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a b s t r a c t

Introduction: The appearance of musculoskeletal disorders (MDs) in professional drivers due to exposition
to whole-body vibration (WBV) makes it relevant to assess this exposure. The European Directive
2002/44/EC has two methods to evaluate exposure to WBV (defined in ISO2631-1:2008). These methods
evaluate the exposure associated with an 8-hour working day; however, MDs due to WBV could also be
caused by accumulated exposure to vibrations over long term, and hence, the methods defined in the
European directive may be limited in their ability to ensure the safety of workers exposed to WBV
throughout their years of employment.Method: A detailed comparison and discussion of methods defined
in the European Directive and the ISO2631-5:2018 was used as a starting point of the main results of this
paper. On this basis, a new methodology for the management and organization of preventive measures is
proposed to consider the assessment of ISO2631-5:2018 standard and the full working life of workers.
Experimental data to assess exposure to WBV in heavy equipment vehicle (HEV) drivers under different
road surface conditions and range of velocities were considered to illustrate the process of the proposed
methodology. Results: The methods defined in the standards provide different assessments leading to a
different possible consideration of safe operations when the risks associated with them may actually
be high. The proposed methodology can be used with the aim of ensuring safety of workers throughout
their working lives and providing an easy implementation of the calculations of ISO2631-5:2018 stan-
dard. Conclusions: A procedure to assess the health risk probability to which the HEV worker is exposed
in terms of the exposure years and a different range of operational vehicle speeds is proposed and exem-
plified with a study case. Practical applications: This study provides a practical tool for the management of
WBV exposure related to work-tasks in HEV drivers. Safety managers should consider the global exposi-
tion to WBV throughout their working life, and this research provides an easy tool to accomplish it.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

European workers reported that musculoskeletal disorders
(MDs) are one of the main causes of work-related ill-health
(Nielsen, Jørgensen, & Malgorzata Milczarek, 2018), and construc-
tion, agriculture, and transportation are among the industries with
higher rates of MDs. Hence, it is important to have health and
safety requirements and strategies to limit, assess, and control
specific risks associated with the appearance of MDs (Spielholz
et al., 2008; Yazdani et al., 2018). There is epidemiological evidence
that relates whole-body vibration (WBV) to MDs, such as low back
pain (Bovenzi & Betta, 1994; Punnett & Wegman, 2004; Raffler
et al., 2017), degenerative changes in the lumbar spine

(Miyamoto, Shirai, Nakayama, Gembun, & Kaneda, 2000; Wilder
et al., 1996), sciatica (Burström, Nilsson, & Wahlström, 2015), neck
pain (Kim, Dennerlein, & Johnson, 2018; Milosavljevic, Bagheri,
Vasiljev, Mcbride, & Rehn, 2011; Rehn, Nilsson, Lundström,
Hagberg, & Burström, 2009), and disorders such as motor perfor-
mance (Costa, Arezes, & Melo, 2014). In this sense, and within
MDs, spine disorder is the most frequently reported group of dis-
eases among workers in the construction industry (Bakusic et al.,
2018; Health and Safety Executive, 2018). The most important sin-
gle risk factor associated with low back pain is the amount of lum-
bar disc degeneration (Livshits et al., 2011), with overweight and
obesity increasing the risk of appearance (Liuke et al., 2005;
Shiri, Karppinen, Leino-Arjas, Solovieva, & Viikari-Juntura, 2009).
Among individuals affected by low back pain, between 5.0% and
10.0% will develop a chronic pain problem, the prevalence of which
increases linearly from 30 until 60 years (Meucci, Fassa, & Faria,
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2015). These occupational diseases have a great impact on individ-
uals and social care systems as well as high treatment costs and
sick absence (Woolf & Pfleger, 2003).

Professional drivers of heavy equipment vehicles (HEVs) are
often exposed to WBV and mechanical shocks (Kittusamy &
Buchholz, 2004; Johnson, Dennerlein, Ramirez, Arias, &
Rodríguez, 2015; de la Hoz-Torres, López-Alonso, Ruiz &
Martínez-Aires, 2017). In fact, their work tasks can lead to WBV
exposures among HEV operators (Blood, Rynell, & Johnson, 2012).
A large number of the activities performed with HEVs are carried
out on uneven surfaces, which are more likely to produce high
levels of WBV and mechanical shocks as compared to activities
performed on even surfaces (Kumar et al., 1999; Griffin et al.,
2008; Milosavljevic, Bergman, Rehn, & Carman, 2010). Previous
research has shown that the type of operation and ride conditions
significantly affect the compressive stress on lumbar spine
response (Singh et al., 2019). In addition, the type of seat suspen-
sion (active or passive) and seat suspension maintenance (Rahim-
del & Mirzaei, 2020) significantly reduce WBV exposures. Because
long periods of exposure to WBV can lead to health problems for
drivers (Milosavljevic et al., 2010; Smets, Eger, & Grenier, 2010;
Kia et al., 2020), in this research, we focus specifically on this sec-
tor, with the aim of proposing a methodology that provides infor-
mation on the risk of adverse health effects to the vertebral end-
plates of the lumbar spine for seated individuals due to compres-
sion. Our procedure is based on the long-term exposition of work-
ers to WBV and the analysis of the current standards. The proposed
methodology, combined with medical, imaging, and biomechanical
evaluation and health surveillance, has the potential to be a key
tool to prevent possible negative effects on health.

On the basis of the above initial hypothesis, currently, the most
accepted and used method for assessing WBV exposure is that
defined in ISO 2631-1:2008 (2008). The methods defined in this
standard are used to evaluate exposure in an 8-hour working
day. However, the basic assessment method defined in this stan-
dard is only suitable for describing the severity of vibrations in
relation to their effects on human beings for exposure with peak
factors of the measured signal less than or equal to 9. In other
cases, when the basic assessment method may underestimate the
effect of vibrations, the standard refers to the use of a method
based on the concept of vibration dose value (VDV).

Recently, ISO 2631-5:2018 (2018) was published based on the
revision of the previous standard ISO 2631-5:2004 (2004). The
new ISO2631-5:2018 standard defines two different methods in
terms of the exposure regime (severe exposure regime and less
severe exposure regime), and these methods assess the risk of
chronic injury from exposure to repeated shock based on the pre-
dicted biomechanical response of the bony vertebral endplate
(hard tissue). Now, the methods for calculating the acceleration
transmitted to the spinal column is through a transfer function of
a biomechanical model. Unlike the previous standard, neither
method is limited by the signal crest factor. However, the limits
in this new revised standard ISO2631-5:2018 remain unchanged
compared to ISO2631-5:2004, although Eger et al. (2008) reported
that the limits established in the standard ISO2631-5:2004 may be
set possibly too high. Previous research has also concluded that
evaluation of the relationship between ISO 2631-1 and ISO 2631-
5 parameters deserves further investigation (Blood et al., 2012;
De la Hoz-Torres, Aguilar-Aguilera, Martínez-Aires & Ruiz, 2019).

In summary, there are two relevant standards, namely ISO2631-
1:2008 and ISO2631-5:2018, for the problem addressed in this
research. Both are important for evaluating the operation perfor-
mances with HEVs, because these activities may expose drivers
to WBV with a high amount of mechanical shocks. Although there
are clear differences between the two standards, given the short
lapse of time since the publication of ISO 2631-5:2018, very little

research has been published related to it and there is a lack of
information on how and when to use them and their feasibility.

This research was performed to make a more comprehensive
comparison of the evaluation methods described in ISO2631-
1:2008 and ISO 2631-5:2018 in the context of HEV drivers, given
their relevance. Based on this comparison, we propose a new
methodology for the management of WBV exposure in vehicle dri-
vers (or other workers also exposed to WBV), with the aim of
improving their quality of life both throughout their working lives
and in their retirement. The methodology is then implemented in
an illustrative case study to show and illustrate how the application
of the proposed steps can be done in an experimental setup and in a
real case. The results for this illustrative case should not be automat-
ically extended to other cases, as each driving activity must be ana-
lyzed on a case-by-case basis with the application of the proposed
scheme. To achieve this objective, a collection of real data from a
set-up field experiment (case study) was performed considering a
typical variability in speed and surface conditions for HEV drivers.
From this experiment, a total of 94measured data sets were analyzed
and then evaluated according to the standards. On the one hand, this
data analysis allowed us to draw conclusions on the effect on the
WBV magnitude calculation and the possible exceeding of the stan-
dard limits of both the different surface categories (e.g., on tarmac
road) and vehicle speed. On the other hand, the data sets were also
used to investigate the evolution of the risk factor over time derived
from cumulative exposure to WBV. From the analysis of this behav-
ior, the proposed methodology allows us to manage WBV exposure
for HEV drivers to keep them safe in a quick and easy way. In this
context, it is worth noting that processes shown in this paper could
be an essential tool to support many at-risk workers for those safety
and health professionals who do not have a deep knowledge of WBV
(Paschold & Sergeev, 2009).

The article is structured as follows:

� Section 2: preliminary concepts, definitions, and data process-
ing techniques used in this research are featured. Thus, in this
section, the assessment parameters established by the ISO
2631-1 and ISO 2631-5:2018 standards are also reviewed, as
well as the standardized limits to an 8-hour exposure reference
period and the boundaries for the emergence of probable health
effects derived from multiple shock vibration exposure coming
from the ISO 2631-5:2018. In addition, the data processing clus-
tering method used as part of the proposed methodology is out-
lined in this section.

� Section 3: proposal of a methodology for health risk prediction
assessment, wherein a method is proposed to quickly assess the
health risk probability to which the HEV worker is exposed in
terms of the exposure years and a different range of speeds,
considering the entire working life of the driver.

� Section 4: implementation of the proposed methodology to a
HEV driver case, the overall process of the implementation of
the proposed methodology is illustrated on the basis of a real
case, from data collection to health risk prediction assessment.

� Section 5: conclusions, wherein the main findings, conclusions,
and practical applications of this research are drawn.

2. Preliminary concepts, definitions, and data processing
techniques

2.1. Whole-body vibration assessment

As noted in the introduction, ISO 2631-1 and ISO 2631-5 stan-
dards define methods of risk quantification. These standards use
the recorded and measured acceleration on the seat surface to cal-
culate the WBV exposure parameters. The procedure used in both
ISO standards is summarized below:
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2.1.1. ISO 2631-1:2008 parameters
This standard is based on the calculation of the root mean

square (rmsw) of the weighted averaged acceleration ðm=s2Þ and
the vibration dose value (vdvw).

For calculating the first parameter, Butterworth filters are used
to weigh the acceleration in frequency according to the ISO 2631-1
standard. The x- and y-axes are weighted using weights denoted as
Wd, and for the z-axis usingWk. The root mean square (rmsw) of the
weighted averaged acceleration ðm=s2Þ is then calculated as the
second power of the acceleration time history as the basis for the
averaging process (Eq. (1)):

rmsw ¼ 1
T

Z T

0
a2w tð Þdt

� �1
2

ð1Þ

where aw is the frequency-weighted instantaneous acceleration
(Wd on x and y axes, Wk on z axis), and T is the time duration of
the measurement.

The vibration dose value (vdvw) is calculated as the fourth
power of the acceleration time history (Eq. (2)); hence, this param-
eter is more sensitive to peaks than the rmsw:

vdvw ¼
Z T

0
a4w tð Þdt

� �1
4

ð2Þ

To allow comparisons between different exposures, these parame-
ters are normalized to reflect 4 h of exposure to WBV for an 8-h
work cycle. The daily exposure value (A 8ð Þ) (Eq. (3)) and the vibra-
tion dose value method (VDV) for each axis (Eq. (4)) are then calcu-
lated as follows:

A 8ð Þ ¼ krmsw

ffiffiffiffiffiffiffiffi
Texp

T0

s
ð3Þ

VDV ¼ kvdvw

ffiffiffiffiffiffiffiffiffiffiffi
Texp

Tmeas

s
ð4Þ

where k denotes the multiplication factor defined for each axis
(kx;y ¼ 1:4 and kz ¼ 1), Texp is the measurement period, T0 is the ref-
erence duration of 8 h, and Tmeas is the daily duration of exposure to
the vibrations. The calculated values can then be compared with the
daily exposure action value (A 8ð Þ ¼ 0:50 m=s2 and
VDV ¼ 9:10 m=s1:75) and the daily exposure limit
(A 8ð Þ ¼ 1:15 m=s2 and VDV ¼ 21:00 m=s1:75) established by the EU
directive (Directive, 2002/44/EC).

2.1.2. ISO 2631-5:2018 parameters
Unlike the basic evaluation method described in ISO 2631-1,

this standard defines two assessment methods based on different
exposure regime conditions. This research implements the method
that addresses what the standard calls ‘‘less severe conditions” as
the exposures do not contain free-fall events.

As established by the standard, the analysis should be accom-
plished assuming the most unfavorable exposure conditions, con-
sidering the exposure time periods (hours per day and days per
year) and the life-time exposure history. Also, the Posture Group
and the anthropometric characteristics of the drivers are used as
input of the model. The intervertebral compressive forces and the
daily compressive dose for the six disc levels of the lumbar spine
(T12/L1, L1/L2, L2/L3, L3/L4, L4/L5, and L5/S1) were calculated as
follows (Eq. (5)).

SA ¼
X

i

cdyn;i
B

� �6� �1
6

ð5Þ

where cdyn;i Nð Þ is the sum of peak compressive forces acting on the
vertebral endplate and B ðmm2Þ is the area of the vertebral end-

plate. The equivalent daily compressive dose is calculated consider-
ing the total duration of the exposure during a day (Eq. (6)).

SAd ¼
X
j

SA6j
tdj
tmj

 !1
6

ð6Þ

where SAj is the dynamic compressive stress of the lumbar spine due
to vibration exposure, tdj is the time period of the daily vibration

exposure and tmj is the time period over which SAj has been mea-

sured. The Risk Factor RA is estimated at each vertebral level based
on the SAd:

RA ¼
Xn

m¼1

SAdNm
1
6

SAui � SAstat;i

 !6
0
@

1
A

1
6

ð7Þ

SAstat;i ¼ 6:765MPa� 0:067MPAðbþ iÞ ð8Þ
where N is the number of exposure days per years, n is the number

of years of exposure, SAui is the ultimate strength of the lumbar spine

for a person of age (b + i) years and SAstat;i is the mean value of the
compressive-decompressive force divided by the area of vertebra
endplate.

2.1.3. Health guidance caution zone (HGCZ)
The European Directive 2002/44/EC specifies that the methods

for assessing WBV exposure are those defined in ISO 2631-1, and
it determines standardized limits to an 8-h exposure reference per-
iod. In addition, ISO 2631-5:2018 defines boundaries for the emer-
gence of probable health effects derived from multiple shocks
vibration exposure (Table 1).

2.2. Data processing clustering method: unsupervised clustering

To obtain a grouping of the daily compressive dose to test the
appearance of differences between different groups based on the
mean velocity, a clustering process is performed as part of the pro-
posed methodology. In our study, we used the k-means++ algo-
rithm, a variant of the original k-means algorithm. It is an
unsupervised classification algorithm (Arthur & Vassilvitskii,
2007) in which the grouping is done by minimizing the sum of dis-
tances between each object to the centroid of its group or cluster.
Given an initial number of data, the algorithm follows the follow-
ing steps: (1) select an initial center using a uniform random vari-
able. This first centroid is called c1; (2) calculate the distances for
each point x to the centroid cj. The distance between the observa-
tion m and the centroid cj is denoted as D(Xm,C1)/D(x); (3) Select
the next centroid (uniform random variable) cj, with the probabil-
ity (Eq. (9)) [using a weighted probability distribution where a
point x is chosen with the probability proportional to D(x)2]:

d2ðxm; c1ÞPn
j¼1d

2ðxj; c1Þ
ð9Þ

(4) Repeat step 2 and 3 until the centroids k are chosen.
In the next steps, the algorithm proceeds as in the original k-

means algorithm, i.e., (5) for each i 2 (1, . . . k), set the Ci cluster
as the set of points in X that are closer to ci than to cj for all j other
than i; (6) for each i 2 (1, . . . k), sets c as the center of mass of all
points in Ci: ci = 1|Ci|

P
x 2 Cix; and finally (7) repeat steps 5–6 until

there are no changes in the cluster assignment or until the maxi-
mum number of iterations is reached.

To select the optimal number of clusters, in this work, the
Elbow and GAP methods (Tibshirani, Walther, & Hastie, 2001) were
used. The GAP method is based on comparing the intra-grouping
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dispersion with the expected one under a uniform distribution of
points that plays the role of the null hypothesis. The number of
groups that maximizes that difference is the optimal number of
clusters.

The elbowmethod is based on minimizing the intra cluster vari-
ation (within-cluster sum of squares). Thus, it compares the
within-cluster sum of squares with its expectation under a refer-
ence null distribution. In this method, the value of the so-called
Elbow index decreases as the number of clusters increases. In this
case, the ‘‘elbow” point on the graph becomes the optimal number
of clusters, as the slope value on the graph is no longer important.

3. Methodology for health risk prediction assessment of human
exposure to long-term whole-body vibration

The proposed methodology is based on ISO 2631-5:2018 stan-
dard, and it assesses the impact of long-term exposure to WBV,
unlike the methods used for the assessment of WBV in the Direc-
tive 2002/44/EC for the evaluation of vibration exposure (based
on A(8) and VDV parameters), which only assesses the exposure
associated with an 8-hour working day.

The methodology is articulated in six steps, and these steps are
summarized in Fig. 1. This procedure is a generalization of the pro-
cess followed in this research, from data acquisition to risk factor
evolution modeling. The key point is the generation of a color
map of the Risk Factor evolution for each HEV and activity. Note
that the strength of the proposed methodology is to ensure that
vibration exposure is managed over the years so that the probabil-
ity of occurrence of an adverse health effect remains low. Despite
the initial effort required to implement the proposed methodology,
the results obtained enable to ensure the safety of the worker
throughout their working life.

Step 1. WBV exposure and drivers characteristics. In the ini-
tial step, data are collected from three different categories. Cate-
gory I: the characteristics of the activity (surface, velocity, and
performance characteristics); Category II: the characteristics of
WBV exposure (if the exposure contains multiple shock and dura-
tion); Category III: driver characteristics (age, height, weight, and
posture). The information collected during the initial phase of the
process will be used as input of the methodology. The analysis of
these data is used to define a measurement strategy to ensure that
the WBV exposure is measured in representative situations. In
addition to the measurement strategic requirements stated in
ISO2631-1 and ISO2631-5, additional standards could be consid-
ered in the design of the experimental set up.

Step 2. Measurement and data processing. From the data
obtained in the previous step, the measurement strategy has to
be established. The speed of the vehicle and the acceleration at
the interface between the seat and the driver must be measured.
The number and duration of the measurement should be sufficient
to ensure that the measured results are representative of the
exposure.

Based on the data obtained in the measurement process, the

parameters defined in ISO 2631-5 (SAd) and ISO 2631-1 (A8 and

VDV) must be estimated. The daily compressive dose (SAd) (most
unfavorable vertebra) and the average velocity must be used as
input variables in a cluster data process. The objective is to obtain
a grouping of the daily compressive dose to test the appearance of
differences between different groups based on the mean velocity.
The k-means++ algorithm is used in this process.

Step 3. Assessment of daily exposure. The parameter A8, VDV,

and SAd estimated in step 2 must be used to assess the daily expo-
sure. For this purpose, these values have to be compared with
the HGCZ values (Table 1). If the exposure exceeds the ELV or
EAV or the probability of an adverse health effect is high, measures
must be taken to limit exposure of drivers to ensure their safety.

Step 4. Assessment of cumulative WBV exposure over the
years. For the data set of each cluster (estimated in step 2), the

average value SAd must be calculated for the vertebral levels. From
the value obtained for the most unfavorable level of vertebra, the
probability of occurrence of an adverse health effect (RA) is esti-
mated. The evolution of the RA parameter over the years is calcu-
lated considering the exposure lasts from the age of 20–70 years
and the foreseen days of exposure per year (e.g., 240 days per years
if a full working life with a typical length of the working day in this
sector is considered). The values obtained should be compared
with the HGCZ values (Table 1) to assess the exposure over the
years. To model the cumulative effect of WBV with the parameter
RA, the data obtained for each cluster must be fitted using polyno-
mial fitting function. The parameterization of data allows the
health risk probability to which the worker is exposed in any year
to be determined, from a data set measured under specific velocity
and surface conditions.

Step 5. Color map of risk factor evolution. Specifically the pro-
posed method relies on the model the cumulative effect of WBV
with the parameter RA. Based on the data obtained, a bidimensional
surface-type fitting must be carried out using a polynomial surface
model, where the x-axis is the age of the worker and the y-axis rep-
resents the average speed at which the activity is performed.

Table 1
Health guidance caution zone.

Directive 2002/44/EC ISO 2631-5:2018
Exposure limit values and action values Probability of an adverse health effect

Exposure Action Value (EAV) A 8ð Þ ¼ 0:50 m
s2 VDV ¼ 9:1 m

s4 Low SAd < 0:5MPa RA < 0:8
Exposure Limits Value (ELV) A 8ð Þ ¼ 1:15 m

s2 VDV ¼ 21:0 m
s4 Moderate SAd > 0:5MPa SAd < 0:8 MPa RA > 0:8 RA < 1:2

High SAd > 0:8MPa RA > 1:2

Fig. 1. Diagram of the proposed methodology.
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Step 6. Risk management. The color map obtained in Step 5
can be used to manage WBV exposure. The safety manager can
use it to assess the long-term cumulative WBV exposure. Based
on the characteristics and speed at which the activity is performed,
the safety manager can assess if the worker will reach a high prob-
ability of an adverse health effect (limit defined in ISO2631-
5:2018, Table 1) throughout his working life. In addition, the color
map can be used by drivers as an information and training tool. It
provides information that can be used to raise awareness of the
importance of the performance characteristics of the activity and
the impact of long-term WBV exposure.

This methodology can be applied to any activities carried out
under less severe WBV exposure conditions such as those listed
in Article 4(b) of ISO 2631-5:2018. HEVs are used in these types
of activities, such as driving with tractors, forestry machines, and
mobile earth-moving machinery over rough surfaces (off-road,
potholes, frequent crossing of railroad tracks, etc.). Given that the
ride condition (i.e., surface condition and forward speed), type of
operation, and the use of machinery significantly affect the SAd
value, the proposed methodology should be applied on a specific
case-by-case basis. In addition, as the type of crop may influence
the operation performance and each country has set specific limits
to WBV exposure, all these aspects have to be also considered
when applying this methodology and the resulting risk manage-
ment. The following section shows how to apply the proposed
methodology to a given case, from the data collection step to the
risk factor evolution and management.

4. Implementation of the proposed methodology to a HEV
driver case

To illustrate the application of the proposed methodology, in
this section, the preceding proposed process steps are applied to
a real study case to generate the color map for risk assessment
as the final goal, according to the procedure proposed in Section 3.

4.1. Whole-body vibration and driver’s characteristics. Step 1

4.1.1. Experimental set-up
An experimental data measuring schedule was designed to

assess the exposure to WBV in HEV drivers as a case study to test
the implementation of the ISO standards and the proposed
methodology. The magnitude to be measured was the acceleration
at the interface between the seat pad and the ischial tuberosities.
The experimental design included a monitoring of the exposure
to WBV in a standardized test route comprising a variety of repre-
sentative real surface conditions for HEV displacement. Previous
studies analyzing the transmission of vibrations through the seat
in agricultural tractors have considered different types of surfaces,
such as tarmac and rough track (Adam & Jalil, 2017; Giordano,
Facchinetti, & Pessina, 2015). In this case, the path and length of
the routes were established to include the possibility of obtaining
vibration data sets corresponding to different speeds representa-
tive of typical surface conditions found in HEV drivers (i.e.. the
route included 1 km of off-road, 4 km of unpaved road, and 5 km
of tarmac road). The test locations were specifically chosen for
two main reasons: (1) low traffic disturbance (to achieve a stable
environment during the test and to minimize interference due to
external interruptions) and (2) diversity and representativeness
of the sample of road surfaces.

The same route was also used to evaluate the vibrations trans-
mitted by the vehicle to the driver at a wide range of velocities. In
this case, speed was monitored by a Global Positioning System
(GPS) attached to the vehicle. The lowest speed value (5 km/h)
was chosen for reproducing realistic travel conditions with the

usual lower speed. The highest speed value (25 km/h) was chosen
because it is the maximum speed limit (HEV speed regulation). The
vehicle used throughout the entire study was a tractor classified as
Class II Category A according to the Directive 78/764/EEC (1978).
As there are large variations in the magnitude of vibration depend-
ing on the type of vehicle (Paddan & Griffin, 2002), all measure-
ments were performed with the same tractor to eliminate this
variation, as the aim of this study case was to test the use of the
standards to propose a methodology for exposure assessment.

The duration of the measurements was selected to provide ade-
quate data to be representative of the exposure in different condi-
tions (surface and displacement velocity). The displacement
through unpaved roads and tarmac roads are recurring tasks;
therefore, performing several subsequent measurements observing
a minimum measurement time at an average speed (with a maxi-
mum speed dispersion of 5 km/h) is enough to ensure that the
result is representative of driver exposure. However, off-road trav-
elling is a nonrepetitive task; hence, the terrain was studied and
characterized in a first approach, and successive measurements
of sufficient duration were performed.

With regard to the driver, a healthy male adult was chosen to
participate in this field study. The reasons for this option are
mainly as follows: the participant had more than 20 years of driv-
ing experience (HEV including trucks and agricultural tractors)
without current pain and history of MDs; he was 48 years old
and his height and weight were 1.85 m and 120 kg, respectively,
with a body mass index of 35.06 kg/m2. This high body mass index
(BMI > 35 kg/m2) indicates that this person suffers from obesity,
and because body weight is related to spinal loading, this factor
increases the risk of low back pain and lumbar disc degeneration
(Liuke et al., 2005). Therefore, the subject belongs to a high-risk
group for the development of MDs. Because the driver belongs to
a high-risk group, a comparison of assessment methods in humans
who may be at higher risk is of particular interest. It is worth not-
ing that a high BMI within the highest body mass percentile range
(BMI > 26.1 kg/m2 and 95th percentile, i.e., a body mass larger than
109 kg) are those values defined in ISO 2631-5:2018 Annex A.3
that maximize the spinal load; hence, it is an interesting study case
for its specific characteristics. Regarding posture groups classified
in Annex A of ISO 2631-5, the driver’s posture was the posture
group number 3. Posture group 3 and the anthropometric charac-
teristics of the driver were used as input of the model. As with the
vehicle selection, all the measurements were performed by the
same subject to eliminate the uncertainty associated with vari-
ables linked to the anthropometric characteristics of the operator.

4.1.2. Measurement equipment
A tri-axial accelerometer (SV38, SVANTEK) was used to measure

the acceleration transmitted to the seat pad. The instrument
enables the sampling of the experimental acceleration with a fre-
quency of 6000 Hz in each direction: fore-to-aft (x axis), left-to-
right (y axis) and buttocks-to-head (z axis). Raw unweighted accel-
eration signal was recorded and stored in a data logger (SV106,
SVANTEK) connected to the accelerometer. According to the
ISO2631-5:2018 standard, the sign of the acceleration signal was
also recorded. The equipment meets the ISO 8041, ISO 10323-1,
and ISO 2631 requirements for measurements. The time and posi-
tion of the vehicle were also simultaneously recorded via a GPS
logger.

4.2. Measurement and data processing. Step 2

The procedure adopted for the field testing consisted of three
steps. First, the sensors were installed: the accelerometer was
placed on the seat surface and its position was adjusted to ensure
the correct positioning of the axes. It was fixed with an adhesive
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tape to avoid relative displacement between the seat surface and
the sensor. In addition, the GPS was placed on the surface of the
vehicle dashboard.

Second, the measurement with both sensors started simultane-
ously and the test started. During the measurements, the subject
remained seated and did not lose contact with the seat surface
(the subject was instructed and supervised not to get up from
the seat just to ensure that the exposure did not include bad accel-
eration data measured during loss of contact). Moreover, the driver
was monitored performing the activity under normal working con-
ditions. If there was a significant anomaly in the recorded test data,
the experiment was carried out again. The test was performed sev-
eral times for each test section (at least three times) to reduce ran-
dom errors. From the data obtained in each measurement, those
with a length of more than 90 s and a maximum speed deviation
of ±2.5 km/h were selected. In this data selection, we followed
the recommendations of ISO 2631-1, which states that a minimum
measurement duration of 108 s for a lower frequency limit of 1 Hz
is required to assure an error less than 3 dB at a 90% confidence
level. This data preprocessing step was intended to eliminate the
vibration measurements in nonstable velocity periods and to
ensure the minimum measurement duration to provide represen-
tative results of the exposure in tested conditions.

Finally, based on the acceleration data and other recorded data
from the experiment, the daily compressive dose SAd is calculated
according to Section 2. The acceleration measured at seat surface
was used for the seat and backrest in the model. To compare differ-
ent exposures, the same set of conditions is used to normalize the
measured exposure to a typical/realistic daily exposure. In our test,
the duration exposure conditions were chosen in such a way that
they maximize the spinal load, as the values defined in Annex
A.3 of ISO2631-5: the daily exposure duration were normalized
to 4 h to compare the results obtained in the different exposure
conditions. An exposure of 240 days per year for the ages from
20 to 70 years was considered as the lifetime exposure history.

The daily compressive dose (most unfavorable vertebra) and the
average velocity were used as input variables (Fig. 2), and the
objective was to obtain a grouping of the daily compressive dose
to test the appearance of differences between different groups
based on the mean velocity.

Therefore, a clustering process was carried out using the k-
means++ algorithm in terms of the average velocity for different
types or roads. As described in Section 2, prior to the application

of the algorithm, it is necessary to establish the number of clusters
to carry out this process. For the selection of the optimal number of
clusters, the Elbow and the GAP methods were used. Fig. 3 shows
the results of the analysis using both methods. In this study, the
optimum number of clusters obtained is k ¼ 4, for both methods,
according to the selection criteria given in Section 2.

Once the optimum number of clusters was set up, the clustering
process was subsequently applied. Fig. 4 shows the obtained
results. The data set assigned to cluster 1 was recorded on off-
road; cluster 2 contains data recorded on unpaved road, and
cluster 4 contains data recorded on tarmac road. Unlike the other
clusters, cluster 3 contains data recorded coming from both
unpaved and tarmac road. The mean travel speed for each
cluster was also calculated (vc1 ¼ 6:7km=h; vc2 ¼ 15:4 km=h;
vc3 ¼ 21:1 km=h;vc4 ¼ 23:7 km=h).

To continue with this analysis, we can see that the driver clearly
adapts his speed to the type of surface. Therefore, on ‘‘off-road,” the
maximum speed the driver reaches is lower than that on regular
surfaces. On the other hand, it is observed that (1) on the same type

of surface, the higher the speed is, the parameter SAd increases and

(2) the greater the surface irregularity is, parameter SAd increases at
the same speed.

Fig. 2. SAd versus average velocity.

Fig. 3. Selection of the optimum number of clusters.

Fig. 4. K-means clustering of SAd in terms of mean speed.
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4.3. Assessment of daily exposure. Step 3

On the basis of the acceleration data taken from the field exper-
iment, the methods defined in ISO 2631-1 based on A(8) and VDV
parameters were applied, as explained in Section 2. With these
parameters, we performed an analysis considering the different
clusters obtained in the previous section. First, the A(8) parameter

and the highest SAd value of the vertebral level, calculated using the
samples belonging to each cluster, were compared (Fig. 5), and
their results were compared with those coming from the HGCZ
boundaries associated with probabilities of adverse health effects.
The figure shows a linear relationship between the two parame-
ters, and the results show similar assessments in clusters 2 and
4, regarding the values obtained for both parameters. Notably,
two data are above the A(8) HGCZ boundary in cluster 1, and only

one data is above the SAd HGCZ boundary in the same cluster. In

addition, there are three data in cluster 3 that exceed the SAd HGCZ
boundary and two data above the A(8) HGCZ boundary.

Secondly, the VDV parameter and the highest SAd value of the
vertebral level were calculated. Fig. 6 shows the relationship
between both parameters for each of the predefined clusters. The
general observation is that both parameters are correlated. For
the VDV, this methodology is more restrictive than that based on

SAd . Thus, it can be seen that the data set of cluster 1 as well as some
data of clusters 3 and 4 exceed the VDV HGCZ boundary. It should
be noted that only two samples of cluster 1 and three samples of

cluster 3 exceeded the SAd HGCZ boundary with respect to the SAd .
Therefore, health risks predicted by the VDV assessment

method are higher than those predicted by A(8)- and SAd-based

methods. In our experiment, in which the worker exposure con-
tains multiple shocks, this result can be explained as VDV values
would be more restrictive than A(8) because the VDV method is
more sensitive to shocks. However, there are two methods (VDV

and SAd), both assessing WBV exposure but providing different
assessments when data contain shocks. This can lead to a remark-
able confusion as some operations could be considered safe when
they are not, and vice versa, depending on the chosen assessment
method.

In fact, similar results, but with previous standards, were pro-
vided by other research studies on the previous standard ISO
2631-5:2004 and ISO 2631-1 for load-haul-dump vehicles (Eger
et al., 2008), railroad locomotives (Cooperrider & Gordon, 2006;
Johanning et al., 2006), and front-end loader (Blood et al., 2012).
Eger et al. (2008) already suggested that research should be con-
ducted to discuss whether the limits for low and high probabilities
of adverse health effects suggested in ISO 2631-5:2004 would
require some revision. However, although the method of calcula-
tion of a compressive dose is different in ISO 2631-5:2018, the lim-
its of low and high probability of an adverse health effect are the
same as those published in ISO2631-5:2004; thus, this result sup-
ports this argument in a different context.

4.4. Assessment of cumulative WBV exposure over the years. Step 4

For the data set of each cluster, the average SAd value was calcu-
lated for the vertebral levels T12/L1 to L5/S1 (Table 2), according to
the surface on which they were measured. As the k-means++
method splits the data into nonoverlapping groups, and the Elbow
and Gap criteria were applied to select the number of clusters, the

Fig. 5. Relationship between A(8) and SAd in the four generated clusters.
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data obtained are statistically different by the attributes used in

the clustering procedure. If we compare the maximum values SAd
with the HGCZ value, all values indicate a low probability of an
adverse health effect to occur after vibration exposition. The max-

imum SAd value of each case was used to calculate the RA parameter
as defined in Section 2, considering the exposure lasts from the age
of 20–70 years for 240 days per year (full working life with a typical
length of the working day in this sector). The evolution of the RA

values over exposure time is shown in Fig. 7.
By analyzing the evolution of the RA parameter over exposure

time, the WBV exposure daily pattern per year allows us to predict
when the subject will exceed the boundary values associated with
low and high probabilities of adverse health effects. In this case,
the curve C-I (off-road – cluster 1) reaches the limit when the dri-
ver is 61 years old, and C-II (unpaved road – cluster 3) reaches the

limit when the driver is 62 years old. The boundary exceeded in
none of the other cases.

