trucks have high destructive
capabilities, leading to greater jeopardy to other vehicles that are
involved in the same accident. In addition, other vehicles are shown
to have significant impacts on injury severity in the MNL model,
indicating that if the involved vehicle includes other vehicles, such
as trailers, the possibility of minor injury increases by 5.90%, with a
5.40% decrease in the possibility of no injury and a 0.50% decrease
in severe injury and fatality. A possible reason might be the high
destructive capabilities of these types of vehicles. Once the acci-
dent occurs, the other cars in the same accident are greatly dam-
aged, thus increasing the possibility for minor injury.

Whether the involved vehicle is local has a significant effect on
freeway injury severity. When a nonlocal vehicle is involved in the
crash, the possibility for minor injury increases by 4%, while the
possibilities for no injury and severe injury and fatality decrease
by 3.65% and 0.35%, respectively. A plausible reason for the
increased risk of minor injury is that nonlocal drivers are not famil-
iar with the local freeway road alignment. A nonlocal driver might
have to pay much more attention to finding and confirming the
route and entrance position and thus have increased risk of becom-
ing injured.

Regarding crash time, compared to the afternoon, a crash occur-
ring before dawn is accompanied by more severe outcomes. As
shown in the marginal effect result of the SMNL model, compared
to that happening before dawn, if a crash occurs in the afternoon,
the possibility for no injury increases by 2.7%, the possibility formi-
nor injury increases by 0.9%, and the possibility of severe injury and
fatality decreases by 3.6%. A plausible reason for the decreasing
probability of severe injury and fatality is the high risk for fati-
gued/drowsy driving before dawn and the better visibility in the
afternoon. Also, in the afternoon, with good visibility, it is easy
for drivers to track hazards. In comparison, before dawn, drivers
tend to feel tired and sleepy when driving, and the light is dim at
this time period, which leads to the risk enhancement for severe
injury. Meanwhile, the increasing probability of minor injury for
afternoon is still worth noting and the possible reason is that the
strong ultraviolet and glare in the afternoon would make drivers
get dizzy or distracted.

Additionally, crash type has a tight relationship with freeway
injury severity. According to the model results of the SMNL model,
compared to a multi-vehicle crash, if a crash is a single-vehicle
crash, the possibility for no injury is enhanced by 16.11%, while
the possibility for minor injury decreases by 12.42%, and the possi-
bility for severe injury and fatality decreases by 3.69%. A possible
reason is that a multi-vehicle crash is the interaction of several
vehicles at high speed, and people tend to get injured more easily
than in single-vehicle crash.

5. Conclusion and future research directions

This paper investigates the relationship between freeway crash
injury severity and hazardous factors incorporating real-time
weather factors. In addition, with the purpose of capturing the spa-
tial correlation and improving model fitting, this paper proposes a
new method, the spatial multinomial logit (SMNL) model, which
introduces conditional autoregressive priors to the traditional
multinomial logit (MNL) model, to fit the freeway crash injury
data.

For the model comparison result, first, the significant result of
the spatial terms in the SMNL model indicates that there exists

Table 4
Marginal effects for the MNL and SMNL models.

MNL model SMNL model

No injury (%) Minor injury (%) Severe injury & fatality (%) No injury (%) Minor injury (%) Severe injury & fatality (%)

Continuous variable
Vertical grade �1.7 �0.6 2.3 �2.09 �0.77 2.86
Min visibility �0.1 0.1 0 �0.1 0.1 0
EMS response time �0.16 0.1 0.06 �0.17 0.1 0.07
Max wind speed 0.7 0.2 �0.9 0 0 0

Binary variable
Coach �7.51 8.16 �0.65 �8.72 9.54 �0.82
Truck �9.61 5.58 4.03 �10.1 5.8 4.3
Other vehicle �5.40 5.90 �0.50 0 0 0
Nonlocal vehicle �3.83 4.16 �0.33 �3.65 4 �0.35
Afternoon 7.11 �4.08 �3.03 2.7 0.9 �3.6
Single-vehicle crash 14.09 �10.84 �3.25 16.11 �12.42 �3.69
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spatial correlation in the freeway crash data. Second, although the
DIC value of the SMNL model is higher than that of the traditional

MNL model, the lower D
�
value and better classification accuracy of

the whole dataset suggest that the SMNL model fits the data better.
Moreover, the SMNL model has better classification accuracy for
minor injury and severe injury and fatality, indicating that the
results of the SMNL model provide more useful information for
freeway injury prevention.

Regarding the parameter estimate result of the SMNL model, it
could be found that several risk factors have significant effects on
the freeway injury severity. Specifically, the increase in vertical
grade, visibility enhancement, longer EMS response time, truck or
coach involvement, nonlocal vehicle involvement, crash occur-
rence before dawn, and multi-vehicle crashes are accompanied
by a higher risk for crash injury.

According to the model results, practical countermeasures
could be put forward to prevent the occurrence of severe crash out-
comes. For instance, in regard to freeway roadway design, steep
slopes should be avoided if possible, and in-lane rumble strips
should be recommended for steep down-slope segments. For traf-
fic management, the traffic volume proportion of large vehicles
could be limited when the wind speed exceeds a certain grade.
For the improvement of EMS, real-time accident detection technol-
ogy is recommended to replace the traditional incident detection
method, and the EMS facility location should be set optimally with
the goal of the shortest rescue arrival time. For the design of vehi-
cles, the construction of trucks or coaches could be improved to
reduce the aggressiveness of the vehicles, and tires with good heat
resistance are also encouraged to be used by large vehicles. In addi-
tion, drivers should be encouraged to use sunglasses when driving
in the afternoon, to reduce the adverse effect on driving behavior
brought by the strong sunlight.

As for the limitation, the data are only collected from one free-
way, and the data sample size is of limited. For future research, the
data from more freeways will be collected. Besides, how the inter-
action effects between weather factors and other factors (such as
roadway factors, driver factors, and vehicle factors) affect freeway
crash injury severity will be investigated and more high-risk sce-
nes based on the results will be identified in the future. With this
research, more targeted countermeasures could be put forward.
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a b s t r a c t

Introduction: Adaptive Signal Control System (ASCS) can improve both operational and safety benefits at
signalized corridors. Methods: This paper develops a series of models accounting for model forms and
possible predictors and implements these models in Empirical Bayes (EB) and Fully Bayesian (FB) frame-
works for ASCS safety evaluation studies. Different models are validated in terms of the ability to reduce
the potential bias and variance of prediction and improve the safety effectiveness estimation accuracy
using real-world crash data from non-ASCS sites. This paper then develops the safety effectiveness of
ASCS at six different corridors with a total of 65 signalized intersections with the same type of ASCS,
in South Carolina. Results: Validation results show that the FB model that accounts for traffic volume,
roadway geometric features, year factor, and spatial effects shows the best performance among all mod-
els. The study findings reveal that ASCS reduces crash frequencies in the total crash, fatal and injury crash,
and angle crash for most of the intersections. The safety effectiveness of ASCS varies with different inter-
section features (i.e., AADT at major streets, number of legs at an intersection, the number of through
lanes on major streets, the number of access points on minor streets, and the speed limit at major streets).
Conclusions: ASCS is associated with crash reductions, and its safety effects vary with different intersec-
tion features. Practical Applications: The findings of this research encourage more ASCS deployments and
provide insights into selecting ASCS deployment sites for reducing crashes considering the variation of
the safety effectiveness of ASCS.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Safety improvements at intersections have become one of 22
key domains in the American Association of State Highway and
Transportation Officials Strategic Highway Safety Plan (Antonucci
et al., 2004). The goal of this plan is to achieve a decrease in the fre-
quency and severity of crashes at signalized intersections. Trans-
portation agencies have been advancing new approaches and
technologies to improve safety benefits at signalized intersections.

Adaptive Signal Control System (ASCS) is typically deployed at
intersections to improve operational performance, such as travel
time and traffic delay. The ASCS requires detectors such as loop
detectors, and a communication network that allows for
communicating with the local traffic controllers and/or the server.
Compared to the conventional time of day signal control systems

(i.e., pre-timed signal control and actuated signal control) with
predefined signal plans (usually re-adjusted every two years), ASCS
can change the signal timings (i.e., phase splits, phase sequence,
offsets, and cycle length) in real-time to accommodate fluctuating
traffic demand at intersections. Also, ASCS can adjust offsets to
coordinate several intersections along a corridor, thus lead to fewer
traffic stops. Significant operational benefits of ASCS in both corri-
dors and intersections have been documented (Eghtedari, 2005;
Elkins et al., 2012; Fontaine et al., 2015; Kergaye et al., 2009;
Khattak, 2016; Khattak et al., 2020; So et al., 2014). ASCS can
potentially improve the traffic operations, which in turn will
improve the safety of signalized intersections and corridors.

Past studies have implemented the Empirical Bayes (EB) frame-
work with the Poisson-Gamma model into ASCS safety evaluation
studies (Jesus & Benekohal, 2019; Khattak, 2016). However, previ-
ous studies have not applied the Fully Bayesian (FB) framework
with the Poisson-Lognormal model for any ASCS safety evaluation.
More specifically, spatial correlations could exist in neighboring
intersections along a corridor with ASCS. However, no studies have
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implemented spatial models in the safety evaluation of ASCS.
Moreover, previous studies have not evaluated the performance
of different crash prediction models in quantifying the safety effec-
tiveness of ASCS in the EB and FB before-and-after studies.

To fill the above research gaps in ASCS safety evaluation, we: (a)
implement the Poisson-Lognormal model and the spatial model
into the ASCS safety evaluation; and (b) investigate how different
crash prediction models impact the estimator of the safety effec-
tiveness of ASCS in the EB and FB before-and-after studies. A series
of models, including the Poisson-Lognormal models, Poisson-
Gamma models, and spatial models, are compared and evaluated.
Traffic volume, roadway geometric features, year factor, and spatial
effect are used to produce different sets of models. The intersec-
tions in this study have the same ASCS type deployed. The study
focuses on evaluating the safety effectiveness of the particular
ASCS (which this paper refers to as ‘‘ASCS”) without considering
the variations between multiple ASCS types. ASCS effects may vary
across sites due to specific features of the sites that are deployed
with ASCS. To explore the variations in ASCS effect across sites,
the study evaluates the safety effectiveness of ASCS for each corri-
dor and each intersection.

2. Literature review

The following subsections discuss the crash prediction model
and safety evaluation related studies of ASCS.

2.1. Crash prediction model

This subsection reviews the characteristics of the crash predic-
tion models. In the FB method, the Bayesian models used to esti-
mate the safety performance are similar to the concept of the
Safety Performance Function (SPF) used in the EB method. This
paper uses the same term ‘‘crash prediction model” for the conve-
nience of discussion, instead of the Bayesian models in the FB
methods and the SPF in the EB method.

2.1.1. Poisson-Gamma and Poisson-Lognormal Model
In general, there are two main types of models used in the esti-

mation of crash frequency: (a) Poisson-Gamma, and (b) Poisson-
Lognormal.

� Poisson-Gamma Model

When the Poisson mean is assumed to follow a gamma distribu-
tion, the Poisson-Gammamix distribution results in Negative Bino-
mial (NB) distribution (Carriquiry & Pawlovich, 2004; Khazraee
et al., 2018), with Maximum Likelihood Estimation (MLE) used
for parameter estimation. NB models have been widely used by
many researchers (Elvik et al., 2017; Hauer, 1997; Hauer et al.,
2002; Hovey & Chowdhury, 2005; Høye, 2015). In the EB frame-
work, the NB model is used to account for the over-dispersion
(i.e., the variance is much larger than the mean) of crash data.

� Poisson-Lognormal Model

When the Poisson mean is assumed to have a lognormal distri-
bution, the Poisson-Lognormal model results in an unclosed form
of the marginal distribution, which is difficult to handle using
the MLE method. The Poisson-Lognormal model is typically inte-
grated into the FB framework. The posterior distribution of the
parameters of the Poisson-Lognormal model can be obtained using
Markov Chain Monte Carlo (MCMC) simulation (Khazraee et al.,
2018).

2.1.2. Spatial models
Spatial effects can be introduced into a Poisson-Lognormal

model to consider the spatial correlation of adjacent road entities
(Cai et al., 2018). Although many studies (Barua et al., 2016;
Jonathan et al., 2016) have accounted for spatial effects in the
development of crash prediction models, few studies (Sacchi
et al., 2016) implement the spatial model in a before-and-after
safety study. Spatial models can be integrated into the FB method
but cannot be in current EB methods for safety evaluation (Gross
et al., 2010). The assumption of the non-spatial models (i.e.,
Poisson-Gamma model and Poisson-Lognormal model) is that
crashes are independent across sites. This assumption will be vio-
lated if the spatial correlation between sites within neighborhoods
exists.

On the other hand, neighboring sites may share similar traffic
and road conditions, driver behavior, and weather condition. As a
result, it may result in similar safety levels for neighboring sites.
Spatial effects usually exist, for example, among the adjacent inter-
sections (which is the case of this study), adjacent corridors (Li &
Wang, 2017), and the adjacent zone sharing the same border (Cai
et al., 2018).

2.2. Safety evaluation of Adaptive Signal Control Systems

Safety benefits of ASCS have been demonstrated in recent stud-
ies. Fontaine et al. (2015) have evaluated the safety effects of
InSync, a type of ASCS, for different corridors in Virginia using an
EB before-and-after study. Based on the analysis, the authors have
found that crashes are reduced by 17% due to ASCS. Dutta et al.
(2010) have studied crash data for one type of ASCS (i.e., SCATS)
and fixed-time signal control systems for two corridors in Michi-
gan. The authors (Dutta et al., 2010) have evaluated the change
in the crash rate before and after the ASCS deployment. The
authors have found that the total crash rate is reduced by 6% after
installing ASCS. The incapacitating injury crashes are reduced by
22% after ASCS deployment. The most significant improvement is
found for non-incapacitating injury crashes, which is reduced by
35%. Fink et al. (2016) have studied the safety impacts of SCATS
installed at signalized intersections in Oakland County. The authors
have performed a cross-sectional study using data from 498 signal-
ized intersections and found a reduction of 19.3% in angle crashes
associated with SCATS. This study found that SCATS does not sig-
nificantly reduce incapacitating injuries or fatality (Fink et al.,
2016). Khattak (2016) evaluated 41 intersections in Pennsylvania
where SURTRAC and InSync are installed. The author has imple-
mented an EB before-and-after safety study and computed Crash
Modification Factors (CMF) for total crashes, and fatal and injury
crashes. The author found reductions of 34% and 45% in total
crashes and fatal and injury crashes, respectively, due to ASCS.
Khattak et al. (2019) have examined the impact of ASCS on crash
severity. The authors have found that one type of ASCS (the name
of the ASCS type is not mentioned in the paper) decreases the prob-
ability of minor injury and severe plus moderate crashes by 10.36%
and 11.70%, respectively, while another type of ASCS (the name of
the ASCS type is not mentioned in the paper) decreases the proba-
bility of minor injury and severe plus moderate crashes by 6.92%
and 4.39%, respectively. Jin et al. (2021) have investigated the
effects of ASCS on crash severity. The authors (Jin et al., 2021) have
found that ASCS is associated with lower crash severity. The effects
of ASCS on crash severity vary with different intersection and cor-
ridor features.

ASCS is not always found to reduce crashes in a statistically sig-
nificant manner. Jesus and Benekohal (2019) have implemented
the EB method to determine the safety effectiveness of the ASCS.
The authors (Jesus & Benekohal, 2019) have found that the CMF
of ASCS for fatal and injury crashes is 0.67 (CMF less than 1

W. Jin, M. Chowdhury, S. Mahmud Khan et al. Journal of Safety Research 76 (2021) 301–313

302



indicates that ASCS reduces crashes), which is not statistically sig-
nificant at a 0.05 significance level. CMFs of property damage only
and total crashes are close to one, which indicates no crash reduc-
tion due to ASCS. The CMF for fatal, incapacitating injury, and non-
incapacitating injury combined is 0.68, which is not significant at a
0.05 significance level. The angle, rear-end, incapacitating injury,
and reported/not evident injury (this includes momentary uncon-
sciousness, claims of no evident injuries, limping, complaints of
pain, nausea, hysteria) crashes show insignificant reductions.

3. Method

This section first discusses model forms in the development of
crash prediction models in the EB and FB before-and-after study
procedures. Then, this section provides a validation procedure that
uses two criteria to validate possible models: (a) the potential bias
and variance of prediction, and (b) the estimation accuracy of
safety effectiveness.

3.1. Model development and evaluation procedure

This subsection introduces the models that would be incorpo-
rated into the EB and FB before-and-after study procedures. Traffic
volume, roadway geometric features (e.g., the number of access
points at an intersection, and the number of exclusive left-turn
lanes, right-turn lanes, and through lanes on major or minor
streets), year factor, and spatial effects are used to produce differ-
ent sets of the models. For each model, four crash types of interest
are accounted for: total crash, fatal and injury (F + I) crash, rear-
end crash, and angle crash. Two primary forms of models,
Poisson-Gamma and Poisson-Lognormal, are introduced. A spatial
model is also used with a Poisson-Lognormal model in this study
to account for the spatial effects existing in the investigated sites.
Model 1, Model 2, and Model 3 are implemented within the EB
framework. Model 4A, Model 4B, Model 5A, Model 5B, Model 6A,
and Model 6B are implemented within the FB framework.

3.1.1. EB Models
3.1.1.1. EB Model development. A general Poisson-Gamma model
with two tiers is expressed as the following:

ym;it � Poissonðkm;itÞ ð1Þ

km;it � Gammaða;/Þ ð2Þ
where, ym;it is the observed crash frequency at an intersection i
(i ¼ 1;2; :::;65 for a total of 65 intersections considered in this
study) on the corridor m(m ¼ 1;2; :::;6 for a total of six corridors
considered in this study) in a given year t (t ¼ 2011;2012; :::;
2018); km;it is the Poisson mean. The expectation of km;it , Eðkm;itÞ is
the expected yearly number of crashes at an intersection i on the
corridor m in the year t for a specified crash type (i.e., total crash,
F + I, rear-end, or angle crash). a is the shape parameter of Gamma
distribution, and / is the inverse scale parameter (i.e., rate
parameter) of the Gamma distribution.

Three crash prediction models (called SPFs in the EB frame-
work) are specified in terms of different explanatory variables.
Model 1 and Model 2 account for the year factor by introducing
annual multipliers. The year factor is often introduced into the
crash prediction model to account for temporal variation of crash
expectation, which accounts for possible unobserved factors such
as weather conditions, road conditions, and vehicle technology
improvements (Persaud et al., 2010). Model 3 accounts for the year
factor by introducing the year variable as one of the explanatory
variables in the model. Model 1 includes an annual multiplier,
and Annual Average Daily Traffic (AADT) without considering the

difference in roadway geometric features. Model 2 includes an
annual multiplier, AADT, and roadway geometric features. Model
3 includes AADT, roadway geometric features, and the year factor.

Model 1 (AADT + Annual multipliers):

Eðkm;itÞ ¼ am;texpðbm;0 þ bm;maj�aadtlogðmajorAADTm;itÞ
þ bm;min�aadtlogðminorAADTm;itÞÞ ð3Þ

Model 2 (AADT + Roadway factor + Annual multipliers):

Eðkm;itÞ ¼ am;texpðbm;0 þ bm;maj�aadtlogðmajorAADTm;itÞ
þbm;min�aadtlogðminorAADTm;itÞ

þ PQ
n¼1;j¼1

bm;jXmn;itÞ
ð4Þ

Model 3 (AADT + Roadway factor + Year):

Eðkm;itÞ ¼ expðbm;0 þ bm;maj�aadtlogðmajorAADTm;itÞ

þ bm;min�aadtlogðminorAADTm;itÞ þ
XQ

n¼1;j¼1

bm;jXmn;it

þ bm;TTm;itÞ ð5Þ
where,majorAADTm;it is AADT of major roads at the intersection i on
the corridor m in a given year t; minorAADTm;it is AADT of minor
streets at the intersection i on the corridor m in a given year t;
Xmn;it is the nth explanatory variable of roadway geometric features
(e.g., the number of exclusive left-turn, right-turn lane(s) and
through lane(s) on major or minor streets and the number of access
point(s) at an intersection) for the intersection i in a given year t; Q
is the total number of explanatory variables of roadway geometric
features; Tm;it is the year factor which is numeric, for example, 0 if
year is 2011, 1 if year is 2012, and so on; bm;T is the coefficient for
the year factor of Model 3; bm;maj�aadtis the coefficient for AADT of
major roads; bm;min�aadtis the coefficient for AADT of minor streets;

bm;0 is the intercept and bm;j is the jth coefficient for roadway geo-
metric features in Model 2 and Model 3. am;t is the annual multiplier
which is obtained by dividing the sum of predicted number of
crashes in a given year t by the sum of observed crashes in a given
year t after the EB models are fitted.

3.1.1.2. EB Model estimation and evaluation. EB model estimation is
performed in the R software by calling the R package ‘‘MASS.”
Potential multicollinearity MC issues are checked by evaluating
the Variance Inflation Factor (VIF) statistic. VIF values greater than
10 are used to check whether MC is of concern (O’Brien 2007).
Using this criterion, the authors find that no MC issues exist among
the explanatory variables used in this study. Akaike’s Information
Criterion (AIC) is used to select the set of variables used in the
regression models (Bumham & Anderson, 2002). The best-fitted
model is found with the lowest AIC. For example, roadway geomet-
ric features have some variables, including the number of exclusive
left-turn lanes, right-turn lanes, and through lanes on major or
minor streets and the number of the access points at an intersec-
tion. After model selection based on AIC, only a few roadway geo-
metric variables will be kept.