Further analysis and comparison on these curves, and specifi-
cally those corresponding to the same type of surface, also allow
us to note how the slope of the curve increases as the speed
increases. This implies a higher probability of occurrence of an
adverse health effect. Therefore, speed is an important factor to
consider when trying to reduce the severity of the exposure. In
addition, as the irregularity increases, so does the risk. The nature
of the terrain and the characteristics of the activity have a great
impact on the magnitude of the vibrations transmitted, and they
are both very relevant factors. Although the off-road terrain is
compressive in a majority of cases and accordingly the level of
transmitted vibration would become lower, in our study, the high
surface irregularity and the unevenness of the off-road terrain
result in an increased severity of the transmitted vibration in com-

Fig. 6. Relationship between VDV and SAd in the four generated clusters.

Table 2
SAd values for the vertebral levels T12/L1 to L5/S1 for the defined clusters.

Surface Cluster T12/L1 L1/L2 L2/L3 L3/L4 L4/L5 L5/S1 Max

Off-road 1 SAd 0.385 0.393 0.406 0.421 0.414 0.382 0.421

r 0.048 0.049 0.052 0.055 0.054 0.045

Unpaved road 2 SAd 0.353 0.330 0.320 0.320 0.315 0.311 0.353

r 0.020 0.020 0.022 0.022 0.022 0.018
3 SAd 0.419 0.408 0.401 0.406 0.400 0.381 0.419

r 0.054 0.050 0.049 0.049 0.048 0.046

Tarmac road 3 SAd 0.301 0.291 0.291 0.296 0.292 0.283 0.301

r 0.063 0.059 0.061 0.064 0.063 0.060
4 SAd 0.335 0.318 0.310 0.313 0.305 0.296 0.335

r 0.099 0.091 0.085 0.085 0.082 0.081
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parison to other surfaces, even though the forward speed is lower
than that in other surfaces. This fact is noted by comparing the
curves CI (off-road), C-II/C-III (unpaved road), and C-IV/C-V (tarmac
road).

Because this result deserves attention and will prove to be use-
ful to establish a methodology to predict the probability of an

adverse health effect, the data obtained were fitted using polyno-
mial fitting tools in MATLAB software (Table 3) in order to model
the cumulative effect of WBV with the parameter RA. Eq. (9) shows
the equation of the general model polynomial fitting function
applied to our data. The degree of the obtained polynomial fitting
becomes three; this is due to the fact that greater degrees do not
improve the goodness of the fit, causing an overfitting or badly
conditioned problem.

RA tð Þ ¼ p1 � t3 þ p2 � t2 þ p3 � t þ p4 ð9Þ
t is the exposure time. The above polynomial functions can be used
to predict the risk factor in terms of the exposure time of worker,
depending on the type of road.

4.5. Color map of risk factor evolution. Step 5

Specifically, the proposed method relies on the analysis carried
out to obtain Figs. 8 and 9. The parameterization of data in Table 3
allows the health risk probability to which the worker is exposed
in any year to be determined, from a data set measured under
specific velocity and surface conditions. Based on the experimental
data for each type of road surface and exposure time, a bidimen-
sional surface-type fitting was carried out using a polynomial sur-
face model, where the x-axis is the number of years of exposure
and the y-axis represents the average speed at which the activity
is performed; thus, the bidimensional polynomial models for sur-
faces are given by Eq. (10). In this equation, the polynomial surface
fitting coefficients and the goodness of fit statistics are shown in

Fig. 8. Unpaved road.

Table 3
Coefficients of the general model polynomial fitting model.

Curve p1 p2 p3 p4 Goodness of fit
R-square

C-I Off-road
Cluster 1

1.034e�05 �0.001123 0.04978 �0.3877 0.99

C-II Unpaved road
Cluster 2

8.094e�06 �0.00884 0.03966 �0.3043 0.99

C-III Unpaved road
Cluster3

9.607e�06 �0.001049 0.04708 �0.3612 0.99

C-IV Tarmac road
Cluster 3

6.901e�06 �0.0007538 0.03382 �0.2565 0.99

C-V Tarmac road
Cluster 4

7.681e�06 �0.000839 0.03764 �0.2888 0.99

Fig. 7. Evolution of RA values over the exposure time.
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Table 4. The degree of the obtained polynomial fitting becomes
three in the x-axis and one in the y-axis.

RA ¼ f ðx; yÞ
¼ p00 þ p10 � xþ p01 � yþ p20 � x2 þ p11 � x � yþ p30 � x3 þ p21 � x2 � y

ð10Þ
A graphic interpretation is useful to extract conclusions and could
be done by representing the z-axis by a color map that shows the
RA value. This analysis deepens into the evolution of the cumulative
effect of WBV exposure for displacements in a wide range of veloc-
ities on different surface types (Fig. 8 and Fig. 9).

It should be noted that this process was carried out for displace-
ments performed on unpaved road and tarmac road. As off-road
operations occur in a reduced speed range because they demand
continuous concentration and require conscious decision-making
to choose the appropriate acceleration, trajectory, etc., off-road
surface has not been included in the analysis.

It should be noted that Fig. 8 and Fig. 9 are the result of applying
the proposed methodology to this study case. Therefore, the mini-
mum speed was 12.5 km/h because it was the minimum forward
speed when the real task was performed. Consequently, the results
obtained in the illustrative case should not simply be generalized
to other different activities. In any case, the risk assessment profes-
sionals should apply the proposed methodology following all the
proposed steps when those activities require WBV risk
management.

4.6. Risk management. Step 6

The proposed methodology relies on using Figs. 8 and 9 to esti-
mate the health risk probability (based on the risk factor RA) to
which the worker is exposed in terms of the exposure years and
a different range of speeds, with no need to calculate the dose,
which is sometimes a difficult task. Using the color maps obtained

for each vehicle, the safety manager could perform a quick evalu-
ation of the worker’s activities according to the average speed at
which they are performed, with an entire working life perspective
that covers the whole life of the subject. So, the characterization of
the activities of the worker, together with the use of RA curves and
surfaces, allows for performing a quick analysis that ensures the
safety of the worker.

Finally, the objective of the proposed procedure is aligned with
that defined in the Framework Directive 89/391/EEC, which states
that the employer must implement measures to ensure an
improvement in the level of protection of workers as well as the
establishment of the necessary organization and means. The appli-
cation of this methodology provides vital information to ensure
that WBV risk management is carried out correctly. Using these
methodological basis, it will be very easy to perform an appropri-
ate organization of the work and the design of the operations in an
optimal way from the point of view of the worker health and safety
in long term. In addition, safety managers have a simple tool that
allows them to define preventive organizational measures that
should result in a reduction of WBV risk exposure. In this way, it
is ensured that workers could carry out their operations by limiting
themselves to the safe region given by this method, emphasizing
that the whole working life of the subject has been considered in
the development of this procedure.

5. Conclusions and practical applications

Musculoskeletal disorders have a high prevalence among occu-
pational populations as well as a high economic and social impact.
Whole-body vibration (WBV) exposure is related to the emergence
of musculoskeletal disorders and degeneration of the lumbar
spine; therefore, international standards have focused on its
assessment. In this sense, ISO 2631-1 and ISO 2631-5 describe
models for assessing exposure to WBV. In this research, WBV expo-

Fig. 9. Tarmac road.

Table 4
Coefficients (with 95% confidence bounds).

p00 p10 p01 p20 p11 p30 p21 Goodness of fit
R-square

Unpaved road �0.4566 0.04434 0.006797 �0.001055 �5.324e�05 8.85e�06 4.834e�06 0.99
Tarmac road �0.4578 0.03717 0.008178 �0.000927 �6.406e�05 7.291e�06 5.816e�06 0.99
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sure was analyzed using both models to assess the WBV exposure
associated with a HEV operation on a variety of surfaces and
speeds. Based on the obtained results and the proposed modeling
of the risk factor of occurrence of adverse health effects as estab-
lished in the standard ISO 2631-5:2018, a methodology was devel-
oped to perform a quick evaluation of risks due to the cumulative
effect of WBV exposure associated with HEV operation as a func-
tion of HEV speed.

The research performed in this paper allows us to draw two
main conclusions on the basis of the results and methods discussed
in the previous sections:

The first main conclusion is that the results obtained in the

evaluation with the A(8), VDV y SAd methods provide different
assessments leading to different possible consideration of safe
operations when the risks associated with them may actually be
high. Although the ISO2631-5:2018 methods have been modified
from ISO2631-5:2004, HGCZ boundaries should be revised for the
sake of consistency.

The second main conclusion is that a method was proposed to
assess the health risk probability to which the HEV worker is
exposed in terms of the exposure years and a different range of
speeds. The methodology proposed in this study supports the
design of activities performed with HEV, ensuring that the proba-
bility of an adverse health effect is low in the entire working life
of the driver. In addition, this methodology reduces the computa-

tional time that would require recalculating the SAd and RA values
associated with other speed values, as they were calculated from
the parameterized RA curves.

Furthermore, this methodology can contribute to improving the
quality of life of professional drivers during and after their working
life as this method can be applied from the start of the first job in
which the worker is exposed to WBV. In the context of the increase
in life expectancy and raising of retirement ages that make suffer-
ing from WBV-related diseases more likely, it is very important to
consider the entire working life as this method does. Finally, the
designed methodology contributes to the development of the EU
Strategic Framework on Health and Safety at Work 2014-2020
(Brussels, 6.6.2014COM(2014)) in two of its three major health
and safety at work challenges (i.e., it allows the improvement of
the prevention of work-related diseases, considering the aging of
the EU workforce).

Finally, the proposed methodology is designed and configured
to be a practical tool to support safety and health professionals
in their objective of assessing the global exposition to WBV
throughout their working life. It should be noted that because
other relevant factors contribute to the long-term occupational
health hazards, a comprehensive health surveillance to prevent
possible negative effects on workers must always be conducted
by professionals, supplementing the procedure described in this
article.
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a b s t r a c t

Introduction: Driver’s evasive action is closely associated with collision risk in a critical traffic event. To
quantify collision risk, surrogate safety measures (SSMs) have been estimated using vehicle trajectories.
However, vehicle trajectories cannot clearly capture presence and time of driver’s evasive action. Thus,
this study determines the driver’s evasive action based on his/her use of accelerator and brake pedals,
and analyzes the effects of the driver’s evasive action time (i.e., duration of evasive action) on rear-end
collision risk. Method: Fifty drivers’ car-following behavior on a freeway was observed using a driving
simulator. An SSM called ‘‘Deceleration Rate to Avoid Crash (DRAC)” and the evasive action time were
determined for each driver using the data from the driving simulator. Each driver tested two traffic
scenarios – Cars and Trucks scenarios where conflicting vehicles were cars and trucks, respectively.
The factors related to DRAC were identified and their effects on DRAC were analyzed using the
Generalized Linear Models and random effects models. Results: DRAC decreased with the evasive action
time and DRAC was closely related to drivers’ gender and driving experience at the road sections where
evasive action to avoid collision was required. DRAC was also significantly different between Cars and
Trucks scenarios. The effect of the evasive action time on DRAC varied among different drivers, particu-
larly in the Trucks scenario. Conclusions: Longer evasive action time can significantly reduce crash risk.
Driver characteristics are more closely related to effective evasive action in complex driving conditions.
Practical Applications: Based on the findings of this study, driver warning information can be developed to
alert drivers to take specific evasive action that reduces collision risk in a critical traffic event. The infor-
mation is likely to reduce the variability of the driver’s evasive action and the speed variations among
different drivers.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Vehicle crashes and passengers’ injury severity have been
analyzed using historical crash data. However, due to rare occur-
rence of crashes, it takes long time to collect enough crash data
to identify safety problems. Thus, surrogate safety measures
(SSMs) estimated from individual vehicle records (e.g., speed,
headway) have been used to observe conflicts among vehicles.
Since these individual vehicle records can be collected in relatively
shorter time period (e.g., several hours or days instead of multiple
years), safety problems can be identified and countermeasures to
prevent crashes can be implemented faster.

SSMs determine the probability of collision between two vehi-
cles using vehicle trajectories that keep track of individual vehicle’s
position over time. From the trajectories, vehicle’s instantaneous

speed and acceleration/deceleration, and their spacing with the
lead vehicle can be calculated. This paper will focus on the proba-
bility of rear-end collision between the lead and following vehicles.

Conventional temporal proximity-based SSMs represent the
time remaining to a collision if the following vehicle driver does
not take evasive action (Laureshyn et al., 2017; Mahmud et al.,
2017). In this study, evasive action is defined as the driver’s action
or maneuver to decelerate to avoid a collision with the lead vehi-
cle. Examples of this type of SSM are Time-to-Collision (TTC)
(Hayward, 1972) and Post Encroachment Time (PET) (Allen et al.,
1978). Temporal proximity-based SSMs essentially reflect the time
available for evasive action. Thus, a lower value of these SSMs indi-
cates that shorter time is available for evasive action and, hence, it
is more difficult to avoid a collision and collision risk is higher.

However, these SSMs do not account for the factors related to
evasive action such as driver characteristics (e.g., perception and
reaction time which determines the start time of evasive action)
and vehicle performance characteristics (e.g., deceleration rate

https://doi.org/10.1016/j.jsr.2021.06.001
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during braking, maximum deceleration rate). Thus, these SSMs do
not capture how the driver’s evasive action affects collision risk.

In this regard, the relationship between the driver’s evasive
action and collision risk is illustrated in Fig. 1. In undisturbed traf-
fic, drivers do not take evasive action but it will not lead to a col-
lision (i.e., no collision risk) assuming that they do not make
errors. However, in a critical event, drivers take evasive action
and it can potentially lead to a collision as one of possible out-
comes (Laureshyn, 2017). Li et al. (2019) also found that driver’s
evasive action (swerving to avoid conflicts with vehicles or pedes-
trians) was significantly related with collision risk. This shows that
it is important to analyze the effects of evasive action on collision
risk using SSMs.

Unlike temporal proximity-based SSMs, deceleration-based
SSMs account for the driver’s evasive action more explicitly
(Mahmud et al., 2017). For instance, Time-to-Accident (TA) repre-
sents the time remaining to a collision from the time when the dri-
ver’s evasive action starts (Hyden, 1987). Deceleration Rate to
Avoid Crashes (DRAC) (Cooper & Ferguson, 1976) represents the
deceleration required for avoiding (or not being able to avoid)
crashes if the driver takes evasive action.

These deceleration-based SSMs also reflect the difference in col-
lision risk among different drivers and vehicles. These SSMs incor-
porate differences in driver’s perception and reaction time (PRT)
and vehicle’s deceleration rate. In particular, PRT is used to esti-
mate the start time of the driver’s evasive action after the driver
perceives the lead vehicle’s motion. For instance, Wu et al.
(2018) used the fixed value of PRT (=1.5 s) for calculating both lead
and following vehicles’ stopping sight distance to determine the
rear-end collision risk index (RCRI). Alternatively, Triggs and
Harris (1982) assumed that PRT follows a lognormal distribution
based on their observed distribution of different drivers’ PRT.
Wang and Stamatiadis (2013) and Kuang et al. (2015) developed
SSMs based on the lognormal distribution of PRT. However, the
fixed value or the distribution of PRT may not reflect each driver’s
actual PRT since PRT does not only vary among different drivers,
but also different spacings with the lead vehicle for the same driver
(Wang et al., 2016). Thus, each driver’s start time of evasive action
cannot be accurately determined in this approach.

In addition, it is difficult to determine whether the driver actu-
ally took evasive action or not based on vehicle trajectories only.
For instance, the speed of vehicle can naturally change even when
the driver did not take any action due to variations in road geomet-
ric and environmental conditions such as gradient and friction of
road surface. Also, the speed may not noticeably change if the dri-
ver gradually decelerates by releasing the accelerator pedal or
applying brake slowly.

To determine the presence and time of driver’s evasive action,
vehicle dynamics data can be used. Examples of vehicle dynamics

variables are the use of accelerator and brake pedals. However,
unlike vehicle trajectories, vehicle dynamics cannot be observed
using roadside cameras. Instead, vehicle dynamics data can be col-
lected using a driving simulator. Although some past studies deter-
mined SSMs using the data from a driving simulator, they did not
use vehicle dynamics data (Levulis et al., 2015). Recently, Gold
et al. (2018) evaluated the effect of brake application using driving
simulator data. Although the study found that the driver’s brake
application influenced collision risk, it mainly focused on predic-
tion of probability of brake application in a critical event.

However, there is a limitation in determining SSMs using driv-
ing simulator data. For instance, due to the driver’s discomfort and
motion sickness in virtual traffic environments, the driver’s simu-
lated behavior may not be naturalistic and realistic. However,
Brooks et al. (2010) found that simulator sickness was not a signif-
icant problem for young drivers. Also, a driving simulator can con-
trol confounding effects of external factors (e.g., congestion,
weather, vehicle composition) and identify the isolated effect of
each factor on collision risk unlike field studies. For these reasons,
simulator-based SSMs are more advantageous than SSMs deter-
mined using roadside cameras.

Moreover, relatively few studies have considered differential
effects of the types of lead and following vehicles (e.g., car and
truck) on rear-end collision risk. For instance, Li et al. (2017) found
that TTC was shorter and rear-end collision risk was higher for car
drivers when they followed cars as opposed to trucks at a freeway
weaving section. They explained that this is because large trucks
generally obstruct car drivers’ sight and car drivers maintain longer
gap with the lead truck than the lead car. Similarly, Zhao and Lee
(2017) found that PET was shorter for car-following-car than car-
following-truck due to shorter spacing with the lead car than the
lead truck. However, in spite of lower collision risk, the collision
involving trucks leads to more severe injury (Zheng et al., 2018).

Considering high severity of truck-involved crashes, it is impor-
tant to comprehensively understand how drivers behave differ-
ently when conflicting vehicles are trucks compared to cars and
how this is related to collision risk. Thus, the objective of this study
is to analyze the effects of the driver’s evasive action and the type
of lead vehicle (car or truck) on car driver’s rear-end collision risk
using both vehicle dynamics and trajectories from a driving
simulator.

2. Description of data

To estimate rear-end collision risk, the driver’s car-following
behavior in different traffic conditions was observed using a driv-
ing simulator in June 2016. The driving simulator includes a driver
seat, a steering wheel and accelerator/brake pedals in the cab, and
three LCD monitors. A total of 50 licensed drivers (34 males and 16

Fig. 1. Relationship between driver’s evasive action and collision risk. (Source: Laureshyn et al., 2017).
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females) participated in the driving simulator experiment. Among
them, 37 drivers were 25 years old or younger, 7 drivers were 26–
35, and 6 drivers were above the age of 36 years. The study was
approved by the University Research Ethics Board.

Each participant drove a section of two-lane one-way freeway
in the following two hypothetical traffic scenarios as a car driver:
(1) Cars scenario: all conflicting vehicles are cars (except two
stopped trucks in the middle of the freeway), and (2) Trucks sce-
nario: all conflicting vehicles are trucks. The posted speed limit
on the freeway was set to 100 km/h. Average speeds of these con-
flicting cars and trucks were 100 km/h and 90–95 km/h, respec-
tively. In each scenario, the participants encountered different
traffic events while driving on the highway as shown in Fig. 2.

In the beginning, the drivers were placed on an entrance ramp.
Then the drivers started accelerating to merge into the mainline
freeway. Afterwards, the drivers encountered various driving con-
ditions such as approaching two stopped trucks (one stopped truck
in each lane) and a merging vehicle from an on-ramp. The freeway
was classified into seven different sections based on driving condi-
tions as shown in Fig. 2. The driving conditions in each road section
and the length of each section are described as follows:

Section 1: As the drivers merge into the mainline freeway, they
see that other cars are approaching them on the freeway. They
are required to adjust their speed tactfully to complete the
merging process. (Length: 2.51 km)
Section 2: After the merge, drivers can drive normally. They can
see trucks ahead but they may not perceive that the trucks are
stopped. (Length: 1.15 km)
Section 3: As the drivers approach the two stopped trucks, they
are required to reduce speed to completely stop behind one of
the trucks. (Length: 3.06 km)
Section 4: As the stopped trucks start moving, the drivers can
drive normally without having to change lanes. (Length:
8.72 km)
Section 5: The drivers can see that a vehicle is merging into the
mainline freeway from an on-ramp. They can yield to the merg-
ing vehicle or accelerate to avoid conflict with the merging
vehicle. (Length: 2.24 km)
Section 6: After passing the merging vehicle and before seeing
the message that they must exit the freeway, the drivers can

drive normally without having to change lanes. (Length:
6.32 km)
Section 7: The drivers see the message that they must exit the
freeway. They are required to exit via an off-ramp and stop on
the ramp. (Length: 3.62 km)

The participants drove all seven sections in the Cars and Trucks
scenarios separately. Traffic kinematics and vehicle dynamics data
as shown in Table 1 were extracted at every 1/60th second from
the driving simulator. The accelerator pedal position is expressed
as a value between 0 and 1. The value gradually increases from 0
to 1 as the driver steps on the accelerator pedal. Similarly, the
value of brake pedal force gradually increases as the driver steps
on the brake pedal. After the participants completed testing the
scenario, they were asked to provide their age and driving
experience.

The speed was used to calculate acceleration and deceleration
rates. The rates were calculated as the difference between the final
speed at the current time frame i and the initial speed at the time
frame (i – 60) divided by the number of time frames in one second.
Thus, the acceleration and deceleration represent the rate of
change in speed per second. Table 2 compares average traffic kine-
matic variables of all drivers among the seven road sections. The
table shows that the mean speed, mean spacing, and maximum
deceleration rate significantly varied across different sections due
to differences in driving conditions. Also, the differences between
the Cars and Trucks scenarios varied across different sections.

It was found that the mean speed was significantly lower in Sec-
tion 3 than the other sections. This is expected because the drivers
were required to reduce speed and stop behind the trucks in
Section 3.

It was also found that both mean speed and mean spacing were
lower for the Cars scenario than the Trucks scenario for Sections 3
and 7 unlike the other sections. On the other hand, the mean speed
difference between the lead and subject vehicles was significantly
higher for the Trucks scenario than the Cars scenario in Section 3.
Table 2 also shows that the average of maximum deceleration rate
was generally higher (in absolute values) for the Trucks scenario
than the Cars scenario. This reflects that the drivers tend to apply
harder deceleration to avoid conflicts with the lead truck than
the lead car. As expected, the absolute values of maximum decel-

Fig. 2. Classification of road sections in driving simulator experiment. (Note: Numbers denote different conflicting vehicles.)
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eration rate were significantly higher in Section 3 than the other
sections for both scenarios due to the stopped trucks. Similarly,
the mean acceleration rate was also generally higher for the Trucks
scenario than the Cars scenario. This shows that the drivers tend to
apply higher acceleration to change lanes to overtake trucks or
compensate for the delay caused by trucks.

3. Methods

3.1. Determination of driver’s evasive action

In this study, the driver’s evasive action was determined based
on two vehicle dynamics variables – the accelerator pedal position
and the brake pedal force. As the driver controls speed by releasing
the accelerator pedal or pressing the brake pedal, the changes in
values of accelerator pedal position and brake pedal force indicate
the driver’s evasive action. For instance, Fig. 3 shows that the pro-
files of speed, accelerator pedal position, and brake pedal force as
one driver approached the stopped trucks in Section 3. The figure
shows that the driver occasionally released accelerator pedal or
applied brake. When the driver was very close to the stopped
trucks, the brake pedal force significantly increased and speed
abruptly dropped. This clearly indicates that the driver took eva-
sive action to avoid a collision with the stopped trucks.

However, while the driver was approaching the stopped trucks
in a longer distance and gradually decelerating, the speed did not
noticeably drop despite the driver’s action (i.e., released accelera-
tor pedal, pressed brake pedal with low force). In these conditions,
it is difficult to determine when the driver took evasive action

solely from the speed profile. This example demonstrates that
the driver’s use of accelerator and brake pedals is important to
determine the time of driver’s evasive action.

In fact, the drivers decelerate not only because they want to
avoid a collision in emergency situations. It is possible that the dri-
vers decelerate because they do not feel safe or they want to drive
more cautiously in non-emergency situations. From a broader per-
spective, such action can also be considered as the driver’s evasive
action. In this study, the time period during which the drivers
either released the accelerator pedal or applied the brake was
defined as the ‘‘evasive action time.” The method of determining
the evasive action is illustrated in Fig. 4.

As there was no true disincentive for the drivers to avoid
crashes in the driving simulator experiment, it’s possible that the
participants drove carelessly, unlike their actual driving. Thus,
the validity of the simulator data was evaluated based on the crash
rate (=number of crashers per 100 km) as follows. In this study, a
total of 7 crashes occurred � 6 crashes in the Trucks scenario
and 1 crash in the Cars scenario. Thus, the crash rate in this study
is 0.253 crashes/100 km (=7 crashes/2762 km), which is not unre-
alistically high. This low crash rate indicates that most participants
normally and carefully drove similar to their actual driving.

3.2. Estimation of rear-end collision risk

Rear-end collision risk for different drivers and scenarios was
analyzed based on the Deceleration Rate to Avoid Crashes (DRAC).
DRAC is defined as the minimum deceleration rate required for the

Table 1
List of variables.

Type Variables Description Descriptive statistics

Traffic kinematics Speed (km/h) Speed of the subject vehicle Mean: 80.7 km/h
Maximum: 163.9 km/h
Minimum: 0 km/h

Spacing (m) Front-to-rear spacing with the lead vehicle Mean: 123.55 m
Maximum: 2622.15 m
Minimum: 0 m

Vehicle dynamics Accelerator pedal position 1 = fully pressed
0 = fully released

Mean: 0.38
Maximum: 1
Minimum: 0

Brake pedal force (lb) Mean: 1.82 lb
Maximum: 180 lb
Minimum: 0 lb

Driver character-istics Gender 0 = Male, 1 = Female 34 male and 16 female drivers
Age (years) Age 1 = 25 or younger 37 drivers

Age 2 = 26–35 7 drivers
Age 3 = 36 or older 6 drivers

Driving experience (years) Number of years since the first license Mean: 7.5 years
Maximum: 50 years
Minimum: 1 year

Table 2
Average traffic kinematic variables by scenario and road section.

Variable Scenario Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7

Mean speed (km/h) Car 101.3 117.1 41.9 96.6 110.5 103.7 98.1
Truck 93.8 115.0 48.2 98.6 84.5 103.7 104.2

Mean spacing (m) Car 394.5 285.1 96.0 126.6 157.6 131.4 115.2
Truck 268.6 286.9 107.4 119.3 82.3 116.0 154.6

Mean speed difference (km/h) Car 15.6 16.5 28.1 11.8 20.4 10.6 7.5
Truck 12.1 23.1 41.1 17.0 14.7 11.3 9.3

Max. deceleration (m/s2) Car �1.05 �0.59 �5.97 �1.35 �1.17 �1.32 �1.08
Truck �1.19 �0.67 �6.95 �1.70 �1.90 �1.03 �1.12

Mean acceleration (m/s2) Car 0.69 0.51 0.65 0.52 0.40 0.36 0.39
Truck 0.77 0.59 0.85 0.51 0.60 0.40 0.33
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following vehicle to stop behind the lead vehicle. DRAC is calcu-
lated using the following equation:

DRAC tð Þ ¼ VFðtÞ � VLðtÞð Þ2
2SðtÞ ; VFðtÞ > VL tð Þ ð1Þ

where VFðtÞ = the following vehicle’s speed at time t, VLðtÞ = the lead
vehicle’s speed at time t, and S tð Þ = front-to-rear spacing between
the following and lead vehicles at time t. DRAC can be determined
only when the following vehicle’s speed is higher than the lead
vehicle’s speed. Higher value of DRAC indicates higher collision risk

Fig. 3. Profiles of speed, accelerator pedal position and brake pedal force in Section 3. Note: The horizontal axis represents the number of time frames (each time frame = 1/
60 s).

Fig. 4. Determination of evasive action using vehicle dynamics data.

D. Shah and C. Lee Journal of Safety Research 78 (2021) 242–250

246



since it is more difficult to apply higher deceleration to avoid
collision.

3.3. Collision risk prediction models

To identify the variables and capture their effect on collision
risk, collision risk prediction models were developed using two
types of the models – (1) Generalized Linear Model (GLM) and
(2) the random effects model. These models can also be used to
predict collision risk based on the explanatory variables.

In this study, the GLM relates the mean DRAC (i.e., average of all
values of DRAC in different time frames) to various explanatory
variables to identify the isolated effects of the variables on collision
risk. The GLM is expressed as shown in the following equation:

DRAC ¼ expðaþ bixiÞ ð2Þ
where DRAC = mean DRAC, a = constant, bi = coefficient, and xi = ex-
planatory variables. Since the speed difference between lead and
following vehicles and the spacing between them were used to cal-
culate DRAC, the speed difference and spacing were excluded from
the models.

Unlike the GLM, which assumes a fixed value of the intercept
ðaÞ, the random effects model assumes that the intercept varies
among different observations. The model assumes that the inter-
cept is normally distributed with a mean intercept a and standard
deviation s. In this study, it was assumed that the variability of
intercept is due to random effect of the evasive action time on
mean DRAC among different drivers.

4. Results and discussion

4.1. Comparison of evasive action time and DRAC

DRAC was separately calculated during the evasive action time
and non-evasive action time (i.e., the time period during which the
drivers neither applied brake nor released accelerator pedal).
Table 3 shows mean values of DRAC for all drivers during the eva-
sive action time, the non-evasive action time, and the total time.
The table also compares mean DRAC among different sections. It
was found that mean DRAC was highest in Section 3 followed by
Section 5. This shows that rear-end collision risk was higher when
the drivers approached the stopped trucks or the merging lane.
Also, mean values of DRAC were consistently higher for the Trucks
scenario than the Cars scenario for all sections. In particular, the
difference in mean DRAC between the Cars and Trucks scenarios
was statistically significant for Sections 3 and 4 at a 95% confidence
interval (p < 0.05).

It was also found that mean DRAC was consistently higher dur-
ing the evasive action time than the non-evasive action time for all
sections. In particular, mean DRAC was significantly different
between the evasive and non-evasive action times for Sections
3–7 for the Cars scenario and Sections 3, 6 and 7 for the Trucks sce-
nario at a 95% confidence interval (p < 0.05).

However, the comparison of mean DRAC only shows which sec-
tion has a higher collision risk than the others, but it cannot iden-

tify the effects of evasive action time and the other factors on mean
DRAC. Thus, the results of GLM and random effect model were dis-
cussed in the next section.

4.2. GLM for all road sections

The estimated parameters of GLM for all road sections in the
Cars and Trucks scenarios are shown in Table 4. All variables were
statistically significant at a 95% confidence interval. It was found
that there were some differences in the results between the Cars
and Trucks scenarios. First, female driver has a negative effect on
mean DRAC in the Cars scenario. This indicates that female drivers
were generally more cautious while driving and their collision risk
was lower than male drivers in when they followed cars. However,
the driver’s gender was not significant in the Trucks scenario. This
is potentially because both male and female drivers were cautious
when they followed trucks.

It was also found that driving experience has a negative effect
on mean DRAC in the Trucks scenario. This indicates that more
experienced drivers had lower collision risk than less experienced
drivers when they followed trucks. This may be because more driv-
ing experience and better driving skill are required to avoid a col-
lision with trucks than cars.

As expected, it was found that shorter evasive action time
increased collision risk in the Cars scenario. However, the effect
of the evasive action time was not significant in the Trucks sce-

Table 3
Mean DRAC by road section in different time periods.

Scenario Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7

Evasive action time Car 0.04 0.09 0.47 0.07 0.19 0.06 0.04
Truck 0.08 0.12 0.76 0.14 0.42 0.09 0.06

Non-evasive action time Car 0.04 0.08 0.34 0.07 0.17 0.06 0.03
Truck 0.07 0.12 0.58 0.14 0.24 0.09 0.05

Total time Car 0.04 0.09 0.42 0.07 0.18 0.06 0.04
Truck 0.07 0.12 0.73 0.14 0.36 0.09 0.06

Table 4
Estimated parameters of GLMs for all road sections Cars scenario.

(a) Cars scenario

Parameter Estimates p-value

Intercept �2.10 0.0018
Female �0.15 0.0497
Average speed (km/h) 0.06 <0.0001
Evasive action time �0.03 0.0298
Section 1 �7.75 <0.0001
Section 2 �7.49 <0.0001
Section 3* – –
Section 4 �4.59 <0.0001
Section 5 �6.14 <0.0001
Section 6 �5.89 <0.0001
Section 7 �6.49 <0.0001
R-square 0.77

(b) Trucks scenario

Parameter Estimates p-value

Intercept �3.40 <0.0001
Average speed (km/h) 0.06 <0.0001
Driving experience (years) �0.02 0.0003
Section 1 �5.56 <0.0001
Section 2 �6.01 <0.0001
Section 3* – –
Section 4 �4.65 <0.0001
Section 5 �3.41 <0.0001
Section 6 �5.74 <0.0001
Section 7 �5.76 <0.0001
R-square 0.69

*Section 3 is the base case and the other sections are compared to Section 3.

D. Shah and C. Lee Journal of Safety Research 78 (2021) 242–250

247



nario. This is potentially because the drivers perceived that it is
easier for them to avoid a collision with the lead car relative to
the lead truck and their evasive action time is more likely to vary
among different drivers. On the other hand, it is more difficult to
avoid a collision with the lead truck relative to the lead car due
to the limited sight and larger difference in speed. Thus, most dri-
vers must have taken precautions when they followed trucks and,
hence, the variation in the evasive action time is likely to be lower
in the Trucks scenario.

Similar to the comparison of mean DRAC, the model result
shows that DRAC was highest for Section 3 among the seven road
sections. This shows that approaching the stopped trucks was the
most critical condition that increases chances of collision.

4.3. GLM for individual road sections

To compare effects of variables on mean DRAC among different
road sections, GLMs were also developed for each road section sep-
arately. The estimated parameters of the models are shown in
Table 5. The models only include the variables that are statistically
significant at a 95% confidence interval. The table shows that sig-
nificant variables associated with collision risk were different for
different road sections, similar to Meng and Weng (2011).

Driver’s gender was significant for Section 3 in the Cars scenario
and Sections 5 and 7 in the Trucks scenario. This shows that female
drivers generally had lower collision risk than male drivers when
they approached the stopped trucks or the merging lane. Driving
experience also had similar effects as driver’s gender. More experi-
enced drivers had lower collision risk than less experienced drivers
in the same road section. However, in spite of significance of age in

the models, the effect of age on collision risk could not be analyzed
due to relatively small number of drivers over 35 and wide range of
age in this age group compared to the drivers under 35. Thus, these
results reflect that female and more experienced drivers are more
likely to be cautious or skillful in controlling their speed in more
complex traffic conditions.

It is worth noting that the effects of gender and driving experi-
ence were significant for Section 3 in the Cars scenario, whereas
they were significant for Section 5 in the Truck scenario. This indi-
cates that female and more experienced drivers perceived that it
was more critical to avoid a merging truck near the on-ramp than
a stopped truck and took evasive action earlier before reaching the
merge area. Thus, drivers’ evasive action not only depends on traf-
fic conditions, but also the type of conflicting vehicles (cars or
trucks).