3.1.1.3. EB before-and-after evaluation procedure. The expected
number of crashes in the before period Eb, is obtained by combin-
ing two different information sources: (1) the observed crash data
for a site, Ob, and (2) the sum of the predicted number of crashes
during the before period, Pb, estimated by the crash prediction
models (i.e., Model 1, Model 2, and Model 3) for the individual site.
Eb is obtained by using the following equation (Hauer, 1997;
Persaud & Lyon, 2007),

Eb ¼ wPb þ 1�wð ÞOb ð6Þ
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The weight factor is estimated from Pb and w, which are esti-
mated from the SPF development,

w ¼ 1
1þ Pb=w

ð7Þ

where w is the value of the dispersion parameter obtained by the NB
regression-based SPF.

A correction factor that accounts for the length of the after per-
iod, changes in traffic volumes, and changes in roadway geometric
characteristics is multiplied with Ebto obtain theEa. This factor is
the ratio of the sum of the after-period SPF predictions, Pa and
the sum of the before-period SPF predictions, Pb. Thus, Ea can be
obtained below,

Ea ¼ Eb
Pa

Pb
ð8Þ

The observed number of crashes at a site with treatment during
the after period (Oa) is then compared to the expected number of
crashes on the same site (Ea), which is the expected number of
crashes that would have occurred if the treatment had not been
implemented. An estimate of the index of safety effectiveness of
treatment, h, is:

h ¼
P

all Oa=
P

all Ea

1þ Var
P

all Ea
� �

=
P

all Ea
� �2 ð9Þ

Var
X
all

Ea

 !
¼
X
all

Pa=Pbð Þ2Ebð1�wÞ
h i

ð10Þ

where,
P

all Oa is the summation of Oa for all studied sites;
P

all Ea is
the summation of Ea for all studied sites.

The estimated percentage of reduction in crashes is 100ð1� hÞ.
For example, a value of h ¼ 0:45 indicates a 55% decrease in crashes
with treatment. The uncertainty of the index of effectiveness (i.e.,
standard deviation) is calculated by taking the square root of the
variance of h. The variance of h is (Hauer, 1997; Persaud & Lyon,
2007):

Var hð Þ ¼
h2

Var
P

all
Oað ÞP

all
Oað Þ2 þ Var

P
all

Eað ÞP
all

Eað Þ2
� �

1þ Var
P

all
Eað ÞP

all
Eað Þ2

� �2 ð11Þ

In the Eq. (10), the assumption is that the ratio Pa to Pb is a con-
stant variable, not a random variable, which would affect the Eq.
(9) and Eq. (11) containing the term Var

P
all Ea

� �
.

3.1.2. FB models
3.1.2.1. FB model development. A general Poisson-Lognormal model
is introduced with multiple hierarchical levels in the following:

ym;it � Poissonðkm;itÞ ð12Þ

logðkm;itÞ ¼
Xp
j¼0

bmj;BBmj;it þ em;it ð13Þ

em;it � Normalð0;r2
e Þ ð14Þ

bmj;B � Normalð0;r2
b;jÞ ð15Þ

where, ym;it is the observed crash frequency at the intersection i on
the corridor m in a given year t; km;it is the Poisson mean. Bmj;it is the

explanatory variable in the model. bmj;B is the jth coefficient for the
explanatory variable in the model. P is the total number of explana-
tory variables. The distribution of parameters such as km;it ,bmj;B, and
em;it in the model is evaluated based on the estimation of the poste-

rior distribution of these parameters using the FB approach. In the
FB models, km;it is the site-specific expected crash frequency, and
each km;it represents a model parameter. em;it is introduced to
account for the variation across intersections and years. r2

e is
assumed to follow a prior Inverse-Gamma (0.001, 0.001) distribu-
tion for all models based on previous studies (Cai et al., 2018;
Carriquiry & Pawlovich, 2004; Sacchi & Sayed, 2014). r2

b;j is set to
1000 for all the prior distributions of bmj;B for all models resulting
in a non-informative prior distribution for bmj;B (Persaud et al.,
2010). Consequently, estimation of the posterior distribution of
bmj;B largely depends on observed data.

Three FB non-spatial models are defined in terms of different
explanatory variables. Model 4A and Model 5A introduce a random
effect to account for variation caused by the various intersections
and years, while Model 6A directly treats the year factor as a
covariate in the model. Based on the inclusion of the spatial effect
into the models, three different FB spatial models-Model 4B, Model
5B, and Model 6B are developed. A corridor-specific ASCS indicator
variable Im;it that labels the after period during which ASCS is
installed on the corridor m is included as shown below (1 is the
after period; 0 otherwise). bm;I is the coefficient of the ASCS pres-
ence indicator variable of the following models. The authors ini-
tially included the interaction variables into the model to
account for the possible interaction between ASCS and AADT and
the interaction between ASCS and roadway geometric features in
the model. But the interaction variables are not significant. Thus,
the interaction variables are not used for the following models.

Model 4A (AADT):

km;it ¼ expðbm;0 þ bm;maj�aadtlogðmajorAADTm;itÞ
þ bm;min�aadtlogðminorAADTm;itÞ þ bm;I Im;it þ em;itÞ ð16Þ

Model 4B (AADT + Spatial effect):

km;it ¼ expðbm;0 þ bm;maj�aadtlogðmajorAADTm;itÞ
þ bm;min�aadtlogðminorAADTm;itÞ þ bm;I Im;it þ em;it þ sm;iÞ ð17Þ

Model 5A (AADT + Roadway factor):

km;it ¼ expðbm;0 þ bm;maj�aadtlogðmajorAADTm;itÞ
þ bm;min�aadtlogðminorAADTm;itÞ þ bm;I Im;it

þ
XQ

n¼1;j¼1

bm;jXmn;it þ em;itÞ ð18Þ

Model 5B (AADT + Roadway factor + Spatial effect):

km;it ¼ expðbm;0 þ bm;maj�aadtlogðmajorAADTm;itÞ
þ bm;min�aadtlogðminorAADTm;itÞ þ bm;I Im;it

þ
XQ

n¼1;j¼1

bm;jXmn;it þ em;it þ sm;iÞ ð19Þ

Model 6A (AADT + Roadway factor + Year):

km;it ¼ expðbm;0 þ bm;maj�aadtlogðmajorAADTm;itÞ
þ bm;min�aadtlogðminorAADTm;itÞ þ bm;I Im;it

þ
XQ

n¼1;j¼1

bm;jXmn;it þ bm;TTm;it þ em;itÞ ð20Þ

Model 6B (AADT + Roadway factor + Year + Spatial effect):

km;it ¼ expðbm;0 þ bm;maj�aadtlogðmajorAADTm;itÞ
þ bm;min�aadtlogðminorAADTm;itÞ þ bm;I Im;it

þ
XQ

n¼1;j¼1

bm;jXmn;it þ bm;TTm;it þ em;it þ sm;iÞ ð21Þ
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where, sm;i could be considered as a latent variable that captures the
effect of unknown or unmeasured covariates that are assumed spa-
tially structured. The intrinsic Conditional Autoregressive (CAR)
model (Besag et al., 1991) is used for estimating sm;i, which is given
by:

sm;ijsm;j � Normal

P
j2@iwijsm;jP

j2@iwij
;

1
ss
P

j2@iwij

 !
; j–i ð22Þ

where @i is the set of intersections adjacent to i;wij is a spatial prox-
imity weight; ss is the precision parameter which is the inverse of
the variance. ss is assumed to follow a prior Gamma (0.001,
0.001) (Cai et al., 2018). wij is equal to 1 for i 2 @ i; otherwise, wij

is equal to 0.

3.1.2.2. FB model estimation and evaluation. ‘‘OpenBUGS” is open-
source software that performs Bayesian inference using the Gibbs
sampling algorithm. Bayesian model estimation and MCMC simu-
lation are performed in the R software by calling the R package
‘‘R2OpenBUGS.” For each FB model, two Markov chains are used
in MCMC simulations. Each chain has 200,000 iterations and a total
of 20,000 iterations are discarded during the burn-in (i.e., warm-
up) period. Bayesian estimation provides posterior probability dis-
tributions and Bayesian Credible Intervals (BCI) for statistical infer-
ence. Before implementing the estimation of the posterior
distribution of parameters of interest, convergence must be
checked in the MCMC simulation. As a rule of thumb, Rhat statis-
tics (i.e., scale reduction factor) less than 1.2 (Brooks et al., 1998)
is used to identify convergence. Also, viewing graphical summaries
and the number of effective samplings (i.e., the number of inde-
pendent samples drawn from the posterior distribution in the
MCMC simulation) for the parameters of interest could help to
check the convergence. Deviance Information Criterion (DIC) can
be used to determine the best set of predictors for each FB model
(Spiegelhalter et al., 2002). In general, differences of more than
10 (DIC value) may suggest that the FB model with lower DIC is
preferred (Spiegelhalter et al., 2002). Also, the significance of the
spatial effect is evaluated to determine if the spatial effect exits
in the crash data.

3.1.2.3. FB before-and-after evaluation procedure. In the FB before-
and-after study procedure, Crash Reduction Rate (CRR) is calcu-
lated (Lan et al., 2009; Persaud et al., 2010; Yanmaz-Tuzel &
Ozbay, 2010), as

CRR ¼ 1�
P

all OaP
all la

ð23Þ
P

all
OaP

all
la

is similar to the index of the safety effectiveness used in

the EB method.
The observed number of crashes at a site with treatment during

the after period (Oa) is compared with the expected number of
crashes on the same site (la), which is the number of crashes that
would have occurred if the treatment had not been implemented.
la can be obtained through developing crash prediction models
(i.e., Model 4A, Model 4B, Model 5A, Model 5B, Model 6A, and
Model 6B) in the FB procedure.

P
all la is the summation of la

for all studied intersections on a corridor across studied years for
corridor-specific safety effectiveness calculation or the summation
of for a specific intersection across studied years for intersection-
specific safety effectiveness calculation.

CRR is obtained directly by MCMC simulation. The uncertainty
of CRR can be evaluated with a 95% BCI by MCMC simulation.
The significance of CRR can be determined if the 95% BCI does
not contain zero.

3.2. Validation of the before-and-after evaluation methods

This section provides a validation procedure that uses two cri-
teria to validate EB and FB models: (a) the potential bias and vari-
ance of prediction, and (b) the estimation accuracy of safety
effectiveness. In this way, EB and FB models are compared using
the same criteria adopted in this study.

3.2.1. Evaluation of potential bias and variance of prediction
Root Mean Square Error (RMSE) is used to compare the poten-

tial bias and variance of prediction among different models. RMSE
is also used to measure the quality of an estimator and represent
the model prediction error and the model goodness of fit. A lower
value of RMSE indicates a smaller difference between the esti-
mated value and the actual observed crash frequency for non-
ASCS intersections. The equation is shown below:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

PT
t¼1

Eit � Oitð Þ2

NT

vuuut
ð24Þ

where, Eit is the expected number of the crashes of non-ASCS inter-
sections in an intersection i in the year t; Oit is the observed crashes
of non-ASCS intersections in an intersectioni in the year t; N is the
total number of non-ASCS intersections used for validation; T is the
total number of years.

In the EB procedure, the expected number of crashes in the sub-
sequent years for a specific intersection can be estimated by mul-
tiplying a correction factor due to the difference between the
subsequent years and the predecessor year by the expected num-
ber of crashes in the predecessor years. For example, the estimated
crash in 2012 for an intersection can be obtained by multiplying
the correction factor due to the difference between 2011 and
2012 by the expected number of crashes in 2011. Likewise, the
estimated crash frequency in 2013, 2014, 2015, 2016, and 2017
can be predicted in this way. In the FB procedure, the expected
number of crashes for a specific intersection in a given year can
be estimated directly by the MCMC simulation.

3.2.2. Estimation of safety effectiveness of non-ASCS intersections
To evaluate the performance of the candidate models in esti-

mating the safety effectiveness of ASCS, the authors compute and
compare the safety effectiveness of ASCS for non-ASCS intersec-
tions among different models since no ASCS effect exists for the
non-ASCS intersections. So crash reduction percentage for the
non-ASCS intersections (i.e., zero) can be deemed as the ground
truth. In the EB procedure, the null hypothesis is that the crash
reduction percentage is equal to zero, and the alternative hypoth-
esis is that the crash reduction percentage is not equal to zero. In
the FB procedure, the significance of the crash reduction percent-
age is determined if the 95% BCI does not contain zero. To calculate
the crash reduction percentage for the non-ASCS intersections, the
authors assume that 2011–2014 is the ‘‘before period;” 2015–2017
is the ‘‘after period” just for creating a case of evaluating the safety
effects for the non-ASCS intersections for both EB and FB
procedure.

3.3. Investigation of variation of ASCS safety effects

ASCS safety effects could vary with different intersection fea-
tures. The evaluation results of the safety effectiveness of ASCS
are analyzed based on different AADT groups, geometric features,
and speed limits of intersections. The evaluation results are aggre-
gated by three groups of AADT at major roads: AADT <= 20,000
vehicles/day, 20,000 vehicles/day < AADT <= 50,000 vehicles/day,
and AADT > 50,000 vehicles/day. This grouping of AADT is in line
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with a previous study (Khattak et al., 2019). The evaluation results
are aggregated by two groups based on the number of legs at an
intersection (i.e., three-legged and four-legged intersections). The
evaluation results are aggregated by six groups based on different
speed limits at major roads: 30 mph (13.41 m/s), 35 mph (15.65 m/
s), 40 mph (17.88 m/s), 45 mph (20.12 m/s), 50 mph (22.35 m/s),
and 55 mph (24.59 m/s). A linear regression model is developed
to explore the linear relationship between the ASCS safety effects
and each variable (i.e., AADT at major or minor roads, speed limits
at major or minor roads, the number of legs at an intersection, the
number of exclusive left-turn lanes/right-turn lanes/through lanes
on major or minor roads, or the number of access points at an
intersection) considered in this study.

4. Data description

As shown in Table 1, reference crash data (i.e., no ASCS is
installed) are obtained from similar signalized intersections and
corridors (e.g., similar roadway geometrics, the location of proxim-
ity, and same functional class of corridors) without ASCS at differ-
ent locations in South Carolina. Crash data from non-ASCS
corridors including US 78 in Berkeley, the segment of US 17A with-
out ASCS in Berkeley, US 1 in Lexington, SC 6 in Lexington, the seg-
ment of US 29 without ASCS in Greenville, S-311 in Greenville, SC
146 in Greenville, US 17 in Charleston, SC 171 in Charleston, SC 61
in Charleston, and US 17 in Horry are utilized for the reference
crash data. Crash data during before period of ASCS corridors are
also utilized for the reference crash data to increase the sample
size. The sample size of reference crash data is 680 across different
years and different signalized intersections. In the EB procedure,
the reference crash data are used for developing the EB models
first, and then EB models are combined with the crash data from
ASCS corridors to predict EB estimates during after period. Differ-
ent from the utilization of the crash data in the EB procedure, in
the FB procedure, the reference crash data and crash data of ASCS
corridors are used directly in the FB models since the FBmodel pre-
diction and safety effect estimation procedure are conducted in a
single step. The South Carolina Department of Transportation
(SCDOT) provided the authors with crash data from 2011 to
2018. The crash data include attributes including the crash type
and AADT at intersections (major and minor streets). The following
roadway geometric features are also collected from Google Earth:
(a) the number of exclusive left-turn lanes, right-turn lanes and
through lanes on major or minor streets, and (b) the number of
access points within the influence area of an intersection. In terms

of crash type, crash data are aggregated in four categories: total
crashes, F + I crashes, rear-end crashes, and angle crashes. In this
paper, intersection crashes are investigated for evaluating the ASCS
safety effect. According to SCDOT’s strategy, intersection crashes
are those that happened within 0.05 miles (80.47 m) of the center
of the intersection.

ASCS was not installed in the 24 signalized intersections on US
29 corridor in Greenville, and the corridor could be deemed as a
non-ASCS corridor. The crash data of US 29 corridor from 2011 to
2017 during which ASCS was not implemented are used for vali-
dating EB and FB models.

Initially, the authors got 13 corridors that have installed ASCS.
Original crash data have before period and after period data. The
authors only include corridors that have at least two-year after
period crash data for this study. ASCS safety effects of six ASCS cor-
ridors with a total of 65 signals in South Carolina are evaluated.
Only one type of ASCS is investigated in this study.

US 17A in Summerville includes 12 signalized intersections,
which have been installed with ASCS since 2015. SC 642 in Charles-
ton consists of 18 signalized intersections, which have been
installed with ASCS since 2015. US 52 in Charleston consists of
17 signalized intersections equipped with ASCS since 2016. US
17 in Pawleys Island consists of six signalized intersections
equipped with ASCS since 2016. Roper Mt Rd/Garlington Rd in
Greenville includes five signalized intersections with ASCS since
2016. N. Lake Drive in Lexington has been implemented with ASCS
at seven signalized intersections since 2015. The study crash data
pool for safety evaluation excludes crashes that occurred during
the ASCS installation year to minimize evaluation bias caused by
construction before activating ASCS and driver’s adaption to the
new driving environment with ASCS.

Few signalized intersections had Flashing Yellow Arrow (FYA)
installed during the before or the after period. For this reason,
FYA variable was considered as a categorical variable in the initial
model to investigate the effects of the number of FYA on the crash
frequency at intersections. However, the FYA variable is not signif-
icant in the model. Thus, the FYA variable is not included in the
model. Offset improvements for left-turn lanes, which have the
potential to reduce the number of crashes at signalized intersec-
tions, were made on one intersection after the ASCS was installed.
Crashes that occurred during the period after offset improvements
were made are not included in the analysis. Signal phasing was
modified at one of the signals after the ASCS was implemented,
so the crashes that occurred during the period after such changes
were made are not included in the analysis.

Table 2 shows a summary of descriptive statistics of the geo-
metric features and speed limits at major and minor roads at inter-
sections. The before and after period conditions are similar, in
terms of geometric features and speed limits, at major and minor
streets at intersections.

Table 3 shows descriptive statistics of the intersection crash fre-
quency (i.e., number of crashes per year) for the before and after
period for the ASCS corridors with the maximum number of
crashes and minimum number of crashes, respectively. The crash
frequency statistics show that crashes are over-dispersed (i.e., vari-
ance greater than mean) in the total crash, F + I crash, rear-end
crash and angle crash for the ASCS corridors.

5. Validation results of candidate models

This section provides comparison results of the FB and EB mod-
els in terms of: (a) the potential bias and variance of prediction and
(b) the estimation accuracy of safety effectiveness. Based on the
comparison results, this section could guide to select the best
model for evaluating the safety effectiveness of ASCS.

Table 1
Crash Data Usage and Resource.

Crash Data Type Crash Data Resource

Reference Crash Data Similar signalized corridors without ASCS (US
78 in Berkeley, the segment of US 17A without
ASCS in Berkeley, US 1 in Lexington, SC 6 in
Lexington, another segment of US 29 without
ASCS in Greenville, S-311 in Greenville, SC 146
in Greenville, US 17 in Charleston, SC 171 in
Charleston, SC 61 in Charleston, and US 17 in
Horry), and ASCS corridors (before period
crash data of SC 642, US 52, US 17, Roper Mt
Rd/Garlington Rd, N Lake Drive, and US 17A)

Crash Data for Validation of
EB and FB Models

Non-ASCS corridor (US 29) with 24
intersections

Crash Data for Safety
Evaluation for ASCS
Corridors

Six ASCS corridors with 65 intersections
(crash data of SC 642, US 52, US 17, Roper Mt
Rd/Garlington Rd, N Lake Drive, and US 17A)
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5.1. Comparison of potential bias and variance of prediction

As shown in Table 4, the FB models have lower RMSE values
than that of EB models in all scenarios involving different crash
types and predictors. Lower RMSE values indicate lower potential
bias and variance of prediction.

5.2. Safety effect estimation comparison

As shown in Fig. 1, Model 6A (AADT + Roadway factor + Year)
and Model 6B (AADT + Roadway factor + Year + Spatial effect)
have the best estimation because the mean of the crash reduc-
tion percentage is quite close to zero (in the ‘‘rectangle” box in
Fig. 1). This finding indicates that adding the year factor as a
covariate into the FB non-spatial model and FB spatial model
could improve the accuracy of estimation of the safety effective-
ness of ASCS. So safety researchers and practitioners are encour-
aged to include the year factor in before-and-after evaluation
studies.

The difference in the mean of the crash reduction percent-
age between FB non-spatial models and FB spatial models is
small. However, based on the FB spatial model estimation,
the spatial effect is statistically significant, which indicates
that the spatial effects exist. In addition, DIC is compared
between FB non-spatial models and FB spatial models. The
difference between the DIC of FB spatial and non-spatial mod-
els is more than 10 in all types of models, which indicates
that FB spatial models are preferred over the FB non-spatial
models. So safety researchers and practitioners are encouraged
to include the spatial effects in FB before-and-after evaluation
studies.