It is also worth noting that the evasive action time was only sig-
nificant for Sections 2, 5, and 7 in the Cars scenario and Sections 3
and 5 in the Trucks scenario. When the drivers see the trucks ahead
in Section 2 (although they cannot see the trucks were stopped)
and Section 3, they are more likely to reduce speed to check if they
can avoid approaching trucks and stop behind the stopped trucks.
Similarly, when the drivers see the merging vehicle from the on-
ramp in Section 5, they are more likely to reduce speed to yield
to the merging vehicle or change to inner lanes to avoid conflicts
with the merging vehicle. Lastly, when the drivers are required
to exit from the freeway in Section 7, they are more likely to reduce
speed in the right lane while approaching the exit ramp. This result
shows that longer evasive action time can help reduce collision risk
more effectively in the road sections where drivers are required to
take action to avoid crash or complete the task.

Table 5
Estimated parameters of GLMs for each road section.

(a) Cars scenario

Parameter Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7

Constant �17.80 �8.78 �7.67 �10.77 �3.87 �10.12 �4.76
(0.02) (0.09) (0.03) (<0.001) (0.09) (<0.001) (0.06)

Female –* – �0.33 – – – –
(0.02)

Driving experience (years) – – �0.02 – – – –
(0.03)

Age 1 (25 or younger) – – �0.84 – – – –
(0.01)

Age 2 (26–35) – – �0.78 – – – –
(0.01)

Avg. speed (km/h) 0.12 0.10 0.18 0.08 0.03 0.07 0.04
(0.04) (<0.001) (0.03) (<0.001) (0.003) (<0.001) (0.001)

Evasive action time – �1.28 – – �0.19 – �0.15
(0.02) (0.02) (0.001)

R-square 0.66 0.60 0.33 0.53 0.76 0.36 0.47

(b) Trucks scenario

Parameter Section 1 Section 2 Section 3 Section 4 Section 5 Section 6 Section 7

Constant – �15.27 �2.75 �8.65 5.38 �9.83 �16.55
(<0.001) (0.25) (<0.001) (<0.001) (<0.001) (<0.001)

Female – – – – �0.56 – 1.69
(0.04) (0.004)

Driving experience (years) – – – – �0.10 – –
(<0.001)

Age 1 (25 or younger) – – – – �1.57 – –
(0.008)

Age 2 (26–35) – – – – �1.85 – –
(0.003)

Avg. speed (km/h) – 0.10 0.12 0.06 – 0.06 0.12
(<0.001) (0.001) (<0.001) (<0.001) (<0.001)

Evasive action time – – �0.12 – �0.32 – –
(0.003) (<0.001)

R-square – 0.70 0.46 0.79 0.63 0.61 0.41

Note: The values in parentheses are p-values.
*Not statistically significant at a 95% confidence interval.

D. Shah and C. Lee Journal of Safety Research 78 (2021) 242–250

248



4.4. Random effects model

The estimated parameters of random effects models for all road
sections are shown in Table 6. Similar to GLMs, the results of ran-
dom effects models show that the effects of driver’s gender and
driving experience on mean DRAC were significant for the Cars
and Trucks scenarios, respectively. Also, the effect of average speed
was significant and collision risk was highest in Section 3 for both
Cars and Trucks scenarios.

To investigate random effect of the evasive action time, the eva-
sive action time was included in the models as a random parame-
ter. The significance of random effect of the evasive action time is
indicated by higher R-square value for the models with the random
parameter and the model without the random parameter (0.96 vs.
0.64 for the Cars scenario and 0.96 vs 0.35 for the Trucks scenario).

In particular, the random effect of the evasive action time was
more significant in the Trucks scenario than the Cars scenario since
an increase in R-square value was larger (0.61 vs. 0.32). This
implies that the pattern of evasive action was more variable among
different drivers for the same evasive action time and, conse-
quently, their effect on collision risk was also more variable when
the drivers followed lead trucks than lead cars. This is potentially
because due to a larger size of lead trucks, the drivers hadmore dif-
ficulty with viewing the road ahead and taking appropriate evasive
action. As a result, drivers are more likely to take different evasive
actions.

Relatively less significant random effect of the evasive action
time in the Cars scenario indicates that there was less variation
in the effect of the evasive action time on collision risk among dif-
ferent drivers. Hence, the pattern of evasive action was more uni-
form when the drivers followed cars than trucks.

5. Conclusions and recommendations

This study analyzes the effects of the driver’s evasive action
time on rear-end collision risk using a surrogate safety measure
(SSM) – Deceleration Rate to Avoid Crash (DRAC). For the analysis,
50 drivers’ behavior on a two-lane one-way freeway was observed
in a driving simulator experiment. The drivers tested two traffic
scenarios - Cars and Trucks scenarios where conflicting vehicles
were cars and trucks, respectively.

The presence and time of drivers’ evasive action were deter-
mined based on two vehicle dynamics variables - the accelerator
pedal position and the brake pedal force. Mean DRAC of all drivers
was separately calculated for each scenario and each of 7 road sec-
tions which were classified based on driving conditions. Then sig-
nificant factors affecting mean DRAC and their relationship with
collision risk were identified using generalized linear models
(GLMs) and random effect models. There are a few noteworthy
findings in this study as follows.

First, DRAC decreases as the evasive action time increases. This
shows that if the driver takes evasive action for a longer time per-
iod, rear-end collision risk is reduced. In particular, longer evasive
action time can significantly reduce collision risk in the conditions
where drivers are required to take action to avoid a collision. Sec-
ond, the effects of driver characteristics (gender and driving expe-
rience) on collision risk were particularly significant in the road
sections where the drivers approached the stopped trucks and
merging vehicles from an on-ramp. This implies that driver charac-
teristics are more closely related to effective evasive action to
reduce collision risk in complex driving conditions. Third, the
effects of variables on rear-end collision risk were different
between the Cars and Trucks scenarios. This indicates that the type
of lead vehicle has differential effects on collision risk in a given
driving condition. Lastly, the evasive action time had a more signif-
icant random effect in the Trucks scenario than the Cars scenario.
This is potentially because a large size of trucks hinders the drivers’
sight and delays their evasive action, which results in higher vari-
ation in evasive action among different drivers.

In summary, these findings help better understand how drivers’
characteristics and their evasive action are associated with rear-
end collision risk in various driving conditions. Based on this
understanding, the evasive action that effectively reduces the fre-
quency of high deceleration in a given driving condition can be
identified. Then, warning messages can be provided via variable
message signs to alert drivers to take more specific evasive action
in a critical traffic event. For instance, a variable message sign can
be installed upstream of a freeway merge area and it can display
the warning information that guides drivers to reduce the speed
to a specific safe speed in the next few seconds when high ramp
traffic volume is detected. More specific warning messages are
likely to reduce the variability of the driver’s evasive action and
the speed variations among different drivers compared to generic
warning messages. Less speed variations will lower the chances
of crash occurrence (Hamzeie et al., 2017).

However, there were some limitations in this study. For
instance, SSMs could not be validated using the crash data due to
a small number of crashes during the driving simulator experi-
ment. Also, as the driver’s evasive action was analyzed only in a
limited number of driving conditions, more general effects of eva-
sive action on collision risk could not be investigated.

Table 6
Estimated parameters of the random effect models for all road sections.

(a) Cars scenario

Fixed effect parameter Estimates p-value

Intercept 0.19 0.0018
Female �0.04 0.0497
Average speed (km/h) 0.01 <0.0001
Section 1 �0.69 <0.001
Section 2 �0.73 <0.001
Section 3* – –
Section 4 �0.62 <0.001
Section 5 �0.59 <0.001
Section 6 �0.66 <0.001
Section 7 �0.67 <0.001
Random effect parameter Variance Standard

deviation
Evasive action time 0.01 0.09
R-square (without random effect

parameter)
0.64

R-square (with random effect parameter) 0.96
Increase in R-square 0.32

(b) Trucks scenario

Fixed effect parameter Estimates p-value

Intercept 0.19 0.0018
Female �0.04 0.0497
Average speed (km/h) 0.01 <0.0001
Section 1 �0.69 <0.001
Section 2 �0.73 <0.001
Section 3* – –
Section 4 �0.62 <0.001
Section 5 �0.59 <0.001
Section 6 �0.66 <0.001
Section 7 �0.67 <0.001
Random effect parameter Variance Standard

deviation
Evasive action time 0.01 0.09
R-square (without random effect

parameter)
0.64

R-square (with random effect parameter) 0.96
Increase in R-square 0.32

*Section 3 is the base case and the other sections are compared to Section 3.
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In future work, it is recommended that the effects of the driver’s
evasive action on collision risk be analyzed more extensively in dif-
ferent vehicle types, geometric, traffic, and weather conditions
using vehicle dynamics and trajectories. It is also recommended
that more effective countermeasures be developed to reduce colli-
sion risk and their safety effects be evaluated using SSMs.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgements

This research was supported by Natural Sciences and Engineer-
ing Research Council of Canada [Grant number: RGPIN-2019-
04430]. This research is also supported through research infras-
tructure funded by Canada Foundation for Innovation [Project
number: 30508].

References

Allen, B. L., Shin, B. T., & Cooper, P. J. (1978). Analysis of traffic conflicts and
collisions. Transportation Research Record, 667, 67–74.

Brooks, J. O., Goodenough, R. R., Crisler, M. C., Klein, N. D., Alley, R. L., Koon, B. L., ...
Wills, R. F. (2010). Simulator sickness during driving simulation studies.
Accident Analysis & Prevention, 42, 788–796.

Cooper, D. F., & Ferguson, N. (1976). Traffic studies at t-junctions – A conflict
simulation model. Traffic Engineering & Control, 17(7), 306–309.

Gold, C., Happee, R., & Bengler, K. (2018). Modeling take-over performance in level 3
conditionally automated vehicles. Accident Analysis & Prevention, 116, 3–13.

Hayward, J. C. (1972). Near-miss determination through use of a scale of danger.
Highway Research Record, 384, 24–34.

Hamzeie, R., Savolainen, P. T., & Gates, T. J. (2017). Driver speed selection and crash
risk: Insights from the naturalistic driving study. Journal of Safety Research, 63,
187–194.

Hyden, C. (1987). Development of a method for traffic safety evaluation: The Swedish
traffic conflicts technique. Lund Institute of Technology.

Kuang, Y., Qu, X., & Wang, S. (2015). A tree-structured crash surrogate measure for
freeways. Accident Analysis & Prevention, 77, 137–148.

Laureshyn, A. (2017). Surrogate measures in traffic safety analysis. Sweden: Lund
University.

Laureshyn, A., de Goede, M., Saunier, N., & Fyhri, A. (2017). Cross-comparison of
three surrogate safety methods to diagnosecyclist safety problems at
intersections in Norway. Accident Analysis & Prevention, 105, 11–20.

Levulis, S. J., DeLucia, P. R., & Jupe, J. (2015). Effects of oncoming vehicle size on
overtaking judgments. Accident Analysis & Prevention, 82, 163–170.

Li, X., Rakotonirainy, A., & Yan, X. (2019). How do drivers avoid collisions? A driving
simulator-based study. Journal of Safety Research, 70, 89–96.

Li, Y., Xu, C., Xing, L., & Wang, W. (2017). Evaluation of impacts of different car-
following types on rear-end crash risk at freeway weaving sections using
vehicle trajectory data. Presented at the 96th Transportation Research Board
Annual Meeting, Washington, D.C..

Mahmud, S. M. S., Ferreira, L., Hoque, M. S., & Tavassoli, A. (2017). Application of
proximal surrogate indicators for safety evaluation: A review of recent
developments and research needs. International Association of Traffic and
Safety Sciences (IATSS) Research, 41, 153–163.

Meng, Q., & Weng, J. (2011). Evaluation of rear-end crash risk at work zone using
work zone traffic data. Accident Analysis and Prevention, 43, 1291–1300.

Triggs, T., & Harris, W. (1982). Reaction time of drivers to road stimuli. Technical
report. Monash University, Human Factor Group, Department of Psychology.

Wang, C., & Stamatiadis, N. (2013). Surrogate safety measure for simulation-based
conflict study. Transportation Research Record: Journal of the Transportation
Research Board, 2386, 72–80.

Wang, X., Zhu, M., Chen, M., & Tremont, P. (2016). Drivers’ rear end collision
avoidance behaviors under different levels of situational urgency.
Transportation Research Part C, 71, 419–433.

Wu, Y., Abdel-Aty, M., Cai, Q., Lee, J., & Park, J. (2018). Developing an algorithm to
assess the rear-end collision risk under fog conditions using real-time data.
Transportation Research Part C, 87, 11–25.

Zhao, P., & Lee, C. (2017). Analysis and validation of surrogate safety measures by
types of lead and following vehicles. Transportation Research Record: Journal of
the Transportation Research Board, 2659, 137–147.

Zheng, Z., Lu, P., & Lantz, B. (2018). Commercial truck crash injury severity analysis
using gradient boosting data mining model. Journal of Safety Research, 65,
115–124.

Dhwani Shah is a Ph.D. student at the University of Windsor, Canada. Her research
focuses on analysis of driver behavior and collision risk using driving simulator
data. Prior to her doctoral studies, Ms. Shah received Bachelor’s and Master’s
degrees from CEPT University, India.

Chris Lee, Ph.D., P.Eng. is an Associate Professor of Civil and Environmental Engi-
neering at the University of Windsor, Canada. His main research interests are in
traffic safety, driver behavior, and traffic operation and control. Dr. Lee has con-
ducted research on vehicle interaction and conflicts in car-truck mixed traffic, car-
following and lane-changing behaviour, prediction of crash frequency and injury
severity, safety evaluation of countermeasures, and advanced real-time speed
control for freeways. Dr. Lee is an Associate Editor of two academic journals -
Accident Analysis and Prevention and Canadian Journal of Civil Engineering.

D. Shah and C. Lee Journal of Safety Research 78 (2021) 242–250

250

http://refhub.elsevier.com/S0022-4375(21)00074-8/h0005
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0005
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0015
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0015
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0015
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0020
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0020
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0030
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0030
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0035
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0035
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0040
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0040
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0040
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0045
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0045
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0050
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0050
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0060
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0060
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0065
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0065
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0065
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0070
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0070
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0075
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0075
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0080
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0080
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0080
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0080
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0080
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0085
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0085
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0085
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0085
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0090
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0090
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0095
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0095
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0105
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0105
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0105
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0110
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0110
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0110
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0115
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0115
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0115
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0120
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0120
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0120
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0125
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0125
http://refhub.elsevier.com/S0022-4375(21)00074-8/h0125


Application of machine learning technique for optimizing roadside
design to decrease barrier crash costs, a quantile regression model
approach

Mahdi Rezapour ⇑, Khaled Ksaibati
Wyoming Technology Transfer Center, 1000 E University Ave, Dept. 3295, Laramie, WY 82071, United States

a r t i c l e i n f o

Article history:
Received 13 December 2019
Received in revised form 16 June 2020
Accepted 2 June 2021
Available online 15 June 2021

Keywords:
Machine learning
Quantile regression model
Traffic barrier crash severity
Optimization
Benefit cost analysis

a b s t r a c t

Introduction: In-transport vehicles often leave the travel lane and encroach onto natural objects on the
roadsides. These types of crashes are called run-off the road crashes (ROR). Such crashes accounts for a
significant proportion of fatalities and severe crashes. Roadside barrier installation would be warranted
if they could reduce the severity of these types of crashes. However, roadside barriers still account for a
significant proportion of severe crashes in Wyoming. The impact of the crash severity would be higher if
barriers are poorly designed, which could result in override or underride barrier crashes. Several studies
have been conducted to identify optimum values of barrier height. However, limited studies have inves-
tigated the monetary benefit associated with adjusting the barrier heights to the optimal values. In addi-
tion, few studies have been conducted to model barrier crash cost. This is because the crash cost is a
heavily skewed distribution, and well-known distributions such as linear or poison models are incapable
of capturing the distribution. A semi-parametric distribution such as asymmetric Laplace distribution can
be used to account for this type of sparse distribution. Method: Interaction between different predictors
were considered in the analysis. Also, to account for exposure effects across various barriers, barrier
lengths and traffic volumes were incorporated in the models. This study is conducted by using a novel
machine-learning-based cost-benefit optimization to provide an efficient guideline for decision makers.
This method was used for predicting barrier crash costs without barrier enhancement. Subsequently the
benefit was obtained by optimizing traffic barrier height and recalculating the benefit and cost. The
trained model was used for crash cost prediction on barriers with and without crashes. Results: The
results of optimization clearly demonstrated the benefit of optimizing the heights of road barriers around
the state. Practical Applications: The findings can be utilized by the Wyoming Department of
Transportation (WYDOT) to determine the heights of which barriers should be optimized first. Other
states can follow the procedure described in this paper to upgrade their roadside barriers.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Every year, more than a million people die due to traffic crashes
worldwide. In addition, 50 millions more are severely injured on
roadways (OECD. Publishing, 2017). In 2017 alone, more than
37,000 people died in the United States as a result of road crashes
(National Highway Traffic Safety Administration, 2017). Hitting a
fixed object account for a significant proportion of these fatalities:
about 8,000 people died in 2016 alone in collision with fixed
objects, which was 3% higher than the 2015 crashes (FARS &
National Highway Traffic Safety Administration, 2016). Roadway

departure crashes tend to be hazardous, especially in a mountain-
ous areas like Wyoming with challenging roadways geometric
characteristics (Rezapour, Wulff, & Ksaibati, 2019). However, vari-
ous mitigating strategies are available that could be implemented
to reduce the severity of hitting a fixed object on the roadsides.
These methods include transferring the hazards out of the clear
zones or a more practical approach, which is interposing traffic
barriers. Still, the traffic barrier itself is hazardous and its installa-
tion would be recommended only if it could redirect drivers from
more hazardous objects.

When the installation of traffic barriers is warranted, to mini-
mize the severity of these crashes special attention should be paid
to the geometric characteristics of traffic barriers to prevent under-
ride or override crashes. Extensive research has been conducted
with the help of simulated or field crash tests to identify an
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optimum height to prevent the risks of override or underride
crashes. Short-height barriers poses a risk of override vehicle
crashes. For instance, barrier heights between 24 and 26 inches
pose a possibility of an increased risk of vehicle override crashes
(Wiebelhaus, Lechtenberg, Sicking, Faller, & Rosenbaugh, 2013).
On the other hand, a barrier with a height of 36 inches, would
increase the risk of underride crashes (Julin, Asadollahi Pajouh,
Stolle, Reid, & Faller, 2017). However, the impacts of these mea-
sures (e.g., various barrier heights) have not been quantified by
the majority of past studies. As no study has been conducted on
barrier optimization based on crash cost or severity, a few studies
would be welcome on the application of various optimization tech-
niques on transportation problems and other issues.

A simultaneous consideration of traffic safety risks and the cost
burden related to the appropriate planning and design was con-
ducted in a past study (Li, Ding, & Zhong, 2019). The optimization
results showed that the method is capable of generating high-
quality solution.

In another study, a model for highway alignment optimization
that integrates GIS with genetic algorithm was presented (Jha &
Schonfeld, 2004). The objective of this study was to examine the
effects of costs on alignment selection. The results indicated that
travel-time cost is one of the factors that significantly impacts
the alignment optimization.

An innovative wrong-way driving (WWD) countermeasure
optimization was discussed to help decision makers identify the
optimal deployment locations based on available resources
(Sandt & Al-Deek, 2019). The WWD model used non-crash events,
interchange design, and traffic volumes to predict the frequency of
crashes. It was found that, based on some of the scenarios, the deci-
sion makers could expect more than 30% of WWD crash risk reduc-
tion by equipping some of the ramps.

Several studies have been conducted on application of machine
learning technique for optimizing non-transportation problems.
For instance, machine learning techniques were used for optimiz-
ing solar water heater performance (Li et al., 2017).

In addition, studies have been conducted to investigate the
impact of barrier geometric on the crash severity (Rezapour &
Ksaibati, 2018). Despite the efforts, the impacts of various barrier
height on the barrier crash cost is still missing in the literature.
What is the estimated cost of barrier crashes based on barrier
heights? Which barriers should be upgraded first to secure the
highest benefit based on limited available budget? And how much
money would be saved by optimizing the traffic barriers geometric
to its optimal value to maximize benefits over a few years? These
are just some of the questions that are of crucial importance for
decision makers to be answered. One of the challenges of address-
ing the above questions is that measuring the traffic barriers geo-
metric characteristics are costly. Also, the past study highlighted
the importance of incorporating traffic geometric characteristics
in the safety analysis. In addition, the past study has shown that
the impact of traffic barrier height on barrier severity should be
evaluated in combination with the impact of shoulder width
(Rezapour et al., 2019; Rezapour & Ksaibati, 2020a; 2020b).

The Wyoming Department of Transportation (WYDOT) col-
lected information on 1.3 million of linear feet of traffic barriers
on the state and interstate systems in Wyoming. The information
included measurements of traffic barrier height, types of barrier,
and shoulder width.

Thus, this study took advantage of the provided information
with the help of machine learning techniques to model traffic bar-
riers crash cost as response before and after optimizing barriers
heights. The trained model was implemented on barriers with
and without crashes to determine the cost effectiveness of opti-
mizing barriers heights.

In summary, the Contributions of this study are as follows:

1. WYDOT has a limited budget to upgrade barriers so it is impor-
tant to prioritize barriers optimization. Thus, the barriers would
be prioritized to determine which ones are most cost effective
to address first, based on budget availability.

2. Since a crash is a random/rare event, an optimization is needed
not only on barriers with historical crashes but also on barriers
that did not experience any crash. That is especially important
as there is a significant proportion of barriers with no crashes
in Wyoming due to low traffic volumes and randomness of
crashes. Thus, these barriers need to be optimized if they are
outdated or outside the recommended heights.

3. Although barrier crash cost is dependent on various factors, this
study only considers predictors that are common across both
barriers with and without crashes so a trained model could be
implemented on barriers with no crashes.

4. Interaction terms were considered in this study to account for
the heterogeneity across crashes by allowing the influence of
predictors to vary by crashes.

2. Data

In order to optimize the performance of traffic barriers, they
should be up-to-date based on a recommended height. Since
updating all barriers in one shot is cost prohibitive, selecting which
barriers should be upgraded first is really essential. The following
section summarizes the challenges for the optimization process.

First, upgrading all the barriers would be very costly and deci-
sion makers often have limited budget. Secondly based on the lit-
erature review, barrier crash severity depends on many factors
such as human behavior, roadway conditions, and roadway and
barrier designs. But sometimes barriers do not receive any crashes
due to their scarcity and randomness. Consequently, there would
be no response (e.g., crash costs) or driver behavior predictors for
barriers without crashes. This makes it hard for conducting any
statistical analysis. This situation would be much direr if the barri-
ers with no crashes are outdated and they need immediate atten-
tion. Third, for optimization process, the cost of crash should be
known after modifying barrier heights based on predicting models.

Thus, in order to have a model that could be implemented on a
barrier with no crashes, both datasets (barriers with and without
crashes) should incorporate similar predictors. So in the modeling
portion, we incorporated only variables that were available for the
two datasets such as barrier geometric characteristics and shoulder
width. Also to be unbiased across barriers with different traffic vol-
umes and lengths, those exposure parameters were incorporated
in the model. To account for the structure of the dataset resulting
from incorporating different barrier types, the interaction between
barrier types and significant predictors were considered. A
machine learning technique was implemented to address the issue
of finding predicted crash costs with and without enhancement for
both barriers with and with no crashes. Table 1 presents those pre-
dictors that were found to be significant in the final analysis.

It should be noted that the number of barriers experienced
crashes in the state highway system in Wyoming is higher than
those barriers without crashes (836 vs. 374). This difference is
related to the fact that only barriers outside the recommended
heights were incorporated in the optimization process, and mostly
state highway barriers were outdated. Table 1 highlights the differ-
ences across these two groups of barriers. As can be seen from
Table 1, while the average of barrier heights experienced crashes
is 29.2 inches, this value is significantly lower for barriers with
no crashes (22.7 inches). This highlights the importance of study-
ing the barriers without historical crashes.

It is interesting to see although the second barrier group did not
experience any crash, the average annual daily traffic (AADT) is
very close to the first group. Moreover, the posted speed limit is
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higher for barriers with no crash compared to barriers with
crashes. For this study, W-beam accounts for a higher number of
barriers for both barrier datasets. Shoulder width converted to a
binary predictor as it was found that a cutting point of 5.5 feet is
important for prediction of crash cost. In addition, this value splits
shoulder width into almost two equal categories.

For barriers with crash dataset, the crashes between 2007 and
2016 were used in the analysis. Data were filtered to include only
single- vehicle barrier crashes. Cable barriers and concrete barriers
crashes were excluded from the dataset due their low number of
frequency and crashes. As discussed earlier, only barriers at a crit-
ical conditions, above 35 or below 27 inches, were included in the
analysis.

3. Method

The distributions (such as Laplace and Legendre) suggest that
the minimization of absolute deviation is preferable to least square

when some sample observation are poorly distributed (Koenker &
Bassett Jr, 1978). Also, Laplace distribution has proven that in the
simple bivariate regression, the least absolute error estimator has
a smaller asymptotic variance than the least square estimator if
the model error law has variance, r2; and density at the median,

f(0), satisfying ½2f ð0Þ��1
< r. So this distribution with a long tail

could be a good option for modeling sparse crash cost distribution.
Fig. 1 highlights the sparsity of crash cost aggregated over various
barriers.

Linear quantile regression model has been proposed to model
the poorly distributed performance model (Koenker & Hallock,
2001). This model distribution is based on Laplace distribution,
which has often been used for modeling sparse dataset such as cost
data. The interpretation of quantile regression is very similar to
ordinary least square (OLS) with the difference that instead of pre-
dicting the mean of the dependent variable, this model looks at the
quantile of the dependent variable.

In contrast with least square estimation, where the objective is
to minimize the sum of squared residuals, the objective function
for quantile regression model is to minimize sum of absolute devi-
ation of residuals. The minimization objective function for hth
regression quantile, 0<h < 1, could be written as any solution to
the below equation (Koenker & Bassett Jr, 1978):

b
Z

R

min X
t2ft:yPxtb

h yt � xtbj j þ
X

t2ft:y<xtb

1� hð Þ yt � xtbj j
" #

ð1Þ

where b is the linear function of included variables.
The analysis of this study conducted in R (Geraci, 2014). The

response is crash cost, which is calculated based on the following
equation:

yi ¼ 4612� PDOi þ 9604727� Fatali þ 132181

� Suspected serious injuryi þ 132181

� Suspected minor injuryi þ 149551� Unknowni ð2Þ
The response, crash cost, was highly sparse (see Fig. 1), which

could not be modeled by any known distribution such as Gaussian,
or gamma distribution. It should be noted that various extreme
transformations were conducted to determine if Gaussian or

Table 1
Descriptive analysis of barriers with and without crashes.

Variables Mean St.dev Max Min

Barriers with crashes (number = 836, length = 138 miles)
Real crash cost in dollar per barrier 328,895 1,449,023 19,244,066 34,612
Barrier height (in) 29.2 3.3 40.8 <12
Barrier length (ft) 874 1816.78 35,47 14
Traffic (AADT) 1,313 1,313 8,854 27
Side slope, 0 if it is flat,1 otherwise 0.75 0.431 1 0
Shoulder width <=5.50 538 —— ——

>5.50 298 —— ——
Posted speed limit 54.89 15.310 70 20
Barrier types Box beam 386 —— ——

W-beam 450 —— ——
Barriers with no crash (number = 374, length = 29miles)
Crash cost in dollar per barrier 0 0 0 0
Barrier height (in) 22.7 2.828 25.2 <12
Barrier length (ft) 402 412.903 2500 14
Traffic (AADT) 1,177 1191 5878 27
Side slope, 0 if it is flat,1 otherwise 0.87 0.328 1 0
Shoulder width <=5.50 267 —— ——

>5.50 107 —— ——
Posted speed limit 64.170 10.847 70 20
Barrier types Box beam 123 —— ——

W-beam 251 —— ——

Fig. 1. Sparsity of crash cost versus barrier ID.
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Gamma distribution could be applied. However, even those trans-
formations did not result in an improvement of the residual distri-
bution. For optimization process, the steps in Fig. 2 were
performed. As mentioned earlier, one of the main concerns of
WYDOT is to optimize barriers without, in addition to those with
crashes, so after a model was trained on barriers with crashes, it
was implemented on barriers with no crash (Fig. 3).

All the highway barriers with crashes were used for training the
model. Standard quantile regression model does not account for
the hierarchy of the dataset structure, so in order to account for
the structure of datasets resulted from different barriers types,
w-beam versus box beam, interaction terms of the barrier types,
and various important predictors were incorporated in the model.
This would be accomplished by letting the crash cost vary by
changing the barrier types along with other predictors. Only pre-
dictors that were available for the barriers with no crashes were
incorporated in the trained model so the trained model could be
implemented on barriers with no crashes.

Various predictors were identified as important, such as barrier
height and shoulder width. Although a model trained across all
barriers, regardless of whether they were within the recommended
height or not, the trained model was implemented on the dataset
being filtered to incorporate only the over-height or under-height
barriers based on the dimensions: the barriers above 3500or below

2700 were incorporated in the optimization process only
(Transportation Officials. Task Force for Roadside Safety, 2011) as
these barriers are more likely to result in override and underride
barrier crashes.

A value of 27 inches was chosen in this study to optimize all the
barriers to that value (Transportation Officials. Task Force for
Roadside Safety, 2011). After predicting cost by implementing
the trained model on under-design barriers with and without
crashes, the barrier heights were optimized to 27 inches to predict
costs based on new heights. Barriers would be reset or newly
installed based on their conditions and types of their posting. Bar-
riers with wooden posts cannot be reset but need to be replaced. As
almost all W-beams in the state included wooden post, they would
be replaced while the box-beam would be reset to its optimum
value of 27 inches without replacement. The cost of these changes
are included in Table 2. The values would be multiplied by the
length of barriers in feet to come up with a total cost. This cost
would be taken into account for only the first year, and would be
added up to the predicted cost with enhancement only once (see
equation (4)).

Like every optimization process, the optimization process con-
sists of an objective function and constraints. The objective func-
tion of this study was to minimize the cost of barrier crashes
over the next 10 years based on budget availability. The main con-
strain is to only optimize those barriers being outside the recom-
mended high (below or above the threshold height). Another
constrain is to keep all other predictors constant during the
10 years period, except for barrier height. Barriers would be
upgraded to a fixed value highlighted as 27 inches.

3.1. Barrier ranking criteria

Total benefit is calculated from the following equation:

Total benefit in 10 years ¼ benefit over the 1st year þ 9

� benefit over consecutive years ð3Þ

Fig. 2. Methodological steps for performing the analysis.

Fig. 3. Distribution of Average annual daily traffic over the last 10 years on
Wyoming state highway system.
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On the other hand, the benefit over the first year would be cal-
culated as follows:

Benefit over the 1st year ¼ predicted cost with no optimization

� predicted cost with optimization þ reset costð Þ ð4Þ
Based on equation (3), various barriers across two datasets

would be ranked based on a higher total benefits. Reset cost would
be calculated from length � values obtained in Table 2. It should be
noted that although real current crash cost was available for barri-
ers with crashes, predicted crash costs without barriers enhance-
ment were estimated by implementing the trained model over
the dataset. This is because the scale of prediction and real values
are different, and current real cost cannot be used to be compared
with predicted crash cost after enhancement.

As for predicted cost after enhancement, the only unconstrained
predictor was traffic barrier height. The barrier heights were chan-
ged to an optimum value of 27 inches, and then the trained model
was implemented on a new dataset, with a new barrier height to
come up with a predicted future cost after optimization of barriers
height. Since traffic volumes on the state highway system have
been almost constant over the last 10 years (Fig. 2), it was assumed
this value would remain constant for the next 10 years. So after
calculating the cost for the first year, the benefit would be multi-
plied by 9 and added up with the first year to come up with the
total benefit (see equation (3)). The same process is implemented
on barriers with no crashes.

4. Results

The Lqm function in R was used for training the model on bar-
riers with crashes. This model has a form of linear regression so the
format of the model needs no further explanation. The significant
identified predictors are presented in Table 3. As can be seen from
Table 3, although this model does not account for the structures of
data resulting from different types of barriers, the interaction
between barrier types and important predictors were considered
in the model. Also, traffic and length of barriers were incorporated
in the model to account for the exposure. In addition, all interac-
tion terms between significant predictors were considered for the
model. As expected, the exposure variables (including barrier

length and traffic volume) resulted in a higher barrier crash cost.
The interaction between shoulder width and barrier height was
also found to be important.

It was found that there is important interaction terms between
barrier types and side slope, as well as barrier types and posted
speed limit. These interaction terms might result from a decision
of WYDOT in selection of various barrier types based on traffic
and side slopes. Variance of real crash cost and predicted crash
cost, and root mean square error (RMSE) of crash cost were pre-
sented to visualize the performance of the model. As the objective
of this study was not identification of contributory factors but opti-
mization, no further details would be presented for the modeling
results.

As discussed earlier, to predict the crashes after enhancement,
all the variables in Table 3 were kept constant and the changes
were made on traffic barrier heights only. This is due to limitations
of changing other parameters such as shoulder width due to road-
side limitation being clarified by WYDOT.

Table 4 presents the top 25 ranked cost-effective barriers with
historical crashes as identified in the optimization process. Table 5,
on the other hand, shows the top 25 barriers without any historical
crashes. The barriers were sorted based on the highest benefits
resulting from reductions in predicted crash cost due to only
changes in barrier heights. As can be seen from Table 4, the major-
ity of cost effective barriers were W-beam barriers. This is despite
the fact that these barriers have higher initial costs related to bar-
rier height change costs (see Table 2).

Also, it can be seen from Table 4, the top nine most economical
barriers are those that are above the threshold height of 35 inches,
followed by very low barriers. In addition, the above threshold bar-
riers are accompanied by wider shoulder width, while short barri-
ers are accompanied by a shorter shoulder width. This resulted
from the interaction terms identified in Table 4.

Similar to Table 5, despite the higher initial cost of W-beam, it
was found that the highest improvement could be made on W-
beam compared to box-beam on barriers with no crash. As
expected from the identified results in Table 5, the highest
impact/benefit is observed for the lowest-height barriers when
they are located at lower shoulder widths. It should be noted (as
discussed earlier in the manuscript) that barrier length and traffic
were incorporated in the modeling results to account for barriers
with different heights and various traffic. For instance, while bar-
rier ID 109 was identified as the most economical barrier to be
optimized, that barrier is among the barriers with lowest length,
and with average AADT, highlighting the importance of incorporat-
ing AADT and barrier lengths in the model.

As explained earlier, the model was trained to include only vari-
ables that are common across both datasets, barriers with crashes

Table 2
Cost of changing barriers in Wyoming based on bid price.

Barrier types Brand new installation$ per foot Reset bid price$ per foot

Box beam 50.25 10.45
W beam 50.89 –

Table 3
Results of regression quantile model, 95% quantile.

Value Std. Error Lower bound Upper bound Pr(>|t|)

Intercept 8.81E + 05 6.54E + 05 �4.32E + 05 2,194,828 0.183859
Barrier height �1.93E + 05 2.47E + 05 �6.88E + 05 302582.4 0.437842
AADT 2.34E + 02 7.67E + 01 7.99E + 01 388.28 0.003672
Length of barrier 2.65E + 02 1.56E + 02 �4.89E + 01 �578.76 0.052001
Side slope �1.32E + 05 8.25E + 04 �2.98E + 05 33666.75 0.11571
Shoulder width �2.29E + 06 9.45E + 05 �4.19E + 06 �393499 0.01899
Barrier type �2.30E + 05 4.55E + 04 �3.22E + 05 �138574 6.46E-06
Posted speed limit �5.17E + 03 3.74E + 03 �1.27E + 04 2355.46 0.173718
Side slope : type of barrier 6.26E + 04 2.87E + 04 5.06E + 03 120226.2 0.033615
Barrier height: shoulder width 9.25E + 05 3.94E + 05 1.32E + 05 1,717,153 0.023088
Barrier type: Posted speed limit 3.82E + 03 1.37E + 03 1.06E + 03 6585.42 0.007661

Variance (crash real cost) = 2e + 12,variance (predicted cost with no enhancement) = 3.576208e + 11, RMSE = 1.47e + 06.
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and barriers with no crashes. Special attention was also made to
incorporate barrier length and traffic count in the model to nor-
malize the barriers. After the model was trained on barriers with
crashes, it was implemented on barriers with no crashes. Table 6
presents the summary description of optimizations process across
barriers with and without crashes.

The steps for obtaining values in Table 6 were discussed in the
method section. Values for number of economical barriers means
considering equation (3), the benefit for that barrier ID is positive
versus those barriers that changing the barrier height is not cost
effective. As can be seen from Table 6, for barriers with crashes,
WYDOT could save more than a predicted value of 52 million dol-

Table 4
The top critical state highway-system barriers: sorted based on highest benefit,

Barrier
ID

Shoulder
width

AADT Barrier
height

Type of
barrier

Length of
barrier (ft)

Predicted crash cost without
barrier enhancement

Predicted crash cost
with enhancement

barrier height
change cost

Benefit in
10 years

Rank

2744 1 1536 40.8 W Beam 152 �1,123,297 �342,233 �7,712 7,802,925 1
4231 1 363 37.2 W Beam 66 �638,563 �61,255 �3,372 5,769,706 2
5324 1 657 37.2 Box Beam 723 �714,252 �136,944 �7,552 5,765,526 3
1443 1 2189 37.2 W Beam 665 �1,111,476 �534,168 –33,851 5,739,228 4
3055 1 719 36 W Beam 312 �941,238 �431,848 �15,878 5,078,015 5
3055 1 719 36 W Beam 312 �941,238 �431,848 �15,878 5,078,015 6
3056 1 719 36 W Beam 712 �1,067,924 �558,534 �36,245 5,057,648 7
3056 1 719 36 W Beam 712 �1,067,924 �558,534 �36,245 5,057,648 8
3888 1 659 36 W Beam 884 �1,074,108 �564,718 �45,005 5,048,888 9
576 0 955 <12 Box Beam 169 �667,164 �275,992 �1,761 3,909,954 10
2745 0 588 <12 Box Beam 461 �1,988,261 �1,597,088 �4,822 3,906,894 11
2745 0 588 <12 Box Beam 461 �1,988,261 �1,597,088 �4,822 3,906,894 12
4739 0 5234 18 Box Beam 169 �818,620 �688,229 �1,762 1,302,142 13
5453 0 1417 19.2 W Beam 901 �865,220 �752,215 �45,866 1,084,184 14
5196 0 687 19.2 W Beam 1062 �969,475 �856,469 �54,056 1,075,995 15
3847 0 4810 19.2 W Beam 1834 �1,160,352 �1,047,346 �93,315 1,036,735 16
3678 0 4810 20.4 Box Beam 214 �1,551,362 �1,455,742 �2,232 953,964 17
366 0 467 20.4 Box Beam 257 �685,951 �590,331 �2,686 953,511 18
796 0 75 21.6 W Beam 87 �610,229 �531,994 �4,451 777,891 19
1365 0 1264 21.6 Box Beam 492 �483,973 �405,738 �5,140 777,202 20
1859 0 739 21.6 Box Beam 1204 �620,043 �541,809 �12,586 769,757 21
3069 0 1045 21.6 Box Beam 1267 �590,369 �512,134 �13,245 769,098 22
3993 0 659 21.6 W Beam 634 �539,124 �460,890 –32,282 750,061 23
498 0 1677 21.6 W Beam 1088 �1,026,365 �948,130 �55,357 726,986 24
5453 0 1417 21.6 W Beam 1201 �675,170 �596,935 �61,116 721,226 25

All values, except for barrier height, are rounded.
All the values, except for barrier height are rounded.

Table 5
The tope critical highway-system barriers, sorted based on highest benefit, barriers with no crash.

Barrier
ID

Shoulder
width

AADT Barrier
height

Type of
barrier

Length of
barrier (ft)

Predicted cost with no
enhancement

Predicted cost after
enhancement

barrier height
change cost

Benefit Rank

109 1 955 <12 Box Beam 97 �584,529 �193,358 �1,016 3,910,694 1
575 1 955 <12 Box Beam 102 �650,957 �259,786 �1,068 3,910,642 2
1048 0 530 <12 W Beam 64 �423,022 �31,850 �3,245 3,908,475 3
1047 0 530 <12 W Beam 65 �423,323 –32,152 �3,302 3,908,408 4
112 1 955 <12 Box Beam 361 �718,907 �327,736 �3,774 3,907,936 5
5200 0 687 12 W Beam 2087 �1,344,888 �1,127,570 �106,212 2,066,968 6
15 0 128 13.2 W Beam 364 �522,201 –322,269 �18,504 1,980,816 7
7771 0 1176 14.4 W Beam 124 �760,922 �578,375 �6,308 1,819,162 8
5202 0 687 14.4 W Beam 201 �798,679 �616,132 �10,224 1,815,246 9
5454 0 1417 14.4 W Beam 631 �706,157 �523,611 –32,100 1,793,360 10
5198 0 687 14.4 W Beam 725 �940,739 �758,192 �36,886 1,788,584 11
4573 0 141 15.6 W Beam 201 �681,109 �515,948 �10,240 1,641,370 12
5197 0 687 15.6 W Beam 913 �974,317 �809,155 �46,451 1,605,169 13
3614 0 228 16.8 W Beam 127 �703,060 �555,284 �6,450 1,471,310 14
5201 0 687 16.8 W Beam 201 �763,834 �616,058 �10,210 1,467,550 15
5462 0 1417 16.8 W Beam 338 �710,382 �562,606 �17,222 1,460,538 16
5199 0 687 16.8 W Beam 537 �855,078 �707,302 �27,335 1,450,425 17
1205 1 1176 18 Box Beam 159 �287,212 �156,821 �1,657 1,302,253 18
852 1 739 18 Box Beam 324 �291,908 �161,518 �3,384 1,300,516 19
3615 0 228 18 W Beam 126 �685,550 �555,160 �6,427 1,297,473 20
4572 0 141 18 W Beam 202 �646,482 �516,092 �10,267 1,293,633 21
5204 0 687 18 W Beam 249 �759,662 �629,271 �12,690 1,291,220 22
21 0 128 18 W Beam 299 �671,647 �541,257 �15,210 1,288,690 23
5205 0 687 18 W Beam 300 �773,295 �642,905 �15,248 1,288,652 24
62 0 551 18 W Beam 338 �379,416 �249,026 �17,189 1,286,711 25

All values, except for barrier height, are rounded.
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lars. Although on average, bothW-beam and box-beamwere found
to be cost effective, the W-beam benefits outperform box-beam
benefits. This might be due to a higher length of barriers of this
type on highway system and also more associated benefits as dis-
cussed earlier.

As far as barriers with no crashes, Table 6 shows that while W-
beam optimization was found to be cost effective, just changing
barriers height for box-beam barrier was found to be not-cost-
effective. This might be due to the fact that there are other con-
founding factors resulting in a high predicted cost that cannot be
addressed only by changing the barrier height. Another reason is
that, for this category, shoulder width needs to be changed along
with barrier height as the interaction between these two predictors
indicated in Table 3.

In summary, by WYDOT investing more than 10 million dollars
for upgrading the recommended height barriers in the state, in
10 years, and just by focusing on barrier heights change, they could
expect not only to recover the invested money but gain more than
60 million dollars through reducing the barrier crash severity costs.

4.1. Change of shoulder width along with change of barrier height

As discussed in the previous section, although most of the bar-
riers in the highway system were cost effective to be optimized
solely based on their height, it was found that optimizing only
the height of box-beam barriers with no crashes is not cost effec-
tive. As can be seen from Table 3, the impact of barrier height on
crash cost cannot be explained just based on barrier heights, but
also based on the interaction of both barrier heights and shoulder
width.

It was interesting to see that while an increase in barrier height,
on average, enhanced the safety of Wyoming highway systems, the
combination/interaction of shoulder width and barrier height for
box-beams with no crashes necessitates changing these two pre-
dictors together. In the original analysis, reset cost was considered

for box beam. However, when optimization involved enhancing
the shoulder width as well, changing the whole barrier needs to
be considered.

The cost of widening the shoulder width is calculated based on
the following formula:

Cost of shoulder widening in Wyoming
¼ 100;000�width of shoulder width needs to be enhanced ftð Þ
� length of the roadway Mileð Þ ð5Þ

For Wyoming highway systems, there are 59 box-beams that
did not experience any crash, and they are suffering from extre-
mely short height. These short barriers are accompanied by short
shoulder width, (less than 5.5 feet). Based on the interaction terms
obtained from the modeling results (Table 3), in order to optimize
the short barrier height accompanied by a short shoulder width,
both of these predictors need to be enhanced to obtain cost effec-
tive optimization results. Thus, after optimizing both predictors, a
benefit of more than 13 million dollar could be expected (see
Table 7).

4.2. Barrier optimum height

It is worth discussing the chosen value of 27 inches for an opti-
mum value of all traffic barriers. Based on the results in Table 3, the
linear programing for identifying traffic barrier height with various
constrains would be as follows:

min : barrier height � �22:8Eþ 05ð Þ � 2:29E
þ06 � ðshoulder widthÞ þ 111Eþ 05 � barrier height
� shoulder width objective function

27 6 W � beamheight 6 31; constrain
Box beam ¼ 27inches; constrain

8>>>>>><
>>>>>>:

ð6Þ

Table 6
Summary statistics of cost benefit analyses across various barriers.

Barrier types Number
of barriers

Total
length in
Miles

# of
Economical
barriers

Length of
economic
barriers

# of non-
economic
barriers

Length of non-
economic -
barriers

Reset/new installation
cost for the 1st year

Total
benefit

Barriers with
crashes

W-
beam

87 19 60 8 27 11 �5,165,219 37,951,532

Box-
beam

62 6.5 44 4 18 2.5 �358,664 14,676,278

Sum 149 26 104 12.3 45 13.4 �5.523,884 52,627,809
Barriers without

crashes
W-
beam

251 19 207 16 43 3 �5,210,783 8,851,006

Box-
beam

123 10 59 5 64 5 �543,742 No benefit

Sum 374 29 266 21 107 8 �5,754,526 8,851,006
Total benefit

across all
barriers

1046 55 370 33 152 21 �10,987,410 61,478,815

Table 7
Optimization results by enhancing shoulder width and barrier height just for box-beam barriers that did not have crashes.

Barrier
types

Number/length (miles)
barrier needing shoulder
changes

Cost of change in
shoulder width
+ barrier height

Predicted cost
with no
optimization

Predicted cost after the 1st year,
for every year, after barriers
enhancement

Predicted benefit for
the first year after
enhancement

Total
saving in
10 years

Barriers without crashes Box-beam
59/5.19

�3,089,453 12,799,612

�11,491,920 1,781,761 13,550,989
Sum of the benefit across all barriers in highway system = 75,029,804
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The above linear programing does not need any modeling pro-
gramming skill and an optimum value can be calculated with sim-
ple algebra. Based on the above equation, when the shoulder width
is at a higher value, greater than 5.5 feet (being set as 1), an opti-
mum value of the above equation for w-beam could be achieved by
setting barrier height to its minimum value of 27, and box-beam to
the value of 27 inches.

On the other hand, based on above formula, if the shoulder
width is set as a value less than 5.5 feet, being 0, the optimum
value of traffic barrier height could be achieved by setting the
value at 30 inches, and box-beam at its fixed value of 27 inches.
It should be noted that various values are in the literature review
regarding optimal values of W-beam, between 27 and 31, and
box-beam for a value of 27 inches (American Association of State
Highway and Transportation Officials, 2011; Fang, Gutowski, Li, &
DiSogra, 2013; Teng, Liang, & Tran, 2015). So in this study, in order
to be consistent and to prevent confusion, one value of 27 was cho-
sen as a value that all the barriers would be set to be optimized.

4.3. Summary and conclusions

The main goal of traffic barriers is to minimize the cost of run-
off-road crashes in terms of severity levels. There are a variety of
factors that could impact the severity of barrier crashes. These
include various environmental, human, roadway, and barrier geo-
metric characteristics. State DOTS do not have the resources to
address all the factors immediately, but they need to have a pro-
cess to optimize the required resources to bring barrier geometric
characteristics to the standard dimensions.

This study highlighted the importance of considering the inter-
action of shoulder width and barrier height in predicting traffic
barrier crash severity. However, due to roadway conditions and
budget limitation, especially in a mountainous area like Wyoming,
it is not possible to optimize the shoulder in most parts, so shoul-
der width was initially constrained in this study to be constant
despite its important interaction with barrier height. As a result,
the most viable option that DOTs have is to optimize barrier
heights only.

Thus, this study conducted a cost-benefit analysis of changing
barrier heights to the optimal values. As a result, only barriers were
included in this study that are outside the recommended height
range: there is a possibility of override or underride barrier
crashes. Also, to account for the heterogeneity resulted from the
data structure (various barriers types), possible interaction terms
between barrier types and different important predictors were
considered. The rarity of a barrier crash makes it hard for decision
makers to identify the real hazard for barriers, especially if they
have not experienced any crash. This situation is more challenging
for areas with low traffic like Wyoming with low traffic.

Only predictors were incorporated in the analysis that are com-
mon across both groups of barriers: with and without crash. A
novel machine learning technique (quantile regression model),
was implemented in this study to account for the sparse nature
of crash cost. After training the model over barriers with crashes,
the trained model was employed on barriers with no crashes to
predict a current crash cost based on the available predictors. Then,
barrier heights were changed to an optimal value and conse-
quently the cost with enhancement was predicted. A comparison
was made between predicted cost with enhancement and barrier
optimization cost, and predicted cost with no barrier enhancement
to come up with a benefit that can be obtained by optimization
traffic barriers. A detailed description of the steps were discussed
in the content of this study.

In summary, it was found that while WYDOT needs to spend
more than 10 million dollars to bring all the state-highway barriers
to optimal values. However, in 10 years they could expect not only

to recover the money being spent, but gain more than 60 million
dollars by preventing the predicted crash cost by barrier height
enhancement. An additional scenario was discussed in this study
in which a shoulder constraint was set free for only box-beam bar-
riers with no crashes. For these barriers, shoulder width enhance-
ment, along with barrier heights, resulted in a significant increase
in total benefit.

The optimization approach taken in this study could help deci-
sion makers in Wyoming to take appropriate measures to utilize
the limited resources by targeting first those barriers that are more
cost effective to be optimized. Although the literature contains sev-
eral optimization studies in the transportation area, this is one of
the first studies implemented on traffic barrier data to estimate
barrier dimensions enhancement benefits based on a machine
learning technique. This study also estimated the benefit of
enhancement to not only barriers with crashes, but also to those
barriers without any historical crashes. The WYDOT would imple-
ment the recommendations of this study to prioritize the enhance-
ment of barriers in the state. Other states can follow similar
procedure to prioritize their barrier enhancements.

For future optimizations, more flexibility is needed in terms of
variables that could be changed, especially for barriers with no
crashes. For instance, it is recommended to set the constraint off
the shoulder width for all barriers, especially barriers with no
crashes, so the highest benefit could be achieved while minimizing
costs. Also based on the literature review, human factors are one
the most important factors that can impact crash severity. It would
be interesting to identify the impact of human factors on crash cost
in future studies.
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a b s t r a c t

Introduction: This study investigated the separate impact of first eye and second eye cataract surgery on
driving performance, as measured on a driving simulator. Method: Forty-four older drivers with bilateral
cataract aged 55+ years, awaiting first eye cataract surgery participated in a prospective cohort study.
They completed a questionnaire, visual tests and a driving simulator assessment at three time points:
before first eye, after first eye, and after second eye cataract surgery. Generalized Estimating Equation
Poisson or linear regression models were undertaken to examine the change in four driving outcomes
of interest after adjusting for cataract surgery and other potential confounders. Results: The rate of
crashes/near crashes decreased significantly by 36% (incidence rate ratio (IRR) 0.64, 95% CI 0.47–0.88,
p = 0.01) after first eye surgery and 47% (IRR 0.53, 95% CI 0.35–0.78, p < 0.001) after second eye surgery,
compared to before first eye cataract surgery, after accounting for confounders. The rate of crashes/near
crashes also decreased with better contrast sensitivity (IRR 0.69, 95% CI 0.48–0.90, p = 0.041). A separate
model found that time spent speeding 10 kilometers per hour or more over the limit after second eye
surgery was significantly less (0.14 min, p = 0.002), compared to before first eye surgery, after accounting
for confounders. As contrast sensitivity improved, the duration of speeding also decreased significantly
by 0.46 min (p = 0.038). There were no statistically significant changes in lane excursions or speed vari-
ation. Practical applications: The findings highlight the importance of timely first and second eye cataract
surgery to ensure driver safety, especially as older drivers wait for second eye cataract surgery. It also
provides further evidence that contrast sensitivity is probably a better predictor of driving ability in older
drivers with cataract than visual acuity, the measure on which driver licensing requirements are cur-
rently based, and should also be used when assessing fitness to drive.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

As the population ages, the number of older drivers on the road
is also increasing. The past 10 years has seen the number of
licensed drivers aged 65+ years increase by 44%, compared to the
average total population increase of 17% (Bureau of
Infrastructure Transport and Regional Economics (BITRE), 2014).

Over 60% of those aged 75+ years hold a driver’s license, a 54%
increase from a decade ago (Bureau of Infrastructure Transport
and Regional Economics (BITRE), 2014). Driving provides a form
of independence and social inclusion for many older adults, with
driving cessation linked to depression, decreased participation in
social activities, declines in physical health, cognitive decline, insti-
tutionalization in care-facilities, and mortality (Chihuri et al.,
2016). Although many age-related medical conditions can decrease
driving ability (Dobbs, 2005), visual impairment is regarded as
having a major impact on driving performance and presents a sig-
nificant economic and public health challenge.

Cataract is a leading cause of visual impairment worldwide
with an estimated prevalence of 75% by age 80 (Australian
Institute of Health and Welfare (AIHW), 2005). However visual
impairment due to cataract can be successfully treated with cat-
aract surgery, which is routinely performed on each eye

https://doi.org/10.1016/j.jsr.2021.04.006
0022-4375/� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

Abbreviations: ANOVA, analysis of variance; CI, confidence interval; GEE,
Generalized Estimating Equations; ETDRS, Early Treatment Diabetic Retinopathy
Study; IRR, incidence rate ratio; km, kilometers; km/h, kilometers per hour;
logMAR, logarithm of the minimum angle of resolution; MMSE, Mini Mental State
Examination; SD, standard deviation; WA, Western Australia.
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separately. Since driving is heavily dependent on vision, it is
likely that driving performance may change after both first-eye
and second-eye cataract surgery.

Despite growing evidence for decreased crash risk with catar-
act surgery (Meuleners, Brameld, Fraser, & Chow, 2019; Owsley
et al., 2002), there is less understanding of the impact of cataract
surgery on specific aspects of driving performance. A meta-
analysis by Subzwari et al. found that self-reported driving diffi-
culty reduced by 88% following cataract surgery, however several
of the observational studies included in the review did not define
whether participants had undergone surgery on the first or sec-
ond eye or they analyzed both eyes together (Subzwari et al.,
2008). Three other studies of visually normal participants used
goggles to simulate cataract and found that participants wearing
the goggles performed poorer on video-based hazard perception
tests (Marrington, Horswill, & Wood, 2008), closed-circuit day-
time driving (Wood, Chaparro, & Hickson, 2009), and closed-
circuit night-time driving (Wood, Chaparro, Carberry, & Chu,
2010). Only one study examined the closed-road driving perfor-
mance of older drivers with bilateral cataract before first eye sur-
gery and following surgery in both eyes (Wood & Carberry, 2006).
This study reported significant improvements in driving perfor-
mance after both eyes were operated on in terms of overall driv-
ing score, road sign recognition, road hazards recognized, and
road hazards avoided (Wood & Carberry, 2006). However, people
with bilateral cataract may need to wait six months to a year
between operations in the Australian public health system and
may continue to drive (Australian Institute of Health and
Welfare, 2010). While first eye surgery brings about significant
improvements in vision, frequent problems are reported while
awaiting second-eye surgery, most likely due to differences in
vision between the operated and un-operated eyes (Comas,
Castells, Acosta, & Tuñí, 2007). Also, many cataract patients con-
tinue to drive with their old spectacles until after the second
eye surgery has been completed, which may impact their driving
performance between the first and second eye surgery (Fraser,
Meuleners, Lee, Ng, & Morlet, 2013).

There is a significant gap in the evidence surrounding the sepa-
rate impacts of first and second eye cataract surgery on specific
aspects of driving performance. It is essential to comprehensively
understand these separate impacts so that bilateral cataract
patients can be advised on whether they are safe to drive while
waiting for the second eye surgery and also what specific aspects
of driving performance they may have difficulty with while waiting
for the first and second eye surgery. This would also allow patients
to then be advised on measures they could take to make driving
safer, particularly between the first and second eye surgery when
they may have increased confidence in their driving abilities due
to the first eye surgery, but are still waiting for the second eye
surgery.

Driving simulators offer a safe and effective method for examin-
ing driving performance as they represent an approach that is
repeatable and easily adaptable, including the ability to quickly
alter driving scenarios and expose drivers to hazardous situations
in a systematic way (Godley, Triggs, & Fildes, 2002). They also have
external face validity, can distinguish safe from unsafe drivers (Lee,
Cameron, & Lee, 2003), and can be programmed to test general
measures of driving as well as driving tasks thought to be problem-
atic for people with cataract. Examples of these measures include
speed, lateral position, braking response, inattention, and risky
driving behavior (Blana, 1996; Hoskins & El-Gindy, 2006). There-
fore, the aim of this study was to investigate the separate impact
of first eye and second eye cataract surgery on specific changes
in driving performance such as non-compliance to speed limit,
speed variation, lane excursions, and the number of crashes/near
crashes in a driving simulator.

2. Material and methods

2.1. Study design, participants and sample size

A prospective cohort study of older adults with bilateral catar-
act awaiting first eye cataract surgery was undertaken in Perth,
Western Australia (WA) as part of the larger Cataract Extraction
and Driving Ability Research study (Meuleners et al., 2015). The
current paper is based on the driving simulator component of the
study and a sample of drivers who agreed to undertake the three
driving simulator assessments. A power analysis using the Gpower
computer program (Faul et al., 2009) indicated that a total sample
of 43 people would be needed to detect medium effect with 95%
power at alpha 0.05 based on weekly kilometers traveled obtained
from the in-vehicle monitoring device.

Informed written consent was obtained from all participants
and the study was conducted in accordance with the tenets of
the Declaration of Helsinki. Ethics Committee approval was
obtained from all participating hospitals and from Curtin Univer-
sity’s Human Research Ethics Committee (HR 29/2014).

The recruitment of participants for the larger study was carried
out by a letter of invitation sent to the participant or directly
through an ophthalmologist, at one of three recruiting hospitals
between December 2014 and February 2017. Inclusion criteria
included that a participant be aged 55+, have a diagnosis of bilat-
eral cataract but no other significant eye conditions (such as glau-
coma, macular degeneration or diabetic retinopathy), a current WA
driver’s license, drive at least twice a week, and a score of � 24 on
the Mini Mental State Examination (MMSE). Participants were
excluded from the study if they were wheelchair-bound and/or
diagnosed with one of the following conditions: dementia, Alzhei-
mer’s disease or Parkinson’s disease, did not speak English, lived in
a residential care facility, had previously undergone cataract sur-
gery, history of vomiting/seasickness, previous head injury, or an
upper respiratory tract infection at the time of driving simulator
assessment.

2.2. Data collection

Information was collected at three-time points: the month
before first eye surgery, one to three months after first eye surgery,
and at least one month after second eye surgery. Information col-
lected for the study included a researcher-administered question-
naire, three objective visual measurements, and a driving
simulator assessment.

2.2.1. Questionnaire
Socio-Demographic Data: Information on age, gender, marital

status, country of birth, education level, living arrangements,
self-reported prescription medications, co-morbid medical condi-
tions, retirement status and driving were obtained from the
researcher-administered questionnaire.

Cognitive Assessment: Participants completed the MMSE
(Folstein, Folstein, & McHugh, 1975) to measure cognitive status.
A MMSE score of �24 was required for inclusion into the study
and indicated normal cognitive function (score range is 0–30).

2.2.2. Visual measures
Three visual assessments were undertaken at each of the three

time-points in the study. These assessments were made under the
guidance of an ophthalmologist in standard conditions with con-
stant luminance and no mydriasis (dilation of the pupil). Partici-
pants wore their habitual corrective lenses or glasses for the
visual testing. Monocular and binocular visual acuity was obtained
using the letter by letter scoring method on an Early Treatment
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Diabetic Retinopathy Study (ETDRS) acuity chart calibrated for a
distance of three meters (Ferris, Kassoff, Bresnick, & Bailey,
1982). The logarithm of the minimum angle of resolution (logMAR)
indicated the visual acuity score. Monocular and binocular contrast
sensitivity were obtained using the Mars Letter Contrast Sensitivity
Test (�Mars Perceptrix), calibrated at a distance of 50 centimeters.
Stereopsis was assessed using the Titmus Fly Stereotest (Stereo
Optical Co., Inc.), measured in log seconds of arc.

2.3. Driving simulator

A PC-based driving simulator was used for the driving assess-
ment (Fig. 1). The simulator consisted of a car with automatic
transmission, a driver’s seat, a steering wheel, three-dimensional
visuals, an accelerator and brake pedals. The visual display system
consisted of three color monitors spanning a 180-degree field of
view synchronized to display a realistic view of a computer-
generated road environment. It also included an audio system that
provided realistic traffic sounds. The driving simulator was previ-
ously validated against an on-road driving assessment inWA based
on the type and number of driving errors, which included main-
taining correct speed for the road, adjusting speed as approach-
ing/negotiating intersections, maintenance of correct lane and
near crashes (Meuleners & Fraser, 2015).

2.3.1. Driving scenario
The 10 minute simulated driving scenario consisted of a three-

dimensional model, which represented approximately 10 kilome-
ters (km) of generic WA road in the metropolitan area, during
the daytime. The simulator scenario required drivers to negotiate
two give way signs (one left, one right turn), one stop sign (con-
tinue straight), one merge, three uncontrolled intersections (one
left, two right turns), five sets of traffic lights (two right, one left
turn and two continue straight), and five roundabouts (two right
turns and three continue straight). Traffic was programmed
throughout the route with cars, buses and motorcycles traveling
in the same and opposite directions to the driver. Traffic was also
programmed at most intersections to allow similar opportunities
for driving errors as on road. Other programmed events (hazards)
were a bus stopping at a bus stop, a truck stopped by the side of
the road and a pedestrian crossing at a designated pedestrian
crosswalk. They were included to at least partially simulate the
extra cognitive load that accrues from the requirement of drivers

to monitor and negotiate the road with other road users. It was
anticipated that these events would test driving performance in
potential problem areas for drivers at the three different stages
of their cataract surgery. Speed limits varied depending on the area
so participants were assessed under several different road
conditions.

2.3.2. Driving simulator assessment
At each of the three assessments, participants were instructed

to operate the simulator as they would normally drive their own
car. They were given the opportunity to drive a practice circuit
for approximately five minutes in order to familiarize themselves
with the vehicle control dynamics, road environment, and simula-
tor tasks (e.g., able to use turn signals; side mirrors; accelerator
and brake pedal). This also provided participants with an opportu-
nity to ask any questions before the start of their drive and to make
any necessary adjustments to the vehicle so that they were com-
fortable prior to commencing. The practice circuit consisted of a
straight section of the road.

2.3.3. Driving simulator measures
The OKTAL SCANeRTM studio software package was used to

simulate the driving experience and record the driving data.
Images were displayed in full high definition resolution of
1920 � 1080 pixels per channel and updated at a frame rate of
120 Hz. The use of simulation allows researchers to measure
changes in a variety of surrogate measures that may indicate crash
risk (Freund, Gravenstein, Ferris, & Shaheen, 2002; Lee & Lee,
2005). The following surrogate measures were recorded: non-
compliance to speed limits, speed variation, lane excursions, and
number of crashes/near crashes.

Non-compliance to speed limits: As speed limits were different
throughout the simulated drive it was reasonable to assess
whether drivers complied with the speed limit. This was measured
in minutes spent � 10 kilometers per hour (km/h) over the posted
speed limit and was used instead of mean speed. It was hypothe-
sized that non-compliance to the speed limit would reflect diffi-
culty with sign recognition and visualizing the speedometer
(Wood, 2002; Wood & Carberry, 2006).

Speed Variation: Speed variation of participants over the entire
scenario was also assessed, which was measured as the standard
deviation of speed in km/h. Speed variation is important to include
as it is considered a general measure of driving ability. It was also
hypothesized that higher speed variation may indicate harsh brak-
ing and/or acceleration and this may be due to late detection of
signs, hazards, or road infrastructure due to vision.

Lane Excursions: To measure lateral control, it was considered
that stability measures such as lane deviation standard deviation
would not be an appropriate measure on a road that contained
both straight and curved sections. Young and Stanton found lateral
stability can be misrepresentative of proper driving techniques on
curved road sections (Young & Stanton, 2002). Therefore, time
spent with any part of the vehicle out of the lane (minutes) was
used to evaluate lateral control, with the assumption that good
driving performance was characterized by less time out of the lane
(Wood, 2002). Lane excursions are a commonly used measure of
general driving performance. It was also hypothesized that visual
impairment due to reduced contrast sensitivity may result in diffi-
culty detecting the edge of the road and lane markings and more
time spent out of the lane (Mäntyjärvi & Tuppurainen, 1999;
West et al., 2002).

Crashes/Near Crashes: There were three hazards presented dur-
ing the simulated drive and the number of resulting crashes or near
crashes (combined) was measured. Near crashes were defined as
any circumstance that required a rapid evasive maneuver by the
driver to avoid a crash (Virginia Tech Transportation Institute,Fig. 1. Driving simulator.
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2015). An evasive maneuver may include steering, braking, or
accelerating. Near crashes and crashes were identified by the
observing researcher. The researcher was trained to identify
crashes and near crashes as per this definition. The researcher
recorded a detailed description of each event that was reviewed
by a second experienced researcher. The two researchers then
came to an agreement on whether the crash or near crash fit the
criteria for inclusion in the study. It was hypothesized that older
adults with cataract may have poorer hazard recognition and
avoidance (Wood & Carberry, 2006), resulting in more crashes/near
crashes.

2.4. Statistical analysis

Descriptive analyses were undertaken to describe the demo-
graphic and driving profile of the cohort. A repeated-measures
analysis of variance (ANOVA) was undertaken to analyze the
changes in visual measurements, objective driving exposure, and
three of the driving simulator measures (non-compliance to speed
limit, speed variation, and lane excursions) during each stage of
cataract surgery (before first eye, after first eye, and after second
eye surgery).

Four separate Generalized Estimating Equation (GEE) Poisson or
linear regression models were undertaken for the four driving sim-
ulator outcomes of interest (non-compliance to speed limit, speed
variation, lane excursions and number of crashes/near crashes),
depending on whether the outcome was categorical or continuous.
The GEE method is suitable for longitudinal or repeated measures
study designs where observations within each participant are not
independent (Zeger & Liang, 1986). GEEs permit specification of a
certain working correlation matrix that accounts for this within-
subject correlation, providing more robust regression coefficients.
Stepwise variable selection was performed using backwards elim-
ination, resulting in the final models.

The cataract surgery time points (before first eye, after first eye
and after second eye) were included as an independent variable in
each of the four models. Other potential confounders considered
for inclusion in the GEE models, based on the literature and our
previous experience were: gender (female, male), age group (55–
69, 70+ years), marital status (single/separated/divorced/widowed
versus married/de facto), prescription medication/s (no, yes),
retirement status (not retired, retired), number of years driving,
and weekly driving exposure (km traveled). To account for weekly
driving exposure in the analysis, all participants had an in-vehicle
monitoring device installed in their car at the time of the driving
simulator assessment. It measured their driving exposure (km dri-
ven) over a one-week period. Visual acuity, contrast sensitivity,
and stereopsis measures were also included in the models. Refrac-
tive management of visual impairment was not included as a con-
founding factor as all visual assessments were undertaken with
habitual eyewear where applicable. Since 98% of the cohort
reported a co-morbid medical condition, this was also not included
in the model. All analyses were carried out using R statistical soft-
ware. P-values less than 0.05 were considered statistically
significant.

3. Results

A total of 44 participants completed the three driving assess-
ments which provided a total of 132 observations for the analyses.

3.1. Socio-demographic characteristics

The mean age of participants before first eye cataract surgery
was 73.2 years (SD 8.3) with a range from 56 to 88 years. Most par-

ticipants were male (n = 23, 52.3%), married/ de facto (n = 29,
65.9%), did not live alone (n = 25, 56.8%), had higher than sec-
ondary school education (n = 25, 56.8%), were not born in Australia
(n = 29, 65.9%), were on at least one prescription medication
(n = 38, 86.4%), had at least one co-morbid medical condition
(n = 43, 97.7%), and were retired (n = 35, 79.6%) (Table 1). At base-
line, the mean MMSE score was 27.6 (SD 2.36). The driving simu-
lator assessment after first eye cataract surgery occurred
between 9 and 417 days with a mean of 99.6 days (SD 73.7). The
driving simulator assessment after second eye cataract surgery
occurred between 29 and 238 days, with a mean of 112.3 days
(SD = 40.6). This range in length of time between cataract surgery
and assessment is unlikely to impact on participants’ vision since
the artificial lenses do not deteriorate.