6. Safety evaluation results

6.1. Corridor-specific evaluation results

Based on the validation results discussed in Section 5, Model 6B
that includes AADT, roadway, year factor, and spatial effect, per-
forms best among all models. Six ASCS corridors at different loca-
tions in South Carolina are evaluated using Model 6B. Model
parameters are not presented in the paper since model parameters
for each corridor vary, and presenting model variables will be cum-
bersome for the paper. Only significant variables of Model 6B for
the total crash for SC 642 are shown in Table 5. All variables pre-
sented in this table are statistically significant because 95% BCIs
do not include zero. A positive sign of an estimate in Table 5 indi-
cates an increase in the number of crashes, while a negative sign of
an estimate indicates a reduction in the number of crashes. As pre-
sented in Table 5, the variable, the presence of ASCS, is associated
with reductions in the number of crashes at intersections. Other
variables, year factor, the number of exclusive left-turn lanes on
major streets, the number of through lanes/exclusive right-turn
lanes/exclusive left-turn lanes on minor streets, the number of
access points on major roads, and AADT of major roads and minor
roads, are associated with increases in the number of crashes at
intersections. The ‘‘sigma.spatial effect” variable is statistically sig-
nificant, indicating that the spatial effects exist on SC 642 and
could be captured by a spatial model. The ‘‘sigma.random effect”
variable is statistically significant, suggesting that the random
effect could capture the variations in the crash frequency across
intersections and years.

A parameter (the inverse of the square root of the precision
parameter indicated in Eq. (22)) of spatial effect estimation is pre-

Table 2
Descriptive Statistics of Intersection Geometric Features and Speed Limits Data.

Variables Before Period After Period

Mean S.D.* Min Max Mean S.D.* Min Max

Number of legs at intersections 3.82 0.38 3 4 3.8 0.4 3 4
Number of through lanes on major streets 5.37 1.44 2 8 5.29 1.28 2 8
Number of the exclusive right-turn lanes on major streets 1.2 0.8 0 2 1.16 0.84 0 2
Number of the exclusive left-turn lanes on major streets 2.28 0.91 0 4 2.22 0.89 0 4
Number of through lanes on minor streets 2.16 1.21 0 5 2.14 1.19 0 5
Number of the exclusive right-turn lanes on minor streets 1.02 0.7 0 2 0.87 0.75 0 2
Number of the exclusive left-turn lanes on minor streets 1.81 0.89 0 4 1.89 0.89 0 4
Number of access points within the influence area of intersection on major streets 3.03 1.75 0 7 3.27 1.8 0 7
Number of access points within the influence area of intersection on minor streets 2.38 1.92 0 7 2.39 1.88 0 7
Speed limit on major streets (mph) 42.64 5 25 55 41.47 5.53 25 55
Speed limit on minor streets (mph) 32.15 4.89 25 50 31.78 4.71 25 50

*S.D.-Standard deviation.

Table 3
Crash Frequency (Number of Crashes per Year) Statistics for ASCS Corridors.

Crash Types Before period After period

Min Mean Max S.D.* Min Mean Max S.D.*

US 17A 2011–2014 2016–2018
Total Crash 5 19.40 52 12.04 7 29.5 86 17.65
F + I 0 4.67 15 3.33 0 5.97 22 4.58
Rear-end 1 9.96 35 8.13 1 14.06 50 10.50
Angle 0 5.88 18 3.76 2 8.06 20 4.16

Roper Mt Rd/Garlington Rd 2011–2015 2017–2018
Total Crash 0 4.96 23 6.61 0 7.40 28 10.20
F + I 0 0.68 4 1.22 0 0.90 3 1.20
Rear-end 0 3.60 18 4.47 0 5.40 23 7.95
Angle 0 1 8 1.96 0 1.40 7 2.37

*S.D.-Standard deviation.
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sented in Table 6. The spatial effects are statistically significant for
all corridors and crash types since 95% BCIs do not include zero,
which indicates that the spatial effects exist on all corridors and
could be captured by the spatial model.

Positive signs of values in Table 7 indicate crash increases, while
negative signs of values indicate crash reductions. The 95% BCI of
each model is shown in the parentheses in Table 7. The ASCS shows
crash reductions for the majority of corridors for different crash
types.

As shown in Table 7, the highest safety benefits are noted for
angle crash for all corridors except US 17A, possibly because the
primary objective of the algorithm of ASCS is to minimize total
traffic delays of the intersection, which considers the traffic

demand from side streets. ASCS potentially decreases the number
of angle conflicts.

For rear-end crashes, three corridors (i.e., US 52, N. Lake Drive,
and US 17A) shows ASCS increases in rear-end crashes, possibly
because ASCS deployed on these corridors tends to achieve bal-
anced service for all vehicle movements, thus minimizing number
of stops along corridors (fewer stops may lead to fewer rear-end
crashes) tends to be of lower priority than minimizing delay. In
addition, the side traffic demand is relatively high among these
corridors; thus it may interrupt the major traffic flow.

For US 52, ASCS shows a crash increase in F + I, possibly because
US 52 has the highest traffic volume among all corridors, which
leads to higher crash severity levels.

Table 4
RMSE for EB and FB models.

Model RMSE

Total Crash F + I Rear-end Angle

EB Models Model 1 (AADT + Annual SPF multipliers) 9.91 5.59 7.07 4.49
Model 2 (AADT + Road + Annual SPF multipliers) 9.83 5.59 6.92 4.44
Model 3 (AADT + Road + Year) 9.75 5.54 6.67 4.43

FB Non-spatial Models Model 4A (AADT) 1.23 1.04 1.31 1.09
Model 5A (AADT + Road) 1.26 1.01 1.34 1.09
Model 6A (AADT + Road + Year) 1.15 0.97 1.23 1.01

FB Spatial Models Model 4B (AADT + Spatial effect) 1.24 0.97 1.30 1.03
Model 5B (AADT + Road + Spatial effect) 1.31 0.98 1.34 1.05
Model 6B (AADT + Road + Year + Spatial effect) 1.22 0.91 1.24 0.95

Fig. 1. Crash Change Percentage with 95% CI among EB Models and with 95% BCI among FB Models.
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6.2. Intersection-specific evaluation results

The safety effectiveness of ASCS is also evaluated for each inter-
section. As shown in Fig. 2, a negative value means that ASCS
reduces crashes. The figure shows that most of the intersections
with ASCS show crash reductions for all crash types except the
rear-end crash. The ASCS increases rear-end crashes for most of
intersections, possibly because ASCS deployed on these intersec-
tions tends to achieve balanced service for all vehicle movements,
and minimizing the number of stops at intersections (fewer stops
may lead to fewer rear-end crashes) tends to be of lower priority
than minimizing delay.

The evaluation results are aggregated by three groups of AADT
at major roads: AADT less than or equal to 20,000 vehicles/day
(sample size = 14), AADT between 20,000 vehicles/day and
50,000 vehicles/day (sample size = 48), and AADT greater than
50,000 vehicles/day (sample size = 3). This grouping of AADT is in
line with a previous study (Khattak et al., 2019). As shown in
Fig. 3 (b), for F + I cashes, there is a linear relationship between
the crash change due to the ASCS and different AADT groups and
the linear relationship is inferred based on the regression analysis.
Higher AADT decreases ASCS safety benefits in reducing the F + I
crashes. The possible reason could be that higher traffic volume
may be associated with more severe crashes. As shown in Fig. 3

Table 5
Model estimates for the total crash evaluation for SC 642.

Variable Estimate 95% BCI

The presence of ASCS �0.40 (�0.61, �0.18)
Year factor 0.12 (0.10, 0.15)
The number of exclusive left-turn lanes on major streets 0.07 (0.001, 0.13)
The number of through lanes on minor streets 0.08 (0.03, 0.12)
The number of exclusive right-turn lanes on minor streets 0.22 (0.14, 0.30)
The number of exclusive left-turn lanes on minor streets 0.28 (0.21, 0.35)
The number of access points on major roads 0.06 (0.04, 0.09)
Log (AADT of major roads) 0.75 (0.63, 0.87)
Log (AADT of minor roads) 0.22 (0.18, 0.26)
Intercept �8.34 (-9.61, �7.08)
sigma.spatial effecta 0.65 (0.35, 1.06)
sigma.random effectb 0.60 (0.56, 0.64)

a: the inverse of the square root of the precision parameter indicated in Eq. (22).
b: the square root of the variance in Eq. (14).

Table 6
Spatial Effect Estimation for Each Corridor.

Corridor-specific Model Spatial Effect Estimation (95% BCI)

Total Crash F + I Rear-end Angle

SC 642 0.65
(0.35�1.06)

0.30
(0.03�0.89)

0.49
(0.22�0.87)

0.39
(0.09�0.85)

Roper Mt Rd 1.24
(0.15�3.3)

0.67
(0.03�2.81)

0.59
(0.03�2.21)

4.75
(1.15�15.11)

US 17 Pawleys Island 0.28
(0.03�0.92)

0.18
(0.03�0.68)

0.45
(0.05�1.24)

0.18
(0.03�0.67)

US 52 0.31
(0.06�0.71)

0.12
(0.03�0.36)

0.36
(0.06�0.84)

0.48
(0.13�0.96)

N. Lake Drive 0.56
(0.14�1.25)

0.92
(0.19�2.10)

0.27
(0.03�0.81)

0.87
(0.32�1.89)

US 17A 0.33
(0.03�0.84)

0.21
(0.03�0.63)

0.29
(0.03�0.79)

0.45
(0.05�1.01)

Table 7
Corridor-specific Safety Effect Estimation.

Location Crash Change Percentage (95% BCI)

Total Crash F + I Rear-end Angle

SC 642 �32.2%*
(�45.0%��17.4%)

�16.3%
(�36.7%�8.5%)

�16.7%
(�34.3%�5.1%)

�41.7%*
(�55.8%��24.8%)

Roper Mt Rd �41.1%*
(�64.9%��8.1%)

�73.7%*
(�88.7%��52.6%)

�3.4%
(�45.5%�54.3%)

�92.0%*
(�99.4%��75.3%)

US 17 Pawleys Island �49.8%*
(�66.8%��27.2%)

�46.7%*
(�68.2%��16.3%)

�39.4%*
(�61.1%��9.8%)

�57.4%*
(�73.3%��35.2%)

US 52 �4.6%
(�25.7%�20.8%)

+16.2%
(�15.7%�55.9%)

+0.4%
(�24.4%�30.5%)

�15.6%
(�37.8%�11.8%)

N. Lake Drive �6.5%
(�31.2%�24.4%)

�26.8%
(�52.1%�6.4%)

+3.2%
(�25.8%�39.5%)

�28.0%
(�51.0%�1.8%)

US 17A +19.7%
(�5.7%�19.8%)

�31.8%*
(�49.8%��10.0%)

+17.1%
(�9.7%�49.4%)

+10.8%
(�15.4%�42.8%)

*: statistically significant in terms of 95% BCI (FB).
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Fig. 3. Evaluation results aggregated by AADT of major roads *: Group 1 (sample size = 14): AADT <= 20,000 vehicles/day; Group 2 (sample size = 48): 20,000
vehicles/day < AADT <= 50,000 vehicles/day; Group 3 (sample size = 3): AADT > 50,000 vehicles/day.

Fig. 2. Percent Change of Crashes due to ASCS at Each Intersection for Different Crash Types.
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(a), (c), and (d), for the total crash, rear-end crash, and angle
crash, crash changes due to the ASCS are similar for different
AADT groups and these crash changes are not statistically
different between different AADT groups based on the regression
analysis.

The evaluation results are aggregated by two groups based on
the number of legs at an intersection, that is, three-legged (sample
size = 16) and four-legged intersections (sample size = 49). As
shown in Fig. 4 (b), for F + I crashes, the crash reduction due to
the ASCS is more considerable in the four-legged intersection com-

Fig. 4. Evaluation results aggregated by number of legs at an intersection.

Fig. 5. Evaluation results aggregated by speed limits at major streets**. Sample size for each speed limit: 30mph: 3; 35mph: 12; 40 mph: 6; 45mph: 37; 50 mph: 4, 55 mph: 3.
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pared to the three-legged intersection and the crash reduction due
to the ASCS is statistically different between the four-legged inter-
section and three-legged intersection based on the regression anal-
ysis. As shown in Fig. 4 (a), (c), and (d), for the total crash, rear-end
crash, and angle crash, crash changes due to the ASCS are similar
for four-legged intersections and three-legged intersections and
the crash changes due to ASCS are not statistically different
between four-legged intersections and three-legged intersections
based on the regression analysis.

Additionally, the evaluation results are aggregated by six groups
based on different speed limits at major roads: 30 mph (13.41 m/s),
35 mph (15.65 m/s), 40 mph (17.88 m/s), 45 mph (20.12 m/s), 50
mph (22.35 m/s), and 55 mph (24.59 m/s). As shown in Fig. 5 (a)
and (c), for the total crash and rear-end crash, there is a linear rela-
tionship between the ASCS safety benefits and different speed lim-
its and the linear relationship is inferred based on the regression
analysis. The ASCS safety benefit in reducing the total crash and
rear-end crash increases as the speed limit increases. As shown
in Fig. 5 (b), the ASCS safety benefit in lowering F + I crashes
decreases as the speed limit increases and a linear relationship is
inferred based on the regression analysis. It is expected that the
higher average speed may be associated with higher severe
crashes. As shown in Fig. 5 (d), for the angle crash, it is found that
there is no linear relationship between the crash change due to the
ASCS and different speed limits and it is inferred based on the
regression analysis.

A linear regression model is developed to explore the linear
relationship between the ASCS safety effects and other variables
(i.e., the number of exclusive left-turn lanes/right-turn lanes/
through lanes on major or minor streets, and the number of access
points at an intersection) considered in this study. Based on our
analysis, for F + I crashes, as the number of through lanes on major
streets increases, the ASCS safety benefit decreases. More number
of through lanes on major streets are associated with higher traffic
volume, so the ASCS safety benefit decreases with the increasing
traffic volume. For the total crash, rear-end crash, and the angle
crash, there is no linear relationship between the safety effective-
ness of the ASCS and the number of through lanes on major streets.
For the F + I crashes, as the number of access points on minor
streets increases, the ASCS safety benefit increases. The possible
reason could be that the average speed of the traffic is lower due
to the interruption of traffic from/to the access points, so the severe
crashes are reduced. For the total crash, rear-end crash, and the
angle crash, there is no linear relationship between the safety
effectiveness of the ASCS and the number of access points on minor
streets.

For all crash types (i.e., total crash, F + I, rear-end crash, and
angle crash) considered in this paper, based on the regression anal-
ysis, there is no linear relationship between the safety effective-
ness of ASCS and AADT of minor roads, the number of the
exclusive right-turn lanes on major streets, the number of the
exclusive left-turn lanes on major streets, the number of through
lanes at minor streets, the number of the exclusive right-turn lanes
on minor streets, the number of the exclusive left-turn lanes on
minor streets, the number of access points on major streets, and
the speed limit at minor streets.

7. Conclusions

This paper develops a series of models, including the Poisson-
Lognormal models, Poisson-Gamma models, and spatial models
that are implemented in the EB and FB before-and-after studies.
Different EB and FB models are validated using real-world non-
ASCS intersections. The uniqueness of this paper is that it investi-
gates how model variations would affect: (a) potential bias (e.g.,

bias due to regression-to-the-mean, traffic volume changes, and
roadway geometric feature changes) and variance of prediction
and (b) estimation accuracy of safety effectiveness. The findings
would provide useful guidance for determining appropriate mod-
els for before-and-after safety studies. The FB model that accounts
for traffic volume, roadway geometric features, year factor, and
spatial effects shows the best performance in reducing potential
bias and variance of prediction and improving the accuracy of
safety effect estimation.

This paper then applies the best FB model to the safety evalua-
tion of ASCS and evaluates the safety effectiveness of ASCS at six
corridors with a total of 65 signalized intersections. ASCS shows
crash reductions for most of corridors and intersections. It is also
found that the safety effectiveness of ASCS varies with different
intersection features (i.e., AADT at major streets, number of legs
at an intersection, the number of through lanes on major streets,
the number of access points on minor streets, and the speed limit
at major streets).

Although this paper discusses different explanatory variables
such as AADT, roadway geometric features, and year factor, other
possible explanatory variables such as weather conditions, socio-
economic factors may be accounted for in developing the crash
prediction model. Gaussian CAR distribution is used in the spatial
model. However, other distributions of spatial models, such as
double exponential distribution and multivariable Gaussian distri-
bution, could be implemented in the spatial model. The effect of
neighboring weight matrix structures, such as distance-based
weights and exponential decay-based weights on spatial models,
may be evaluated in future work.

8. Practical applications

The association between ASCS and crash reductions encourages
more ASCS deployments. The variation of the safety effectiveness
of ASCS with different intersection features provides insights into
selecting ASCS deployment sites for reducing crashes.
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a b s t r a c t

Introduction: The number of road fatalities have been falling throughout the European Union (EU) over
the past 20 years and most Member States have achieved an overall reduction. Research has mainly
focused on protecting car occupants, with car occupant fatalities reducing significantly. However,
recently there has been a plateauing in fatalities amongst ‘Vulnerable Road Users’ (VRUs), and in 2016
accidents involving VRUs accounted for nearly half of all EU road deaths. Method: The SaferWheels study
collected in-depth data on 500 accidents involving Powered Two-Wheelers (PTWs) and bicycles across
six European countries. A standard in-depth accident investigation methodology was used by each team.
The Driver Reliability and Error Analysis Method (DREAM) was used to systematically classify accident
causation factors. Results: The most common causal factors related to errors in observation by the
PTW/bicycle rider or the driver of the other vehicle, typically called ‘looked but failed to see’ accidents.
Common scenarios involved the other vehicle turning or crossing in front of the PTW/bicycle. A quarter
of serious or fatal injuries to PTW riders occurred in accidents where the rider lost control with no other
vehicle involvement. Conclusions: Highly detailed data have been collected for 500 accidents involving
PTWs or bicycles in the EU. These data can be further analyzed by researchers on a case-study basis to
gain detailed insights on such accidents. Preliminary analysis suggests that ‘looked but failed to see’
remains a common cause, and in many cases the actions of the other vehicle were the critical factor,
though PTW rider speed or inexperience played a role in some cases. Practical Applications: The collected
data can be analyzed to better understand the characteristics and causes of accidents involving PTWs and
bicycles in the EU. The results can be used to develop policies aimed at reducing road deaths and injuries
to VRUs.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Road safety remains a major societal challenge within the Euro-
pean Union (EU). In 2016, 25,600 people died on the roads of Eur-
ope and 1.4 million people were injured (EC, 2018). Although there
are variations between Member States, road fatalities have gener-
ally been falling throughout the EU until recent times. During the
last few decades, measures to improve road accident prevention
have predominantly focused on protecting car occupants to good
effect as car occupant fatalities reduced by 44% during the period
from 2007 to 2016 (EC, 2018).
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However, at the same time the number of fatalities and injuries
amongst other categories of road users has not fallen to the same
extent, for example cyclist deaths decreased by only 0.4% on aver-
age in the EU between 2010 and 2018 (ETSC, 2020). Vulnerable
Road Users (VRUs) are a priority and represent a real challenge
for researchers working on accident prevention. Accidents involv-
ing VRUs comprised approximately 47% of all fatalities in the EU
during 2016. Of these, Powered Two-Wheelers (PTWs) comprised
17% and cyclists 8% of the total numbers of fatalities (EC, 2018),
though these proportions do vary between different countries.

Powered two-wheeler is the collective term for motorcycles,
mopeds, light mopeds (also called mofas) and speed-pedelecs.
PTW use has continued to increase over the years, attracting road
users for a variety of reasons such as their lower running costs and
ability to easily move in and out of congested traffic (Haworth,
2012). However, there are also disadvantages associated with
PTWs, for example they are lightweight and can lose control more
easily than a car (Van Elslande & Elvik, 2012). Compared with some
other vulnerable road users they can travel at high speeds and mix
more closely with other traffic, making them one of the most vul-
nerable groups of road users and road accidents involving PTW rid-
ers are a major social concern.

Bicycle riders are also particularly vulnerable as they travel at
lower speeds than motorized vehicles, can be difficult to see, and
have little protection if they are involved in an accident. Unlike
pedestrians with whom they share these characteristics, cyclists
are often on the road mixing directly with other traffic with a
higher speed differential, giving them an increased risk of being
in an accident with a partner of greater mass.

For these reasons, the SaferWheels study aimed to investigate
the causes of accidents involving PTWs and bicycles in Europe.
An integral part of this study was that in-depth accident data were
collected by trained investigators from six European countries
using a common methodology.

The primary objectives of the SaferWheels study were: (1) col-
lection of accident data for at least 500 accidents of which approx-
imately 80% would involve PTWs and the remainder bicycles that
collided with a motorized vehicle; (2) in-depth investigations to
be carried out using a common established set of protocols based
on a systemic approach to risk factor identification; and (3) analy-
sis of the collected data to give an indication of the main accident
typologies and causation factors.

It is noted here that the current study only investigated bicycle
accidents where a motorized vehicle was involved. Bicycle only,
bicycle-bicycle, and bicycle-pedestrian accidents were not in the
scope of this study, though research suggests such accidents
account for a large number of serious and fatal injuries to cyclists
that often go unreported (see for example Schepers, Stipdonk,
Methorst & Olivier, 2017, Boele-Vos et al., 2017).