3.2. Visual measures

Mean binocular visual acuity significantly improved from 0.15
(SD 0.15) logMAR at baseline, to 0.09 (SD 0.22) logMAR after the
first eye surgery, and then to �0.01 (SD = 0.20) logMAR after the
second eye surgery) (p < 0.001). Binocular contrast sensitivity
was similar between baseline, 1.65 (SD 0.14) log units and after
the first eye surgery, 1.66 (SD 0.28) log units, however significantly
improved to 1.75 (SD 0.08) log units after the second eye cataract
surgery (p = 0.026). Stereopsis worsened from 2.11 (SD 0.64) log
seconds of arc at baseline to 2.26 (SD 0.73) after the first eye sur-
gery, and significantly improved to 1.91 (SD 0.60) log seconds of
arc after the second eye surgery (p = 0.008) (Table 2).

3.3. Self-reported driving ability and objective driving exposure

The study found that over 66% (n = 29) of participants self-
reported the quality of their driving as excellent or very good
before the first eye cataract surgery. After the second eye surgery
this improved to 75% (n = 33). In terms of objective driving expo-
sure, which was recorded using the in-vehicle driving monitoring

Table 1
Socio-demographic characteristics of the study population before first eye cataract
surgery (n = 44).

Characteristic N %

Gender
Female 21 47.7
Male 23 52.3

Age Group (years)
55–69 12 27.3
70–84 29 65.9
85+ 3 6.8

Marital Status
Single (Single, separated, divorced, widowed) 15 34.1
Married/de facto 29 65.9

Living Arrangements
Alone 19 43.2
Not alone 25 56.8

Education Level
Primary or secondary school 19 43.2
Higher education 25 56.8

Country of Birth
Not Australia 29 65.9
Australia 15 34.1

Prescription Medication/s
No 6 13.6
Yes 38 86.4

Co-morbid Medical Condition/s
No 1 2.3
Yes 43 97.7

Retired
No 9 20.5
Yes 35 79.6
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device, the mean km traveled per week before the first eye cataract
surgery was 99.0 km (SD 92.3), which decreased to 84.4 km (SD
87.9) after the first eye cataract surgery, but increased to
125.1 km (SD 129.8) after the second eye surgery.

3.4. Driving simulator outcomes

The total number of crashes/near crashes decreased after the
first and second eye cataract surgery (Table 3). In terms of non-
compliance to the speed limits (total minutes spent � 10 km/h
over the speed limit), there was a significant decrease in speeding
after the first and second eye surgery (p = 0.009) (Table 4). The
total time spent � 10 km/h over the speed limit was 0.73 min (44 s

) before the first eye surgery and reduced to 0.66 min (40 s) after

the first eye surgery and 0.41 min (25 s) after the second eye sur-
gery. There was no significant difference in lane excursions (time
spent out of lane) (p = 0.230) or speed variation (standard devia-
tion of speed) (p = 0.098) after the first and second eye surgery
(Table 4).

3.5. First and second eye cataract surgery and crashes/near crashes

The results of the GEE Poisson model found that the rate of
crashes/near crashes significantly decreased by 36% (IRR 0.64, CI
0.47–0.88, p = 0.01) after the first eye surgery and 47% (IRR 0.53,
CI 0.35–0.78, p < 0.001) after the second eye surgery, compared
to before the first eye cataract surgery, after accounting for all rel-
evant confounders. Post-hoc testing also found that the rate of
crashes/near crashes significantly decreased after second eye cat-
aract surgery compared to after first eye cataract surgery
(p = 0.03). Males had over twice (IRR 2.12, CI 1.43–3.14) the rate
of crashes/near crashes compared to females (p = 0.002). Retired
drivers also had a significantly higher rate of crashes/near crashes
compared to non-retired participants (IRR 1.77, CI 1.04–3.03,
p = 0.045). The rate of crashes/near crashes decreased with better
contrast sensitivity (IRR 0.69, CI 0.48–0.90, p = 0.041). Lastly, as
driving exposure (km/week) increased, the rate of crashes/near
crashes in the driving simulator significantly decreased (IRR 0.90,
CI 0.90–0.91, p = 0.043) (Table 5).

3.6. First and second eye cataract surgery and non-compliance to
speed limit

The results of the GEE linear regression model found that the
amount of time speeding after the second eye surgery was signifi-
cantly less (0.14 min), compared to before the first eye surgery,
after accounting for confounders in the model (p = 0.002). How-
ever, there was no significant change in speeding from before to
after the first eye surgery (p = 0.426). Post-hoc testing also found
no significant differences in the amount of time speeding after
the first and second eye cataract surgery (p = 0.52). Males reported
significantly more time speeding (0.62 min), compared to females
(p = 0.003). As expected, those aged 70+ reported significantly less
time speeding (0.51 min), compared to those aged 55–69 years
(p = 0.030). As contrast sensitivity in both eyes improved, the
amount of time speeding significantly reduced by 0.46 min
(p = 0.038) (Table 6).

There were no significant changes in the lane excursions and
speed variation outcomes over the cataract surgery process so
the multivariate modeling results have not been reported.

4. Discussion

This is one of the first studies to use a driving simulator to
examine the separate impacts of the first and second eye cataract
surgery on driving performance. No previous study has specifically
quantified driving performance between the first and second eye
cataract surgery but have either combined both surgeries or exam-
ined driving after the first eye or second eye surgery only.

The study found that the rate of crashes/near crashes in the sim-
ulator decreased significantly by 36% after the first eye cataract
surgery and 47% after the second eye surgery, compared to before
the first eye surgery. In addition, crashes/ near crashes also
decreased significantly after the second eye surgery compared to
after the first eye surgery. These findings demonstrate the positive
effects of the first eye surgery and the important additional bene-
fits of the second eye surgery for those with bilateral cataract, in
terms of road safety. These findings build on those from a previous
population-based Australian study, which showed that real world
crash risk reduced after both the first and second eye cataract sur-
gery (Meuleners et al., 2019). An earlier cohort study conducted in
the United States also reported significantly reduced crash risk fol-
lowing cataract surgery, although this study combined those who
had unilateral and bilateral eye surgery in the analysis (Owsley
et al., 2002). The observed reduction in crashes/near crashes may
be due to improved hazard perception ability as the result of vision
improvements from the first and second eye cataract surgery. A
closed-road study also reported marked improvements in the abil-
ity to detect and avoid hazards after bilateral cataract surgery
(Wood & Carberry, 2006).

Table 2
Visual measurements for participants before first eye, after first eye, and after second eye cataract surgery (n = 44).

Visual measure Before first eye surgery After first eye surgery After second eye surgery P-value*
Mean (SD) Mean (SD) Mean (SD)

Visual Acuity (logMAR)
Better eye 0.17 (0.15) 0.10 (0.24) 0.02 (0.21) <0.001
Worse eye 0.37 (0.26) 0.35 (0.27) 0.11 (0.21) <0.001
Binocular 0.15 (0.15) 0.09 (0.22) �0.01 (0.20) <0.001

Contrast Sensitivity (log units)
Better eye 1.58 (0.14) 1.62 (0.31) 1.69 (0.12) 0.052
Worse eye 1.41 (0.31) 1.48 (0.29) 1.62 (0.13) <0.001
Binocular 1.65 (0.14) 1.66 (0.28) 1.75 (0.08) 0.026

Stereopsis (log seconds of arc)
Binocular 2.11 (0.64) 2.26 (0.73) 1.91 (0.60) 0.008

Abbreviations: SD: standard deviation, logMAR: logarithm of the minimum angle of resolution.
* p-values calculated using repeated ANOVA.

Table 3
Number of crashes/near crashes in the driving simulator before first eye, after first eye
and after second eye cataract surgery (n = 44).

Number of crashes/
near crashes

Before first eye
surgery

After first eye
surgery

After second eye
surgery

N (%) N (%) N (%)

1 21 (42.9%) 16 (32.7%) 12 (24.5%)
2 8 (42.1%) 7 (36.8%) 4 (21.1%)
�3 4 (57.1%) 2 (28.6%) 1 (14.3%)
Total 33 (44.0%) 25 (33.3%) 17 (22.7)
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Time spent speeding � 10 km/h over the posted speed limit also
significantly reduced after the second eye surgery compared to
before the first eye surgery. This is encouraging as speeding is
one of the most common factors contributing to fatal crashes
(National Center for Statistics and Analysis, 2018). Although study
participants only spent a short amount of time speeding, it should
be noted that the simulator scenario was also short. Any amount of
time spent speeding is important since even small increases in
speed substantially increase the risk of crash involvement, with
speeding by 10 km/h in a 60 km/h zone found to increase casualty
crash risk by four times (Kloeden, Mclean, Moore, & Ponte, 1997).
The improvement in adherence to the speed limit amongst this
cohort may be due to an improved ability to read and recognize
speed limit signs, as previously reported following bilateral catar-
act surgery (Wood & Carberry, 2006). Interestingly, this study
revealed that the improvement in speeding was only found after
the second eye cataract surgery. This may be explained by the sig-
nificant improvement in binocular contrast sensitivity following

second but not first eye cataract surgery in the cohort, as well as
the fact that many cataract patients wait until after both surgeries
to purchase new spectacles (Fraser et al., 2013). This suggests that
access to low-cost temporary spectacles during the waiting period
between the first and second eye surgery may be beneficial for the
safety of bilateral cataract patients who continue to drive. These
results also highlight the importance of a timely second eye sur-
gery for improving driver safety. Participants’ driving exposure also
significantly decreased after the first eye surgery but increased
after the second eye surgery to levels higher than before surgery.
This shows the importance of both the first and second eye surgery
for restoring older adults’ mobility and independence through
driving.

This study did not find any significant change in lane excursions
or speed variation after the first or second eye cataract surgeries.
Possible explanations for these findings may be that driving simu-
lator steering performance is robust to severe blur (Brooks, Tyrrell,
& Frank, 2005), which may be experienced with cataract, and that

Table 4
Speed limit compliance, lane excursions and speed variation in the driving simulator before first eye, after first eye and after second eye cataract surgery (n = 44).

Driving outcome Before first eye surgery After first eye surgery After second eye surgery P-value*
Mean (SD) Mean (SD) Mean (SD)

Speed limit compliancey 0.73 (0.91) 0.66 (0.79) 0.41 (0.70) 0.009
Lane excursions� 1.19 (2.30) 1.12 (1.69) 0.79 (0.16) 0.230
Speed variation§ 13.20 (2.96) 13.12 (2.45) 12.52 (2.26) 0.098

Abbeviations: SD: standard deviation.
* p-value calculated using repeated ANOVA.
y Minutes �10 km/h over posted speed limit.
� Time spend out of lane (minutes).
§ Standard deviation of speed (km/h).

Table 5
GEE Poisson model of the impact of first and second eye cataract surgery on number of crashes/near crashes in the driving simulator (n = 44).

Variable IRR 95% CI P-Value

Cataract Surgery
Before first eye surgery 1.00
After first eye surgery 0.64 0.47 0.88 0.01
After second eye surgery 0.53 0.35 0.78 <0.001

Gender
Female 1.00
Male 2.12 1.43 3.14 0.002

Retirement Status
Not retired 1.00
Retired 1.77 1.04 3.03 0.045

Contrast Sensitivityy (log units) 0.69 0.48 0.90 0.041
Driving exposure (km/week) 0.90 0.90 0.91 0.043

Abbreviations: GEE: Generalized Estimating Equations, IRR: Incidence rate ratio, CI: confidence interval.
y Contrast sensitivity measured with both eyes.

Table 6
GEE linear regression model of the impact of first and second eye cataract surgery on speed limit compliance* in the driving simulator (n = 44).

Variable Parameter Estimate 95% CI P-Value

Cataract Surgery
Before first eye surgery (reference)
After first eye surgery �0.04 �0.25 0.18 0.426
After second eye surgery �0.14 �0.30 �0.02 0.002

Gender
Female (reference)
Male 0.62 0.23 0.89 0.003

Age Group
55–69 years (reference)
70+ years �0.51 �0.89 �0.12 0.030

Contrast Sensitivity� (log units) �0.46 �0.87 �0.06 0.038

Abbreviations: CI: confidence interval.
* Minutes spent � 10 km/h over the speed limit.
� Contrast sensitivity measured with both eyes.
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lane keeping difficulties are more common among drivers with
visual field defect (Kasneci et al., 2014), which is not a specific
symptom of cataract.

Improved contrast sensitivity in both eyes was significantly
associated with fewer crashes/near crashes and reduced speeding
behavior. This result is not surprising because if the contrast
between the target image (e.g., vehicle or pedestrian) and the back-
ground is below the driver’s ability to detect it, this would increase
the risk of a crash (Guo, Fang, & Antin, 2015). A study in the United
States also showed that drivers with poor contrast sensitivity due
to cataract were eight times more likely to be involved in an at-
fault crash (Owsley, Stalvey, Wells, Sloane, & McGwin, 2001). Con-
trast sensitivity was also shown to be a better predictor of visual
recognition of road signs, obstacles, and pedestrians than visual
acuity (Wood & Owens, 2005), and a better predictor of self-
reported driving difficulty (Fraser et al., 2013). The current findings
provide further evidence that contrast sensitivity is probably a bet-
ter predictor of driving ability in older drivers with cataract than
visual acuity, the measure on which driver licensing requirements
are currently based. Therefore, contrast sensitivity should also be
used when assessing fitness to drive. It should also be noted that
the vision of participants in the current study was better than
those in previous studies at baseline (Fraser et al., 2013; Owsley
et al., 2002; Wood & Carberry, 2006), yet cataract surgery still sig-
nificantly improved their driving ability. This highlights the impor-
tance of timely first and second eye cataract surgery for cataract
patients who drive, even at lower levels of visual impairment.

Before the first eye surgery, 66% of participants rated the quality
of their driving as excellent or very good and drove an average of
99 km per week. However, 75% experienced crashes/near crashes
in the simulator before the first eye surgery. This discrepancy
between perceived driving ability and simulator performance
may be partially due to differences between simulator and real-
world driving, as well as participants being presented with more
hazards than they would usually encounter on a short journey.
However, it is also possible that drivers do not recognize their
reduced driving ability and hazard perception, due to gradual nat-
ure of cataract impairment. Previous studies have found that older
drivers routinely over-estimate their driving ability (Horswill,
Anstey, Hatherly, Wood, & Pachana, 2011; Ross, Dodson,
Edwards, Ackerman, & Ball, 2012; Wood, Lacherez, & Anstey,
2013), so this lack of awareness may also have explained the
observed discrepancy.

Strengths of this study include the three distinct time points in
which objective measures of driving performance and vision were
assessed. Most previous research has not measured the specific
effects of first and second eye cataract surgery separately
(Owsley et al., 2002; Subzwari et al., 2008; Wood & Carberry,
2006). The use of the driving simulator in the study, which was
previously validated against an on-road driving assessment
(Meuleners & Fraser, 2015) allowed each participant’s driving per-
formance to be tested under identical conditions and exposed dri-
vers to hazardous situations in a systematic way that would be
impossible, dangerous, and unethical to obtain from on-road driv-
ing assessments. In addition, the collection of objective driving
exposure information using an in-vehicle device allowed us to con-
trol for participants’ real-world driving experience at each time
point.

Limitations of the study include the sample size, which may not
have been large enough to detect all associations. The strict inclu-
sion criteria may also have influenced the generalizability of the
results as the sample represented a healthy and functioning group
living in the community and cannot be considered representative
of all older drivers. A high proportion of participants were not born
in Australia (66% vs. 37% of the general older population) and this
may also affect generalizability. This is likely because people born

outside of Australia are over-represented in the public health sys-
tem, where participants were recruited from. As well, since some
participants waited long periods between the first and second
eye surgery, the negative effects of the aging process on driving
ability may have contributed to some of the non-significant results.
It should also be acknowledged that some improvement in driving
performance over the three assessments could be due to learning
effects on the simulator. Future studies should use a healthy con-
trol group to evaluate these potential learning effects as well as
allowing between-group comparisons of driving performance.
Other visual measures such as visual field and disability glare were
not collected in this study. However, the driving simulator does not
replicate the real-world effects of glare. In addition, visual mea-
sures were performed using participants’ habitual corrective
lenses, rather than best-corrected measures (using correct pre-
scription for refraction). It is well known that many cataract
patients continue to drive with their old spectacles until after their
second eye surgery, which means they may be driving with less
than optimal vision during the waiting period between surgeries.
The authors believed it was important to measure vision under
the natural circumstances in which the participants were actually
driving (with or without post-surgery refraction), rather than their
optimal vision. The small sample size also meant we could not
include all the visual measures in the model so were limited to
including bilateral contrast sensitivity only. It would be useful for
future studies with larger sample sizes to examine how specific
visual measures in the first and second operated eye are associated
with changes in driving performance.

5. Conclusion

In conclusion, this study reported fewer crashes/near crashes
following the first and second eye cataract surgery, and improved
adherence to the speed limit following the second eye surgery in
a driving simulator. This highlights the importance of timely first
and second eye cataract surgery even for those with lower levels
of visual impairment, and the provision of temporary spectacles
while waiting for the second eye surgery for cataract patients
who drive. The current findings provide further evidence that con-
trast sensitivity is probably a better predictor of driving ability in
older drivers with cataract than visual acuity, the measure on
which driver licensing requirements are currently based, and
should also be used when assessing fitness to drive. The results
of this study may provide opportunities for overall cost savings
to the community by funding timely cataract surgery in both eyes
to avoid the costs associated with crashes and injury.
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a b s t r a c t

Introduction: In low-cycling countries, motor-vehicle traffic and driver behavior are well known barriers
to the uptake of bicycles, particularly for utility cycling. Lack of separation between cyclists and faster-
moving traffic is one key issue, while attitudes of drivers toward and/or harassment of cyclists is another.
Cyclist-related driver education has been recommended as a means to improve driver-cyclist interac-
tions. Methods: The driver licensing process provides an opportunity for such education. The Cycle
Aware module was developed to test and enhance novice drivers’ knowledge of interacting safely with
cyclists. It was piloted across three Australian jurisdictions targeting both novice and experienced drivers.
Participants were asked to complete the Cycle Aware module and an accompanying survey. A total of 134
novice and 97 experienced drivers completed the survey with 42 novice and 50 experienced drivers going
on to complete the module. Results: Both groups of drivers scored equally well in the module but the very
youngest and very oldest participants were more likely to have some incorrect responses. We did not find
any relationship between correct module scores and attitudes toward cyclists. Survey results showed
both novice and experienced drivers had somewhat positive attitudes toward cyclists. The two cohorts
differed on several attitude questions. Sixty percent (60%) of novices compared to 30% of experienced dri-
vers reported feeling concerned when sharing the road with cyclists, and novices were less likely to agree
that cyclists had a right to use the roads. Conclusions and practical applications: The analysis suggests
novices need to be better equipped to share roads confidently with cyclists and to recognize cyclists as
legitimate traffic participants.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Influencing change to improve bicycling safety from a social,
cultural, or attitudinal perspective is difficult. However, for some
people, particularly in countries with low levels of cycling partici-
pation, negative driver attitudes and harassment of cyclists are key
barriers to cycling (Horton, 2007; Heesch, Sahlqvist, & Garrard,
2011). While the benefits of cycling in terms of health (personal,
public) and environmental and sustainable transport are well evi-
denced, (e.g., Andersen, Schnohr, Schroll, & Hein, 2000; Kingham &
Tranter, 2015; Patterson et al., 2020), exploiting these benefits and
fostering a mode shift toward cycling and other forms of active tra-
vel is proving more difficult.

Cyclist-related driver education has been recommended as a
means to improve driver-cyclist interactions (Garrard, Greaves, &

Ellison, 2010). Researchers in the United States and Australia have
developed classroom-based material (Dutt et al., 2018; Bonham &
Johnson, 2017, 2018), however the broader driver licensing process
is an obvious place to start (Bonham & Johnson, 2018; Bonham,
Johnson, & Haworth, 2018).

A review of the driver licensing process in Australia reported
only two of the eight jurisdictions (South Australia and the Aus-
tralian Capital Territory, totaling less than 10% of Australia’s popu-
lation) had compulsory testing of cyclist related road rules and no
jurisdictions required novice drivers to demonstrate knowledge of
interacting safely with cyclists during a practical test (Bonham
et al., 2018). There was limited cyclist-related content in Australian
driver licensing resources and that material was inconsistent
across jurisdictions with cyclists often represented as problematic
road users (Bonham et al., 2018, 2020). The Cycle Aware module
has been produced to begin addressing this issue.

The Cycle Aware module was developed to enhance and test
novice driver knowledge of interacting safely with cyclists. The
module can be incorporated into the existing requirements for
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novice drivers to pass on their way from pre-learner to fully
licensed driver. It includes cyclist-related educational material rel-
evant in all Australian jurisdictions. Further, the imprimatur of
government on the module and supporting educational material
will confer legitimacy on cyclists as road users.

A key element in ensuring drivers interact safely with cyclists
is embedding cycling and safe interactions with cyclists as soci-
etal norms. Producing driver education material that normalizes
cycling and safe driver behavior, rather than representing
cyclists as problems, is a step toward creating that broader soci-
etal norm. The Cycle Aware module included positive messaging
that constituted cyclists as everyday road users and safe interac-
tions as a ‘normal’ part of driving. The current paper reports on
the module pilot and, in particular, the findings of the attitudi-
nal survey that accompanied the pilot. We continue with a
review of the existing research into driver attitudes towards
cyclists.

2. Literature review

A small but growing body of work examines the overall rela-
tionship between drivers and cyclists and, in particular, drivers’
attitudes toward and interactions with cyclists (e.g., Basford,
Reid, Lester, Thomson, & Tomie, 2002; Rissel, Campbell, Ashley,
& Jackson, 2002). In their UK study of drivers’ perceptions of
cyclists, Basford et al. (2002) reported that during focus group
discussions and in-depth interviews, cyclists did not figure
among motorists’ concerns. This ‘invisibility’ of cyclists is a con-
cern in itself. More to the point in the current context, it was
only when the researchers drew attention to cyclists that motor-
ists acknowledged their presence on the roads and often
expressed negative attitudes toward them. Drivers’ negative atti-
tudes have been related to cyclists’ characteristics and behaviors
such as visibility, speed (slow), rule following, and predictability
(e.g., Basford et al., 2002; Wood, Lacherez, Marszalek, & King,
2009; Johnson, Oxley, Newstead, & Charlton, 2014; Goddard,
Dill, & Monsere, 2016).

Despite some drivers claiming cyclists do not know the road
rules, a recent study by Briant, Haworth, and Twisk (2020)
reported drivers who do not cycle had poorer knowledge of
cyclist-related road rules than cyclists who were also drivers.
Rissel et al. (2002) associated drivers’ lack of knowledge with dri-
vers’ negative views of cyclists. Driver attitudes toward cyclists
have also been explained in terms of drivers’ participation in
cycling. Drivers who regularly ride a bicycle or know someone
who rides have more positive attitudes toward cyclists than dri-
vers who do not ride or know anyone who rides (Johnson et al.,
2014a; Fruhen & Flin, 2015). Oldmeadow, Povey, Povey, &
Critchley (2019) argue drivers who cycle regularly are more likely
to identify with cyclists and regard cycling as a normal activity.
As noted, these drivers also have better knowledge of cyclist-
related road rules and know what cyclists ‘should’ be doing
(and can perhaps anticipate and understand why cyclists don’t
follow road rules at particular times and places). These ‘driver-
cyclists’1 consider cyclists as legitimate road users and, as such,
they regard cyclists more positively (Oldmeadow, Povey, Povey, &
Critchley, 2019).

A key question is whether negative attitudes about cyclists
translate to unsafe driver behavior on the road (e.g., intimidation,
harassment). The results are mixed. Basford et al. (2002) reported

scant evidence of drivers’ negative attitudes toward cyclists being
expressed in ‘actively hostile’ behavior. They argue it is not neces-
sarily attitudes that translate to unsafe behaviors, but these
behaviors may be related to drivers’ ‘perceived behavioral control’
in a given situation and/or their perception of broader ‘social
norms’ (Basford et al., 2002). Further, Fruhen and Flin (2015)
found drivers who perceived aggressive warnings (e.g., blasting
a car horn) toward cyclists as a ‘social norm’ were more likely
to report engaging in this type of behavior (see also Fruhen,
Rossen, & Griffin, 2019). This point was highlighted in the natural-
istic study of Johnson et al. (2014b). Their study was underway
when two well-known comedians made an anti-cyclist rant on a
popular commercial television program and captured cyclists’
experiences:

‘‘The worst night of getting harassed while riding my bike, that I
can remember, was the Friday after the Magda Szubanski and Julia
Morris anti-cyclist rant. . . people yelling at me from their cars. . .
[another] car ’jumped’ a little, as if the driver had deliberately
jumped on the accelerator and then the brake. The driver. . . was
looking at me with a look of pride or aggressiveness or superiority.
I associate that night’s harassment with the Szubanski-Morris skit
because I’ve never had three separate harassment incidents on one
ride.” (p36-37)

Oldmeadow et al. (2019), Fruhen and Flin (2015) and Johnson
et al. (2014a) all identify the role of ‘social norms’ in enabling neg-
ative attitudes toward cyclists. The question of how something
comes to be constituted as a social norm relates to broader ques-
tions of processes of normalization.

Some authors argue drivers with negative attitudes toward
cyclists identify them as members of an out- or minority-group
and extrapolate the behavior of one cyclist to all members of
the group (Basford et al., 2002; Fruhen & Flin, 2015; Prati,
Puchades, & Pietrantoni, 2017). Unfortunately, these researchers
do not examine the formation of categories, like drivers and
cyclists, the mechanisms by which various characteristics and
behaviors become attached to these categories, the processes by
which identities are ‘pressed upon’ people or the procedures
through which people are encouraged to identify with a particu-
lar category (Butler, 1990; Bonham & Bacchi, 2017). Existing
research on driver attitudes toward and interactions with cyclists,
risks naturalizing these categories and their emergence. Certainly,
the categories of driver and cyclist have circulated in contempo-
rary societies for many decades. But institutions, including gov-
ernment departments and research institutes, have lent
authority to these categories as they have taken them up in trans-
port, road safety, and public health research, policies and pro-
grams, etc.

Importantly, the characteristics and behaviors attributed to
cyclists in Australian driver licensing materials are precisely the
same as those mentioned by drivers in the research, that is, they
are ‘hard to see,’ slow, unpredictable, and rule breakers (Bonham
et al., 2018, 2020). It is possible that drivers’ concerns about
cyclists are derived in part from the licensing process itself. Alter-
native characterizations of cyclists might elicit different responses.

In piloting the Cycle Aware module, we focused on drivers’
knowledge of interacting safely with cyclists and related this to
demographic variables, whether they know cyclists or are cyclists
themselves and their attitude toward cyclists. The role of the mod-
ule itself in normalizing cycling/cyclists and developing drivers’
appreciation of cyclists as ‘just another road user’ is a long-term
project. Once the module has been rolled out nationally, it will
be possible to compare attitudes of novice drivers reported in this
study with those who have completed the module as part of their
drivers license education and training.

1 The term ‘driver-cyclist’ is a variation on ‘cyclist-driver’ used by Johnson et al
(2014b) as a mechanism to break down hard categories of road users. It de-privileges
specific modes as it acknowledges people use different modes in different contexts or
they may use multiple modes within the same journey (like public transport-cyclists,
or public transport-pedestrian).
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3. Method: Cycle Aware module development and pilot

3.1. Module development

Development of the Cycle Aware module was informed by an
assessment of online driver education and training materials,
novice driver focus-groups, stakeholder interviews, and crash data
analysis. The format incorporated Mayer’s (2003) principles for
interactive multimedia instruction.

Online driver education and training materials: Eleven
resources were reviewed from Australia (n = 7) and internationally
(United Kingdom, n = 2; Scotland, n = 1; The Netherlands, n = 1).
Resources were assessed for inclusion of anticipatory driving
strategies that did not problematize cyclists as hazards to drivers,
rather than legitimate users of the road. The ‘‘what happens next”
approach (GoSafeGlasgow, Scotland) was identified as a good start-
ing point.

Focus groupswere conducted with participants aged frommid-
teens to early twenties in South Australia and the Northern Terri-
tory. Participants provided feedback on format options (animation,
computer generated images (CGI), live-action). Live-action (video)
was preferred, considered realistic and appropriate for the serious-
ness of the topic. Following the focus groups, the ‘‘what happens
next” approach was adapted to ‘‘what will you do?” to encourage
a more personalized and self-reflective response.

Stakeholder interviews were conducted with representatives
of motoring and cycling organizations, insurance companies, road
safety, and transport departments. They provided insight into
everyday interactions that motorists and/or cyclists found
challenging.

Cyclist crash datawere analyzed (Haworth et al., 2019) to iden-
tify the most frequent crash types involving novice drivers (age
was used as proxy for experience) with most crashes occurring at
intersections, on lower speed roads, during the day. This informed
the intersection focused situations in the Cycle Aware module.

Mayer’s principles of interactive multimedia instruction
informed the development of the Cycle Aware module to ensure
learners focused on the instructional content and were not dis-
tracted by non-essential information that required extraneous pro-
cessing and greater cognitive load.

Cycle Aware module format. The Cycle Aware module consists
of 12 common interactions or situations with cyclists that drivers
should expect as usual on the roads. It starts with an introductory
video from a cyclist’s point of view and includes all 12 situations
but in a different sequence. The video is narrated and the voice-
over explains the cyclist’s behavior and potential issues faced by
cyclists in different road environments. Participants then proceed
through the 12 situations (Table 1).

Each situation starts with a video establishing the scene and
stops at a decisive moment to ask ‘‘What will you do?” Multiple
choice responses were set out below the video and participants
were required to answer before moving on. Each response had an
optional voice over for people with reading difficulties. The ‘check
response’ button started a second video and this second section
was narrated including the correct response and a key message
slide (‘‘Remember”).

A progress bar tracked completion and participants could move
between the situations in the order generated by researchers, or
choose the order. While the module is designed to allow partici-
pants to change their responses at any time, this was disabled dur-
ing the pilot as we were checking initial responses.

3.2. Module pilot

Although targeted at novice drivers, the module was piloted
with novice and experienced drivers. In Australia, learner drivers

must be accompanied by a supervising driver so experienced dri-
ver knowledge of interacting safely with cyclists plays an impor-
tant role in novice driver development. Research protocols were
approved by the University of Adelaide (H-2016-076).

3.2.1. Recruitment
A convenience sampling method was used. A link to the pilot

was distributed to novice and experienced drivers through Part-
ner Organization2 networks and a closed, university student-only
Facebook page with 70,000 members. Databases of Partner Organi-
zations indicate that more than 1,000 novices and over 2,000 expe-
rienced drivers were invited to participate. The chance of winning a
$200 cash prize was offered as an incentive to novice drivers to
complete all stages of the pilot (i.e., survey + module and repeat
module after 30 days). Experienced drivers were not offered a cash
incentive.

3.2.2. Pilot process
The module was piloted in three stages (Fig. 1) and aimed to

determine:

� comprehensibility
� overall level of difficulty
� particular situations that cause problems
� level of engagement with the module
� driver characteristics associated with module scores
� the overall efficacy of the module

Stage 1was designed to determine the comprehensibility of the
module. Three novice drivers were observed as they completed the
module. Researchers focused on how participants worked their
way through the module, in particular: identifying any issues with
module instructions; ensuring progression through the module
was intuitive; and, determining whether features were obvious
(e.g., progress bar). After finishing, participants provided feedback
on the module. Comments informed refinements (e.g., clarifying
instructions) for the pilot roll-out and for potential longer-term
improvements.

Stage 2 targeted novice drivers and was divided into two
phases. In Phase 1, participants completed a survey that captured
data on demographics, driver experience, mode of transport nor-
mally used, social networks, advice received on interacting safely
with cyclists, and attitudes toward cyclists. Table 2 lists the attitu-
dinal questions used that were adapted from the Bell Dignam scale
used by Rissel et al. (2002). A five (5) point Likert scale was used to
respond to 10 common statements relating to cyclists. An overall
attitude score was developed using nine (9) of the statements
(statements 2–10). Each statement was determined to be positive
or negative toward cyclists and the Likert response designated
accordingly (extreme negative: 9; neutral: 27.5; extreme positive:
45). A Cronbach’s alpha test was applied to ensure internal consis-
tency in the weighting of the designation and weighting of
responses. Cronbach’s alpha for the experienced drivers was
0.819 (based on the 97 valid responses), compared to 0.810 for
the novice drivers (based on the 134 valid responses), indicating
that the attitude scoring scale has high internal consistency for
both groups.

After completing the survey, novices were invited to proceed to
the Module. While participants completed the module, backend
data were recorded including: responses selected for each
multiple-choice question, in/correct responses, time taken to
respond. Ideally, participants would have repeated the survey

2 Partner organizations on the project represented insurers, cyclists, motorists,
state and local government authorities. These organizations are listed in the
acknowledgements.

J. Bonham, M. Johnson and N. Haworth Journal of Safety Research 78 (2021) 96–104

98



attitude statements after completing the module. However, the
interface between the module and the external survey made this
option unworkable. Phase 2 tested the efficacy of the module.

Participants were asked to repeat the module after 30 days
(Palmer & Devitt, 2014) and it was assumed that an improved score
would demonstrate the efficacy of the module.

Table 1
Cycle Aware Situations (* indicates correct response).

Situation Multiple response options Video image and Reminder
slide

1. You are walking to the back of the car about to go for a
drive. What will you do?

A) Walk to the driver’s door, open it and get in.
B) Look for vehicles, wait for all vehicles, including cyclists, to

pass, then walk to the driver’s door, open it and get in.*
C) Check for motor vehicles, walk to the driver’s door, open it and

get in because you don’t have to wait for cyclists.

2. You are driving in the left lane and want to pass a cyclist
ahead. What will you do?

A) Stay behind the cyclist until there is enough room to pass
safely.

B) Pass the cyclist as closely as possible so you don’t annoy dri-
vers in the next lane.

C) If the next lane is free, change lanes to pass the cyclist safely.
D) Either (A) or (C) above.*

3. A cyclist is traveling ahead of you in the bike lane next to
the parked cars. What will you do?

A) Pass the cyclist quickly before any oncoming traffic arrives.
B) Move up close behind the cyclist to hurry her along.
C) Slow down and stay behind the cyclist until you pass at a safe

distance.*

4. A cyclist is passing a parked vehicle by riding away from
the car doors. What will you do?

A) Pass the cyclist quickly before any oncoming traffic arrives.
B) Move up close behind the cyclist to hurry them along.
C) Slow down and stay behind the cyclist until you pass at a safe

distance.*

5. You would like to turn left at an intersection and there is a
cyclist in front riding straight ahead. What will you do?

A) Put on your indicator, accelerate to get ahead of the cyclist as
quick as possible and turn left in front of them.

B) Put on your indicator, stay behind until the cyclist has cleared
the intersection and then turn left.*

C) Put on your indicator, and sound your horn so the cyclist
knows your there and can wait for you to turn.

6. You pass a cyclist and want to turn left at the next intersec-
tion. What will you do?

A) Head check left, put on the indicator and turn left.
B) Put on the indicator and turn left.
C) Head check left, put on the indicator, head check again and

turn left if you are far enough ahead of the cyclist.*

7. You are about to enter a roundabout and you see a vehicle
on the roundabout about to come off at the next exit. What
will you do?