Several previous studies have examined the characteristics of
motorcyclist safety. MAIDS (Motorcycle Accidents In-Depth Study),
reported in ACEM (2009), carried out in-depth investigations of
over 900 accidents involving PTWs in five sampling areas in the
EU. The study concluded that the main cause of the majority of
PTW accidents was rider or driver error, primarily due to driver
inattention, temporary view obstructions or low PTW conspicuity
(ACEM, 2009). Other studies have also explored factors affecting
injury severity. For example, Albalate and Fernandez-Villadangos
(2010) identified gender, excess speed, road width, and alcohol
consumption as factors affecting PTW injury severity. Pai and
Saleh (2007) determined that junction accidents resulted in more
severe outcomes than those not at junctions, and that riding in
dark conditions further increased severity. In a recent study,
Theofilatos and Ziakopoulos (2018) found that traffic and speed
variations increase PTW injury severity, while increased truck pro-
portions in the traffic mix were found to reduce injury severity.

With respect to bicycle accidents, previous literature has iden-
tified some common scenarios and causes. Räsänen and Summala
(1998) carried out an in-depth analysis of bicycle accidents and
found that poor attention allocation and unjustified expectations
of the behavior of others were common causes. They also identified
a common scenario involving a car driver turning right and coming
into conflict with a cyclist on a cycle track. More recently,
Wegman, Zhang, and Dijkstra (2012) have explored methods to
increase cycling in a population without also increasing fatalities
and suggested a safe system approach would best protect vulnera-
ble road users such as cyclists. Tripodi and Persia (2015) further
promoted the use of e-safety applications and Information and
Communication Technologies (ICT) in enhancing cyclist safety, as
well as highlighting that different European countries have varied
attitudes to cyclists and so will need different countermeasures.

2. Methodology

Data for the study were collected from sample regions in six EU
countries (Table 1) to give a representative view of accidents in
Europe. Together the countries accounted for 57% of PTW and
45% of cyclist fatalities in Europe in 2016 (EC, 2018). The sample
regions were chosen to be as representative as possible of each
country; the relationship between each sample region and the
country’s national population is described in more detail in
Morris et al. (2018).

The objective of the study was to investigate 500 accidents
comprising approximately 80% PTW and 20% bicycle accidents;
however the proportions would vary for each sample region in
order to be more representative of their own accident populations.
Table 1 shows the proportion of bicycle and PTW accidents aimed
to be investigated by each team to achieve a representative sample.
Due to some difficulties in data collection, which are discussed
later, these individual proportions were reviewed regularly during
the study and adjusted where needed, with some teams collecting
more or less PTW / bicycle accidents than originally planned. The
numbers that were achieved in practice are shown in the results
section in Table 2.

The aim of the study was to investigate the causes of road acci-
dents involving cyclists and PTWs in Europe, therefore only acci-
dents that involved either a PTW or bicycle (or both) were
examined. PTW accidents could either be single vehicle or involve
a collision partner, however bicycle accidents were only within the
sampling criteria if they were in collision with a motorized vehicle.
The exception to this was e-bikes (bicycles that provide electrical
support even when the cyclist does not pedal at all) and pedelecs
(electrically assisted bicycles in which you have to pedal to get
assistance), as these could be classified as motorized in their own
right and so were included regardless of whether the accident
included another motorized vehicle.

For investigation of accidents the study utilized the methodol-
ogy defined by the DaCoTA project (Atalar, Talbot & Hill, 2012).

Table 1
Study sampling areas.

Country Data
collection
region

Team proportion
PTW accidents

Team proportion
bicycle accidents

France Essonne 88% 12%
Greece Thessaloniki 96% 4%
Italy Rome 98% 2%
The Netherlands The Hague 51% 49%
Poland Mazowieckie 47% 53%
United Kingdom Midlands 54% 46%
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The DaCoTA methodology was chosen because: (a) it is a compre-
hensive guide to conducting in-depth road accident investigations;
(b) it has the capability to describe all involved road users in the
accident; (c) it has a manual including examples and recom-
mended applications; and (d) it allows all the investigation teams
to use a harmonized methodology and thus make the results
comparable.

The DaCoTA investigation methodology specifies two primary
approaches to gathering information: ‘On-Scene’ and ‘Retrospec-
tive.’ In the ‘On Scene’ approach, investigators were notified of an
accident by emergency services and attended the scene at the time
to collect data. A ‘Retrospective’ approach was used when atten-
dance at the accident was not possible. In this approach, the vehi-
cles are examined after the accident (e.g., at recovery yards), the
scene revisited, and road users approached for interviews. Accident
investigation reports (including scene photos, vehicle examina-
tions, driver/rider interviews etc.) from the emergency services
are also obtained wherever possible.

The adapted SaferWheels methodology is described fully in
Morris et al. (2018). Data were collected during the period of
2015–2017. Investigated accidents usually involved injury to the
PTW or bicycle rider; however, a small sample of non-injury acci-
dents were investigated if there were sufficient data available to
form a useful case.

A purposive sampling method was adopted. This was based on
the concept of saturation, defined as the point at which the data
collection process no longer offers any new or relevant data. Case
selection was random in all cases, however, there were limitations
as not all accidents could be reached in time to investigate thor-
oughly. Furthermore, barriers such as data privacy issues, legal
investigation, explicit refusal by involved parties, etc. prevented
the investigation of some accidents. Due to these challenges, some
teams relied on investigations of fatal and more serious accidents
conducted by specialist police accident investigators (‘retrospec-
tive’ investigations). This did not reflect the true severity distribu-
tion of accidents that occur in those regions but was a result of the
challenges of collecting in depth accident data.

2.1. Data specification

Approximately 1,500 variables (or fields) per accident were
gathered and were entered into a central database. Data were gath-
ered for each element involved in the accident – for example, if the
accident involved both a PTW and a passenger car, data were col-
lected for both vehicles and both drivers. The following list illus-
trates the categories of variables included in the dataset:

� Accident (e.g., date and time, local environment, light and
weather conditions)

� Road (e.g., road type, speed limit, road geometry, roadside
furniture)

� Road user (e.g., age, gender, injury severity)
� PTW or bicycle (e.g., make and model, motor displacement,
mechanical condition)

� Opponent vehicle(s) (e.g., type, make and model, general condi-
tion, safety technologies fitted)

� Causation analysis (e.g., speed, distraction, intoxication)
� Reconstruction analysis
� Injury descriptions (coded using the Abbreviated Injury Scale
(AIS))

� Road user interviews

2.2. Accident causation classification

Accident causation analysis was carried out using the Driving
Reliability and Error Analysis Method (DREAM). DREAM allows

investigators to systematically classify and store accident causa-
tion information that has been gathered through in-depth investi-
gations by providing a structured method of establishing the causal
factors inherent within each accident into a set of formally defined
categories of contributing factors.

DREAM originated from the Cognitive Reliability and Error
Analysis Model (CREAM) (Hollnagel, 1998), which was used to ana-
lyze accidents in process control domains, becoming DREAM when
it was adapted for use in road transport accidents (Ljung, 2002,
2007). Warner, Ljung, Sandin, Johansson, and Björklund (2008)
developed DREAM further as part of the EC SafetyNet project,
and version 3.2, the latest version, was created during the DaCoTA
project where additional variables were added specifically relating
to PTW accidents (Ljung et al., 2012).

DREAM 3.2 was selected as the preferred method of causation
analysis in this study due to the success of previous application,
the rigorously established theoretical background, and the struc-
tured approach of establishing accident causation specifically for
PTWs (Phan et al., 2010).

3. Results

The 500 investigated accidents resulted in a total of 515 ‘cases;’
some accidents involved a PTW and a bicycle so can be considered
either a PTW case and/or a bicycle case for analysis purposes. The
distribution of PTW and bicycle cases collected by each team is
shown in Table 2. in total 77% (385) of the 500 accidents involved
a PTW and 26% (130) involved a bicycle.

For the overview analysis e-bikes and pedelecs were grouped
with pedal cycles, since they were a small proportion of the sample
(14 cases), and share similar characteristics in terms of being able
to use cycle lanes, their visibility/conspicuity, and that they gener-
ally travel at lower speeds than PTWs.

The distribution of injury severity for the different vehicle types
is shown in the Table 3. Teams used the following injury severity
classifications:

� Fatal: Death within 30 days of the road accident.
� Serious: Injured (not killed) and hospitalized for at least 24 h.
� Slight: Injured (not killed) and hospitalized for less than 24 h or
not hospitalized.

� Not injured: Participated in the accident though not injured.

This classification was applied rather than the national defini-
tions since definitions may vary between countries. The overall
distribution comprises 36% (181) slight injury, 30% (149) serious
injury, and 17% (84) fatal injury accidents, with the remainder
being no injury or unknown severity.

3.1. Accident scenarios

Analysis of the accident scenario was undertaken to look for
trends or patterns. The analysis takes into consideration the num-

Table 2
Distribution of cases collected by each investigation team.

Team PTW cases Bicycle cases Total

France 81 (94%) 5 (6%) 86
Greece 78 (92%) 7 (8%) 85
Italy 71 (95%) 4 (5%) 75
The Netherlands 57 (57%) 43 (43%) 100*
Poland 48 (54%) 41 (46%) 89*
United Kingdom 50 (63%) 30 (38%) 80
Total 385 (75%) 130 (25%) 515*

*Greater than the total accident number as some accidents involve PTWs and
Bicycles.
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ber of vehicles/pedestrians involved in the accident, their maneu-
ver, the positions of each road user prior to the accident, and their
intended directions. For multi-vehicle accidents, scenario groups
were developed for analysis as shown in Fig. 1, which were derived
from the ‘DaCoTA Accident Type’ variable. Further descriptions of
these scenarios are included in Appendix A. The main results of
the accident scenario analysis are given below.

3.1.1. PTW cases
25% of fatally and seriously injured PTW users were involved in

a single vehicle PTW accident. Sixty-four percent of these lost con-
trol of their vehicle on a curve. In comparison, only 10% of slight
injuries to PTW riders occurred from single vehicle accidents,
though it is recognized there may be under-reporting in this area
and this figure may not represent the true population.

The three most common accident scenarios for fatally and seri-
ously injured PTW riders involved in a two-vehicle accident were:
T7 (16%), C2 (13%) and Loss of Control on a Curve (LoCC – 9%). For
slightly injured PTW riders, the two most common accident config-
urations were T7 (17%) and C1 (16%). The remaining accidents
were evenly distributed among the other accident scenarios.

3.1.2. Bicycle cases
The three most common accident scenarios for fatally and seri-

ously injured bicycle riders involved in a two-vehicle accident
were C1 (19%), C2 (19%), and T5 (7%). For slightly injured road users
involved in a bicycle accident, the three most common accident
scenarios differ somewhat; C2 was still the main accident configu-
ration (18%), but the next most frequent were T8 (9%) and T11 (9%).

3.2. Road and environment characteristics

Both PTW and bicycle accidents tended to occur during daylight
hours (respectively 78% and 81%). Similarly, most of the accidents
occurred under fine dry conditions, with rain, snow, or fog being
present in less than 10% of cases. Most of the accidents occurred
on urban roads (78% of PTW cases and 83% of bicycle cases), and
within a speed limit of 50 km/h or less (79% of all accidents).

Regarding junction-related accidents; 52% of PTW cases and
43% of bicycle cases did not occur at or within 20 m of junctions.
When considering all 500 accidents together, 50% occurred at junc-
tions, which was most frequently at a T or Y junction (23%), or
crossroads (21%).

3.3. Vehicle characteristics

The sample contains 393 PTW investigations from 385 PTW
‘cases’ as some accidents involved multiple PTWs. The most com-
mon PTW types examined were scooters (47%), followed by road
race replicas (19%), standard street bikes (13%), and commuter
bikes (7%). The distribution of PTW motor displacement (engine
power) is shown in Table 4. Half the sample were lower powered
PTWs (250CC or less).

Table 3
Maximum injury severity of all accidents, PTW cases, and bicycle cases.

Vehicle Type Non-Injury Slight Serious Fatal Unknown Total

PTW cases 22 (5.7%) 134 (34.8%) 103 (26.8%) 69 (17.9%) 57 (14.8%) 385
Bicycle cases 1 (0.8%) 49 (37.7%) 59 (45.4%) 15 (11.5%) 6 (4.6%) 130
All accidents 23 (4.6%) 181 (36.2%) 149 (29.8%) 84 (16.8%) 63 (12.6%) 500

Fig. 1. Grouped accident scenarios for PTW and bicycle accidents (source: Morris et al., 2018).

Table 4
Distribution of PTW motor displacement (n = 393).

PTW motor displacement Proportion of sample

50 CC or less 19.8% (n = 78)
100–250 CC 29.3% (n = 115)
251–500 CC 8.1% (n = 32)
Over 500 CC 38.7% (n = 152)
Unknown 4.1% (n = 16)
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The overall PTW condition was coded in the data, ranging from
excellent to poor. Excellent or good would indicate the vehicle is in
a roadworthy condition, with no obvious signs of defect or poor
maintenance. In the majority of cases (80%), the condition of the
PTW was found to be good or excellent; only 4% of vehicles were
considered to be in poor condition, which would indicate an obvi-
ous defect. Defects were observed in 5% of vehicles, most com-
monly the defects related to the tires, wheel, or brake condition.
However, these defects were thought to have contributed to the
accident in only 2% of the PTW cases.

Regarding bicycles, 132 bicycles were investigated from 130
bicycle ‘cases’ as some cases involved two bicycles. Of these, 117
were conventional ‘pedal’ bicycles and 15 were power assisted
(pedelecs). Power assisted bicycles were excluded from detailed
bicycle analyses as they have subtle but potentially important dif-
ferences. Mechanical defects in pedal bicycles were generally lim-
ited; when found they were most frequently associated with the
tire condition, specifically a worn tread on the tire (11–12% of bicy-
cles). The overall condition of the bicycle was described as good or
excellent in 72% of cases. In only 1 case were bicycle defects
thought to contribute to the accident.

3.4. Road user characteristics

The 500 investigated accidents involved 1,012 road users, of
which 916 (91%) were drivers or riders of the vehicle (n = 393
PTW riders, n = 132 bicycle riders, n = 391 collision opponents). A
further 75 (7%) road users were passengers in vehicles, and 21
(2%) were pedestrians; these are generally excluded from analyses
unless stated otherwise. PTW riders were highly likely to be male
(90%), and two thirds were aged 18–45 (67%). For bicycle riders the
gender difference was not as pronounced (68% male), and over half
(54%) were over 45 years old.

While most PTW riders used helmets (81%), a non-negligible
percentage did not (15%). For bicyclists, only 32% of riders were
wearing a fastened helmet; 45% were not wearing one at all.
When reading these figures, it is noted that PTW helmets are
required by law in all the data collection countries, with an
exception that in the Netherlands this only applies to vehicles
with an engine displacement over 50 cc. At the time of data col-
lection, light moped riders in the Netherlands were not required
to wear helmets, although new laws are being introduced that
will change this. Light moped riders in the Netherlands accounted
for over half (58%) of the 15% riders who did not wear helmets. In
contrast, bicycle helmets are not required by law in any of these
countries (apart from in France where they are mandatory only
for children under 12 years old), which may in part explain the
lower usage observed.

Headlights were used by the majority of PTW riders (72%).
However, only 20% of bicycle riders used lights; a further 22%
had lights fitted that were not being used and 36% had no lights
fitted at all. Reflective and high conspicuity clothing was not
often worn by either PTW riders (13%) or bicycle riders (20%).
For both headlights and reflective clothing, it should be noted
that the figures do not consider the daylight conditions at the
time, and the majority of accidents occurred during daylight
hours.

3.5. Contributory factors

Contributory factors in more common terminology were
derived from the DREAM analyses, which use more specialist terms
(e.g., ‘attention allocation’ became ‘distraction’). Through DREAM
and other variables in the database nearly 100 possible contribu-
tory factors or subfactors were able to be assigned to any given
road user. Analyses were carried out for drivers, riders and pedes-

trians, but not for passengers as they are not in control of the vehi-
cle. Multiple factors were assigned to each road user in each case;
in total for the 500 accidents over 4000 factors were assigned with
an average of 4.4 factors per road user. Table 5 below shows the
results of a selection of ‘human’ factors commonly related to road
accident causation, split by road user type. ‘OIRUs’ refer to ‘other
interacting road users’ (i.e., drivers of cars/trucks/other vehicles
in collision with the PTW or bicycle).

It can be seen that intoxication (alcohol and drug involvement),
fatigue, heightened emotions or psychological impairments, medi-
cal conditions or physical impairment and risk-taking behavior
were not found to be major contributing factors of the investigated
accidents. Each of these were thought to be a contributing factor
for less than 10% of road users.

Distraction was more prevalent. In particular, for over a third
(34%) of the other interacting road users, distraction immediately
prior to the accident contributed to its occurrence, compared to
10% of PTW riders, and 16% of cyclists. Distraction could be related
to objects/people within the vehicle (e.g. talking to passenger, look-
ing at mobile phone), or outside the vehicle (e.g. focused on road
signs, a friend walking past).

Furthermore, errors of observation, typically described as
‘looked but failed to see’ accidents were a major factor, being a
contributing factor for over a third of PTW and bicycle riders (re-
spectively 38% and 39%), and two thirds of interacting road users
(66%). Sight obstructions (such as other vehicles, vegetation, or
roadside furniture) were also a factor for over a quarter (28%) of
interacting road users and may have contributed to some of the
errors in observation.

Inexperience as a contributing factor was more prevalent
among PTW riders than bicycle riders (respectively 14% and 7%).
Inexperience was determined in relation to overall riding experi-
ence, familiarity with the specific vehicle ridden, or familiarity
with the roads being ridden on. Further analysis was done of the
inexperienced PTW riders (n = 53). Riders with inexperience as a
contributing factor were generally younger, with over half (52%)
aged under 25. This is compared with 27% of the total PTW rider
sample being in the same age category. Inexperienced riders were
also relatively more likely to have speed as a contributing factor
compared with all riders (31% compared with 21%).

3.5.1. Speed
Excess speed was rarely observed to be a major factor for

cyclists or other interacting road users (respectively 7% and 4%).
However, for 22% of PTW riders excess speed was a contributing
factor in the accident. The PTW riders that were identified as hav-
ing speed as a contributing factor (n = 85) were further analyzed
to determine if there are any trends or commonalities within
them.

In the majority of these cases the PTW rider was exceeding
the speed limit for the road (71 out of 85 riders), but excess
speed was also recorded when the speed was judged to be too
fast for the road or weather conditions (n = 5 riders speed con-
tributed to the accident but not travelling above the speed limit,
n = 9 riders speed contributed to the accident but speed limit
unknown).

As shown in Table 6, the age profile of riders where speed
was a contributing factor is younger than the overall sample,
indicating younger people have a higher propensity towards risk
taking through speeding. Speed is also correlated with increased
injury severities, with PTW accidents where speed was a con-
tributing factor leading to a far higher proportion of fatal/serious
injury accidents (81% compared with 45% of all accidents) over
slight/no injury accidents (12% compared with 41% of all
accidents).
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4. Discussion

4.1. Collection of in-depth accident data

The primary outcome of this study was the collection of in-
depth investigation data on 500 accidents involving PTWs or bicy-
cles across six European countries. Many past research studies
have raised issues concerning better understanding of the causa-
tion of accidents involving VRUs such as PTWs and bicycles, how-

ever many of these, for example the MAIDS study (ACEM, 2009),
were carried out some time ago. More recently the Motorcycle
Crash Causation Study (MCCS) (Nazemetz, Bents, Perry, Thor, &
Mohamedshah, 2019) carried out in-depth investigations on 351
PTW accidents in the United States, however there is a lack of more
recent large scale in-depth research from a European perspective.
The value of the current study therefore is that it will enable
researchers to gain a more up to date understanding of the nature
and causes of PTW and bicycle accidents in Europe.

Table 6
Age and injury severity of PTW riders for which speed was a contributing factor in the accident (n = 85) compared with all riders (n = 393).

Age All PTW riders
(n = 393)

PTW riders with speed as a
contributing factor (n = 85)

0–17 4.6% 7.1%
18–25 21.9% 29.4%
26–35 25.2% 25.9%
36–45 19.3% 14.1%
46–55 15.3% 15.3%
56–65 8.9% 7.1%
>65 3.8% 1.2%
Unknown 1.0% 0.0%

Injury Severity All PTW accidents (n = 385) PTW accidents with speed
as a contributing factor (n = 85)

Not injured 5.7% 3.5%
Slight 34.8% 8.2%
Serious 26.8% 31.8%
Fatal 17.9% 49.4%
Unknown 14.8% 7.1%

Table 5
Distribution of selected contributory factors according to road user type.

Contributory Factor Value Road User

PTW Riders (n = 393) Bicycle Riders (n = 132) OIRUs (n = 391)

Alcohol* No 86.8% 84.8% 88.0%
Yes 4.1% 6.1% 1.5%
Unknown 9.2% 9.1% 10.5%

Drugs No 90.6% 92.4% 91.0%
Yes 3.1% 1.5% 0.5%
Unknown 6.4% 6.1% 8.4%

Excess Speed No 54.7% 84.8% 88.5%
Yes 21.6% 6.8% 3.6%
Unknown 23.7% 8.3% 7.9%

Fatigue No 94.9% 89.4% 96.4%
Yes 2.3% 2.3% 3.1%
Unknown 2.8% 8.3% 0.5%

Distraction No 87.5% 75.8% 65.5%
Yes 9.7% 15.9% 34.0%
Unknown 2.8% 8.3% 0.5%

Emotional/psychological impairment No 88.3% 85.6% 93.9%
Yes 8.9% 6.1% 5.6%
Unknown 2.8% 8.3% 0.5%

Medical conditions/physical impairment No 96.2% 88.6% 98.2%
Yes 1.0% 3.0% 1.3%
Unknown 2.8% 8.3% 0.5%

Risk-taking behaviour** No 92.1% 86.4% 98.7%
Yes 5.1% 5.3% 0.8%
Unknown 2.8% 8.3% 0.5%

Rider inexperience No 83.7% 84.8% 95.4%
Yes 13.5% 6.8% 4.1%
Unknown 2.8% 8.3% 0.5%

Missed/late observations No 59.5% 52.3% 33.8%
Yes 37.7% 39.4% 65.7%
Unknown 2.8% 8.3% 0.5%

Sight obstruction No 79.6% 76.5% 71.9%
Yes 17.6% 15.2% 27.6%
Unknown 2.8% 8.3% 0.5%

*Note 1: For the Netherlands a large proportion of the data for alcohol involvement were coded as ‘unknown’, as police in the Netherlands do not regularly check for alcohol
involvement.
**Note 2: Factors such as alcohol, drugs and speeding, although also could be considered as risk-taking behaviour, are considered separate to this variable.
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The objective of the study was to gather PTW and bicycle acci-
dent data from in-depth accident investigations, obtain accident
causation and medical data for those accidents, and to store the
information according to an appropriate and efficient protocol
enabling an accident causation-oriented analysis. The study
showed that the DaCoTA protocols for in-depth accident investiga-
tions were successful in securing relevant highly detailed data for
describing the nature and circumstances of PTW bicycle accidents.
Further research could compare the methodology of the current
study with other in-depth studies, including the MAIDS and MCCS
studies which both utilized adapted OECD investigation protocols.

However, the data collection was not without challenges.
Although the target of 500 cases was completed within the time
frame of the study, a significant amount of resource was required
to achieve this, and some adjustments had to be made to individual
team targets and methods of data collection. Ideally an ‘on-scene’
investigation approach would be used for all cases, as this gives
the investigating teams the opportunity to collect more data
directly themselves according to the established protocols, supple-
menting it with additional interview/medical/vehicle examination
data later (either directly or through the emergency services). In
the current study the on-scene method worked well when utilized
and provided accurate data collection, however it was found to
have a high cost and time resource associated with it. Teams trying
to collect data on-scene faced a variety of challenges, such as; long
times ‘on-shift’ waiting for a suitable accident to occur, not being
able to secure data sharing agreementswith all emergency services,
not being able to reach the accident location before some of the
involved parties had already left the scene, being refused permis-
sion to interview all involved parties or examine their vehicles,
etc. These challenges potentially result in a case not being included
in the sample if all the core data could not be collected, in addition
to time lost waiting for accidents to occur, so the number of cases
collected does not always reflect the amount of effort expended.

Many teams had to instead use the ‘retrospective’ approach in
order to reach their target within the timeframe. Although not able
to attend the accident when it occurred, the teams found that it was
still possible to gain a large amount of in-depth data by combining
data frommultiple sources such as police investigation reports and
medical examination reports, and that some data could still be col-
lected directly by the investigation teams at a time after the acci-
dent (e.g., interviews with road users or examinations of vehicles
involved). This method also allowed teams to cover a wider sample
area than what they could reach directly from their on-scene base
within a short time of the accident occurring, and so increased
the sample pool. The drawbacks to this approach include reduction
in the amount of data collected, preventing for example a full recon-
struction in some cases, and also that investigators often have to
rely on interpreting second hand information, which may not have
been collected with the same purpose in mind. Overall, however,
the retrospective method was found to be more cost-effective,
enables better planning and use of staff resources, and does not sig-
nificantly reduce the quality of the collected data; therefore future
studies should consider thismethod as a good alternative to collect-
ing data directly at the scene if that is not possible.

Finally, issues relating to data protection and privacy, as well as
variations in methods or terminology between countries (or differ-
ent regions within countries) did pose a challenge in collecting har-
monized data. The current study highlighted the importance of
regular communication between teams through the data collection
process to ensure a common understanding was used. Researchers
using national datasets to compare accident circumstances
between countries face challenges such as incompatible data,
missing variables, or unclear definitions. Using a common method-
ology, in this case the adapted DaCoTA protocols, achieved the aim
of generating comparable data between teams, and the output

dataset will be valuable in future research to gain insights both
within and between countries.

4.2. Data sample

The accident characteristics in the collected sample were in line
with those seen in previous in-depth PTW studies such as the
MAIDS and MCCS studies, and with similar research on both PTWs
and bicycles (e.g., Piantini et al., 2016; Beck et al., 2016). Accidents
primarily occurred in urban areas, during daylight hours, and not
in adverse weather. Just under half of the accidents investigated
occurred at junctions, which is in line with the results reported
in the MAIDS study. Compared to the United States, the MCCS
study found similar results for single vehicle accidents but
reported that over three quarters of multi-vehicle accidents
occurred at intersections. Relatively more bicycle accidents
occurred at junctions when compared with PTWs, however this
could be a function of the sample inclusion criteria as only
multi-vehicle bicycle accidents were included, whereas PTWs
could be involved in a single-vehicle accident, which often occur
outside of junctions.

For both PTWs and bicycles, the characteristics are reported
alone and do not consider any exposure data, therefore the results
are given solely to describe the sample and do not imply any speci-
fic relative risk. Future research could examine this further, consid-
ering exposure and comparing with characteristics of all road user
types to identify any significant results in the collected data.

4.3. Road user characteristics

In the current study, the PTW rider sample was dominated by
males, and over two thirds were aged under 45. This could be
explained due to the desires of each age group, as speed, maneu-
verability and sensation seeking can be said to be the needs of
younger people. Conversely, as road-users age, they may seek the
comfort of a car, switch to a bicycle or travel on foot, or limit their
exposure altogether by taking fewer trips. This was slightly differ-
ent to the data relating to bicycle riders where two thirds of the
sample were male and over half were older than 45. Previous
research has found that males are more likely to be involved in a
cycling accident (Beck et al., 2016), though this is possibly because
of greater use of cyclists by males versus females.

In the accidents investigated, most PTW riders recognized the
benefit of helmet use while riding. Haworth and Debnath (2013)
found that motorcyclists were more likely to wear a helmet in
comparison to cyclists, though this could be related to more legis-
lation being targeted at PTW helmet use. Other research has found
that wearing a helmet can reduce injury severity amongst motor-
cyclists by 70% and reduce the numbers of fatal head injuries by
44% (Elvik, Høye, Vaa, & Sorensen, 2009), which supports the view
that continued efforts to improve helmet use by PTW riders will be
highly beneficial.

Many of the cyclists investigated in this study did not use a
cycle helmet. A recent meta-analysis by Høye (2018) found that
in the case of a fall or accident, the use of a bicycle helmet was
found to reduce serious head/brain injury by 60% and fatal head/
brain injury by 71% on average. However, some studies show
adverse effects of bicycle helmets on accident involvement
(Robinson, 2006; Phillips, Bjørnskau, Hagmand, & Sagberg, 2011);
this is due to ’behavioral adaptation,’ as cyclists may feel safer
wearing a bicycle helmet and as a result they may showmore risky
cycling behavior. Other studies indicate that young helmet wearing
cyclists take no additional risks (Hagel & Pless, 2006). It is unclear
what this could mean for the safety effects of helmet wearing; sev-
eral studies contradict each other.
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4.4. Accident scenarios

A quarter of the serious or fatal PTW cases analyzed involved no
other vehicles and two thirds of these were due to the rider losing
control on a curve. Loss of control of the PTW was also the third
most common accident scenario for multi-vehicle PTW accidents.
Combined, these form a large portion of severe outcomes for PTW
riders and should be investigated further. Whilst speed is likely to
be a factor in a portion of these accidents, it is also recommended
to investigate vehicle-basedmeasures to reduce loss of control acci-
dents. See for example Grant et al. (2008), who proposed the imple-
mentation of integrated safety systems for a range of PTWs to
improve primary safety through handling and stability. Further-
more, Anti-lock Braking Systems (ABS) have been mandatory on
European PTWs with engine capacity over 125 cc since 2016 and
have been shown to reduce fatal accidents by 31% (Teoh, 2013).

Outside of ‘loss of control’ accidents, the most common scenar-
ios for multi-vehicle PTW accidents involved another road user
turning or crossing in front of the PTW. In most of these cases
the PTW rider had the right of way and therefore, although PTW
speed was also sometimes a factor, the results show that the
actions of the other vehicle drivers are more often the critical fac-
tor in the accident than the actions of the PTW rider.

The most common cyclist scenarios also involved other road
users crossing in front of them, and as rider speed is highly unlikely
to be a factor in bicycle accidents, this suggests failure of other
vehicle drivers to either detect them or respond appropriately.
More research should be aimed at the other road users involved
to better understand why they are committing these right of way
violations and to identify how these scenarios can be prevented,
for example through the use of in-vehicle intelligent technologies
to detect PTWs and bicycles and warn drivers of their presence.

4.5. Contributory factors

The right of way violations may in part be explained by the
results seen in the causation analysis. Errors in observation were
thought to be a contributory factor for two thirds of the other vehi-
cle drivers analyzed and over a third of PTW and bicycle riders.
Interestingly, the MCCS study reported similar results for PTW rid-
ers in the United States, but much lower figures for other vehicle
drivers (being a cause in less than half of cases). Distraction and
sight obstructions were each also prevalent in the current study
and are likely to have contributed to the observation errors.

Distraction has long been identified as a common factor in road
traffic accidents (e.g., Regan, Lee & Victor, 2013), and it is only
expected to increase as both the complexity of the road system
increases (e.g., smart motorways, advertising, new vehicle types),
and the amount of distractions within vehicles increases (e.g.
mobile phones, warnings from driver assistance systems, touch-
screen entertainment). The data need to be examined on a case-
by-case basis to fully understand the reasons behind the distracted
behavior observed, however even from the aggregated analysis it is
clear that more measures are needed to combat distraction, poten-
tially through new legislation or targeted awareness campaigns.

However, distraction or obstructions to view did not account for
all the observation errors in the analysis, suggesting that ‘looked
but failed to see’ accidents are a large problem for both PTWs and
bicycles. Speed of the PTW will have played a role in some cases,
as often car drivers can misjudge the speed of an approaching
PTW and believe they have time to complete their turn, but a colli-
sion occurs when the PTW reaches them sooner than expected (Pai,
2011; Davidse et al., 2019). For non-speed related incidents, partic-
ularly those involving crossing or turning scenarios, technology
countermeasuresmight be effective in reducing accidents. Research
has shown that vehicle technologies such as advanced forward col-

lision warning would be effective in reducing accidents, including
those involving PTWs and bicycles (see e.g. Jermakian, 2011).

Improved conspicuity of riders is also proposed as a counter-
measure to this issue. In the investigated accidents use of reflective
clothing was low, however De Craen, Doumen, Bos and Van Norden
(2011) conclude that it is not so much light or reflective clothing
that can increase the visibility of motorcyclists, but particularly
the contrast with their environment. Research by Gershon, Ben-
Asher, and Shinar (2012) came to a similar conclusion; in an urban
environment with a varied and multi-colored background a motor-
cyclist was more conspicuous in white or reflective clothing, and in
a rural setting, where the background mainly consisted of a blue
sky, a motorcyclist wearing black was more easily noticed.
Clarke, Ward, Bartle and Truman (2004) previously highlighted this
problem and calculated that if ‘looked but failed to see’ errors
could be eliminated it could result in a reduction of 25% in the total
PTW accident rate. The results of the current study show that this
problem is still common over a decade later, so it is clear that more
research is required urgently to develop countermeasures to help
drivers to recognize PTWs and bicycles and respond appropriately.

Aside from distraction, sight obstructions and errors in observa-
tion, the causation analysis did not reveal many other common
causes. Intoxication, throughalcohol or drugs, and fatigue,whilst tra-
ditionally known tobe factors in road traffic accidents, didnot appear
commonly in the current study. Vehicle defects were also not preva-
lent in the current study and the results show that poormaintenance
is not amajor cause of PTWor bicycle accidents, being a contributing
factor for only 2% of PTW accidents and in only one bicycle accident.
Results from both the MAIDS and MCCS studies support that vehicle
defects are rarely the primary cause of PTW accidents.

PTW rider inexperience was present in a small but potentially
significant amount of cases and was generally associated with
younger riders. Lack of experience in driving or riding is a com-
monly studied factor in road accidents (Groeger, 2006), and acci-
dents can result from a lack of situational awareness, lack of
experience in avoiding dangerous situations, or inability to remedy
them when they start to occur. Although not analyzed further in
the current study, an in-depth review of the cases involving inex-
perience could give insights into possible countermeasures.

Finally, speed as a contributory factor was analyzed and the
results show it was predominately the PTW rider that was speed-
ing, not the bicycle rider or interacting road user. Although only a
factor for less than a quarter of cases, preliminary analysis showed
that contributory speed was correlated to more severe injury out-
comes. The MCCS study similarly reports that excess speed of the
PTW was overrepresented in fatal accidents. Much research has
been carried out on the benefit of reducing speed on road safety,
and the current study supports the view that policies and strate-
gies to reduce speeds would be beneficial in reducing both the
number of accidents and their severity. Although the sample was
too small to draw statistically significant conclusions, speed being
contributory appears to also be correlated with younger inexperi-
enced riders, suggesting that targeted interventions aimed at those
groups could be beneficial in reducing accidents.

5. Conclusions

The SaferWheels study collected in-depth investigation data
relating to 500 PTW or bicycle accidents within the European
Union. These data can be further analyzed by researchers and pol-
icy makers to provide insights into how to improve the safety of
these vulnerable groups. Accidents involving powered two wheel-
ers and bicycles remain common on European roads and coordi-
nated strategies should be deployed to reduce fatalities and
serious injuries. A harmonized dataset containing investigations
from six European countries may help towards this, allowing
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researchers to identify where road safety policies might benefit all
member states, and where different countries will need different
approaches.

Initial analysis of the 500 investigations reveals that causation
factors such as observation errors, distraction, and sight obstruc-
tions are particularly prevalent, with ‘looked but failed to see’ acci-
dents still being a key concern for PTWs and bicycles. Additionally,
for PTW riders, there were a small but potentially significant num-
ber of cases for which excess speed and/or inexperience was a con-
tributing factor, and these cases could be analyzed further to
inform potential countermeasures.

Analysis of the accident scenarios showed that single-vehicle
loss of control accidents accounted for a quarter of serious and
fatally injured PTW riders, therefore measures to reduce these
(through road design, rider behavior or vehicle stability technolo-
gies) could result in large benefits for PTW safety. Outside of these,
for both PTW and bicycle riders the most common scenarios
involved another vehicle crossing or turning in front of them, sup-
porting the view that in many cases, the actions of the PTW or
bicycle rider is not the primary factor in the accident.

Whilst the analysis reported here reveals some interesting find-
ings regarding PTW and bicycle accidents, it should be remem-
bered that such findings are based on aggregated analysis of the
collective data to look for trends in accident characteristics and
causation. Much more can be gained from an evaluation of each
individual investigation on a case-study basis to derive more in-
depth insight into specific factors that may be relevant to reducing
such accidents, as well as how various factors interact with each
other to come together and result in an accident.

6. Practical applications

The results of the SaferWheels study have validated the value of
a harmonized approach to accident investigation across the Euro-
pean Union, whilst also identifying difficulties in data collection
to guide future research methods. The outcome of the study, a
dataset of 500 in-depth accident investigations involving PTWs
and bicycles, can be analyzed to provide evidence to support poli-
cies targeted at reducing road deaths and injuries to vulnerable
road users on EU roads.

The SaferWheels dataset is available for analysis upon request
from the European Commission.
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Appendix A. – Accident Scenario Descriptions

Accident
Scenario

Description

C1 � PTW/bicycle driving straight
� Opponent vehicle crossing the PTW/bicycle path
from the right side

C2 � PTW/bicycle driving straight
� Opponent vehicle crossing the PTW/bicycle path
from the left side

T5 � PTW/bicycle turning to the left, crossing the
(straight) opponent vehicle path
� Opponent vehicle is riding straight in the same
direction as the heading of the PTW/bicycle before
turning

T7 � Opponent vehicle turning to the left, crossing the
(straight) PTW/bicycle path
� PTW/bicycle coming from the opposite direction,
riding straight

T8 � Opponent vehicle turning to the right, crossing
the (straight) PTW/bicycle path
� PTW/bicycle coming from the opposite direction,

– Accident Scenario Descriptions (continued)

Accident
Scenario

Description

riding straight
T10 � Opponent vehicle turning to the left, crossing the

(straight) PTW/bicycle path
� PTW/bicycle is riding straight, coming from the
left side of the opponent vehicle

T11 � Opponent vehicle turning to the right, crossing
the (straight) PTW/bicycle path
� PTW/bicycle is riding straight, coming from the
left side of the opponent vehicle

T13 � Opponent vehicle turning to the left, crossing the
(straight) PTW/bicycle path
� PTW/bicycle is riding straight in the same
direction as the heading of the opponent vehicle
before turning

L1 � Opponent vehicle and PTW/bicycle driving in the
same direction
� PTW/bicycle is riding straight and hit by the
opponent vehicle (going straight) from the rear

L2 � Opponent vehicle and PTW/bicycle driving in the
same direction
� Opponent vehicle is swerving to the left in front
of the PTW/bicycle and hit by the PTW/bicycle

L6 � Opponent vehicle and PTW/bicycle driving in the
same direction
� PTW/bicycle is riding straight and hit by the
opponent vehicle (turning left) from the rear

L7 � Opponent vehicle and PTW/bicycle driving in the
same direction
� Opponent vehicle is swerving to the right in front
of the PTW/bicycle and hit by the PTW/bicycle

L8 � Opponent vehicle and PTW/bicycle driving in the
same direction
� Opponent vehicle is u-turning from the right to
the left in front of the PTW/bicycle and hit by the
PTW/bicycle

LoCC � The driver of the PTW/bicycle loses the control of
their vehicle, on a curve, and crashes an opponent
vehicle

Oth � All other scenarios that are not covered by any of
the previously described scenarios
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a b s t r a c t

Introduction: Driver retirement and determination of fitness-to-drive are important aspects of reducing
the risk of motor-vehicle collision for an older driver. A lack of information about the review process
may lead to poor evaluation of drivers or an increased testing burden to referred drivers. Methods: This
paper evaluates the license review process for the state of Iowa. We evaluated data from January 2014
to January 2018 and described the source of referral, testing process, and ultimate license disposition.
Cox proportional hazards for competing risk were used to determine the risk of having a change in
restrictions on the license and the risk of license denial. Results: 20,742 individuals were followed through
the medical referral process. The most common source of referrals was licensing officials (39.7%). Drivers
referred by licensing officials were less likely to be denied their license when compared to drivers from
other sources (HR = 0.92 95%CI: 0.87–0.98); however, licensing official referrals were more likely to result
in license restrictions compared to other sources (HR = 1.91, 95%CI: 1.82–2.00). Drivers referred by either
law enforcement or a physician were more likely to ultimately have their license denied. Conclusions:
Physician and law enforcement referred the drivers most likely to have their license denied. A smaller
proportion of drivers were referred by physicians and law enforcement compared to licensing officials.
Practical Applications: Licensing agencies should work with physicians and law enforcement to identify
drivers who may need a review of their license. Comprehensive tracking of all medical referrals for a dri-
ver’s license review is important for individual states to understand the burden of their driver referral
process and for identifying referral sources with a high proportion of referrals with no licensing change
for targeted outreach and education.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Motor-vehicle collisions are a leading cause of injury and
injury-related death in the United States across individuals of driv-
ing age (Centers for Disease Control and Prevention, 2017).
Decreased physical ability, changes in vision, or medical conditions
may result in an increased risk for a crash (Alvarez & Fierro, 2008;
Carr, Flood, Steger-May, Schechtman, & Binder, 2006; Carr, Shead,
& Storandt, 2005; Emerson et al., 2012; Green, McGwin, &
Owsley, 2013). In recognition of this increased risk, each state
has provisions for referring drivers for medical review of their
fitness-to-drive. Despite this widely accepted means of removing

potentially at-risk drivers from the road, there is little existing evi-
dence about the burden, effectiveness, and accuracy of review pro-
cesses for an individual’s fitness-to-drive.

The majority of previous evaluations of the medical review of a
license have been limited to referrals made by law enforcement
(Lococo, Decina, Branche, & Wagner, 2013; Soderstrom et al.,
2010, 2009). A study of 240 drivers over the age of 75 who were
referred for medical review in Maryland by law enforcement found
that 57% of referred drivers voluntarily gave up their license after
referral. Of those who did continue to pursue licensing only half
successfully acquired their license at the end of the review process
(Soderstrom et al., 2010). Another study of 100 randomly selected
police referrals in Virginia found only 12% of drivers were able to
continue to drive without changes to their licensure (Lococo
et al., 2013). These two studies reveal that a large proportion of dri-
vers referred by police require some change to their driving privi-
leges and that police perform an important role in identifying
drivers in need of review. However, drivers referred by law
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enforcement make up only a small proportion of the drivers who
are referred for medical review. The evaluation of drivers referred
by family members, physicians, or licensing agencies is essential to
understanding the medical review process, yet few other studies
have examined referrals by all sources and their licensing outcome
(Lococo, Sifrit, Stutts, Joyce, & Staplin, 2017; Meuser, Carr, &
Ulfarsson, 2009).