A) Stop completely as it’s the law.
B) Speed up and enter the roundabout as there is a gap.
C) Be prepared, check once for cars and twice for bikes.*

8. You are approaching a roundabout and there is a cyclist
ahead. What will you do?

A) Stay behind and allow the cyclist to ‘take the lane’ so they can
ride safely through the roundabout.

B) Rev the car engine to warn the cyclist to hurry up to get out of
your way.

C) Speed up to beat the cyclist to the roundabout.
9. You are about to leave a property. What will you do? A) Enter the road if there aren’t any cars coming.

B) Check for pedestrians on the footpath and cars on the road.
When clear, enter the road.

C) Check for pedestrians and cyclists on the footpath, check for
all vehicles, including cyclists, on the road. When clear enter
the road.*

10. You are at an intersection and have indicated to turn
right. What will you do?

A) Turn as soon as the car has passed.
B) Wait until the car has passed and check for any cyclists

obscured by the car.*
C) Turn in front of the oncoming car.

11. There are two cyclists riding side by side. You would
like to overtake. What will you do?

A) Prepare to slow down and stay behind until you can pass
safely.*

B) Beep your horn because they should be riding in single file.
C) Speed up and pass as quickly and closely as possible so you

don’t inconvenience other drivers
12. You have finished your drive and would like to get out

of the car. What will you do?
A) Check your side mirror. If you don’t see a vehicle approaching,

open the door and exit.
B) Open the car door and exit the vehicle.
C) Check your side mirror then make a head check. If you don’t

see any vehicles, including cyclists, approaching open the door
and exit carefully.*
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Stage 3 targeted experienced drivers. It followed the process
used for the novice drivers but did not ask drivers to repeat the
module. The experienced driver survey asked the additional ques-
tion of whether respondents felt confident in showing others how
to interact with cyclists in a range of common crash situations. This
information could assist in developing educational resources for
both novice and experienced (potentially supervisory) drivers.

3.2.3. Limitations
As noted, we did not repeat the attitudinal questions after the

module so we could not determine the influence of the module
content on participant attitudes. Further, we did not have a mech-
anism to capture how the introductory video impacted on module
performance – the introductory video provided important infor-
mation on why cyclists behaved in particular ways and offered
clues on how the driver would ideally respond.

4. Findings and discussion

In total, 231 surveys were included in the analysis after 38 sur-
veys were excluded due to incomplete responses. The module was
completed by 101 drivers but only 92 drivers completed both the
survey and the module (Table 3).

4.1. Module analysis

The 42 novice drivers who responded to both the survey and
module were almost evenly divided between males (20 or 47%)
and females (22 or 52%). In contrast, of the 50 experienced drivers
who completed both the survey and the module, 70% were male,
26% female, and 4% did not state their gender or identified as gen-
der non-specific. The mean ages of respondents were 21.7 years

(range 16–36) for novice drivers: and 66.4 years (range 30–86)
for experienced drivers.

Over 60% of novice and experienced drivers who completed the
module identified the correct responses for all 12 situations and
almost 40% had at least one incorrect response (Table 4). High
scores (11 or 12 correct answers) were recorded by a higher pro-
portion of female drivers (novice: 91%; experienced: 92%) com-
pared to male drivers (novice: 80%; experienced: 83%). There was
some relationship between age and module score at the 95% con-
fidence level. Both the very youngest and the very oldest partici-
pants were more likely to have some incorrect responses.

Time taken to complete the module was used as a proxy mea-
sure for level of engagement. The entire module ran for 424 s
(7 min and 6 s). This included the introductory video from the
cyclist’s point of view (57 s), watching both videos for all 12 situa-
tions and the ‘Remember’ slide. Experienced drivers were more
likely than novice drivers to spend 7 min or more on the entire
module (Fig. 2, Fig. 3).

Negotiating a roundabout was the situation with the most fre-
quent incorrect responses for novices and experienced drivers. In
both cases, drivers believed it was the law to stop at the round-
about rather than simply being prepared to stop. The other situa-
tion with most incorrect responses was cyclists riding side by
side where just under 10% in each group believed the cyclists
should be riding in single file.

In contrast to findings by Rissel et al. (2002) that drivers with
better knowledge of cyclist-related road rules also had more posi-
tive attitudes toward cyclists, our analysis did not find any rela-
tionship between attitudes and correct module responses. This
difference is likely due to differences in what is being tested and
how. Much previous research focuses on testing knowledge of
cyclist-related road rules using spoken or written prompts. Our
module is underpinned by road rules but focuses on best practice
in high-crash situations and situations drivers and/or cyclists find
particularly challenging. Using video, rather than spoken or written
prompts provides rich contextual information.

4.2. Survey analysis: driver attitudes

Echoing other studies (e.g., Johnson et al., 2014a; Fruhen & Flin,
2015), in the survey data analysis both experienced and novice dri-
ver attitudes toward cyclists were more positive if the driver used
a bike on a regular basis (driver-cyclist) or knew someone who
cycled. They were most positive if the bike rider they knew was
a family member, friend, or work colleague. There was also a
relationship between drivers’ attitudes toward cyclists and the
person who provided them with advice on sharing the road with
cyclists. For both groups, where advice was provided by family

Stage 1

Novice Drivers

Module Comprehensibility

Observa n of Module comple on

Stage 2

Novice Drivers

Phase 1: Survey and Module

Degree of Difficulty, problem situa ns,
driver characteris s and a tudes

Phase 2: Efficacy

Repeat Module
30 days

Stage 3 Experienced
Drivers

Survey and Module

Degree of Difficulty, problem situa ns,
driver characteris s and a tudes

Fig. 1. Stages of the Cycle Aware Pilot.

Table 2
Cyclist Related Statements.

1. I feel worried when sharing the road with cyclists
2. Cyclists should be able to ride on main roads (that don’t have bike lanes)

at peak hour
3. Most cyclists take notice of road rules
4. Many cyclists on the road have not learned to ride properly
5. Cyclists have as much right to use the road as motorists
6. Drivers are not trained to look out for cyclists
7. Most cyclists are courteous to motorists on the road
8. Cyclists should pay registration fees or road taxes
9. More people cycling means less people driving and that reduces conges-

tion
10. Drivers should change lanes when passing cyclists rather than veering

around or squeezing past them
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members, drivers had much more positive attitudes toward
cyclists. This suggests that those giving advice are likely to be
cyclists so it captures the importance of knowing someone who
cycles.

Overall, both cohorts had positive attitudes toward cyclists (i.e.,
above the neutral score of 27.5) but experienced drivers were
slightly more positive (30.05) than novice drivers (29.20) (Table 5).
We anticipated novice drivers, as a younger cohort, might be more
positive toward cyclists than experienced drivers. This view was
based on anecdotal reports from motoring organizations that they
receive most complaints about cyclists from experienced drivers.

However, elaborating the point made earlier it seems there is a
relationship between where novice drivers receive advice about
interacting with cyclists and their attitudes toward cyclists. While
54% reported getting advice from family members, 46% reported
getting that advice via driver training guides and websites. It is
possible that some of the negative messaging (see Bonham et al.,
2018) about cyclists in driver education and training resources
has in fact influenced novice driver attitudes toward cyclists. This
hypothesis warrants further investigation.

While overall attitudes of novice and experienced drivers
toward cyclists were similar, there were substantial differences

Table 3
Cycle Aware Module and Survey Summary Data.

Survey Novice drivers (frequency) Experienced Drivers (Frequency) Total

Module responses 47 54 101
Module and survey

responses
42 50 92

Survey responses 134 97 231
Criteria Module and survey responses Survey responses Module and survey responses Survey responses
Gender

Female 22 13 35
Male 20 35 55
Non-specific 1 1
Not stated 1 1

Age
15–19 13 49 0 62
20–24 19 65 0 84
25–29 7 10 0 17
30–39 3 5 1 4 13
40–49 2 5 7
59–59 10 15 25
60–69 12 25 37
70–79 21 34 55
80+ 3 4 7
Not stated 5 1 10 16

Table 4
Correct responses to traffic situations for novice and experienced drivers.

Driver type Score Total*

12/12 11/12 10/12 9/12 8/12
Novice 29 (62%) 11 (23%) 5 (11%) 1 (2%) 1 (2%) 47 (100%)
Experienced 33 (61%) 13 (24%) 6 (11%) 1 (2%) 1 (2%) 54 (100%)

*Includes ALL module respondents regardless of whether they also completed the survey.

0%

20%

40%

60%

80%

100%

Experienced drivers       Novice drivers     

Over 7 minutes 6-7 minutes

5-6 minutes Less than 5 minutes

Fig. 2. Time completing module questions only.

0%

20%

40%

60%

80%

100%

Experienced driver          Novice driver 
Over 7 minutes 6-7 minutes

5-6 minutes Less than 5 minutes

Fig. 3. Time completing entire module.
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in some of the detailed responses. Novice drivers felt far less con-
fident than experienced drivers in sharing the road with cyclists
(Fig. 4). Disaggregated by mode, both experienced drivers who
did not cycle and novice drivers who cycled were concerned about
sharing the road with cyclists (see bolded numbers in Supplemen-
tary Table A).

In terms of attitude statements, there was considerable differ-
ence by driver experience to Statement 2 ‘‘Cyclists should be able
to ride on main roads (that don’t have bike lanes) in peak hour.”
Responses were divided among novice drivers with only half
agreeing with this statement (49%) compared to two thirds of

experienced drivers (65%) (Fig. 4). There was also a difference in
responses among respondents who also cycled. While most expe-
rienced driver-cyclists (94%) agreed with Statement 2, only two
thirds of novice driver-cyclists agreed (66%) (see bolded numbers
in Supplementary Table).

Novice drivers were also less likely than experienced drivers to
agree with Statement 5 that ‘‘Cyclists have as much right to use the
road as motorists.’’ Half of novice drivers (53%) compared to the
majority of experienced drivers (75%) believed cyclists had the
same right to use the road as drivers (Fig. 4). The finding for expe-
rienced drivers is in line with the 2001 results from Rissel et al.
(2002) (75% of drivers agreed). Novice drivers who regularly cycled
(64%) were less likely to agree with the statement than experi-
enced drivers who regularly cycled (97%).

The response of novice drivers to Statements 2 and 5 could be
related to concerns about sharing the road with cyclists. As they
gain experience and confidence in interacting with cyclists, novice
drivers may become more accepting of cyclists on the road.

Table 5
Novice and Experienced Driver Attitudes to Cyclists.

Driver Type Range Median Mean

Experienced 13–45 29 30.05
Novice 9–44 29 29.20

39%

22%

35%

51%

40%

20%

35%

46%

9%

26%

24%

27%

14%

30%

40%

55%

19%

24%

19%

26%

31%

18%

22%

25%

15%

29%

20%

34%

15%

21%

29%

37%

20%

23%

14%

20%

24%

19%

28%

28%

30%

60%

43%

24%

44%

51%

45%

20%

75%

53%

47%

36%

66%

47%

45%

25%

58%

57%

53%

46%
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I feel worried when sharing the road with cyclists - Experienced

Novice

Cyclists should be able to ride on main roads without bike lanes
during peak hour - Experienced

Novice

Most cyclists take no�ce of road rules - Experienced

Novice

Many cyclists haven't learned to ride properly - Experienced

Novice

Cyclists and drivers have same right to use roads - Experienced

Novice

Drivers are not trained to look out for cyclists - Experienced

Novice

Most cyclists are courtous to drivers on the road - Experienced

Novice

Cyclists should pay registra�on fees or road taxes - Experienced

Novice

More people cycling = less driving/conges�on - Experienced

Novice

Drivers should change lanes to pass cyclist - Experienced

Novice

Strongly Disagree/Disagree Neutral Agree/Strongly Agree

Fig. 4. Responses to attitude statements by drivers – experienced and novice.
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None-the-less, these differences between novice and experienced
drivers do raise concerns and suggest the need to improve driver
education in relation to interacting with cyclists. In support of this,
a high proportion of drivers, except novices who did not cycle,
agreed that drivers were not trained to look out for cyclists.

We also tested the relationship between attitudes toward
cyclists and mode of transport regularly used. Arguably, people
who do not rely exclusively on a car but use several modes, includ-
ing public transport, might be more accepting or accommodating
of other road users. As indicated in Table 6, our results suggest this
broader transport experience does influence drivers’ attitudes
toward cyclists (and possibly the broader range of road users).
While the attitude scores for those who use public transport but
do not know a cyclist are higher than for those who use public
transport and know a cyclist, the difference could be related to
the overall number of respondents in each cohort.

5. Conclusion

The Cycle Aware module addresses a substantial gap in the dri-
ver licensing process in Australia and is a roll-out ready resource to
train and test novice drivers about sharing the roads safely with
cyclists. By improving or reinforcing novice drivers’ knowledge,
the module seeks to contribute to the longer-term goal of normal-
izing cycling/cyclists and developing drivers’ appreciation of
cyclists as ‘just another road user.’ Piloting of the module assessed
its comprehensibility, degree of difficulty, problem situations, and
driver characteristics and attitudes.

Results from the pilot show the very youngest and very oldest
drivers were more likely to respond incorrectly to some situations.
As a training tool, the module can assist these drivers in developing
or refreshing their knowledge. The high level of correct responses
recorded during this pilot study is heartening but it requires fur-
ther investigation. One explanation might be that only people con-
fident or knowledgeable about interacting with cyclists responded
to the module, particularly given the information provided in the
introductory video from the cyclist’s point of view. Alternatively,
it could mean the multiple-choice options were too easy. In either
case, the module can confirm and reinforce safer interactions with
cyclists.

The differences between novice and experienced drivers in the
amount of time spent on the module suggests experienced drivers
were either more engaged or that novice drivers were more adept
at using online resources. The low response rate for the module
might indicate drivers are confident in their knowledge of interact-
ing safely with cyclists or drivers lack interest in or concern for
interacting safely with cyclists. It seems that without compulsion

(e.g., as a requirement of a theory or practical driving test) there
is little motivation for drivers to ensure they know safe cyclist-
motorist interactions.

The piloting revealed that some novice drivers have already
developed negative attitudes towards cyclists. A worrying propor-
tion of novice drivers reported concerns about sharing the road
with cyclists, stating cyclists shouldn’t be on certain roads at cer-
tain times and that cyclists do not have as much right to use the
road as motorists. These attitudinal results raise important issues
around the current provision of cyclist-related advice to novices.
It suggests the need for better education and training on interact-
ing safely with cyclists and debunking claims that help delegit-
imize cyclists’ use of road space. Drivers who received advice
from family members appear to have more positive attitudes
toward cyclists and this could be related to those family members
also riding a bike. Further research is warranted into the relation-
ship between source of advice and attitudes toward cyclists. It
seems particularly important that driver education and training
resources provide positive advice about interacting with cyclists.

Currently, the focus of driver education and training is on dri-
vers interacting with other motor vehicles. For example, drivers
are advised to maintain the speed of the motor vehicles around
them. This type of advice encourages novices to view driving as a
set of interactions between motor vehicles, rather than focusing
on the potential risks that their vehicle can pose to all users of
the road (Bonham et al., 2018, 2020). In failing to incorporate the
broad range of road users and communicate their point of view
there are likely to be ongoing tensions between drivers and
cyclists. Understanding the qualities of different road users and
the road environment they must navigate is likely to improve
safety for all road users.
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a b s t r a c t

Introduction: Pedestrian safety is a major concern as traffic crashes are the leading cause of fatalities and
injuries for commuters. Traffic safety research in the past has developed various strategies to counteract
traffic crashes, including the safety performance function (SPF). However, there is still a need for research
dedicated to enhancing the SPF for pedestrians from perspectives of methodological framework and data
input. To fill this gap, this study aims to add to the current SPF development practice literature by focus-
ing on pedestrian-involved collisions, while considering the typical vehicle ones as well. Methods: First,
bivariate models are used to account for the common unobserved heterogeneity shared by the
pedestrian- and vehicle-related crashes at the same intersections. Second, variable importance ranking
technique is used, along with correlation analysis, to determine mode-specific feature input. Third, the
exposure information for both modes, annual pedestrian count, and annual daily vehicles traveled are
used for model development. Fourth, a recent Bayesian inference approach (integrated nested Laplace
approximation (INLA)) was adopted for bivariate setting. Finally, different evaluation criteria are used
to facilitate comprehensive model assessment. Results: The results reveal different statistically significant
factors contributing to each of the modes. The offset intersection provides better safety performance for
both pedestrians and drivers as compared to other intersection designs. The model findings also corrob-
orate the sensibility of using the bivariate models, rather than the separate univariate ones. Practical
Applications: The study shows that pedestrians are more vulnerable to various intersection features such
as left-turn channelization, intersection control, urban and rural population group, presence of signal
mastarm on the cross-street, and mainline average daily traffic. Greater focus should be directed toward
such intersection features to improve pedestrian safety.
� 2021 The Authors. Published by the National Safety Council and Elsevier Ltd. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Walking is considered an important travel mode due to its
immense benefits. However, the percentage of total trips under-
taken by pedestrians compared to other modes is very low. In
the United States, the National Household Travel Survey (NHTS,
2018) reported that trips made by walking accounted for only
0.6% of total person-miles travel (PMT). Past studies reveal that
there are many reasons for this, but one main reason is that pedes-
trians are among the most vulnerable and unsafe road users from

the viewpoint of traffic crashes (De Hartog et al., 2010; Retting
et al., 2003). According to national statistics (Governor Highway
Safety Association, 2019), a total of 6,590 pedestrian fatalities
and around 70,000 injuries were estimated in pedestrian-vehicle
crashes in 2019. These consequences create an urgent need to pre-
vent pedestrian-involved crashes by implementing better policies
and strategies to provide a safe traffic environment for pedestrians.

Given this context, many researchers have investigated various
factors, such as roadway-built characteristics (Mansfield et al.,
2018; Miranda-Moreno et al., 2011), pedestrian behavior (Xu
et al., 2018; Dommes et al., 2014), driver behavior (Baker et al.,
1974; Geruschat & Hassan, 2005; Schroeder & Rouphail, 2011),
traffic characteristics (Shi et al., 2007; Barton & Morrongiello,
2011), drug/alcohol use (Li et al., 2019; Plurad et al., 2006), social
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and demographic attributes (LaScala et al., 2000; Tabibi et al.,
2012) to highlight the crucial insights related to pedestrian-
involved crashes. Among the distinct strategies, the development
of safety performance functions (i.e., crash frequency models) is
one of the most popular strategies to address traffic safety that
not only aids in screening out the significant influential factors,
but also predicts the crash counts for various purposes (Ukkusuri
et al., 2011; Wu et al., 2018; Harwood et al., 2008). Poisson regres-
sion models were initially widely adopted due to the popularity of
Poisson distribution for discrete outcomes (Miranda-Moreno,
2006). However, Poisson regression models are not able to provide
reliable and unbiased results in the case of over-dispersion (i.e.,
variance greater than the associated mean). In response, research-
ers employed alternate model formulations such as Poisson
gamma or negative binomial (Hauer, 2001), Poisson lognormal
(Park & Lord, 2007), zero-inflated models (Aguero-Valverde,
2013), which can better address over-dispersion issues and, hence,
provide more valid inferences.

Among the above-mentioned models, the univariate model
framework has seen widespread applications in traffic safety stud-
ies due to its ease of implementation with only one dependent
variable being involved (Anarkooli et al., 2019). However, the uni-
variate model is not capable of addressing the unobserved hetero-
geneities shared by various crash types or severities occurring in
the same locations or situations (Mannering & Bhat, 2014). To
overcome this issue, multivariate models have been proposed
due to their enhanced capabilities to tackle the common hetero-
geneity among different crash types via the explicit consideration
of correlated random effects (Lee et al., 2015; Park & Lord, 2007).
As a special case of multivariate setting, the bivariate model is ded-
icated to the crashes of two categories and also enjoys frequent
applications. For example, Russo et al. (2014) used bivariate frame-
work to examine the factors pertaining to crash injury severities
involved in angled collisions. The results demonstrate that bivari-
ate models provide more insightful findings related to the factors
influencing the propensity of crashes. Zheng and Sayed (2019)
developed bivariate models to integrate the traffic conflict indica-
tors for crash estimation. The finding showed that the bivariate
model improved the crash estimation precision and accuracy.

Another dimension of model classification resides in the trans-
portation modes. For instance, as previously stated, the SPF can be
divided into motor vehicle-oriented, non-motorist-centered, and
so on. Overall, the vehicle-related SPF dominates the SPF develop-
ment given the largest proportion of such mode in the current
transportation system. However, with the constant promotion of
active transportation provided by various levels of government
agencies in the past decades, ever-increasing interests were direc-
ted toward the SPF development for pedestrians (Wier et al., 2009;
Rasciute & Downward, 2010). For example, Thomas and DeRobertis
(2013) investigated road crashes involving pedestrians and bicy-
clists based on a very short period of volume count data available
for these two modes. The results showed that the risk for an indi-
vidual pedestrian/bicyclist to be involved in a crash decreases with
an increase in the number of pedestrians/bicyclists. Subsequently,
McArthur et al. (2014) conducted a study to develop SPF to esti-
mate the pedestrian crashes using five-year data, including socioe-
conomic and demographic characteristics. Another study done by
Tulu et al. (2015) developed SPF to investigate the pedestrian
crashes on two-way two-lane rural roads by incorporating the
short period counts of daily pedestrian crossing volumes in Ethio-
pia. Gates et al. (2016) developed SPFs for pedestrian and bicyclist
crashes at road segments and intersections. The results demon-
strated that pedestrian and bicycle crashes tend to increase when
vehicle traffic volumes increase investigated two pedestrian crash
types (total pedestrian crashes at intersections and a subset of
intersection crashes involving pedestrian-motorists collision), by

developing SPFs and incorporating many factors such as roadway,
built environment, census, and activity measures. A common
theme among these papers is the lack of or very limited exposure
information directly related to active transportation modes such as
pedestrian counts. The potential reasons for such data scarcity are
due to lack of definite paths or routes, followed by pedestrian and
bicyclists, limited use of emerging technologies (e.g., crowd-
sourcing), expensive data collection devices, and so on. To address
these issues, different strategies have been used in the past. Some
studies employed daily vehicle miles traveled as the proxy for
active transportation modes based on the assumption that most
non-motorist-pertinent collisions are related to vehicles (Cheng
et al., 2018). Others relied on the formulation of the pedestrian vol-
ume models using predictors such as land use, transportation sys-
tem attributes, and neighborhood socioeconomic characteristics.
One recent example is the pedestrian count model developed by
UC Berkeley researchers (Griswold et al., 2019), which can be used
in the pedestrian SPF as a major estimation of pedestrian exposure,
rather than other proxy information.

Building upon previous research, this paper aims to add to the
current literature with microscopic level research pertaining to
pedestrian-involved collisions, with some enhancements to cur-
rent SPF development practice. First, bivariate models are used to
account for the common unobserved heterogeneity shared by the
pedestrian and vehicle-related crashes at the same intersections.
Second, random forest (RF) method and Pearson’s correlation test
are employed to determine the variables to be included in the
models, which are different for each of the joint models. Such prac-
tice leads to the proper covariates not only striking a balance
between multi-collinearity and omitted variable bias issues, but
also enhancing model flexibility with different inputs to specific
transportation mode. Third, the exposure information for both
modes, annual pedestrian count, and annual daily vehicles traveled
is used for the model development. The former counts were gener-
ated based on research by Griswold et al. (2019). Including expo-
sure of both pedestrians and vehicles are anticipated to enhance
model estimate precision. Fourth, in comparison with the typical
Bayesian hierarchical models based on the Markov chain Monte
Carlo (MCMC) algorithm, the integrated nested Laplace approxima-
tion (INLA) approach is selected due to faster calculation and more
robust results (Taylor & Diggle, 2014). Finally, for a comprehensive
comparison of the predictive accuracy of the models, distinct
goodness-of-fit measurements that include DIC (deviance informa-
tion criterion), D (posterior mean deviance), PD (effective number
of parameters) and LPML (log pseudo marginal likelihoods) are
employed. The results of this study are expected to provide addi-
tional insights into SPF development, especially for the pedestrian
mode.

2. Materials and methods

The paper features Bayesian joint hierarchical models with dif-
ferent inputs of covariates, variable selection using both random
forest (RF) for predictor importance ranking and Pearson’s correla-
tion test for variable correlation analysis, and a set of performance
evaluation criteria. The following subsections cover the corre-
sponding methodological details in order.

2.1. Bayesian joint hierarchical model specification

The paper employed Poisson lognormal model, which assumes
the crash count to be Poisson distributed with the logarithm of
Poisson rate following normal distribution. The model formulation
is shown as follows (Cheng et al., 2018).

y PoissonðkÞ ð1Þ
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lnðkÞ ¼ b0 þ bX þ e ð2Þ
where y is a matrix consisting of crash counts of different modes
and intersections, k is a matrix consisting of the corresponding
Poisson rates of different modes and intersections, b0 represents a
global intercept vector for the two modes, b is a coefficient
vector, X is the covariate matrix, and e represents the white noise
matrix.

To better describe the joint models with different predictor
input, let kp and kv denote the pedestrian- and vehicle-involved
Poisson rate vector, respectively. The model framework for each
of the transportation modes can be expressed using the following
equation.

lnðkpÞ ¼ b0p þ bcpXc þ bdpXdp þ ep ð3Þ

lnðkvÞ ¼ b0v þ bcvXc þ bdvXdv þ ev ð4Þ
where the subscripts v and p represent the vehicle and pedestrian
modes, b0 is the global intercept, bc is the vector of coefficients
for the independent variables common to both modes, Xc is the
matrix of covariates common to both modes, bd is the vector of
coefficients for the independent variables that are different
between the two modes, Xd is the corresponding covariate matrix,
and e is the vector of error term. The two models are developed
simultaneously with the two error vectors, ep and ev , following
the bivariate normal distribution:

e MNðl;
X

Þ ð5Þ

where : e ¼ ep
ev

� �
;l ¼ lp

lv

� �
;
X

¼ r11 r12

r21 r22

� �
ð6Þ

In the above equations, MN represents multivariate (or, bivari-
ate in the present study) normal distribution, e is the random effect
matrix that captures the extra-Poisson heterogeneity among inter-
sections,l is the vector of the mean values for the bivariate normal
distribution, and

P
is the variance–covariance matrix where the

diagonal elements (i.e., r11 and r22) in the matrix represent the
variances of the random effects, while the off-diagonal element
represents the covariance. The inverse of the variance–covariance
matrix represents the precision matrix, which can be formulated
using the Wishart distribution:
X�1

WishartðI; JÞ ð7Þ

where I is the J identity matrix (Congdon, 2006), and J is the degree
of freedom, J = 2 herein representing two transportation modes. The
non-informative specifications (Heydari et al., 2017) for various
coefficients were specified with a normally distributed vague priors
N (0,100). Such diffused normal distribution with zero mean and a
large variance is commonly employed as a vague prior to posterior
estimates due to the absence of sufficient knowledge of priori distri-
bution (Cheng et al., 2018).

2.2. Random forest (RF), and various evaluation criteria

Decision tree is one of the predictive models that come up with
an item’s target value (leaves) via the observations about the item
(branches). Based on the nature of the target value, the decision
tree model can be used for both regression and classification pur-
poses. Compared with the other typical regression techniques, the
decision tree gained its popularity as it closely mirrors the human
decision-making process. As implied by the name, random forest
(RF) (Fatholahzade et al., 2018) consists of a collection of individual
decision trees that operate as an ensemble. The method combines
bagging and the random selection of features to construct different

decision trees with a controlled variation. Using ensembles of pre-
dictors have proven to give more accurate results than using a sin-
gle predictor. This technique has an advantage over the traditional
decision trees in obtaining unbiased error estimates without sepa-
rating the cross-validation test dataset. When a particular tree in
the RF is grown from a bootstrap sample, usually one-third of
the training cases are left out (also called out-of-bag, OOB, data)
from the tree-growing. The OOB data are then used later for the
determination of the optimum number of predictors for each tree
and the optimum number of trees in the RF, which results in the
minimum OOB error rate.

As a robust data mining technique with the implicit wisdom: ‘‘a
large number of uncorrelated individuals operating as a committee
will make a better decision than do these individuals,” RF has seen
wide applications in various fields including traffic safety (Harb
et al., 2009). For the classical purposes of regression and classifica-
tion, RF has been frequently used for determining the importance
of various response variables, based on the mean decrease of either
prediction accuracy or node purity with a specific variable being
excluded from the model (Jiang et al., 2016). The multiple steps
are involved when the former metric is implemented. First, the
prediction accuracy of the OOB sample is estimated. Second, the
values of the variable in the OOB sample are randomly shuffled,
with all other variables remaining the same. Third, the decreased
prediction accuracy on the shuffled data is calculated. Finally, the
average drop of accuracy across all trees is reported for the vari-
able. The more decreased prediction accuracy in the OOB data,
the more predictive power the variable tends to have. The second
method follows a similar process as does the first one, except that
the prediction accuracy is replaced with the node purity (or, Gini),
which has the largest value when only one single class or value is
involved in the node. Compared with the predictive accuracy-
oriented metric, the node purity one has the advantage of faster
computation and is, therefore, chosen in the study (Nicodemus,
2011).

In addition to the variable importance ranking, this paper
adopted various evaluation criteria that include Deviance Informa-
tion Criterion (DIC), D (posterior mean deviance), PD (effective
number of parameters) and Log pseudo marginal likelihoods
(LPML) for the assessment of predictive accuracy and goodness-
of-fit.

As a hierarchical modeling generalization of the Akaike Infor-
mation Criterion (AIC) which uses maximum likelihood estimates
(Hurvich & Tsai, 1998), DIC has been used extensively to assess
the complexity and goodness of fit of the Bayesian models based
on the posterior mean. The calculation of DIC can be done via the
following expression (Spiegelhalter et al., 2003):

DIC ¼ Dþ PD ð8Þ

where, Dis the posterior mean deviance that measures the closeness
of the fitted data to the original observations, and PD denotes the
effective number of parameters in a model representing the model
complexity. In general, models with more parameters tend to over-
fit the data, resulting in smaller deviance. Therefore, the PD term can
be considered as compensation for this effect by favoring models
with a smaller number of parameters.

Different than DIC and D, which are based on within-sample
predictive errors, other alternatives are based on the test data
using cross-validation techniques. Nonetheless, the typical
approaches of cross-validation are prone to selection bias related
with data-splitting into subsets. To circumvent such bias, a robust
conditional predictive ordinate (CPO) based on CV-1 (leave-one-
out) was employed in this study (Pettit, 1990). Within the INLA
framework, the estimate of CPO for each observation i can be cal-
culated as (Gelfand, 1996; Liu & Sharma, 2017):
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XT
t¼1

1

f Yijb tð Þ
� �

0
@

1
A

�1

ð9Þ

where Yi is the ith observation (i = 1, 2, 3, n) for all intersections and
b represents the estimated model parameters.

Based on the CPO, the Log pseudo marginal likelihoods (LPML)
can be calculated and have been employed in recent safety litera-
ture (Heydari et al., 2017; Cheng et al., 2018a). The computation for
LPML can be performed using the following equation:

LPML ¼
Xn

i¼1

log CPOið Þ ð10Þ

where i, n, and CPO are denoted in Equation (9).
The large value of LPML signifies a better predictive capability

related to the candidate model.

2.3. Data description

The analysis in this study was based on data derived from Cal-
ifornia Traffic Accident Surveillance and Analysis System (TASAS).
TASAS is a traffic records system that includes a crash database
and infrastructure database consisting of highway segments, inter-
sections, ramps, and other data. The study focused on crashes
occurring at the intersections that have 73 variables available in
the raw file in TASAS. Nonetheless, some of these variables were
not associated with pedestrian or vehicle collisions like intersec-
tion location information (district, county, route, and milepost),
date of intersection update (begin date of intersection update,
the end date of intersection update), and so on. After data cleaning,
20 covariate variables were selected from a total of 6,198 intersec-
tions in the state routes, where the estimated annual pedestrian
volume at each intersection was available through the pedestrian
count model developed by Griswold et al. (2019). Overall, a total

Table 1
Descriptive Statistics of Collected Data.

Numerical Variables

Variables Description Minimum Maximum Mean S.D.

MNL Mainline - number of lanes 2 8 3.33 1.39
MOL Mainline - override length (buffer) 15 350 187.90 61.94
X-NL Cross street - number of lanes 0 6 2.13 0.55
X-OL Cross street - override length 0 250 2.25 22.81
MADT Mainline - average daily traffic 180 125,000 20,198 15254.28
X-ADT Cross street - average daily traffic 0 77,000 1,911 4272.05
IRG Intersection rate group 1 29 17.91 7.61
APV Estimated annual pedestrian volume (2016) 520 9,400,000 116,636 481942.50
Veh counts Vehicle related accidents counts 0 137 6.88 11.79
Ped counts Pedestrian related accidents count 0 6 0.09 0.39

Categorical Variables

Variables Description Details of categories (frequency, percentage)

Highway Group Highway group of mainline in the intersection 1-Divided Highway (3,294, 53.15%); 2-Undivided
Highway (2,881, 46.48%); 3-Right or Left Independent
Alignment (23, 0.37%)

Population Group Population code of the intersection -Urban (1,539, 24.83%); 2-Rural (1,278, 20.62%); 3-
Urbanized (3,381, 54.55%)

Intersection Design Intersection design 1-Four legged (2,328, 37.56%); 2- >Four legs (67, 1.08%);
3-Offset (349, 5.63%); 4- Tee (3,182, 51.34%); 5 - Wye
(206, 3.32%); 6-Other (66, 1.06%)

Light Condition Presence of light condition at Intersection 1-No Lighting (1,561, 25.19%); 2-Lighted (4,637, 74.81%)
Mastarm Presence of signal mastarm on the mainline of the intersection 1-No Mastarm (4,901, 79,07%); 2-Yes, Mastarm (1,297,

20.93%)
Left Turn Left turn channelization on mainline at the intersection 1-Curbed Median Left Turn Channelization (808, 13.04%);

2-No Left Turn Channelization (3,005, 48.48%); 3 -
Painted Left Turn Channelization (2,355, 37.00%); 4 -
Others (30, 0.48%)

Right Turn Right turn channelization on mainline at the intersection 1-No Right Turn Channelization (5,579, 90.01%); 2-Others
(617, 9.99%)

Traffic Flow Traffic flow on the mainline of the intersection 1-Two-Way Traffic, No Left Turns Permitted (297, 4.81%);
2-Two-Way Traffic, Left Turn Permitted (5,839, 94.21%); 3
- Others (61, 0.98%)

X-Mastarm Presence of signal mastarm on the cross-street of the intersection 1-No Mastarm (5,341, 86.17 %); 2-Yes, Mastarm (857,
13.83%)

X-Left Turn Left turn channelization on the cross-street 1-Curbed Median Left Turn Channelization (131, 2.11%);
2-No Left Turn Channelization (5,421, 87.47%); 3-Painted
Left Turn Channelization (622, 10.04%); 4-Others (24,
0.39%)

X-Right Turn Right turn channelization on the cross-street. 1-No Right Turn Channelization (5,631, 90.85%); 2-Others
(567, 9.15%)

X-Traffic Flow Traffic flow on the cross-street of the intersection 1–Two Way Traffic, No Left Turns Permitted (269, 4.34%);
2–Two-Way Traffic, Left Turn Permitted (5,846, 94.32%);
3-Others (83, 01.34%)

Intersection Control Condition Intersection control condition 1-No Control (210, 3,039%); 2-Stop signs on Cross Street
Only (4,514, 72.83%); 3-Signals Pretimed (2 Phase) (152,
2.45%); 4- Signals Semi-Traffic Actuated, Two-phase (125,
2.02%); 5 - Signals Full Traffic Actuated, Multi-Phase (993,
16.02%); 6-Others (204, 3.29%)

Note. S.D. represents standard deviation.
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of 43,705 pedestrian and vehicle collisions spanning over six years
(2012 to 2017) were aggregated for research purposes. The
detailed information for all data including variable names, descrip-
tion, and other descriptive statistics are illustrated in Table 1.