In 2014, the Iowa Department of Transportation developed the
nation’s first integrated system, called the Enhanced Medical
Referral and Evaluation Management System (EMREMS), to track
medical referrals for fitness-to-drive with driver’s licensing and
crash outcomes. The objective of this research is to identify which
sources of referral for fitness-to-drive are more likely to result in a
change in driving privileges or license denial, compared with no
changes to licensure status. Additionally, length of referral and
screening tests completed by the drivers under review are
described to better understand the burden of the review process
to these drivers.

2. Methods

2.1. Setting and population

Iowa allows for the voluntary referral or drivers who may need
a review of their license based on decreased driving ability. This
study includes the analysis of all drivers in Iowa referred for review
of their license during January 2014–January 2018. Referral
sources were described for all drivers. Drivers were included if they
were referred for license review and received a disposition on their
license by January 2018.

2.2. Data sources

The Enhanced Medical Referral and Evaluation Management
System (EMREMS) is a unique data system in Iowa that tracks
medical referrals for fitness-to-drive and the resulting licensure
outcomes. A medical referral is a review of a driver’s fitness-to-
drive based on visual, physical, or cognitive ability. During the
referral process, all results of tests evaluating a driver and their
licensure outcomes are captured in EMREMS. Data collected during
January 2014–January 2018 by the Iowa Department of Trans-
portation and managed with EMREMS were used for this evalua-
tion. The use of EMREMS to track dispositions was fully
implemented in 2015 but retrospective case information was avail-
able for some drivers prior to 2015. This analysis examined
referred drivers’ first medical referral. Subsequent referrals were
excluded to focus on the initial experience with the referral pro-
cess. Individuals were excluded if they were reported deceased
by the licensing agency or were still under review at the end of Jan-
uary 2018.

The review process can be different for each individual driver.
The license review process most frequently includes a request for
a vision and/or medical report, as well as, an on-road driving and
knowledge test. The tests recorded in EMREMS included the fol-
lowing: Driver Orientation Screen for Cognitive Impairment
(DOSCI), Safe Driving BASICS (Brief Auto-Screening Instrument
for Cognitive Status), on-road driving test, driving knowledge test,
vision screening, and medical report of fitness-to-drive. The DOSCI
is a cognitive screening test that entails asking an individual about
their name, home address, current location, and time. The DOSCI
has been validated with individuals with Alzheimer’s and can be
used to quickly identify individuals with possible cognitive impair-
ment during a roadside assessment (Hill, Rybar, Stowe, & Jahns,
2016). However, the DOSCI is not designed to specifically identify
driving ability. Safe Driving BASICS is an objective, computer-

administered battery that combines aspects of visual search,
divided attention, visual memory, and visualization of missing
information. Individually, these tests have been found to be effec-
tive in identifying older individuals with elevated crash risk
(Emerson et al., 2012; Hird, Egeto, Fischer, Naglie, & Schweizer,
2016; Jones Ross, Cordazzo, & Scialfa, 2014; Jones Ross, Scialfa, &
Cordazzo, 2015; Owsley et al., 1998).

There are several sources of referral into EMREMS, and this
analysis included all sources that accounted for more than 1% of
referrals. These sources include referrals from the driver them-
selves (self-referral), law enforcement, crash review, licensing offi-
cials, and physicians. A self-referral can result from a driver
requesting a review or bringing in a medical or vision report pre-
empting request from the licensing agency itself. This can occur
at the request of a physician, but a physician is not considered
the source of the review unless they directly request the re-
examination of a license. Law enforcement is another source for
individuals who commonly submit a request of re-examination
to the licensing agency. This can occur after an interaction with a
driver. If a crash occurs the circumstances surrounding the crash
are reviewed by the licensing agency. At the discretion of the
licensing agency and based on circumstances around a crash that
suggest diminished driving ability, a review of the license is initi-
ated. Referral from IDOT licensing officials occurs as part of the
license renewal if the driver appears to have diminished driving
abilities (Iowa Administrative Code 604.50(5)). The official
observes the applicant for impairment and asks about changes in
medical conditions that may affect the applicant’s driving ability.
Finally, a review of a license can be set to periodically review a dri-
ver’s ability. These reviews are designated as recalls. Recalls do not
reflect an initial encounter with the license review process. Recalls
can be identified in EMREMS as an initial encounter if the previous
review occurred before the establishment of the tracking system.
Family members and the public can refer drivers, but this occurred
at less than 1% in our sample. A request for review is given to the
driver in person or mailed to them. Timelines vary for this review,
but generally are set to occur within 2 to 3 weeks and can be
extended upon request from the driver.

2.3. Statistical analysis

Licensure outcomes included: denial of the license, a change in
the restrictions on the license, or no change to the license. A change
in restrictions is adding or removing a restriction on the license.
The actual change that occurred could not be identified with the
available data. It was assumed that these changes are an addition
of a restriction as drivers were referred based on possible
decreased driving ability. Our primary analysis examined licensure
outcomes by the different referral sources. Because recall sources
do not represent an initial review and can have resulted from sev-
eral different sources, the recall source was not analyzed for
increased risk of restriction or denial. Cox proportional hazards
for competing risk were used to determine the risk of having a
change in restrictions on the license and the risk of license denial
for individuals, comparing each referral source with drivers
referred from other sources (e.g., law enforcement vs. all other
sources). Cox proportional hazards for competing risk is an exten-
sion of the cox proportional hazard model in which the hazard
ratio for receiving a change in license restrictions or having a
license denied versus having a license issued without change is
estimated. Without the competing risk model, those with a license
restriction change would be censored when evaluating the out-
come of license denial and the risk would be overestimated. The
Cox proportional hazards for competing risk model reduces overes-
timation of effects by keeping those who experience the competing
outcome in the risk set (Austin, Lee, & Fine, 2016; Wolbers, Koller,
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Witteman, & Steyerberg, 2009). Cox proportional hazards for com-
peting risk has been commonly used in clinical settings when there
is a risk for multiple adverse events (Dignam, Zhang, &
Kocherginsky, 2012; Gooley, Leisenring, Crowley, & Storer, 1999).
The model controlled for age and whether a medical diagnosis
was identified during the review. Analysis was repeated excluding
drivers who failed to attend or voluntarily surrendered their
license. Similarly, analysis was run excluding drivers from a recall
source.

Descriptive statistics for sex, age, frequency of diagnoses, length
of review, and screening test results were examined. Licensure dis-
position and length of review were compared across those with
and without a medical diagnosis during review of fitness-to-drive
using Chi-square and Wilcoxon rank sum tests, respectively. An
alpha level of 0.05 was used for all statistical tests.

3. Results

3.1. Demographics

There were 22,238 unique drivers who were referred and
received a license disposition for their referral during January
2014 to January 2018. Among these drivers, 311 died during the
review and 1,185 had a disposition other than no change, denial,
restriction, or surrender of their license (Fig. 1). These cases were
excluded. The resulting sample included 20,742 individuals fol-
lowed through the medical referral process to one of our measured
final license dispositions. Demographic information for these indi-
viduals is summarized in Table 1. There were about equal numbers
of male (53%) and female (47%) drivers referred. The median age of
drivers referred was 77 years old (IQR: 54–84) with only 4.5% of
drivers under the age of 20.

3.2. Referral and review process

The process by which individuals were referred for medical
review and tracked through EMREMS is presented in Fig. 1. The
most common source of referral was licensing officials (39.7%),
who refer drivers if the license agency employee determines more
testing is necessary during license renewal. Individuals evaluated
based on a recall of their license (22.5%), as part of a crash review
(19.0%), and referred by law enforcement (9.9%) were the other

common sources of medical referral. Self-referral (5.5%) and refer-
ral by a physician (1.8%) were less common. Together, these
sources accounted for 98.3% of all referrals.

During the referral process, slightly less than half (44.8%) of all
those referred had a medical condition identified as part of their
medical review. The most common medical conditions are pre-
sented in Table 1. Vision related conditions were the most common
and were comprised of the following diagnoses: macular degener-
ation (n = 1030, 45.9%), cataracts (n = 970, 43.2%), glaucoma
(n = 253, 11.3%), Stargardt macular dystrophy (n = 34, 1.5%), hemi-
anopia (n = 26, 1.2%), and albinism (n = 22, 1.0%). Seizures were the
second most common condition identified during review (8.8% of
all referrals). The other common conditions were related to con-
sciousness (loss of consciousness and syncope) or cognition (de-
mentia, Alzheimer’s, cognitive impairment). Diabetes (2.7%) or
stroke (1.7%) made up the remaining types of conditions com-
monly identified during the review process.

The median time from referral to disposition was 36 days with
an interquartile range of 14 to 70 days. Those who had a medical
diagnosis had a significantly higher median time for review when
compared to those who did not have a medical diagnosis, 42 days
versus 33 days (Wilcoxon rank sum P-value <0.0001).

Of drivers with a medical condition, 18.2% had their license
denied and 49.9% had a change in their restrictions at the end of
the referral process. For those with no medical condition recorded
during the review process, 33.7% were ultimately denied their
license and 27.6% had a change in their restrictions (Fig. 1). A
greater proportion of drivers denied their license without a
reported medical condition failed to attend the review (58.1% vs.
31.6%) or voluntarily surrendered their license (22.2% vs. 7.0%)
when compared to those with a medical condition identified as
part of the referral process. Some drivers who voluntarily surren-
dered their license or failed to attend part of their reviewmay have
a medical condition that was not identified as a result of incom-
plete testing. When those who failed to attend the required testing
or voluntarily surrendered were excluded, 12.2% of drivers with a
medical condition were denied their license compared to 8.6% of
drivers who did not have a medical condition recorded during
the referral process.

Drivers who had their license denied based on a failure to
attend differed in their source of referral than drivers who surren-
dered their license or had their license denied based on a decision

Fig. 1. Flow diagram of drivers referred for licensure review. Abbreviations: FTA, failure to attend.
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from the licensing agency (data not shown). These drivers were
more likely to be referred by law enforcement (21.3% failure to
attend drivers vs. 19.2% other denied drivers, p = 0.047) or as part
of a crash review (24.6% failure to attend drivers vs. 17.8% other
denied drivers, p < 0.001). Drivers who were denied based on a fail-
ure to attend were less likely to be referred by a licensing official
compared to other denied drivers (30.5% failure to attend drivers
vs. 42.7% other denied drivers, p < 0.001). One fifth of the drivers
who had a denial based on failure to attend (n = 558, 19.9%) reini-
tiated the license review process. The additional review resulted in
43.2% (n = 241) of drivers receiving their license with a change to
restrictions and 27.4% (n = 153) having their licensed issue without
a change to restrictions. Subsequent review resulting in an issu-
ance of a license with or without a change in restrictions accounted
for 14.1% (n = 394) of all initial denials based on a failure to attend
(n = 2,798).

The hazard ratios for having a change in license restrictions and
denial of a license compared to those with no change are presented
in Table 2. All models controlled for any diagnosis of a medical con-
dition and age. Drivers had a greater risk of having their license
denied if they were referred by law enforcement (HR = 2.57, 95%
CI: 2.42–2.74) or a physician (HR = 2.51, 95%CI: 2.17–2.92) com-
pared to drivers from other referral sources while controlling for
diagnosis of a medical condition and age. Self-referred drivers were
less likely than other drivers to have their license denied
(HR = 0.63, 95%CI: 0.53–0.73), but were the most likely to have
their license restricted (HR = 1.98, 95%CI: 1.80–2.18). Individuals
who were referred from a licensing official were also more likely
to have their license restricted than other drivers (HR = 1.91, 95%
CI: 1.82–2.00), while drivers referred by a crash review were less

likely to have a restriction (HR = 0.42, 95%CI: 0.39–0.46). Drivers
referred by a licensing official and crash review were not signifi-
cantly different from other drivers in regards to denial of a license
as a result of the review process.

The crude analysis (not controlling for age and medical diagno-
sis) was similar in magnitude and direction for most sources (data
not shown). However, the crude hazard ratio for denial of drivers
referred by crash review compared to other drivers was higher
than the adjusted model (HR = 1.32 95%CI: 1.24–1.41).

Analysis was further restricted to drivers who did not voluntar-
ily surrender their license or failed to attend testing. After this
restriction the crude and adjusted model for drivers referred as a
result of a crash review was similar (HR = 1.09 95%CI: 0.97–1.23).
Including only drivers who had a denial as a decision from the
DOT resulted in an elevated risk of denial for drivers who were
referred from a physician (HR = 4.06 95%CI: 3.29–5.00). This is in
part due to the lower number of drivers who failed to attend test-
ing after a physician referral relative to failure to attend denials
from other sources. Hazard models were also run, excluding dri-
vers who had recall as their source of referral. No meaningful
changes in the results were found, excluding drivers with recall
as their source of referral.

3.3. Screening test and evaluation

Table 3 presents the various evaluation tests that drivers com-
pleted during review. Screening tests are given at the discretion
of the licensing agency. The most common test given to referred
drivers was the DOSCI (n = 11,874, 57.2%), followed by the on-
road driving test (n = 7,158, 34.5%). The majority of the tests

Table 1
Characteristics of Drivers tracked in EMREMS.

All No Change Restriction** Denied

Variable Level N = 20742* % N = 7398 % N = 7796 % N = 5548 %

Sex Female 9,740 47.0 3458 46.7 3654 46.9 2628 47.4
Male 10,993 53.0 3939 53.3 4142 53.1 2912 52.6

Age (Years, IQR) Median 77 (54–84) 76 (52–84) 76 (53–84) 79 (59–86)
Diagnosisy Any 9,299 44.8 2962 40.0 4641 59.5 1696 30.6

Vision Related 2,244 10.8 646 8.7 1366 17.5 232 4.2
Seizure 1,820 8.8 619 8.4 990 12.7 211 3.8
Loss of Consciousness 719 3.5 221 3.0 306 3.9 192 3.5
Syncope 266 1.3 60 0.8 115 1.5 91 1.6
Dementia 334 1.6 17 0.2 82 1.1 235 4.2
Parkinson’s Disease 158 0.8 36 0.5 74 0.9 48 0.9
Alzheimer’s 107 0.5 <10 S S
Cognitive Impairment 104 0.5 10 0.1 40 0.5 54 1.0
Diabetes 570 2.7 143 1.9 243 3.1 184 3.3
Stroke 362 1.7 95 1.3 167 2.1 100 1.8

No Diagnosis 11,443 55.2 4436 60.0 3155 40.5 3852 69.4
Time from Referral (Days, IQR) Median 36 (14–70) 30 (9–56) 32 (10–68) 50 (29–97)

Abbreviations: IQR, Interquartile Range; S, Suppressed – One or more cells for a different group resulted in less than 10 observations.
*Rows may not add to total as a result of missing information.
**Restriction can refer to an adding or removal of a restriction on a license.
y Conditions identified in 100 or more drivers described.

Table 2
Licensure Outcomes for Drivers tracked in EMREMS.

Restricted Denied

Source of Referral Total % HR* % HR*

Licensing Official 8,214 42.1 1.91 (1.82–2.00) 24.7 0.92 (0.87–0.98)
Crash Review 3,917 19.6 0.42 (0.39–0.46) 30.1 1.12 (1.04–1.19)
Law Enforcement 2,012 19.6 0.32 (0.29–0.36) 55.8 2.57 (2.42–2.74)
Self-Referral 1,160 47.7 1.98 (1.80–2.18) 13.9 0.63 (0.53–0.73)
Physician 377 27.3 0.47 (0.39–0.57) 58.4 2.51 (2.17–2.92)

*Model controls for age and whether a medical diagnosis was identified during the review.
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resulted in the evaluated driver passing. Only Safe Driving BASICS
(38.6% failures) had failure rates above 15%.

4. Discussion

With the use of a state medical referral database, EMREMS, we
were able to track medical referrals and final disposition over sev-
eral years of data. Building on the prior research on referrals from
law enforcement, (Lococo et al., 2013; Soderstrom et al., 2009) we
evaluated licensure outcomes for several referral sources.

We found that most referrals came as a result of licensing offi-
cials at the Department of Transportation. This finding highlights
the importance of including other sources of medical referrals
when evaluating populations of referred drivers since many
referred drivers were not referred from a law enforcement source.
Similarly, in a report that compared a random sample of referred
drivers from six states (Maine, Ohio, Oregon, Texas, Washington,
and Wisconsin) in 2012, non-law enforcement referral sources
made up the majority of referrals for all states except Wisconsin
(Lococo et al., 2017). The higher representation of law enforcement
referrals in Wisconsin was partially due to self-referrals not being
tracked in that state.

In the six state report, the primary source of referrals varied
across the states, with only Washington having license agency
employees as the primary source of referrals, accounting for 18%
(Lococo et al., 2017). This finding is only about half the proportion
of drivers referred when compared to the results found in
EMREMS. The high proportion of drivers referred by a license
agency found in our research may be due to different criteria for
referral of a driver and subsequent tracking. In Iowa, Department
of Transportation employees have discretion to require additional
screening of drivers. Drivers asked to complete screening tests,
such as the DOSCI or Safe Driving BASICS, are included in the track-
ing system, possibly explaining the greater representation of these
drivers in our study.

A study of Missouri drivers’ referral sources found that police
officers and license office employees referred the most drivers
(Meuser et al., 2009). The study was completed for a time period
after the passing of legislation for volunteer referral of drivers with
conditions that may affect their fitness-to-drive. Importantly, fam-
ily members and physicians referred 16% and 20% of drivers,
respectively. Referral from family and physicians was much higher
than our study despite similar voluntary referral laws. The previ-

ous study only included drivers over the age of 50, and many dri-
vers in the study had dementia or a cognitive impairment (45%).
Drivers with Alzheimer’s, dementia, or a cognitive impairment
made up less than 3% of our study population. Even with the differ-
ences in age of the populations, this is a great disparity between
the frequency of dementia. The difference in underlying population
partially explains the higher physician and family reporting
sources and is reflective in very few referred drivers keeping their
license in the study of Missouri drivers (3.0% of male drivers and
1.8% of female drivers; Meuser et al., 2009). This variability sup-
ports the need to track the referral process in states individually.

To our knowledge, this is the first study to compare referral
sources and risk of license denial or restriction while controlling
for confounders, such as age and medical conditions. In our study,
law enforcement and physicians were identified as the sources of
referral most likely to result in a denial of a driver’s license. How-
ever, referrals from physicians were a less common source of a
referral than crash reviews, licensing employees, self-referral, and
law enforcement. This implies that drivers are unlikely to be
referred by a physician, but when they are, they are likely to have
their license denied. Physicians may only be referring drivers with
severely diminished driving ability. Physicians could be encour-
aged to lower their threshold for referring drivers for license
review since the drivers they currently refer have a high likelihood
of license denial. This is similarly true for law enforcement who
referred less drivers than the crash review or licensing officials
but referred the group of drivers with the second highest risk of
denial of their license. This is difficult to implement because of
the reliance on personal discretion in making these reviews.

Many of the drivers that had their license denied failed to
attend testing. We do not have the data to identify what factors
lead to the failure to attend. Iowa DOT requires updated address
information for licensing, but this does not guarantee a driver
received contact requesting review. About 20% of drivers restarted
the review process suggesting some drivers may have been una-
ware of the review request in addition to those who chose to not
attend testing. Further evaluation is needed to understand the
motivating reasons for failing to attend testing.

Self-referral was the source most likely to result in a change in
the restrictions on a license. This is consistent with the research
suggesting that drivers have some ability in determining if their
driving skills are diminished (Betz, Carpenter, Genco, & Carr,
2014). Self-referral was rare in our study possibly due to the fear
of losing driving privileges. We expect most drivers who self-
refer to be encouraged by their physician or a family member,
but we are unable to identify this sequence of events in the data.
A common source of self-referral is a driver bringing in a medical
report or vision report. Again, we expect this is likely at the request
of a physician but cannot verify with the available data. The low
rate of self-referral may be due to driving changes made by the dri-
ver themselves without the intervention of the state licensing
authority. The various causes of driving retirement have been sum-
marized previously (Pickard, Tan, Morrow-Howell, & Jung, 2009) as
declining health conditions (Dellinger, Sehgal, Sleet, & Barrett-
Connor, 2001; Hakamies-Blomqvist & Wahlstrom, 1998; Lyman,
McGwin, & Sims, 2001; Ragland, Satariano, & MacLeod, 2004);
decreases in visual acuity (Campbell, Bush, & Hale, 1993; West
et al., 2003); difficulties performing self-care tasks (Lyman et al.,
2001; West et al., 2003); and declining cognitive functions
(Freund & Szinovacz, 2002). All of these factors may also result in
a lower likelihood to voluntarily seek medical review.

We found that licensing officials were the second most common
source of identifying drivers who required a change in their license.
License agency employees were by far the most common source of
referrals making them the primary identifier of decreased driving
abilities. Previous studies have found that in-person license

Table 3
Screening Tests and Evaluation of Drivers tracked in EMREMS.

Variable Result N = 20742 %

On-Road Driving Test Fail 628 8.8
Pass 6,530 91.2
Not Tested 13,584 –

Knowledge Test Fail 185 4.5
Pass 3,887 95.5
Not Tested 16,670 –

Safe Driving BASICS Fail 611 38.6
Pass 971 61.4
Not Tested 19,160 –

DOSCI Fail 524 4.4
Pass 11,350 95.6
Not Tested 8,868 –

Medical Report Fail 827 13.4
Pass 5,366 86.6
Not Tested 14,549 –

Vision Screen Fail 337 4.9
Pass 6,550 95.1
Not Tested 13,855 –

Abbreviations: DOSCI, Driver Orientation Screen for Cognitive Impairment; Safe
Driving BASICS, Brief Auto-Screening Instrument for Cognitive Status
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renewal laws reduced the risk of fatal motor-vehicle crash among
older drivers regardless of testing required at in-person renewal
(Grabowski, Campbell, & Morrisey, 2004; Tefft, 2014). Our results
show that licensing agency employees provide a source of identify-
ing the most drivers who require a change to their license. Identi-
fying these drivers and reducing their risk of a future crash through
license restriction is one possible explanation for the reduced risk
of fatal crash seen in states that require in-person renewal of a
license.

During the medical review process the DOSCI was the most fre-
quently used test. This is expected because the DOSCI is a quick
screening test and does not require administration by a medical
professional (Hill et al., 2016). The tool is convenient but not
designed to identify less severe impairments of driving. Another
screening test, Safe Driving BASICS was used far less frequently.
Safe Driving BASICS may be more appropriate for use in the screen-
ing of referred drivers because the individual components have all
been effective in identifying diminished driving ability (Emerson
et al., 2012; Hird et al., 2016; Jones Ross et al., 2014, 2015;
Owsley et al., 1998). This may reduce the need to perform the
on-road driving test for some drivers. We found the on-road driv-
ing test to be the second most common test administered despite
being more intensive than the other screening tests and having a
high pass rate. The knowledge test, on-road driving tests, and med-
ical reports are strongly relied on for determining a denial of a
license. While the screening tests, such as the Safe Driving BASICS,
are not used to determine an outright denial of license, it may be
an efficient way to identify drivers who need more extensive
review.

While we were able to follow referred drivers from several
sources and identify their license disposition, this study does have
some limitations. First, we are not able to distinguish what lead to
the referral within the reported source. A physician may have
encouraged a driver to seek referral or a driver may have requested
a physician’s evaluation of their driving ability. Either scenario
could have initiated the referral process, but only the source listed
with the Department of Transportation would have been identified
for our study. We were, however, able to generally understand how
drivers entered the medical review process. We were also not able
to identify if a change in license restrictions resulted in adding or
removing restrictions from the available data, only that a change
had occurred. Because the drivers were under evaluation of their
fitness-to-drive we assume that vast majority of these changes
were adding of restrictions.

4.1. Conclusions

This research provides several insights into the medical referral
process. Because of their effectiveness in identifying drivers who
ultimately have their licenses denied, law enforcement and physi-
cians are valuable partners in identifying diminished driving abil-
ity. Future research should evaluate the burden of preventing
referral from these sources and provide better guidance to
empower these groups to confidently refer drivers. We also found
that the screening test, Safe Driving BASICS, was used less fre-
quently than the DOSCI. Based on previous studies, the standard-
ized and objective components of Safe Driving BASICS appear to
have broader application in identifying specific impairments that
predict crash risk. Drivers have several factors that influence their
ability to drive. A more comprehensive analysis of specific medical
conditions and how they interact with a screening test will help in
the development of guidance needed to more accurately identify
drivers no longer fit-to-drive. As EMREMS continues to collect
information on referred drivers, these questions can be addressed.

4.2. Practical Applications

Other states should consider tracking their referred drivers in a
similar way to evaluate their ability to identify functionally or
medically at-risk drivers and make appropriate decisions about
their licensure. Because Safe Driving BASICS incorporates several
validated measures for identifying those at higher risk of crash
involvement, its use should be encouraged. Providing more
resources to screen with Safe Driving BASICS may prevent the need
for tests that require additional scheduling and employee supervi-
sion such as the driving knowledge test or on-road test.
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a b s t r a c t

Introduction: Traffic crashes could result in severe outcomes such as injuries and deaths. Thus, under-
standing factors associated with crash severity is of practical importance. Few studies have deeply exam-
ined how prior violation and crash experience of drivers and roadways are associated with crash severity.
Method: In this study, a set of risk indicators of road users and roadways were developed based on their
prior violation and crash records (e.g., cumulative crash frequency of a roadway), in order to reflect cer-
tain aspect or degree of their driving risk. To explore the impacts of those indicators on crash severity and
complex interactions among all contributing factors, a Bayesian network approach was developed, based
on citywide crash data collected in Kunshan, China from 2016 to 2018. A variable selection procedure
based on Information Value (IV) was developed to identify significant variables, and the Bayesian net-
work was employed to explicitly explore statistical associations between crash severity and significant
variables. Results: In terms of balanced accuracy and AUCs, the proposed approach performed reasonably
well. Bayesian modeling results indicated that the prior crash/violation experiences of road users and
roadways were very important risk indicators. For example, migrant workers tend to have high injury risk
due to their dangerous violation behaviors, such as retrograding, red-light running, and right-of-way vio-
lation. Furthermore, results showed that certain variable combinations had enhanced impacts on severity
outcome than single variables. For example, when a migrant worker and a non-motorized vehicle are
involved in a crash happening on a local road with high cumulative violation frequency in the previous
year, the probability for drivers suffering serious injury or fatality is much higher than that caused by any
single factor. Practical applications: The proposed methodology and modeling results provide insights for
developing effective countermeasures to reduce crash severity and improve traffic system safety
performance.

� 2020 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

The issue of traffic safety is a global problem that results in
property damage, injury, and death, and costs billions of dollars
every year. Statistical data show that approximately 50 million
people were injured and about 1.35 million were killed in traffic
crashes worldwide annually (Global Status Report on Roadway
Safety, 2019). In China, there were about 203,000 traffic crashes
occurred in 2017, resulting in about 64,000 deaths and approxi-
mately 175.8 million in direct property losses (China Statistical
Yearbook, 2019). Road traffic crashes not only cause huge property
losses and casualties of road users, but is also an important factor
determining whether the road traffic system can perform well.

The road traffic system is a complex system composed of driver,
vehicle, roadway, and other elements. The severity of traffic

crashes will also be affected by various factors in the traffic system.
When several risk factors exist simultaneously, there will be a
higher risk of traffic crashes (Keller & Modarres, 2005; Xu, Wang,
Liu, Wang, & Bao, 2018). Factors affecting severity of traffic crashes
are usually caused by one or more of the following factors: driver
characteristics, vehicle characteristics, roadway characteristics,
crashes characteristics, and atmospheric factors (Chang & Wang,
2006; Coeliac, Papadimitriou, Papandreou, & Prevedouros, 2007;
de Oña, Mujalli, & Calvo, 2011; Delen, Sharda, & Bessonov, 2006;
Guo, Li, Wu, & Xu, 2018a, 2018b; Híjar, Carrillo, Flores, Anaya, &
Lopez, 2000; Wang et al., 2017, 2018, 2019). However, very few
studies have further explored how prior violation and crash expe-
rience of drivers and roadways are associated with crash severity,
such as the cumulative violation frequency of a driver, the cumula-
tive crash frequency of a roadway, and so forth. Those factors,
reflecting certain aspects and degree of crash risk, could also have
an impact on the severity of traffic crashes.
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Regarding modeling techniques, statistical models have been
extensively developed for exploring contributing factors on crash
severity. Regression models have been widely developed to deter-
mine the contributing factors that cause a specific crash severity.
The logistic regressionmodel and the orderedprobitmodel aremost
commonly used in traffic crash analysis (Al-Ghamdi, 2002; Bedard,
Guyatt, Stones, & Hirdes, 2002; Kockelman & Kweon, 2002; Milton,
Shankar, & Mannering, 2008; Yamamoto & Shankar, 2004; Yau, Lo,
& Fung, 2006). However,most of thesemodels are established based
on certain assumptions and pre-defined underlying relationships
(such as linear relationships) between dependent and independent
variables, which could lead to biased estimations when these
assumptions are violated (Chang &Wang, 2006). Recently, Bayesian
network (BN) method has been popularly applied in traffic crash
modeling research (Borg, Bjelland, & Njå, 2014; Chen et al., 2015;
Hänninen, 2014; Hossain & Muromachi, 2012; Mbakwe, Saka,
Choi, & Lee, 2016; Zhao, Wang, & Qian, 2012). In a BN model, the
model structure canbedefinedby thenetwork topological represen-
tation and the quantitative relationships among variables can be
specified by the conditional probabilities. BNs are capable ofmodel-
ing inter-correlated independent variables to better interpret their
heterogeneous influence on severity outcomes from the attribute
changes in crashes.

In light of these, this study aims to explore the relationship
between risk indicators (e.g., factors related to prior violation and
crash records of driver and roadway) and crash severity, as well
as examine complex interactions among all contributing factors.
A set of risk indicators were created based on prior violation and
crash records and BN model was used for crash modeling. This
paper is organized as follows: the previous studies are review in
Section 2; the data description and pre-processing are provided
in Section 3; followed by the methodology in Section 4; the model
results and discussions are presented in Section 5; and the research
effort is concluded in Section 6.

2. Literature review

In previous studies, efforts toward crash severity analyses have
been substantial. The main objective of those was to identify fac-
tors that significantly affect the severity of traffic crashes. The
crash severity is usually influenced by one or more of the following
factors: driver characteristics, vehicle characteristics, roadway
characteristics, crashes characteristics and atmospheric factors.
Several studies found that drivers of electric vehicles and bicycles
are high-risk groups causing serious traffic crashes (Coeliac et al.,
2007; Guo et al., 2018; Wang, Xu, Xia, Qian, & Lu, 2018). Vehicle
types were found to be associated with crash severity, and pedes-
trians, motorcycle and bicycle riders were identified to have higher
risks of being injured than others in traffic crashes (Chang & Wang,
2006). The use of a restraint system like seat belts, use of alcohol or
drugs, drivers’ age and gender, and vehicle role in the crash were
found to have an important influence on the severity of crashes,
and weather conditions or the time of the crash did not seem to
affect the severity risk of injury (Delen et al., 2006). Road types,
lighting conditions, and weather conditions are also important fac-
tors affecting the severity of crashes (Híjar et al., 2000). The com-
bination of certain risk factors can cause more serious crashes,
such as frontal collision, no lighting, and young drivers (de Oña
et al., 2011; Wang, Xu, & Dai, 2019). Many previous studies have
shown that the characteristics of driver and roadway in the traffic
system are related to the severity of crashes. However, very few
studies have further explored prior violation and crash records of
driver and roadway, such as the cumulative violation frequency
committed by the driver in the previous year, the cumulative crash
frequency happened on the roadway in the previous year, and so
forth. These significant indicators of the high-risk characteristics

of driver and roadway could also have an impact on the severity
of crashes.

Various methodological and statistical modeling techniques
have been developed to explore contributing factors on crash
severity. Regression analysis has been widely conducted to identify
the contributing factors that cause a specific crash severity. The
logistic regression model and the ordered probit model are most
commonly applied in traffic crash analysis (Al-Ghamdi, 2002;
Bedard et al., 2002; Kockelman & Kweon, 2002; Milton et al.,
2008; Yamamoto & Shankar, 2004; Yau et al., 2006). Al-Ghamdi
developed a logistic regression model to examine the contribution
of several factors to crash severity (Al-Ghamdi, 2002). Milton et al.
developed a mixed logit model for highway crash severity (Milton
et al., 2008). Bedard et al. conducted a multivariate logistic regres-
sion to examine the independent contribution of driver, crash, and
vehicle characteristics to fatal injuries (Bedard et al., 2002). Yau
et al. applied a stepwise logistic regression model to identify risk
factors for severe traffic crashes (Yau et al., 2006). Yamamoto
and Shankar developed a bivariate ordered-response probit model
of driver’s and most severely injured passenger’s severity in colli-
sions with fixed objects (Yamamoto & Shankar, 2004). Kockelman
and Kweon applied an ordered probit model to examine the risk
of different injury levels sustained under all crash types, two-
vehicle crashes, and single-vehicle crashes (Kockelman & Kweon,
2002). However, most of these models have certain assumptions
on data structure/variable relationships. For instance, MNL models
assume that random errors are Gumbel-distributed. Linear models
assume a linear relationship between depended and independent
variables. When being violated, such assumptions may lead to
biased estimations (Chang & Wang, 2006).

Recently, Bayesian network (BN) method has been popularly
applied in traffic crash modeling research (Borg et al., 2014; Chen
et al., 2015; Hänninen, 2014; Hossain & Muromachi, 2012;
Mbakwe et al., 2016; Zhao et al., 2012). Zhao et al. investigated
the factors that affect hazardous material transportation crashes
by developing a BN model based on related expert knowledge
(Zhao et al., 2012). Borg et al. proved the applicability and effec-
tiveness of a BN model on tunnel risk assessments (Borg et al.,
2014). Chen et al. developed a hybrid approach to combine multi-
nomial logit models and BN methods for comprehensively analyz-
ing driver injury severity in crashes (Chen et al., 2015). Hossain and
Muromachi applied Bayesian belief net to build the real-time crash
prediction model (Hossain & Muromachi, 2012). Mbakwe et al.
developed a hybrid approach to combine Delphi techniques and
BN methods for modeling highway traffic crashes and forecasting
crash rates in the countries of research (Mbakwe et al., 2016).
Hänninen discussed the utilization of BNs in maritime safety mod-
elling (Hänninen, 2014). The comprehensive understandings of BN
applications in traffic crash modeling and analysis were provided
in these studies. A BN model not only captures statistical associa-
tions between independent and dependent variables, but also
extract correlations among independent variables to present all
interactions among all variables, which can make it easy to
describe crashes that involve many interdependent variables.
Without any pre-defined assumptions on certain data strucuture
(e.g., normal distribution) or variable relationships (e.g., a linear
relationship), the structure of BN can be directly learned from
crash data. With BN, the mechanism of traffic crashes can be visu-
alized in the form of directed acyclic graph.

3. Data

3.1. Data description

This study was conducted based on three-year crash data and
violation data collected in Kunshan, China from 2016 to 2018,
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obtained from the Kunshan Traffic Police Department. The crash
data consist of crash records, crash characteristics, vehicle charac-
teristics, roadway characteristics, and drivers’ demographic infor-
mation. Drivers’ violation records were also collected by
matching IDs in the crash data and violation data. This study
focused on the impact of violation and crash records of driver
and roadway in the previous year on the severity of crashes. Due
to the failure to obtain prior records of driver and roadway for
the crash occurred in 2016, two-year data from 2017 to 2018,
including 81,336 crashes, were used as input data of the model.
The variable, SEV, was defined to categorize severity of crashes into
three levels: property damage only (PDO), slight injury (SI), serious
injury or fatality (SIF).

3.2. Data preprocessing

In this study, some variables were created as risk indicators of
drivers and roadways based on prior violation and crash records,
such as specific violation types, cumulative crash frequency/viola-
tion frequency/violation penalty points/violation penalty fee of dri-
ver, cumulative crash frequency/crash casualties/crash property
loss/violation frequency/violation penalty points/violation penalty
fee of roadway. For processing continuous variables is computa-
tionally expensive due to their estimation inefficiency, these vari-
ables were discretized by a supervised discretization method (i.e.,
MODL method) which can potentially degrade structure learning
and parameter estimation (Boullé, 2004). Based on the discrete
results, this study defined high-risk variables as the risk indicators
of driver and roadway. In the next section, a Bayesian network will
be developed based on the hypothesis that the proposed risk indi-
cators are related to crash severity. The risk indicators are shown in
Table 1. The description of all variables in the model and their
abbreviations are shown in Table 2.

In this study, datasets are unbalanced by the limited number of
high-severity crashes, which could cause model overfitting. Thus,
ADASYN, a widely used over-sampling method, was introduced
to deal with this issue. ADASYN is based on the idea of adaptively
generating minority data samples according to their distributions:
more synthetic data is generated for minority class samples that
are harder to learn compared to those minority samples that are
easier to learn. The ADASYN method can not only reduce the learn-
ing bias introduced by the original imbalance data distribution, but
can also adaptively shift the decision boundary to focus on those

difficult to learn samples. The ADASYN algorithm is described
below (He, Bai, Garcia, & Li, 2008).

Input

Table 1
The risk indicators.

Variable Definition

High cumulative crash frequency of driver
involvement

One crash or more

High cumulative violation frequency of driver
involvement

One violation or more

High cumulative violation penalty points of driver
involvement

Two scores or more

High cumulative violation penalty fee of driver
involvement

More than 90 RMB

High cumulative crash frequency of roadway More than 1300
crashes

High cumulative crash casualties of roadway More than 120 people
High cumulative crash property loss of roadway More than 5,000,000

RMB
High cumulative violation frequency of roadway More than 3600

violations
High cumulative violation penalty points of roadway More than 7800

scores
High cumulative violation penalty fee of roadway More than 270,000

RMB

Table 2
Variable definitions and abbreviations.

Feature Variable Abbr

Gender Female driver involvement FDI
Age Young driver (age < 18) involvement YDI

Middle-age driver (18–55) involvement MDI
Older driver (age > 55) involvement ODI

Occupation Migrant worker involvement MWI
Courier involvement CRI
Student involvement SDI

Violation behavior Retrograde violation of motorized vehicle
involvement

RVMI

Retrograde violation of non-motorized
vehicle involvement

RVNI

Right-of-way violation of motorized vehicles
involvement

RWVMI

Right-of-way violation of non-motorized
vehicles involvement

RWVNI

Traffic signal violation of motorized vehicles
involvement

TSVMI

Traffic signal violation of non-motorized
vehicles involvement

TSVNI

Drunk driving violation of motorized
vehicles involvement

DDVMI

Drunk driving violation of non-motorized
vehicles involvement

DDVNI

Speeding violation of motorized vehicles
involvement

SVMI

Speeding violation of non-motorized
vehicles involvement

SVNI

Overtaking violation of motorized vehicles
involvement

OVMI

Overtaking violation of non-motorized
vehicles involvement

OVNI

Risk indicators of
driver

High cumulative crash frequency of driver
involvement

HCCFDI

High cumulative violation frequency of
driver involvement

HCVFDI

High cumulative violation penalty points of
driver involvement

HCVPPDI

High cumulative violation penalty fee of
driver involvement

HCVPFDI

Vehicle type Non-motorized vehicles involvement NMVI
Motorcycle involvement MCI

Roadway type Urban expressway UE
Major arterial MAA
Minor arterial MIA
Local road LR
High-grade highway HH
Middle-grade highway MH
Low-grade highway LH

Risk indicators of
roadway

High cumulative crash frequency of
roadway

HCCFR

High cumulative crash casualties of roadway HCCCR
High cumulative crash property loss of
roadway

HCCPLR

High cumulative violation frequency of
roadway

HCVFR

High cumulative violation penalty points of
roadway

HCVPPR

High cumulative violation penalty fee of
roadway

HCVPFR

Time period Late night (00:00–05:00) LN
Morning peak hour (05:00–09:00) MPH
Off-peak hour (09:00–17:00) OPH
Evening peak hour (17:00–21:00) EPH
Night (21:00–00:00) NT

Day Weekdays WD
Weather Clear weather CW

Rainy weather RW
Overcast weather OW
Snowy weather SW
Fog weather FW

Y. Song, S. Kou and C. Wang Journal of Safety Research 76 (2021) 64–72

66



Training data set Dtr with m samples fxi; yig, i ¼ 1; :::;m, where
xi is an instance in the n dimensional feature space X and
yi 2 Y ¼ f1;�1g is the class identity label associated with xi. Define
ms and ml as the number of minority class examples and the num-
ber of majority class examples, respectively. Therefore, ms 6 ml

and ms þml ¼ m.
Procedure
(1) Calculate the degree of class imbalance:

d ¼ ms=ml ð1Þ
where d 2 ð0;1�.

(2) If d < dth then (dth is a preset threshold for the maximum tol-
erated degree of class imbalance ratio):

(a) Calculate the number of synthetic data examples that need
to be generated for the minority class:

G ¼ ðml �msÞ � b ð2Þ
where b 2 ½0;1� is a parameter used to specify the desired balance
level after generation of the synthetic data. b ¼ 1 means a fully bal-
anced data set is created after the generalization process.

(b) For each example xi 2 minorityclass, find K nearest neighbors
based on the Euclidean distance in n dimensional space, and calcu-
late the ratio ri defined as:

ri ¼ Di=K; i ¼ 1; :::;ms ð3Þ
where Di is the number of examples in the K nearest neighbors of xi
that belong to the majority class, therefore ri 2 ½0;1�.

(c) Normalize ri according to r̂i ¼ ri=
Pms

i¼1ri, so that r̂i is a density
distribution (

P
i r̂i ¼ 1).

(d) Calculate the number of synthetic data examples that need
to be generated for each minority example xi:

gi ¼ r̂i � G ð4Þ
where G is the total number of synthetic data examples that need to
be generated for the minority class as defined in Equation (2).

(e) For each minority class data example xi, generate gi syn-
thetic data examples according to the following steps:

Do the Loop from 1 to gi:
(i) Randomly choose one minority data example, xzi, from the K

nearest neighbors for data xi.
(ii) Generate the synthetic data example:

si ¼ xi þ ðxzi � xiÞ � k ð5Þ
where (xzi � xi) is the difference vector in n dimensional spaces, and
k is a random number: k 2 ½0;1�.