3. Results

To develop the bivariate SPFs, the distinct covariates were
selected for pedestrians and vehicles by using RF metric and corre-
lation analysis. Under the INLA framework, models were developed
with the posterior mean serving as the estimate for the model
parameters. Different evaluation criteria were used to assess the
predictive accuracy of the models.

3.1. Feature importance ranking by random forest (RF)

The importance of variables was reported and ranked using the
R package ‘‘randomforest” (Cutler et al., 2012). When estimating
the RF model, m = 4 variables were randomly sampled as a candi-
date at each split, with the OOB error rate reaching a minimum
value of 0.132 and 59.24% of data variability being explained by
the model. The variable importance plots for both pedestrian and
vehicles are shown in Fig. 1 with the decreasing order of
‘‘IncNodePurity,” which represents the mean decrease of node pur-
ity in predictions on OOB samples with a given variable being
excluded from the model.

3.2. Correlation analysis

Variable importance ranking was used along with the correla-
tion of numerical variables for the determination of the covariate
inputs to the model development. The correlation tests were con-
ducted using the Harrell Miscellaneous package in R software,
which allowed the calculation of Pearson’s correlation coefficient
and the accompanying p-values. The variables were observed to
be correlated by using the popular cut line of 0.6 for the correlation
coefficient and with a significance level of 0.05 were eliminated in
multiple steps using engineering judgment to choose the mini-
mum subset of variables, while maintaining the maximum data
variability. In other words, the selection procedure strived to strike
the balance between omitted variable bias and multi-collinearity
issues. As shown in Table 2, the upper portion values are Pearson’s
correlation coefficient magnitudes and lower shaded cells repre-
sent the associated p-values. Based on the results of the correlation
test, out of eight numerical variables, six of them that include MOL,
X-OL, MADT, X-ADT, IRG, and APV were retained.

Combining both results from RF and correlation analysis, the
final list of predictors to be included into subsequent model devel-
opment can be found in Table 3. It is important to note that the
variables ‘‘Right Turn” and ‘‘X-OL” were retained only for pedestri-
ans, while ‘‘X-Mastarm” and ‘‘X-Right Turn” were included only for
vehicles. They were not considered for both modes at the same
time since they had little influence on one of the modes according
to the variable importance ranking results via RF.

Fig. 1. A Variable Importance Plot for (a) Vehicle Crash Counts and (b) Pedestrian Crash Counts.

Table 2
Correlation Coefficients and P-Value for the Numerical Variables.

MNL MOL X-NL X-OL MADT X-ADT IRG APV

MNL 1.000 �0.116 0.230 0.001 0.722 0.273 0.118 0.254
MOL 0.000 1.000 0.046 �0.001 �0.088 0.032 �0.139 �0.152
X-NL 0.000 0.000 1.000 0.118 0.227 0.600 �0.087 0.112
X-OL 0.925 0.917 0.000 1.000 0.005 0.187 �0.034 0.194
MADT 0.000 0.000 0.000 0.683 1.000 0.269 0.154 0.257
X-ADT 0.000 0.014 0.000 0.000 0.000 1.000 �0.118 0.184
IRG 0.000 0.000 0.000 0.008 0.000 0.000 1.000 �0.046
APV 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Notes.
1. The upper triangle of the matrix shows the correlation coefficients of the variables, and the gray grids in the lower triangle of the matrix shows the p-values.
2. Highly correlated estimate with correlation coefficient greater than 0.6 are marked as bold font.
3. Refer to Table 1 for details of variable definition.
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3.3. Model estimates

The posterior model estimates of model parameters across
pedestrian and vehicle crash counts are shown in Table 3. The esti-
mated coefficients for 10 influential variables including ‘Intersec-
tion Design 2’ (>four legs), ‘Intersection Design 3’ (offset),
‘Intersection Design 4’ (tee), ‘Intersection Design 5’ (wye), ‘Inter-

section Design 6’ (others), ‘Light Condition (2)’ (Lighted), ‘Left turn
4’ (No left turn channelization), ‘Intersection Control Condition (4)’
(signals semi-traffic actuated, two phase), ‘Intersection Control
Condition (5)’ (signals full traffic actuated, multi-phase), ‘MADT’
(mainline-average daily traffic), and ‘X-ADT’ (crossline-average
daily traffic), appeared to be statistically significant across both
pedestrian and vehicle crash counts. Interestingly, among these

Table 3
Description of Model Parameter Estimates.

Variables b1 (Pedestrian) b2 (Vehicle)

Mean SD Mean SD

Fixed Effects

(Intercept) �5.222 0.772 3.788 0.735
Highway Group Highway Group 1 (Base)

Highway Group 2 �0.008 0.053 �0.082 0.141
Highway Group 3 0.494 0.37 �0.941 0.831

Population Group Population Group 1 (Base)
Population Group 2 �0.834 0.092 �0.38 0.321
Population Group 3 0.247 0.051 0.088 0.141

Intersection Design Intersection Design 1 (Base)
Intersection Design 2 �0.215 0.176 �0.34 0.448
Intersection Design 3 �0.341 0.085 �0.401 0.21
Intersection Design 4 0.391 0.157 �1.761 0.485
Intersection Design 5 0.485 0.189 �3.634 1.107
Intersection Design 6 0.681 0.246 �1.994 0.779

Light Condition Light Condition (1) (Base)
Light Condition (2) 0.307 0.054 0.747 0.213

Mastarm Mastarm 1 (Base)
Mastarm 2 �0.207 0.131 �0.087 0.271

Left Turn Left Turn 1 (Base)
Left Turn 2 �0.264 0.078 �0.041 0.183
Left Turn 3 0.048 0.063 �0.152 0.14
Left Turn 4 0.572 0.284 1.682 0.559

Right Turn Right Turn 1
Right Turn 2 N/A N/A �0.246 0.153

Traffic Flow Traffic Flow 1 (Base)
Traffic Flow 2 0.871 0.148 �0.025 0.336
Traffic Flow 3 0.338 0.256 0.784 0.455

X-Mastarm X-Mastarm 1 (Base)
X-Mastarm 2 0.251 0.077 N/A N/A

X-Right Turn X-Right Turn 1 (Base)
X-Right Turn 2 0.038 0.068 N/A N/A

X-Left Turn X-Left Turn 1 (Base)
X-Left Turn 2 0.118 0.14 0.182 0.264
X-Left Turn 3 0.159 0.136 0.232 0.258
X-Left Turn 4 0.079 0.353 �1.311 1.125

X-Traffic Flow X-Traffic Flow 1 (Base)
X-Traffic Flow 2 0.143 0.144 0.169 0.345
X-Traffic Flow 3 0.292 0.224 0.234 0.473

Intersection Control Condition Intersection Control Condition (1) (Base)
Intersection Control Condition (2) 1.134 0.137 0.708 0.503
Intersection Control Condition (3) 1.975 0.201 0.922 0.554
Intersection Control Condition (4) 2.218 0.219 1.446 0.59
Intersection Control Condition (5) 1.899 0.192 1.168 0.566
Intersection Control Condition 6 1.611 0.186 0.662 0.578

MOL 0.002 0.001 �0.001 0.001
X-OL N/A N/A 0.002 0.001
MADT 2.997 0.215 1.845 0.497
X-ADT 3.581 0.388 2.598 0.718
IRG �0.076 0.01 0.048 0.031
APV �0.146 0.451 0.429 0.775

Random Effects
Observation. ID 0.643 0.018 2.297 0.462
Goodness-of-fit Criteria
DIC 29113.63
D 24753.94
PD 43596.89
LPML �32668.16

Notes.
1. S.D. represents standard deviation; DIC represents deviance information criterion; D represents posterior mean deviance; PD represents an effective number of parameters;
LPML represents log pseudo marginal likelihood; NA means Not Applicable.
2. Refer to Table 1 for details of variable definition.
3. The bold fonts represent the variables with a statistically significant impact.
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significant covariates, five variables were found to have a negative
impact, in which one variable (‘Intersection Design 3’) was com-
mon for both modes and other four variables were observed for
vehicles crash count only (or, ‘Intersection Design 4,’ Intersection
Design 5,’ Intersection Design 6,’ ‘Right Turn 2’). It follows that,
compared with the base condition of the four-legged intersection,
offset intersection seems to be more advantageous in terms of traf-
fic safety for both pedestrians and vehicle drivers. This finding is
aligned with the previous studies (Bared & Kaisar, 2001; Jonsson
et al., 2007; Cunningham et al., 2020), which illustrates that the
implementation of offset intersection might help to decrease
pedestrian-vehicle collisions. For vehicle drivers only, the tee and
wye intersections and those without right-turn channels tend to
provide more safety benefits compared with the base conditions
of four-leg and intersection with right turn channels, respectively.
The better safety performance associated with those without right
turn channels is somewhat counterintuitive, which warrants fur-
ther verifications from other studies.

At the individual mode level, 10 covariates that contain ‘Popu-
lation Group 2’ (rural), ‘Population Group 3’ (urbanized), ‘Left Turn
2’ (no left turn channelization), ‘Traffic Flow 2’ (two-way traffic,
left turn permitted), ‘X-Mastarm 2’ (presence of signal mastarm),
‘Intersection Control Condition (2)’ (stop signs on cross street
only), ‘Intersection Control Condition (3)’ (signals pretimed), ‘Inter-
section Control Condition 6’ (others), ‘MOL’ (mainline - override
length), and ‘IRG’ (intersection rate group) observed to be statisti-
cally significant for pedestrians. Similarly, for vehicles, there are
two statistically significant variables that include ‘Right Turn 2’
(right turn channelization) and ‘X-OL’ (cross street - override
length). Such phenomenon indicates that, relative to drivers,
pedestrians are not only subject to more injury severities, but also
sensitive to more intersection features such as left turn channeliza-
tion, intersection control, and so on. This finding is consistent with
previous studies (Pulugurtha & Sambhara, 2011; Zegeer & Bushell,
2012; Yue et al., 2020).

This study also employed various types of evaluation criteria
including (D) (measure of training errors), DIC (indirect measure
of test errors), and LPML (measure of test errors) to assess the mod-
els from different perspectives. Under the close review of the eval-
uation results, it is obvious that DIC is the sum of D and PD, where
PD serves as the correction term to the in-sample error so that DIC
can approximate the out-of-sample error. Different from DIC, the
LPML provide a direct cross validation-oriented error. Both values
have relatively large magnitude (or, 29113.63 and �32668.16)
due to the large sample size of the intersections (6,198) used in
the study.

To better explore the suitability of using the bivariate setting,
the random effects of the two transportations modes were also col-
lected. Their correlation and covariance are shown in Table 4. The
statistically significant correlation coefficient signifies the strong
positive correlation between the two types of crashes, corroborat-

ing the importance of developing the joint models where the cor-
relation between the two response variables was explicitly
considered.

4. Conclusions

Compared with the vehicle modes, much less research has been
dedicated to the development of SPF for active transportation
modes such as pedestrians. There are multiple reasons behind this,
which include the dominant use of vehicle modes and the difficulty
in obtaining exposure information of pedestrians. For enhancing
current SPF development practice from perspectives of methodol-
ogy and data usage, the paper aims to develop a joint SPF involving
both pedestrian- and vehicle-related crashes.

The following conclusions were drawn based on the research
results:

1. Compared with the base condition of four-legged intersection,
offset intersection demonstrates better safety performance for
both pedestrians and drivers. This finding suggests that imple-
mentation of offset intersection may help to reduce
pedestrian-vehicle collisions significantly.

2. For drivers only, the tee and wye intersections and those with-
out right-turn channels tend to provide more safety benefits
compared with the base conditions of intersections with four-
leg and right turn channels, respectively. The better safety per-
formance associated with the intersections without right turn
channels is relatively contradictory, which warrants further
investigations from other studies.

3. There are much more statistically significant variables associ-
ated with pedestrians, suggesting that pedestrians are more
sensitive to various intersection features than the vehicle
drivers.

4. The correlation and covariance matrix between the random
effects of both pedestrian and vehicle counts demonstrate the
existence of strong correlation, indicating the sensibility of
using the bivariate models, which explicitly consider the corre-
lation between the two modes.

The aforementioned findings from this study reflect an
improvement to current SPF development with mode-specific
inputs of predictors and count model-estimated pedestrian expo-
sure being used. Such improvement can help safety practitioners
in reducing the pedestrian-related crashes by centralizing the
resources toward potential improvements of intersection features.
However, it is important to mention that the current findings are
based on the empirical results obtained from the intersection-
related crash data in California. Some of the model findings may
not hold true when employing data at a different spatial level.
The present paper employed Poisson-lognormal model for model-
ing the pedestrian-related crash data. Future studies may explore
the other formulations such as zero-inflated models (both for the
Poisson and negative binomial models), Gamma model, and
Conway-Maxwell-Poisson model, which might lead to different
findings from the present study. Moreover, only crashes of two
modes are investigated. More modes involved might lead to differ-
ent results, given more complex interrelationships are introduced
among all crash outcomes. Finally, this study considered timely
aggregated crashes only. The consideration of serial correlation
among various years of crashes is also worth further investigation.
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a b s t r a c t

Introduction and Method: Observational data collected during the Wisconsin 2017, 2018, and 2019
National Occupant Protection Use Survey (NOPUS) were analyzed for this study to explore the influence
of drivers’ seatbelt use on front seat passengers’ usage in the same vehicle. The analyses include compar-
ing seatbelt usage rates for drivers and front passenger(s) based on their gender and based on geograph-
ical area as well as analyses of the aggregated data. Results: The descriptive analyses strongly suggest that
seatbelt usage rates of passengers differ considerably depending on whether the driver uses the seatbelt.
When female drivers wear seatbelts, seatbelt usage rates for female front seat passengers for the three
years 2017, 2018, and 2019 are 97.8%, 96.3%, and 97.1% respectively, with corresponding usage rates
for male passengers being 95.5%, 93.0%, and 96.0% respectively. When male drivers wear seatbelts, the
seatbelt usage rates for male front seat passengers for the three years 2017, 2018, and 2019, are 93.4%,
95.5%, and 94.3%, respectively, with the corresponding usage rates for female passengers being 97.7%,
96.0%, and 97.7%, respectively. The evidence suggests that drivers’ use of seatbelts significantly improves
the seatbelt usage of front seat passengers. Seatbelt usage rates of male passengers as well as female pas-
sengers are higher while traveling with female drivers who use seatbelts than while traveling with male
drivers who use seatbelts. Conclusions and Practical Applications: Future seatbelt use campaigns should
target males.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

In 2017, properly fastened seatbelts saved an estimated 14,955
lives of passenger vehicle occupants, and 2,549 additional lives
could have been saved if all unrestrained passenger vehicle occu-
pants involved in fatal crashes had worn their seatbelts (National
Center for Statistics and Analysis, 2019a). Among passenger vehicle
occupants killed in 2018, who had known restraint use, almost half
(47%) were unrestrained (National Center for Statistics and
Analysis, 2019c). Seatbelts, when used, are estimated to reduce
the risk of fatal injury to front-seat passenger car occupants by
45% and the risk of moderate-to-critical injury by 50% (National
Center for Statistics and Analysis, 2019b; National Highway
Traffic Safety Administration, 2019).

Numerous studies have documented the benefits of seatbelt use
including reduced injury risk, injury severity and fatalities (Blincoe,
Miller, Zaloshnja, & Lawrence, 2015; Goetzke & Islam, 2015; Høye,
2016; Sunshine, Dwyer-Lindgren, Chen, & Mokdad, 2017) and dis-
cussed the role that gender, age, and level of education influence in
seatbelt use (Birru, Rudisill, Fabio, & Zhu, 2016; Demirer, Durat, &

Has�imoğlu, 2012; Enriquez & Pickrell, 2019; Richard et al., 2019;
Wells, Williams, & Farmer, 2002). Birru et al. (2016) compared
self-reported seatbelt use in the Appalachian and non-
Appalachian counties of the United States and found that regard-
less of sex, age, or rurality, respondents who reside in Appalachian
counties were less likely to consistently wear their seatbelt,
females typically wear seatbelts more than males, and use
increases with age. Demirer et al. (2012) investigated, through
questionnaires distributed to 1,000 participants in four different
education levels and determined that increased levels of education
are correlated with increased seatbelt usage, fewer crashes, and
reduced crash severities. Richard et al. (2019) determined through
exploratory research that occasional seatbelt users were more
likely to be older and male. Wells et al. (2002) conducted belt
use observations at gas stations in Boston, Chicago, Houston, and
New York City, in addition to short interviews with drivers, and
found belt use was higher in primary enforcement cities, among
women, and among those with at least a college degree. Finally,
the 2018 National Occupant Protection Use Survey (NOPUS) found
that seatbelt use in front seats continued to be higher for females
(92.0%) than that of males (87.7%; Enriquez & Pickrell, 2019).
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An extensive body of research has also shown that traffic safety
countermeasures, including focus on engineering, law enforce-
ment, and public education, are proven strategies for increasing
seatbelt use and reducing traffic fatalities (Carter, Flannagan,
Bingham, Cunningham, & Rupp, 2014; Dinh-Zarr et al., 2001;
Goodwin, 2015; Harper, Strumpf, Burris, Smith, & Lynch, 2014;
Shults et al., 2019; Shults & Beck, 2012; Strine et al., 2010; Sung,
Mizenko, & Coleman, 2017).

Goodwin (2015) highlighted that the most effective strategy for
achieving and maintaining restraint use at acceptable levels is a
well-publicized high visibility enforcement of strong occupant
restraint use laws. The strategy includes three components: laws,
enforcement, and publicity, and if one of the components is weak
or missing, the effectiveness decreases. Harper et al. (2014) inves-
tigated the differential effect of mandatory seatbelt laws on seat-
belt use among socioeconomic subgroups and identified the
differential effect of legislation across higher versus lower educa-
tion individuals using a difference-in-differences model based on
state variations in the timing of the passage of laws. They found
positive effects of mandatory seatbelt laws for all education groups
but stronger effects for those with less education. Shults et al.
(2019) and Shults and Beck (2012) studied self-reported seatbelt
use and showed an increase in states with primary enforcement
laws and enhanced enforcement.

Carter et al. (2014) evaluated the potential impact of rescinding
seatbelt laws on annual crash related fatalities, nonfatal injuries,
and associated economic costs. Their results showed that primary
seatbelt laws are most effective among those who are least likely to
wear seatbelts, including adolescents and those who are less-
educated, lower-income, male, or live in rural areas. Dinh-Zarr
et al. (2001) used systematic reviews to evaluate the effectiveness
of three interventions to increase seatbelt use, and found strong
evidence for the effectiveness of seatbelt laws and for the incre-
mental effectiveness of primary seatbelt laws. Additionally, they
found evidence for the effectiveness of enhanced enforcement pro-
grams for seatbelt laws.

Several studies also demonstrate how advances in technology
increase seatbelt use (Høye, 2016; Jermakian & Weast, 2018;
Kidd, McCartt, & Oesch, 2014; Kidd, Singer, Huey, & Kerfoot,
2018; Kidd & Singer, 2019; Van Houten et al., 2010; Van Houten,
Hilton, Schulman, & Reagan, 2011).

The State of Wisconsin enacted a primary safety belt enforce-
ment law in July 2009, and the Wisconsin Department of Trans-
portation has conducted annual statewide observation surveys of
safety belt use since March 1987. Results of these surveys consis-
tently displayed a gender difference of approximately 10% or more
in safety belt use favoring women (Field observation of safety belt
use in Wisconsin (July 2016)—Wisconsin Digital Archives—
Wisconsin Digital Archives, n.d.).

Other studies have evaluated the influence that seatbelt usage
by a driver has on seatbelt use by other front seat occupants
(Boakye, Shults, & Everett, 2019; Nambisan & Vasudevan, 2007).
They concluded that passengers are much more likely to use seat-
belts if their respective drivers used seatbelts. Nambisan and
Vasudevan (2007) found no behavioral differences for male drivers
compared to female drivers, or for male passengers compared to
female passengers and determined there was no difference regard-
ing the combination of the genders of the drivers and passenger
(i.e., both of one gender, or of opposite genders).

In 2019, seatbelt use by adult front seat occupants was esti-
mated to be 90.7%, based on the National Occupant Protection
Use Survey (NOPUS), representing an increasing trend over a 15-
year period (National Center for Statistics and Analysis, 2019d).
Despite recent movement towards higher national seatbelt use
rates, almost 10% of front seat occupants still only use seatbelts

part-time. The purpose of this study was to continue to explore
the influence of drivers’ seatbelt use on other front seat passengers’
usage of the same vehicle, essentially replicating the Nambisan and
Vasudevan (2007) study for the State of Wisconsin over the years
2017–2019. After several years of investing to increase seatbelt
usage, this study may help policy makers focus future campaign
and enforcement efforts.

2. Materials and methods

For front seat occupants, including drivers and passengers,
usage of seatbelt based on field observations were adopted to
determine the rates. The rates were calculated for three consecu-
tive years, 2017, 2018, and 2019. Multiple sites were selected
adhering to the National Highway Traffic Safety Administration
(NHTSA) and Department of Transportation, Criteria (2011). This
weighted survey methodology permits selection of observation
sites that are representative of road segments in the state of
Wisconsin.

Data from each observation site collected in a year are saved in
large data sets. All sites throughoutWisconsin are divided into four
strata. Milwaukee metropolitan area and surrounding counties
consist of stratum 1. The rest of the state provided representative
counties to form the sample sites. In the analysis of seatbelt use
rates, descriptive statistics were obtained first, and then statistical
tests were performed on the descriptive statistics between com-
parative groups. Statistical significance results were reported on
those tests. The analyses were done in three levels. First overall
statewide results are calculated. The same analyses were broken
down to stratum 1 versus strata 2, 3, and 4 combined.

The main descriptive statistics on the average rate of seatbelt
use were computed based on the observation of drivers and front
seat passengers who use seatbelts and all drivers and front seat
passengers (regardless of the seatbelt usage). The statistical tests
for significance compared these rates between groups with defin-
ing conditions. One such defining condition is the rate of the male
passenger wearing a seatbelt while a female driver is wearing a
seatbelt versus male passenger wearing a seatbelt while a male
driver is wearing a seatbelt.

2.1. Statistical analyses

Standard procedures to test differences of two proportions were
used throughout this research to determine any significant differ-
ence between comparison groups. The null hypothesis is stated
as the rate of seatbelt usage by front seat passengers as influenced
by gender of driver; the rate of seatbelt usage by front passengers
is not influenced by drivers’ seatbelt use. The alternative hypothe-
sis states that the rate of seatbelt usage by front seat passengers is
higher if drivers use seatbelts.

The following terminology will be followed in this research
(closely adopted from the equations used in Nambisan and
Vasudevan (2007)):

p1 = proportion of overall seatbelt usage (i.e., for all front seat
occupants without regard to seatbelt usage by the driver).
p2 = proportion of front seat occupants using seatbelts when
their drivers use the seatbelt.

Then, a hypothesis of equality of proportions is to be tested
against the 1-sided alternative that p1 < p2. Formally:

Null Hypothesis: H0: p1 � p2 = 0;
Alternative Hypothesis: H1: p1 � p2 < 0.
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The z-statistic based test for the null hypothesis is appropriate
for this test. The test statistic is defined as:

ZOBS ¼
bp2 � bp1

� �� p2 � p1ð Þ
r bp2�bp1

� � ð1Þ

where

bp1 = the sample proportion for overall seatbelt usage (calcu-
lated for all front seat occupants without regard to seatbelt
usage by the driver).

¼ X1=n1 ð2Þ

bp2 = the sample proportion of front seat occupants using seat-
belt when drivers use seatbelt.

¼ X2=n2 ð3Þ

p2 � p1 = hypothetical difference for the test
= 0, since the test is for equal proportions

r bp2�bp1

� � ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibp1 1� bp1

� �
n1

þ bp2 1� bp2

� �
n2

s
ð4Þ

where

X1 = the number of front seat occupants wearing seatbelts (all
occupants without regard to seatbelt usage by the driver).
X2 = the number of front seat occupants wearing seatbelts
(when driver uses seatbelt).
n1 = the total number of front seat occupants in the vehicles
with belts (all occupants regardless to seatbelt usage by the dri-
ver), and
n2 = the total number of front seat occupants in the vehicle
(when driver uses seatbelt).

To test the null hypothesis against the alternative hypothesis,
the observed Z values (ZOBS) were compared with Zcritical values
with desired level of confidence (here 95%). From the standard nor-
mal distribution table, it was found that the 95% confidence level
corresponds to the Zcritical value of 1.645. If ZOBS > Zcritical, the null
hypothesis is rejected. Otherwise, the null hypothesis is not
rejected. By rejecting the null hypothesis and hence, by accepting
the alternative hypothesis, it can be concluded with 95% confi-
dence that the alternative hypothesis is correct.

2.2. Data collection

Data collected during the Wisconsin 2017, 2018, and 2019
National Occupant Protection Use Survey (NOPUS) were analyzed
for this study. Data represents field observations at 240 locations
across the state of Wisconsin within 48 counties accounting for
52% of the primary road segments in the state each of the three
years. All seatbelt use observations were conducted during week-
days and weekends between 7:00 a.m. and 6:00 p.m. The schedule
included rush hour (before 9:30 a.m. and after 3:30 p.m.) and non-
rush hour observations. Data collection was conducted for 60 min-
utes by one observer at each site utilizing iPads to document obser-
vations. Start times were staggered to ensure that a representative
number of weekday/weekend/rush hour/non-rush hour sites were
included each day. All passenger vehicles, including commercial

vehicles weighing less than 10,000 pounds, were eligible for
observation.

2.3. Site selection

The sites for data collection include 240 locations across the
state of Wisconsin. Locations were selected using The Uniform Cri-
teria for State Observational Surveys of Seatbelt Use, used by
NHTSA since 2011 (Criteria, 2011). NHTSA survey guidelines
(NHTSA, 2011) require a state to sample seatbelt use in counties
that comprise at least 85% of the state’s passenger vehicle occupant
fatalities (excluding pedestrian, bicyclist, motorcyclist, moped-
user, and commercial vehicle-related deaths). In addition to cover-
ing over 85% of the state’s occupant fatalities, the selected counties
also contain almost 91% of the state’s population and 89% of its
Vehicle Miles Traveled (VMT).

For this study, counties were divided into four strata regions
representing three road types; interstate highways, other high-
ways, comprised of state trunk highways, and local roads/streets,
with the aim of sampling locations corresponding to where VMT
in the state is occurring. Stratum 1 represents the Milwaukee
Metropolitan Statistical Area as defined by the U.S. Census because
of its disproportionately high concentration of population and
VMT. This area is also of interest to Wisconsin DOT staff because
it has consistently reported the lowest seatbelt usage of any other
measured region in the state, mostly due to consistently low usage
in the region’s large African American community. The other three
Strata are defined by dividing the collective VMT of the remaining
counties into approximate thirds based on previous year’s VMT. As
noted, Stratum 1 contains the census-defined Milwaukee
Metropolitan Area, Stratum 2 contains the counties having the next
largest populations and amounts of VMT per county, and so forth
with Stratum 3 and Stratum 4 having the next downward levels
of populations and VMT per county in the state, respectively. While
it was not possible to ensure that each stratum reported the exact
same level of previous year’s VMT—especially considering that the
strata corresponding to the Milwaukee Metropolitan Area was
predetermined--care was taken to ensure that the VMT of each
stratum was as close as possible from year to year.

2.4. Types of analysis

Seatbelt usage for drivers and passengers are studied separately
in this research. While calculating the rates of usage, gender speci-
fic strata are considered and compared. Rates for both female and
male passengers were found for both female and male drivers.

2.5. Summary of the analyses

As done in the previous research of Nambisan and Vasudevan
(2007), the analyses compared seatbelt usage rates for drivers
and front passenger(s) based on their gender and based on geo-
graphical area (stratum 1 vs. others) as well as analyses of the
aggregated data. The analyses are divided into two major sections,
when drivers use the seatbelts and when drivers do not use seat-
belts. Though the sample size for the latter group is substantially
lower than for the former group, it is imperative to find the average
rate differences between the groups.

Table 1 shows seatbelt usage rates for passengers in the front
seat without regard to the drivers’ use of the seatbelts for each of
the three years considered in this study: 2017, 2018, and 2019.
For each year the table presents information in row wise panels.
The top panel presents seatbelt usage for front seat passengers
only when any passenger was present. The bottom panel presents
the similar rates for all front seat riders, including drivers.
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2.6. Seatbelt usage by passengers based on seatbelt usage by drivers

To test the null hypothesis in different segments of population
across multiple strata, the rates of seatbelt usage of passengers
were estimated based on whether drivers were wearing seatbelts
or not. The data are analyzed based on statewide, stratum 1 and
strata 2–4 geographical area types and by gender.

2.6.1. Statewide
Table 2 presents seatbelt usage rates of passengers only, con-

trasted on different scenarios. The gender of the driver and their
seatbelt situations were contrasted for all three years. For example,
when the driver is a male and wearing a seatbelt, the seatbelt
usage rates for passengers may be different depending on the gen-
der of the passenger. The table also has two sets of columns: the
first set of columns is for drivers using seatbelts, and the second
set of columns is for drivers who do not use seatbelts. Each of these

sets of columns includes columns with data for the number of pas-
sengers using seatbelts, the total number of passengers observed,
and the corresponding percentage using seatbelts.

The influence of drivers’ seatbelt usage on passengers’ usage is
evident from Table 2 following similar techniques used in
Nambisan and Vasudevan (2007). When male drivers wear seat-
belts, the seatbelt usage rates for male front seat passengers for
the three years 2017, 2018, and 2019 are 93.4%, 95.5%, and
94.3%, respectively, with the corresponding usage rates for female
passengers being 97.7%, 96.0%, and 97.7%, respectively. When
female drivers wear seatbelts, the seatbelt usage rates for female
front seat passengers for the three years 2017, 2018, and 2019
are 97.8%, 96.3%, and 97.1%, respectively, with corresponding usage
rates for male passengers being 95.5%, 93.0%, and 96.0%, respec-
tively. Likewise, for those three years, the overall usage rates for
all passengers with male drivers use seatbelts are 96.8%, 95.9%,
and 96.9%, respectively, and for female drivers 96.7%, 94.8%, and

Table 1
Average seatbelt usage rates for front seat passengers (without considering seatbelt usage by drivers).

Area Category Year Year Year

2017 2018 2019

Passengers
with SB

Total #
Passengers

% SB
Usage

Passengers
with SB

Total #
Passengers

% SB
Usage

Passengers
with SB

Total #
Passengers

% SB
Usage

Statewide All Male 1267 1502 84.30% 1771 2008 88.20% 1995 2235 89.26%
All Female 2919 3143 92.90% 3760 4062 92.60% 4327 4601 94.04%
All
Passengers

4186 4645 90.12% 5531 6070 91.12% 6322 6836 92.48%

Stratum 1 All Male 177 209 84.69% 459 505 90.89% 590 644 91.61%
All Female 407 421 96.67% 929 981 94.70% 1196 1249 95.76%
All
Passengers

584 630 92.70% 1388 1486 93.41% 1786 1893 94.35%

Strata 2, 3,
& 4

All Male 1090 1293 84.30% 1312 1503 87.29% 1405 1591 88.31%

All Female 2512 2722 92.29% 2831 3081 91.89% 3131 3352 93.41%
All
Passengers

3602 4015 89.71% 4143 4584 90.38% 4536 4943 91.77%

Table 2
Seatbelt usage rates of passengers based on drivers’ seatbelt usage rates (statewide).

Year Passenger Category Passengers with SB Total # Passengers % Usage Passengers with SB Total # Passengers % Usage

Driver Category

2017 Male Drivers with SB Male Drivers without SB
All Male 584 625 93.44% 19 131 14.50%
All Female 2045 2092 97.75% 54 170 31.76%
All Passengers 2629 2717 96.76% 73 301 24.25%

Female Drivers with SB Female Drivers without SB
All Male 636 666 95.50% 10 58 17.24%
All Female 788 806 97.77% 14 55 25.45%
All Passengers 1424 1472 96.74% 24 113 21.24%

2018 Male Drivers with SB Male Drivers without SB
All Male 846 886 95.49% 27 112 24.11%
All Female 2599 2707 96.01% 53 163 32.52%
All Passengers 3445 3593 95.88% 80 275 29.09%

Female Drivers with SB Female Drivers without SB
All Male 846 910 92.97% 26 66 39.39%
All Female 1027 1066 96.34% 24 61 39.34%
All Passengers 1873 1976 94.79% 50 127 39.37%

2019 Male Drivers with SB Male Drivers without SB
All Male 940 997 94.28% 33 126 26.19%
All Female 3114 3186 97.74% 59 188 31.38%
All Passengers 4054 4183 96.92% 92 314 29.30%

Female Drivers with SB Female Drivers without SB
All Male 979 1025 95.51% 26 67 38.81%
All Female 1117 1150 97.13% 18 53 33.96%
All Passengers 2096 2175 96.37% 44 120 36.67%
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96.4%, respectively. These rates are notably higher than the corre-
sponding values for all passengers when considered without
regard to the drivers’ use of seatbelts (as shown in Table 1). The
seatbelt usage rates of male passengers are much lower (14.5%,
24.1%, and 26.2% respectively for the three years) when male dri-
vers do not use seatbelts. Table 2 also provides similarly detailed
information regarding passengers’ seatbelt usage rates depending
on female drivers’ seatbelt usage. It is interesting to note that seat-
belt use rates for passengers when female drivers do not use seat-
belts is slightly better than that when male drivers do not use
seatbelts. A comparison of the information summarized in Tables
1 and 2, shows that seatbelt usage rates for all categories are higher
when either male or female drivers wear seatbelts compared to the
average seatbelt usage rates shown in Table 1.