End Loop.

4. Methodology

4.1. Research design

BN is a technique for graphically representing a joint probability
distribution of a selected set of variables (Pearl, 2014). The compli-
cated relationships and interactions among independent and
dependent variables can be visualized with graphical representa-
tions of BNs. The structure of a BN model is a directed graph, where
the nodes represent the model variables and the links between the
nodes represent the dependencies. Considering a large number of
independent variables, BN structure optimization in the global
space is extremely computation intensive. The search space
increases as a super-exponential function of the number of vari-
ables (Chen et al., 2015). Therefore, a variable selection procedure
is essential to extract a set of significant contributing variables and
screen out variables that do not influence model performance,
which also improves the interpretability of the model.

A variable selection procedure based on information value is
applied to extract significant variables and screen out unnecessary
and redundant variables to increase optimal BN structure search
efficiency. The details of the variable selection procedure and BN
modeling are provided in the following sections.

4.2. Variable selection based on information value

Most of the feature selection methods, such as Focus, Sch193
and MIFES1, cannot be applied to large dataset because of the
memory and/or computational complexity they impose (Dash &
Liu, 1997). Additionally, some of the methods for feature selection
are applicable only on binary classification problems, such as Relief
and Sege84 (Dash & Liu, 1997). In order to address these issues, the
measure named information value (IV) could be used which can
rank variables on the basis of their importance. Information value
can be used for feature selection is less demanding in terms of
memory and computational power. Owing to its convenient rules
and fast calculation, IV is a popular and widely used measure in
variable selection (Anderson, 2007; Finlay, 2012; Mays & Lynas,
2004). The IV tells the predictive power of an independent variable
in relation to the dependent variable. Since it evolved from credit
scoring world, it is generally described as a measure of the separa-
tion of good and bad customers. The formula for IV is shown below.

IVji ¼ ðBji

Bj
� Gji

Gj
Þ � ln

Bji=Bj

Gji=Gj
ð6Þ

IVj ¼
Xn

i

IVji ð7Þ

IV ¼
Xm

j

IVj �Wj ð8Þ

where

Gji: Total goods of classification j of dependent variable in rela-
tion to classification i of independent variable.
Bji: Total bads of classification j of dependent variable in rela-
tion to classification i of independent variable.
Gj: Total goods of classification j of dependent variable.
Bj: Total bads of classification j of dependent variable.
IVji: IV of classificationiof independent variable in relation to
classification j of dependent variable.
IVj: IV of independent variable in relation to classification j of
dependent variable.
Wj: The weight of classification j of dependent variable.
IV: IV of independent variable in relation to dependent variable.

There is reliable predictive power of an independent variable in
relation to the dependent variable when IV is more than 0.1
(Siddiqi, 2012; Zdravevski, Lameski, Kulakov, & Gjorgjevikj,
2014). IVs were calculated of all contributing variables in Table 2
in relation to dependent variable, SEV. These significant variables
with IV more than 0.1 will be extracted for BN structure establish-
ment and probabilistic parameter learning to explicitly formulate
statistical dependence between crash severity and explanatory
attributes.

4.3. Bayesian network model

BN is employed as a classifier to analyze crash severity based on
the significant factors identified in the variable selection procedure
in this study. Let U ¼ x1; x2; � � �f ; xng, n P 1 be a set of variables. A
BN over a set of variables U is a network structure, which is a Direc-
ted Acyclic Graph (DAG) over U and a set of probability tables
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BP ¼ pðxijpaðxiÞ; xi 2 UÞf g where paðxiÞ is the set of parents or ante-
cedents of xiin BN and i ¼ 1;2;3; � � �;n. A BN represents joint prob-
ability distributions PðUÞ ¼ Q

xi2Up xijpaðxiÞð Þ. The modeling process
of BNs consists of structure learning and parameter learning.

There are two main approaches to structure learning in BNs:
constraint-based algorithms (e.g., grow-shrink, incremental associ-
ation markov blanket) and score-based algorithms (e.g., hill climb-
ing, tabu search). With less sensitive to errors in individual tests,
score-based algorithms have an advantage over the constraint-
based algorithms. The hill climbing algorithm was applied in this
study mainly because it is fast and widely used, and also produces
good results in terms of network complexity and accuracy
(Madden, 2008). The identified optimal BN structure presents the
statistically dependent relationships among the variables in the
model based on the dataset. The conditional probability tables
can be estimated with Bayesian parameter estimation method.
Through structure learning and parameter learning, BNs are devel-
oped to investigate the impacts of significant contributing vari-
ables extracted on the severity of crashes.

5. Results and discussion

5.1. IV calculation and significant variable identification

In this study, the significant variables were identified based on
IV of all independent variables in relation to dependent variable,
SEV. The significant variables with IV more than 0.1 were extracted
as shown in Table 3.

As we can see in Table 3, 15 significant variables were identified
from all variables. The IVs of MWI, NMVI are 0.395 and 0.487,
respectively, indicating that the migrant worker and non-
motorized vehicle involved in crashes are significant contributors
to severity of crashes. The IV of HCCFR is 0.440, indicating that
the roadway with high cumulative crash frequency is also a signif-
icant contributor to severity of crashes.

5.2. BN model comparison and discussion

The whole dataset was divided into two subsets, approximately
3:1. The larger subset (training dataset) was used for BN model
learning and the smaller subset (testing dataset) was utilized for
model validation and performance test.

This study primarily focused on the impact of risk indicators of
drivers and roadways on crash severity. Therefore, two BN models,

model A and model B, were developed in this study. Compared to
model A, model B contains risk indicators of driver and roadway.
BN structures of two models are shown in Fig. 1 and Fig. 2, respec-
tively. Model A contains eleven variables and model B contains 16
variables. Node SEV has six parents (i.e., MWI, CRI, NMVI, MCI, LR,
LH) in model A, and nine parents (i.e., MWI, NMVI, MCI, LR, LH,
HCVPPDI, HCCFR, HCCCR, HCVFR) in model B. As can be seen in
Fig. 2, the risk indicators of driver and roadway have direct impacts
on the severity of crashes.

The concept of balanced accuracy was introduced to compute
overall accuracy of model, which avoids inflated performance esti-
mates on imbalanced datasets. It is the macro-average of recall
scores per class or, equivalently, raw accuracy where each sample
is weighted according to the inverse prevalence of its true class.

If yi is the true value of the i-th sample, and wi is the corre-
sponding sample weight, then we adjust the sample weight to:

ŵi ¼ wiP
j1ðyj ¼ yiÞwj

ð9Þ

Given predicted ŷi for sample i, balanced accuracy is defined as:

balanced� accuracyðy; ŷ;wÞ ¼ 1P
ŵi

X

i

1ðŷi ¼ yiÞŵi ð10Þ

Receiver Operating Characteristic (ROC) curve is another impor-
tant indicator to evaluate the overall performance of the BN model.
The overall ROC curves illustrate the tradeoffs between the true
positive rates and false positive rates. The Area Under an ROC
Curve (AUC) is a quantitative index that assesses the overall perfor-
mance of model classification estimation. For multilabel classifica-
tion, the assumption that all classes are equally important is often
untrue. Therefore, the macro-averaging method was applied to cal-
culate overall AUC of model (Tsoumakas & Vlahavas, 2007). In
problems where infrequent classes, such as serious injury or fatal-
ity (SIF), are nonetheless important, macro-averaging may be a
means of highlighting their performance. ROC curves of training
and testing datasets of two models are shown in Fig. 3. The perfor-
mance of two models are summarized in Table 4.

As can be seen in Table 4, the overall balanced accuracy of
model A for training dataset and testing dataset are 65.4% and
64.8%, respectively. And the overall balanced accuracy of model B
are 71.6% and 70.8%, respectively. The variance between the bal-
anced accuracy for training dataset and testing dataset of two
models are both under 1%, indicating that the trained networks
are transferable and able to explain and model the testing data rea-
sonably well. The variance between the AUCs for training dataset

Table 3
Significant variable identification.

Abbr Significant variable IV

ODI Older driver (age > 55) involvement 0.144
MWI Migrant worker involvement 0.395
CRI Courier involvement 0.136
RVNI Retrograde violation of non-motorized vehicle

involvement
0.128

RWVNI Right-of-way violation of non-motorized vehicles
involvement

0.129

TSVNI Traffic signal violation of non-motorized vehicles
involvement

0.107

HCVPPDI High cumulative violation penalty points of driver
involvement

0.102

NMVI Non-motorized vehicles involvement 0.487
MCI Motorcycle involvement 0.140
LR Local road 0.191
LH Low-grade highway 0.238
HCCFR High cumulative crash frequency of roadway 0.440
HCCCR High cumulative crash casualties of roadway 0.117
HCVFR High cumulative violation frequency of roadway 0.138
HCVPFR High cumulative violation penalty fee of roadway 0.132 Fig. 1. BN structure of model A.
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and testing dataset of two models are both under 0.02, indicating
that two trained BNs are both not overfitting and perform well
for three crash severity classifications. In terms of achieving a
higher AUC, model B appeared to be better than model A, indicat-
ing that risk indicators of drivers and roadways have significant
contribution to crash severity levels. In terms of both balanced
accuracy and AUCs, model B with risk indicators included is a bet-
ter model among all.

The BN structure explicitly formulates the interdependency
among the variables and is capable of providing probability infer-
ence analyses based on the conditional probability tables for each
node. Tables 5 and 6 illustrate probability inference results for
nodes which have parents.

As can be seen in Fig. 2, node SEV have nine parents (i.e., MWI,
NMVI, MCI, LR, LH, HCVPPDI, HCCFR, HCCCR, HCVFR) which have
direct influences on crash severity. Through setting evidences for

those parents, their contributions to crash severity can be quanti-
fied. Overall proportion distribution of three crash severities in
the BN model are 0.325, 0.298, and 0.377, respectively. Table 6
illustrates probability inference results for variables which directly
influencing crash severity.

As shown in Table 6, if a migrant worker (MWI) is involved in a
crash, the probability for drivers suffering serious injury or fatality
(SIF) increases from 0.377 to 0.409 (increased by 8.5%). This
implies that migrant workers are more likely to be seriously
injured in crashes. In traditional statistical framework, it could be
difficult to further discuss why migrant workers could be injury
prone. Thanks to the BN structure, node MWI can be seen to
directly link to node HCVPPDI, RWVNI, TSVNI and RVNI. Thus, it
was found that those road user group is associated with a large
number of violation behaviors, especially red-light running, retro-
grade violation, and right-of-way violation. Moreover, those people
are associated with roadways with high violation and crash fre-
quency (HCVFR, HCCFR), indicating their high exposure. It was
known that migrant workers normally lack educational back-
ground and safety awareness. Thus, those road user group needs
to be paid more attention to.

As can be expected, if a non-motorized vehicle (NMVI) or a
motorcycle (MCI) is involved in a crash, the likelihoods for drivers
suffering serious injury or fatality (SIF) increase from 0.377 to
0.392 (increased by 4.0%) and from 0.377 to 0.394 (increased by
4.5%), respectively. This implies that drivers of non-motorized
vehicles and motorcycles are more likely to be seriously and fatally
injured in crashes, which is consistent with the conclusions in the

Fig. 2. BN structure of model B.

Fig. 3. ROC curves of training and testing datasets of two models.

Table 4
BN estimation results.

Model Training dataset Testing dataset

Balanced-accuracy AUC Balanced-accuracy AUC

A 65.4% 0.820 64.8% 0.834
B 71.6% 0.860 70.8% 0.874
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previous studies (Chang & Wang, 2006; Coeliac et al., 2007; Guo
et al., 2018; Wang et al., 2018). According to BN, drivers of non-
motorized vehicles and motorcycles are also associated with a
large number of violation behaviors (i.e., RWVNI, TSVNI and RVNI).
Moreover, such group is also vulnerable due to lack of protection
from their vehicles. To note, couriers (CRI) contribute a lot to
red-light running violations (TSVNI). Couriers, especially for food
delivery by motorcycles, have been drastically increased in recent
years in China. However, such group often violates traffic rules and
needs to be emphasized for governing.

Drivers driving on local roads (LR) or low-grade highways (LH)
were found to be more involved in crashes that resulted in slight
injury (SI). The probabilities for drivers suffering slight injury (SI)
increase from 0.298 to 0.319 (increased by 7.0%) and from 0.298
to 0.315 (increased by 5.7%), respectively. But the probabilities
for drivers suffering serious injury or fatality (SIF) decrease from
0.377 to 0.372 (decreased by 1.3%) and from 0.377 to 0.333 (de-
creased by 11.7%), respectively. As can be seen in Fig. 2, node LR
is directly linked to node HCCFR, HCCCR, HCVFR, and HCVPFR.
Nowadays, traffic enforcement systems have been extensively
implemented on urban arterials in Kunshan, China. However,
enforcement on local roads is still lacking, causing more violations
and crashes. Node LH is linked to node RVNI and TSVNI, indicating
that retrograding and red-light running violations largely happen

on low-grade highways. Such behaviors could increase injury risk.
Due to the relatively low operating speed of low-grade highways,
the crashes happening on such roads are more likely to cause prop-
erty damage and slight injury, but not serious injury or fatality.

There are several interesting findings according to the results.
Risk indicators of drivers and roadways significantly affect the
probabilities of driver injury and fatality in crashes, supported by
the conditional probability tables for these nodes. As can be seen
in Table 6, if drivers with high cumulative violation penalty points
(HCVPPDI) are involved in crashes, the probability of suffering seri-
ous injury or fatality (SIF) decreases from 0.377 to 0.342 (decreased
by 9.3%). Also note that node HCVPPDI is not linked to those dan-
gerous violation types, including node RWVNI, TSVNI, and RVNI.
Thus, it could be concluded that drivers with prior dangerous vio-
lation records (i.e., red-light running, retrograding, and right-of-
way violation) could be more dangerous than those who only com-
mit more common violations.

It should be also noted that if crashes happen on roadways with
prior high crash risk (i.e., HCCFR, HCCCR), the probabilities of dri-
vers suffering serious injury or fatality (SIF) tend to decrease from
0.377 to 0.342 (decreased by 9.3%) and from 0.377 to 0.365 (de-
creased by 3.2%), respectively. This could be attributed to the safety
improvement actions conducted by the Kunshan Traffic Police
Department in recent years. Another possible reason could be that
drivers tend to be more cautious when driving on such high-crash-
risk roadways. On the other hand, if crashes happen on roadways
with prior high cumulative violation frequency (HCVFR), the prob-
ability of serious injury or fatality (SIF) increases from 0.377 to
0.394 (increased by 4.5%). This implies that these roadways with
rampant dangerous violation behaviors would increase the
propensity of driver injury and fatality.

On the basis of the above analysis, we know that some variables
have an impact on the severity of traffic crashes. Considering the
impact of variable combinations to crash severity, three high-
severity crash scenarios were discussed, as shown in Table 7. In
scenario 1, when a migrant worker (MWI) and a non-motorized

Table 5
BN probability inference results for nodes.

Nodes Parents NO-NO NO-YES YES-NO YES-YES

MWI RVNI 0.858 0.908 0.142 0.092
RWVNI 0.899 0.867 0.101 0.133

CRI TSVNI 0.981 0.979 0.019 0.021
HCCFR 0.962 0.998 0.038 0.002
HCVPFR 0.975 0.984 0.025 0.016

RVNI ODI 0.947 0.905 0.053 0.095
MCI 0.867 0.985 0.133 0.015

RWVNI ODI 0.929 0.847 0.071 0.153
MCI 0.855 0.922 0.145 0.078

TSVNI ODI 0.931 0.905 0.069 0.095
MWI 0.940 0.896 0.060 0.104
MCI 0.859 0.977 0.141 0.023

HCVPPDI ODI 0.850 0.881 0.150 0.119
MWI 0.872 0.859 0.128 0.141
NMVI 0.838 0.893 0.162 0.107
MCI 0.845 0.886 0.155 0.114
LR 0.908 0.823 0.092 0.177

NMVI RVNI 0.125 0.001 0.875 0.999
RWVNI 0.126 0.000 0.874 1.000
TSVNI 0.125 0.001 0.875 0.999
HCVPFR 0.070 0.056 0.930 0.944

LR HCCFR 0.546 0.565 0.454 0.435
HCCCR 0.522 0.590 0.478 0.410
HCVFR 0.657 0.455 0.343 0.545
HCVPFR 0.667 0.445 0.333 0.555

LH RVNI 0.663 0.681 0.337 0.319
TSVNI 0.607 0.737 0.393 0.263

HCCFR MWI 0.891 0.962 0.109 0.038
NMVI 0.900 0.953 0.100 0.047
MCI 0.885 0.968 0.115 0.032
LH 0.957 0.896 0.043 0.104

HCCCR MWI 0.871 0.810 0.129 0.190
CRI 0.865 0.815 0.135 0.185
RWVNI 0.932 0.748 0.068 0.252
NMVI 0.792 0.888 0.208 0.112
LH 0.806 0.875 0.194 0.125

HCVFR CRI 0.622 0.831 0.378 0.169
RVNI 0.758 0.695 0.242 0.305
TSVNI 0.806 0.647 0.194 0.353
LH 0.601 0.851 0.399 0.149

HCVPFR MWI 0.615 0.762 0.385 0.238
RVNI 0.718 0.659 0.282 0.341
TSVNI 0.751 0.626 0.249 0.374
LH 0.573 0.804 0.427 0.196

Table 6
BN probability inference results for variables influencing crash severities.

Parents Severity

PDO SI SIF
0.325 0.298 0.377

MWI 0.299 0.292 0.409
�0.026 �0.006 0.032
�8.0% �2.0% 8.5%

HCVPPDI 0.349 0.309 0.342
0.024 0.011 �0.035
7.4% 3.7% �9.3%

NMVI 0.290 0.318 0.392
�0.035 0.020 0.015
�10.8% 6.7% 4.0%

MCI 0.308 0.298 0.394
�0.017 0.000 0.017
�5.2% 0.0% 4.5%

LR 0.309 0.319 0.372
�0.016 0.021 �0.005
�4.9% 7.0% �1.3%

LH 0.352 0.315 0.333
0.027 0.017 �0.044
8.3% 5.7% �11.7%

HCCFR 0.353 0.305 0.342
0.028 0.007 �0.035
8.6% 2.3% �9.3%

HCCCR 0.313 0.322 0.365
�0.012 0.024 �0.012
�3.7% 8.1% �3.2%

HCVFR 0.302 0.304 0.394
�0.023 0.006 0.017
�7.1% 2.0% 4.5%
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vehicle (NMVI) are involved in a crash happening on a local road
(LR) with high cumulative violation frequency in the previous year
(HCVFR), the probability for drivers suffering serious injury or
fatality (SIF) is as high as 0.453 (increased by 20.2%). In scenario
2, when a migrant worker (MWI) and a non-motorized vehicle
(NMVI) are involved in a crash happening on a local road (LR) with
high cumulative crash casualties in the previous year (HCCCR), the
probability for drivers suffering serious injury or fatality (SIF) is as
high as 0.449 (increased by 19.1%). In scenario 3, when a migrant
worker (MWI) and a motorcycle (MCI) are involved in a crash hap-
pening on a local road (LR) with high cumulative violation fre-
quency in the previous year (HCVFR), the probability for drivers
suffering serious injury or fatality (SIF) is as high as 0.415 (in-
creased by 10.1%). These scenarios indicate that some combina-
tions of variables could have much larger impacts on severity
outcome than any single variable.

6. Conclusions

In this study, some risk indicators of drivers and roadways were
developed based on prior violation and crash records, which were
believed to reflect certain aspects and degree of crash risk. A mod-
eling approach was proposed to integrate a variable selection pro-
cedure based on information value and Bayesian network to
quantitatively and graphically analyze crash severity patterns.
Variable selection procedure based on information value was able
to improve the structure of BN and reducing computation inten-
sity, by removing irrelevant factors and retaining important fac-
tors. In terms of balanced accuracy and AUCs, the proposed BN
modeling approach performed reasonably well for three crash
severity levels. The following major conclusions can be drawn:

(1) Migrant workers, couriers, non-motorized vehicles, motor-
cycles, local roads, and low-grade highway can significantly
influence crash severity. Those findings could be especially
useful for traffic management in developing countries.

(2) According to the modeling results, risk indicators (e.g., dan-
gerous violation behaviors, high cumulative crash frequency
of roadway) were found to have significantly direct and indi-
rect effects on the severity of traffic crashes. Thanks to BN,
those indicators could reveal some hidden risk aspects of
drivers and roadways. For example, migrant workers tend
to have high injury risk due to dangerous violation behav-
iors, such as retrograding, red-light running, and right-of-
way violation.

(3) Some combinations of variables have enhanced impacts on
severity outcome compared to single variables. For example,
when a migrant worker and a non-motorized vehicle are
involved in a crash happening on a local road with high
cumulative violation frequency in the previous year, the
probability for drivers suffering serious injury or fatality
(SIF) is much higher than that caused by any single factor.

In general, the proposed approach appears to be a promising
and reliable tool to identify factors significantly increasing crash
severity, and the study findings provide insights for developing

effective countermeasures to reduce severe crashes and improve
traffic system safety performance. Some issue need to be further
addressed. For example, since only IV was used for feature selec-
tion in this study, other methods (e.g., random forest) can also be
investigated in a future study.
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