2.6.2. Stratum 1
Table 3 shows details of seatbelt usage rates of passengers

when drivers use and do not use seatbelts for stratum 1 for the
years 2017–2019. Its format is identical to that of Table 2. Data
presented in Table 3 show trends very similar to the statewide
usage rates shown in Table 2. For male drivers wearing seatbelts,
seatbelt usage rates for male front seat passengers for the three
years 2017, 2018, and 2019 are 96.1%, 97.9%, and 94.6%, respec-
tively. For female passengers the rates are 99.6%, 98.7%, and
98.8%, respectively, for the three years of study. The overall usage
rates for all passengers, when male drivers use seatbelts, are 98.9%,
98.5%, and 97.7%, respectively, for these years. As in the statewide
analysis, these rates are notably higher than the corresponding val-
ues listed in Table 1 (for all passengers when considered without
regard to drivers’ usage of seatbelts). Seatbelt usage rates of male
passengers are much lower (7.1%, 20.8%, and 19.2%, respectively,
for the three years) when the male drivers do not use seatbelts.
Similar results are also evident in Table 3 regarding passenger seat-
belt usage rates depending on female drivers’ seatbelt usage.

2.6.3. Strata 2, 3, & 4
Table 4 shows details of seatbelt usage rates of passengers

when drivers use and do not use seatbelts for combined strata 2,
3, and 4 for the years 2017–2019. Its format is identical to that
of Tables 2 and 3. Data presented in Table 4 show trends very sim-
ilar to the statewide usage rates shown in Tables 2 and 3. For male
drivers wearing seatbelts, the seatbelt usage rates for male front
seat passengers for the three years 2017, 2018, and 2019 are
93.0%, 94.6%, and 94.1%, respectively. And for female passengers
the rates are 97.5%, 95.2%, and 97.3%, respectively, for the three
years of study. The overall usage rates for all passengers when
male drivers use seatbelts are 96.4%, 95.1%, and 96.6%, respectively
for these years. As in the statewide analysis, these rates are notably
higher than the corresponding values listed in Table 1 (for all pas-
sengers when considered without regard to drivers’ usage of seat-
belts). Seatbelt usage rates of male passengers are much lower
(15.4%, 25.0%, and 28.0%, respectively, for the three years) when
the male drivers do not use seatbelts. Similar results are also evi-
dent in Table 4 regarding passengers’ seatbelt usage rates depend-
ing on female drivers’ seatbelt usage habits.

2.7. Statistical analysis

The descriptive analyses suggest that the seatbelt usage rates of
passengers differ depending on whether the driver uses a seatbelt.
The statistical significance of the differences in seatbelt use rates is
summarized in this section. The methods used for analyses were
described in the methodology section. For Eqs. (1) and (2), values
of X1 and n1 are obtained from Table 1. Values for X2 and n2 are
obtained from Tables 2–4, as appropriate. The Z values are used
to test the statistical significance at the 95% confidence level
(Nambisan & Vasudevan, 2007).

Tables 5–7 summarize results from the statistical analysis of
comparisons of seatbelt usage rates of passengers when drivers
use seatbelts to seatbelt usage rates of passengers without regard
to driver’s use of the seatbelt for statewide data, stratum 1 and

Table 3
Seatbelt usage rates of passengers based on drivers’ seatbelt usage rates (stratum 1).

Year Passenger Category Passengers with SB Total # Passengers % Usage Passengers with SB Total # Passengers % Usage

Driver Category

2017 Male Drivers with SB Male Drivers without SB
All Male 75 78 96.15% 1 14 7.14%
All Female 279 280 99.64% 2 9 22.22%
All Passengers 354 358 98.88% 3 23 13.04%

Female Drivers with SB Female Drivers without SB
All Male 99 104 95.19% . . .
All Female 124 125 99.20% 1 6 16.67%
All Passengers 223 229 97.38% 1 17 5.88%

2018 Male Drivers with SB Male Drivers without SB
All Male 234 239 97.91% 5 24 20.83%
All Female 609 617 98.70% 7 34 20.59%
All Passengers 843 856 98.48% 12 58 20.69%

Female Drivers with SB Female Drivers without SB
All Male 215 227 94.71% 5 15 33.33%
All Female 305 313 97.44% 5 14 35.71%
All Passengers 520 540 96.30% 10 29 34.48%

2019 Male Drivers with SB Male Drivers without SB
All Male 283 299 94.65% 5 26 19.23%
All Female 885 896 98.77% 12 33 36.36%
All Passengers 1168 1195 97.74% 17 59 28.81%

Female Drivers with SB Female Drivers without SB
All Male 291 297 97.98% 6 17 35.29%
All Female 295 303 97.36% 2 15 13.33%
All Passengers 586 600 97.67% 8 32 25.00%
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strata 2–4 respectively. Each of these tables has two sets of rows
for each year: the first set of rows is for the male drivers and the
second set of rows for the female drivers. Within each set of rows,
the information is provided based on the gender of the passengers.

3. Results and discussion

Tables 5–10 show that the seatbelt usage rates of passengers in
the front seat change significantly with driver wearing of a seat-
belt. The increase in rates are prevalent among both male and
female passengers when driver’s use the seatbelt as compared to
the case when the driver’s use of seatbelt is not considered. These
results are consistent over all three study years (Tables 5–7). Like-
wise, seatbelt usage rates of passengers are significantly lower
when the drivers do not use seatbelts (Tables 8–10). These results
are consistent across the years, as well as whether the analyses are

aggregated statewide or shown segregated for the strata
categories.

Data from Tables 2–4 show that the seatbelt usage rates are, in
general, higher for female passengers than for male passengers for
all combination of drivers (male/female, with/without seatbelts).
The tables also illustrate that seatbelt usage rates of male passen-
gers as well as female passengers are higher while traveling with
female drivers who use seatbelts compared to traveling with male
drivers who use seatbelts. For drivers who do not use seatbelts, in
general, male passengers showed a lower rate of seatbelt usage
when compared to female passengers.

4. Conclusions and practical applications

The findings presented here for Wisconsin suggest females are
more likely to wear seatbelts than males. That result is consistent

Table 4
Seatbelt usage rates of passengers based on drivers’ seatbelt usage rates (strata 2, 3, & 4).

Year Passenger Category Passengers with SB Total # Passengers % Usage Passengers with SB Total # Passengers % Usage

Driver Category

2017 Male Drivers with SB Male Drivers without SB
All Male 509 547 93.05% 18 117 15.39%
All Female 1766 1812 97.46% 52 161 32.30%
All Passengers 2275 2359 96.44% 70 278 25.18%

Female Drivers with SB Female Drivers without SB
All Male 537 562 95.55% 10 47 21.28%
All Female 664 681 97.50% 13 49 26.53%
All Passengers 1201 1243 96.62% 23 96 23.96%

2018 Male Drivers with SB Male Drivers without SB
All Male 612 647 94.59% 22 88 25.00%
All Female 1990 2090 95.22% 46 129 35.66%
All Passengers 2602 2737 95.07% 68 217 31.34%

Female Drivers with SB Female Drivers without SB
All Male 631 683 92.39% 21 51 41.18%
All Female 722 753 95.88% 19 47 40.43%
All Passengers 1353 1436 94.22% 40 98 40.82%

2019 Male Drivers with SB Male Drivers without SB
All Male 657 698 94.13% 28 100 28.00%
All Female 2229 2290 97.34% 47 155 30.32%
All Passengers 2886 2988 96.59% 75 255 29.41%

Female Drivers with SB Female Drivers without SB
All Male 688 728 94.51% 20 50 40.00%
All Female 822 847 97.05% 16 38 42.11%
All Passengers 1510 1575 95.87% 36 88 40.91%

Table 5
Seatbelt usage rates of passengers when drivers use seatbelts (statewide).

Year Driver Category Passenger Category Passenger with SB Total # Passengers % Usage Z-Value Statistically Significant?

2017 Male with SB All Male 584 625 93.44% 7.83 Yes
All Female 2045 2092 97.75% 7.87 Yes
All Passengers 2629 2717 96.76% 11.18 Yes

Female with SB All Male 636 666 95.50% 4.45 Yes
All Female 788 806 97.77% 4.58 Yes
All Passengers 1424 1472 96.74% 6.36 Yes

2018 Male with SB All Male 846 886 95.49% 6.46 Yes
All Female 2599 2707 96.01% 6.01 Yes
All Passengers 3445 3593 95.88% 8.63 Yes

Female with SB All Male 846 910 92.97% 2.97 Yes
All Female 1027 1066 96.34% 3.31 Yes
All Passengers 1873 1976 94.79% 4.41 Yes

2019 Male with SB All Male 940 997 94.28% 6.22 Yes
All Female 3114 3186 97.74% 7.78 Yes
All Passengers 4054 4183 96.92% 10.02 Yes

Female with SB All Male 979 1025 95.51% 3.29 Yes
All Female 1117 1150 97.13% 3.43 Yes
All Passengers 2096 2175 96.37% 4.75 Yes
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Table 6
Seatbelt usage rates of passengers when drivers use seatbelts (stratum 1).

Year Driver Category Passenger Category Passenger with SB Total # Passengers % Usage Z-Value Statistically Significant?

2017 Male with SB All Male 75 78 96.15% 3.47 Yes
All Female 279 280 99.64% 3.15 Yes
All Passengers 354 358 98.88% 5.26 Yes

Female with SB All Male 99 104 95.19% 3.23 Yes
All Female 124 125 99.20% 2.14 Yes
All Passengers 223 229 97.38% 3.16 Yes

2018 Male with SB All Male 234 239 97.91% 4.44 Yes
All Female 609 617 98.70% 4.72 Yes
All Passengers 843 856 98.48% 6.61 Yes

Female with SB All Male 215 227 94.71% 1.95 Yes
All Female 305 313 97.44% 2.40 Yes
All Passengers 520 540 96.30% 2.79 Yes

2019 Male with SB All Male 283 299 94.65% 1.79 Yes
All Female 885 896 98.77% 4.44 Yes
All Passengers 1168 1195 97.74% 4.97 Yes

Female with SB All Male 291 297 97.98% 4.67 Yes
All Female 295 303 97.36% 1.48 No
All Passengers 586 600 97.67% 4.08 Yes

Table 7
Seatbelt usage rates of passengers when drivers use seatbelts (strata 2, 3, & 4).

Year Driver Category Passenger Category Passenger with SB Total # Passengers % Usage Z-Value Statistically Significant?

2017 Male with SB All Male 509 547 93.05% 5.89 Yes
All Female 1766 1812 97.46% 8.20 Yes
All Passengers 2275 2359 96.44% 10.98 Yes

Female with SB All Male 537 562 95.55% 8.43 Yes
All Female 664 681 97.50% 6.63 Yes
All Passengers 1201 1243 96.62% 9.84 Yes

2018 Male with SB All Male 612 647 94.59% 5.90 Yes
All Female 1990 2090 95.22% 4.91 Yes
All Passengers 2602 2737 95.07% 7.80 Yes

Female with SB All Male 631 683 92.39% 3.83 Yes
All Female 722 753 95.88% 4.57 Yes
All Passengers 1353 1436 94.22% 5.09 Yes

2019 Male with SB All Male 657 698 94.13% 4.85 Yes
All Female 2229 2290 97.34% 7.21 Yes
All Passengers 2886 2988 96.59% 9.40 Yes

Female with SB All Male 688 728 94.51% 5.31 Yes
All Female 822 847 97.05% 5.04 Yes
All Passengers 1510 1575 95.87% 6.46 Yes

Table 8
Seatbelt usage rates of passengers when drivers do not use seatbelts (statewide).

Year Driver Category Passenger Category Passenger with SB Total # Passengers % Usage Z-Value Statistically Significant?

2017 Male without SB All Male 19 131 14.50% �19.15 Yes
All Female 54 170 31.76% �16.89 Yes
All Passengers 73 301 24.25% �25.75 Yes

Female without SB All Male 10 58 17.24% �14.14 Yes
All Female 14 55 25.45% �11.41 Yes
All Passengers 24 113 21.24% �17.93 Yes

2018 Male without SB All Male 27 112 24.11% �15.14 Yes
All Female 53 163 32.52% �16.14 Yes
All Passengers 80 275 29.09% �22.29 Yes

Female without SB All Male 26 66 39.39% �8.15 Yes
All Female 24 61 39.34% �8.55 Yes
All Passengers 50 127 39.37% �11.86 Yes

2019 Male without SB All Male 33 126 26.19% �14.90 Yes
All Female 59 188 31.38% �18.35 Yes
All Passengers 92 314 29.30% �24.15 Yes

Female without SB All Male 26 67 38.81% �8.87 Yes
All Female 18 53 33.96% �9.23 Yes
All Passengers 44 120 36.67% �12.77 Yes
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with prior research (Carter et al., 2014; Enriquez & Pickrell, 2019;
Richard et al., 2019; Wells et al., 2002).

Two prior studies analyzed the question of gender and the
effects of driver seatbelt usage on passenger usage. Both Boakye
et al. (2019) and Nambisan and Vasudevan (2007) found passen-
gers were significantly more likely to were seatbelts if drivers
did so, a result replicated here.

However, Nambisan and Vasudevan (2007) found no gender
differences in terms of whether the driver and passenger were both
male, both female, or of mixed gender, while Boakye et al. (2019)
found passenger seatbelt use was significantly lower for same-
sex drivers. The results presented here suggest that gender plays
a stronger role. First, when the driver wears a seatbelt, female pas-
sengers are more likely than males to wear a seatbelt regardless of
driver gender (see Tables 5–7). Second, when drivers do not wear
seatbelts, male passengers are more likely to wear seatbelts when
the driver is a female (see Tables 8–10).

Several studies indicate that effective and well-planned media
and high-visibility enforcement (HVE) campaigns such as Click it
or Ticket (CIOT) can have a significant impact on increasing seat-

belt usage rates (Goodwin, 2015; Manlove, Stanley, & Peck, 2015;
National Highway Traffic Safety Administration, 2009; Nichols,
Chaffe, Solomon, & Tison, 2016; Solomon, Compton, & Preusser,
2004; Thomas, Cook, & Olson, 2011; Vasudevan, Nambisan,
Singh, & Pearl, 2009; Williams, Wells, McCartt, & Preusser, 2000).
Online social media platforms provide an effective means to target
populations with the use of participatory social media using influ-
encers to challenge followers toward modifying behavior (Drake,
Zhang, Applewhite, Fowler, & Holcomb, 2017). Hezaveh and
Cherry (2019) and Noar (2006) also demonstrated successful use
of safety campaigns design to reach targeted geographic areas
and groups with lower seatbelt usage rates.

An implication of this research is that future HVE campaigns
could be targeted towards males. The reasons for doing so are
two-fold. First, males are less likely to wear seatbelts generally,
which justifies that approach. Second, males as passengers are less
likely to wear seatbelts in the presence of male drivers, and tar-
geted campaigns could reduce this disparity.

The Wisconsin Strategic Highway Safety Plan (Ross & Pabst,
2017) has identified increased seatbelt use as a high priority issue.

Table 9
Seatbelt usage rates of passengers when drivers do not use seatbelts (stratum 1).

Year Driver Category Passenger Category Passenger with SB Total # Passengers % Usage Z-Value Statistically Significant?

2017 Male without SB All Male 1 14 7.14% �10.59 Yes
All Female 2 9 22.22% �5.36 Yes
All Passengers 3 23 13.04% �11.22 Yes

Female without SB All Male . .
All Female 1 6 16.67% �5.25 Yes
All Passengers 1 17 5.88% �14.97 Yes

2018 Male without SB All Male 5 24 20.83% �8.35 Yes
All Female 7 34 20.59% �10.63 Yes
All Passengers 12 58 20.69% �13.57 Yes

Female without SB All Male 5 15 33.33% �4.70 Yes
All Female 5 14 35.71% �4.60 Yes
All Passengers 10 29 34.48% �6.66 Yes

2019 Male without SB All Male 5 26 19.23% �9.27 Yes
All Female 12 33 36.36% �7.08 Yes
All Passengers 17 59 28.81% �11.07 Yes

Female without SB All Male 6 17 35.29% �4.84 Yes
All Female 2 15 13.33% �9.37 Yes
All Passengers 8 32 25.00% �9.04 Yes

Table 10
Seatbelt usage rates of passengers when drivers do not use seatbelts (strata 2, 3, & 4).

Year Driver Category Passenger Category Passenger with SB Total # Passengers % Usage Z-Value Statistically Significant?

2017 Male without SB All Male 18 117 15.38% �19.77 Yes
All Female 52 161 32.30% �16.12 Yes
All Passengers 70 278 25.18% �24.38 Yes

Female without SB All Male 10 47 21.28% �10.41 Yes
All Female 13 49 26.53% �10.39 Yes
All Passengers 23 96 23.96% �15.00 Yes

2018 Male without SB All Male 22 88 25.00% �13.27 Yes
All Female 46 129 35.66% �13.24 Yes
All Passengers 68 217 31.34% �18.57 Yes

Female without SB All Male 21 51 41.18% �6.64 Yes
All Female 19 47 40.43% �7.17 Yes
All Passengers 40 98 40.82% �9.94 Yes

2019 Male without SB All Male 28 100 28.00% �13.22 Yes
All Female 47 155 30.32% �16.97 Yes
All Passengers 75 255 29.41% �21.65 Yes

Female without SB All Male 20 50 40.00% �6.93 Yes
All Female 16 38 42.11% �6.40 Yes
All Passengers 36 88 40.91% �9.68 Yes
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The findings in this study will allow for Wisconsin statutorily
required Traffic Safety Commissions to utilize a data driven
approach for future resource allocation dedicated to improve pub-
lic outreach and awareness through well-planned media and HVE
campaigns such as CIOT with the goal of increased seatbelt use.
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Background: Many healthcare providers do not consistently implement recommendations contained in
clinical guidelines on mild traumatic brain injury (mTBI). As such, the Centers for Disease Control and
Prevention (CDC) created the HEADS UP to Healthcare Providers online training to promote uptake of five
key recommendations in the CDC Pediatric mTBI Guideline.Methods: Using data frommodules in the CDC
HEADS UP to Healthcare Providers online training, healthcare providers’ self-reported knowledge and
self-efficacy prior to and immediately following completion of the training was analyzed. Results:
Improvements for 8 out of the 10 knowledge questions had a high level of practical significance. The
knowledge question with the highest level of practical significance pre- to post-test improvement was
for the key guideline recommendation on neuroimaging (pre-test correct: 70.2%; post-test correct:
87.8%; (p < 0.0001, Cohen’s g = 0.39). Four out of the six questions had a self-efficacy level increase of a
high level of practical significance (r > 0.50) between the pre- and post-tests. The self-efficacy question
with pre- to post-test improvement with the highest level of practical significance was ‘‘I am confident
in my ability to manage the return to sports progression for my patients” (p < 0.001; r = 0.54).
Conclusions: The HEADS UP to Healthcare Providers online training led to significant improvements in
knowledge and self-efficacy related to mTBI diagnosis and management. Expanded use of this training
among healthcare providers who commonly provide care for pediatric patients with mTBI may be ben-
eficial. Practical Applications: This study highlights several factors guideline developers may take into con-
sideration when creating an implementation tool, such as using health behavior theories, working with
partners and key stakeholders, and focusing on digital-based tools.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

To provide comprehensive guidance to healthcare providers
who care for pediatric patients with mild traumatic brain injury
(mTBI), the Centers for Disease Control and Prevention (CDC) pub-
lished an evidence-based guideline on mTBI diagnosis, prognosis,
management, and treatment in 2018 (Lumba-Brown et al., 2018).
As demonstrated in the guideline, the science and clinical recom-
mendations regarding the diagnosis and management of pediatric
patients with mTBI have evolved substantially over the last two
decades. Despite this progress, previous studies have found that
many healthcare providers do not consistently implement recom-
mendations contained in clinical guidelines on mTBI (Carl &
Kinsella, 2014; Greene, Kernic, Vavilala, & Rivara, 2014; Melnick
et al., 2012; Stache, Howell, & Meehan, 2016).

Challenges with implementation of evidence-based guidelines
into clinical practice are not unique to mTBI. While a plethora of
clinical guidelines for a variety of health topics are available to
healthcare providers, many patients receive treatment that is not
based on scientific evidence (Institute of Medicine Committee on
Standards for Developing Trustworthy Clinical Practice, 2011). Sev-
eral barriers to guideline implementation by healthcare providers
have been identified (Fischer, Lange, Klose, Greiner, & Kraemer,
2016; Institute of Medicine Committee on Standards for
Developing Trustworthy Clinical Practice, 2011). Many of these
barriers are believed to stem from an interaction between individ-
ual characteristics of the guideline (e.g., clarity, specificity, strength
of the evidence), perceptions of healthcare providers (e.g., self-
efficacy, perceived importance of the recommendations, relevance
to practice) and practice environment or context-related charac-
teristics (e.g., inpatient, ambulatory, long-term care setting)
(Institute of Medicine Committee on Standards for Developing
Trustworthy Clinical Practice, 2011).
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Reaching healthcare providers with information on mTBI is an
ongoing, yet critical challenge. CDC created a set of implementa-
tion tools (e.g., a checklist for healthcare providers and discharge
instructions for patients and their families) to promote uptake of
its recent clinical practice guideline on pediatric mTBI. An example
of one such implementation tool is the HEADS UP to Healthcare
Providers online training. Developed in partnership with the Amer-
ican Academy of Pediatrics (AAP), the training provides an over-
view of the evidence-based recommendations in the CDC
Pediatric mTBI Guideline, as well as practical strategies to integrate
these recommendations into clinical practice. The training pro-
vides a special emphasis on five key recommendations in the
CDC guideline: when to use neuroimaging for pediatric patients
with mTBI; use of validated, age-appropriate symptom scales to
diagnose mTBI; the role of certain risk factors on prolonged recov-
ery; instructing patients on return to activity customized to their
symptoms; and how best to manage a patient’s return to non-
sports activities soon after the injury (Table 1).

Development of the HEADS UP to Healthcare Providers training
was guided by constructs of the Health Belief Model (HBM)
(Becker, 1974). First developed in the 1950s, the main assumption
of the HBM is that an individual’s beliefs (e.g., perceived risk and
susceptibility to a particular condition), coupled with their percep-
tion of the benefits of a specific action, serve as drivers for behavior
adoption or change. In the 1970s, the HBM was expanded to
include a construct on self-efficacy, which is a person’s perceived
ability (efficacy expectations) to perform an action or task
(Bandura, 1977). The use of self-efficacy as a valuable predictor
of behavior change in the HBM, and other health theories, is
well-documented in the literature (Leventhal, Meyer, & Nerenz,
1980; So, 2013). Moreover, self-efficacy is linked to and considered
to be a precursor for behavior change related to guideline imple-
mentation (Fischer et al., 2016).

Thus, the purpose of this study is to assess the effectiveness of
the HEADS UP to Healthcare Providers online training on health-
care providers’ mTBI knowledge and self-efficacy related to the five
key recommendations in the CDC Pediatric mTBI Guideline. Find-
ings can be used to inform the development of additional imple-
mentation tools for the CDC Pediatric mTBI Guideline, as well as
tools for guidelines that cover other health topics.

2. Methods

This study analyzed data obtained from pre- and post-test mod-
ules contained in the HEADS UP to Healthcare Providers training.
First released in 2011, the training was revised and re-launched
in 2018 to include a specific focus on the recommendations in
the CDC Pediatric mTBI Guideline. The primary audience of the
training is healthcare providers who care for pediatric patients
with mTBI (e.g., pediatricians, family practice providers); however,
the training is accessible and available to anyone at no cost from
the CDC website. The pre-test module contains 11 questions on
participant demographics and experience (e.g., provider type, prac-
tice location [based on zip code], and use of mTBI assessment
tools), 10 knowledge questions, and 6 questions focused on self-
efficacy related to diagnosis and management of pediatric mTBI.
In the one-year time period that we analyzed, 19,208 individuals
took the training. However, 5,493 people were dropped from the
analysis due missing provider type, which was a key part of our
inclusion criteria (i.e., desire to ensure that these were actual
healthcare providers) and an additional 3,815 people were
dropped due to failure to take any part of the post-test. This left
us with 9,900 individuals with complete data. Individuals who
did not self-identify in the pre-test module as a physician, nurse
practitioner, or physician assistant were then excluded from the

analysis (n = 7,795). The final sample included 2,105 healthcare
providers: 781 physicians, 1,078 nurse practitioners, and 246
physician assistants. These groups were selected for the analysis
as they are the key audiences for the CDC Pediatric mTBI Guideline.

Questions in the post-test module were identical to those in the
pre-test; the sole exception being that questions on demographics
were not included in the post-test module. The knowledge ques-
tions in the test modules were derived from and aligned to the five
key recommendations in the CDC Pediatric mTBI Guideline
(Table 1). Responses to the knowledge questions were re-coded
for analysis such that correct responses = 1 and incorrect
responses = 0. The self-efficacy questions were created to assess
healthcare providers’ confidence related to diagnosis and manage-
ment of pediatric mTBI. The self-efficacy questions were each mea-
sured on a 5-point Likert scale ranging from ‘‘strongly disagree” to
‘‘strongly agree.” Respondents received 1 to 5 points for each item,
with higher scores indicating a greater level of agreement with
each statement. Responses were condensed for presentation into
three categories: disagree/strongly disagree, neither agree nor dis-
agree, and strongly agree/agree. In addition, healthcare providers’
knowledge and self-efficacy were analyzed using a scale from 10
pre-test knowledge questions and 6 pre-test self-efficacy ques-
tions. CDC determined that data collection was not subject to Insti-
tutional Review as the data were collected as part of the regular
function of the training and designed for training improvement
and evaluation.

2.1. Data analysis

Descriptive statistics for study variables were computed using
the sample of healthcare providers who completed both the pre-
and post-test between January 1 and December 31, 2019. McNe-
mar’s tests were computed to detect statistically significant differ-
ences between responses to the pre- and post-test knowledge
questions, while Wilcoxon signed rank tests for paired observa-
tions were used to compare pre- and post-test self-efficacy ques-
tions. Medians were reported for the self-efficacy questions given
the ordinal nature of the data. SAS version 9.4 (http://www.sas.-
com) and IBM SPSS were used to compute all statistics.

Effect sizes were computed for each McNemar’s and Wilcoxon
signed rank test. Cohen’s g was computed for each McNemar’s test;
a g of less than 0.15 is considered to have a small effect size, a g
between 0.15 and 0.25 has a medium effect size, and a g of 0.25
or greater has a large effect size (Cohen, 1988). Effect sizes (r) were
also computed for each Wilcoxon signed rank test using the Z-
score and interpreted in accordance with Cohen (1988). An r of
0.1 represents a small effect size, an r of 0.3 represents a medium
effect size and an r of 0.5 represents a large effect size (Cohen,
1988). Medium and large effects were considered to indicate a
practical or substantive change (‘‘practical significance”) between
the pre-test and post-test. The number of missing data was negli-
gible for the knowledge questions; between 0 and 16 (0.0–0.8%).
The number of missing data was higher for the self-efficacy ques-
tions, ranging from 0 to 165 (0.0–7.8%). An internal analysis
demonstrated that those with missing data were not significantly
different than those with complete data.

3. Results

Most healthcare providers (65.4%) had worked 5 years or fewer
in their profession, and roughly half (55.6%), evaluated a pediatric
patient for a suspected mTBI in the 12 months preceding adminis-
tration of the survey (Table 2). When asked how often they adhere
to current evidence-based recommendations on mTBI related to
decision and assessment tools and discharge instructions, 41.8%
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Table 1
Knowledge questions contained in the Centers for Disease Control and Prevention’s HEADS UP to Healthcare Providers online training pre- and post-test modules and their
alignment with the five key recommendations in the CDC Pediatric Mild Traumatic Brain Injury (mTBI) Guideline.

Five Key Recommendations in the CDC Pediatric mTBI
Guideline

Knowledge questions contained in the HEADS UP to Healthcare Providers pre- and post-test modules

1. Do not routinely image patients to diagnose mTBI. � Which indications should prompt admission to a hospital for a patient with mTBI?
A. Any signs of intracranial injury that require monitoring and repeat neurological exams.
B. Fluctuating or deteriorating neurological or cognitive symptoms.
C. Patient complains of trouble concentrating and feeling fatigued.
D. Both A and B.
E. All of the above.

� A healthcare provider should order a head CT scan for patients with suspected mTBI:
A. In all cases.
B. If indicated by a validated decision tool.
C. When requested by the patient’s parents.
D. Both B and C.
E. Never.

2. Use validated, age-appropriate symptom scales to diag-
nose mTBI.

� A 14-year old patient hit her head while playing soccer. She presents with a headache and says
she ‘‘just doesn’t feel right.” What is the appropriate course of action?

A. Conduct a symptom assessment, and if she receives an acceptable score, provide approval for
return to sports.

B. Order a CT scan to evaluate for intracranial injury.
C. Assess her symptoms and concussion history and require that she be observed at home

for 24 to 48 hours for signs of deteriorating neurological function.
D. Set a date no sooner than 14 days from today for her to return to play if her symptoms have

lasted more than 30 minutes; 7 days if they lasted less than 30 minutes.
� Which of the following is TRUE regarding validated mTBI symptom rating scales:
A. They can be used as the sole diagnostic criteria.
B. Only computer-based assessment scales are validated.
C. They should assess changes from a patient’s usual or baseline symptom presentation.
D. Both B and C are true.
E. All of the above are true.

3. Assess evidence-based risk factors for prolonged
recovery.

� Which of the following factors are associated with a prolonged recovery from an mTBI?
A. Neurological or psychiatric disorder.
B. Higher cognitive ability.
C. Older age (older children/adolescents).
D. Both A and C.
E. All of the above.

� A healthcare provider should refer a patient for further evaluation by a specialist when:
A. Problems with attention, memory and learning, response speed, and other cognitive impair-

ments interfere with school.
B. The patient experiences ongoing headaches 2 to 3 days after the injury.
C. Sleep problems emerge or continue despite the patient engaging in appropriate sleep hygiene

measures.
D. Both A and C.
E. All the above.

4. Provide patients with instructions on return to activity
customized to their symptoms.

� What happens when an athlete’s symptoms return after they’ve initiated a step-wise return to
play progression?

A. The athlete should progress to the next level so long as they do not lose consciousness, vomit
or have problems with balance.

B. The athlete should drop back to the previous level at which they were asymptomatic and
try to move forward only after a 24-hour period of rest has passed and they are again
asymptomatic.

C. If they are on Step 1–3, the athlete should repeat the step-wise process, starting at Step 1. If
they are on Step 4 – 5, they should stay on the same step another day.

D. The athlete should rest for 10 to 14 days.
� A 6-year-old boy diagnosed with mTBI complains of continuing headaches one week after the

injury, but no other neurological symptoms. What is the appropriate action to manage his
headaches?

A. Refer him to neurology for baseline neurocognitive testing.
B. Recommend over-the-counter analgesics.
C. Recommend complete (‘‘strict”) physical and cognitive rest until he is asymptomatic.
D. Both B and C.
E. None of the above.

5. Counsel patients to return gradually to non-sports
activities after no more than 2–3 days of rest.

� Prior to discharging a patient from the ED or your office, it is important to counsel patients and
their parents that:

A. Children are allowed to return to sports activities before school if they feel well enough.
B. Most children will experience a prolonged recovery.
C. Within a few weeks, the patient can begin non-strenuous activities that do not exacerbate

symptoms.
D. They should monitor for signs of deteriorating neurological function.
E. All of the above.

� When discharging a patient with mTBI, you should counsel patients and their parents to:
A. Rest cognitively and physically for one to two weeks until they no longer experience

symptoms.
B. Give them approval to return to sports if their symptoms aren’t severe.
C. Following one to two days of rest, gradually begin return to non-sports activity as long as

symptoms do not worsen.
D. None of the above.
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reported using decisions tools, 42.3% reported using standardized
assessments, and 62.4% reported providing written discharge
instructions ‘‘often or very often.” To learn about clinical practice
recommendations, most healthcare providers preferred seeking
information from websites (e.g., UpToDate and Medscape)
(78.6%), viewing presentations from experts (51.5%), and/or
attending medical conferences (50.7%).

The percentage of correct responses for each of the knowledge
questions increased significantly between the pre- and post-tests
(Table 3). Improvements for 8 out of the 10 knowledge questions
had a high level of practical significance. Of these, the questions
with pre- to post-test improvement with the highest level of prac-
tical significance was for the key guideline recommendation on
neuroimaging (‘‘A healthcare provider should order a head com-
puterized tomography (CT) scan for patients with suspected
mTBI”) (pre-test correct: 70.2%; post-test correct: 87.8%;
p < 0.0001, Cohen’s g = 0.39). Other knowledge questions that
demonstrated improvements with a high level of practical signifi-
cance included: ‘‘A 14-year old patient hit her head while playing
soccer. She presents with a headache and says she ‘just doesn’t feel
right.’ What is the appropriate course of action?” (pre-test correct:
84.0%; post-test correct: 94.8%; p < 0.0001, Cohen’s g = 0.36);
‘‘What happens when an athlete’s symptoms return after they’ve
initiated a step-wise return to play progression?” (pre-test correct:
83.5%; post-test correct: 95.3%; p < 0.0001, Cohen’s g = 0.36); and,
‘‘A 6-year-old boy diagnosed with mTBI complains of continuing
headaches one week after the injury, but no other neurological
symptoms. What is the appropriate action to manage his head-
aches?” (pre-test correct: 30.5%; post-test correct: 50.0%;
p < 0.0001, Cohen’s g = 0.34). The two questions with improve-
ments in knowledge with low and medium levels of significance
included: ‘‘Which of the following is TRUE regarding validated
mTBI symptom rating scales?”; pre-test correct: 74.9%; post-test
correct: 77.8% (p < 0.01, Cohen’s g = 0.07) and ‘‘Which indications
should prompt admission to a hospital for a patient with mTBI?”;
pre-test correct: 76.0%; post-test correct: 83.4% (p < 0.0001,
Cohen’s g = 0.19).

The level of self-efficacy measured for each of the six questions
in the post-test demonstrated statistically significant improve-
ments as compared to the pre-test (Table 4). All six questions
had a self-efficacy level increase of a high level of practical signif-
icance (r > 0.50) between the pre- and post-tests. These questions
were: ‘‘I am confident in my ability to diagnose an mTBI”
(p < 0.001; r = 0.62), ‘‘I am confident in my ability to treat mTBI
symptoms” (p < 0.001; r = 0.63), ‘‘I am confident in my ability to
manage the return to sports progression for my patients”
(p < 0.001; r = 0.63), ‘‘I am confident in my ability to manage return
to school for my patients” (p < 0.001; r = 0.63).‘‘I am confident in
my ability to identify patients who should be referred for evalua-
tion by an mTBI specialist” (p < 0.001; r = 0.59), and ‘‘I am confident
in my ability to communicate with patients about mTBI prevention
strategies” (p < 0.001; r = 0.54).

4. Discussion

This study examined the effectiveness of the HEADS UP to
Healthcare Provider online training on improving healthcare provi-
ders’ mTBI knowledge and self-efficacy related to the five key rec-
ommendations in the CDC Pediatric mTBI Guideline. Healthcare
providers who completed the HEADS UP to Healthcare Providers
online training not only demonstrated significant improvements
in knowledge but also reported improved self-efficacy related to
mTBI diagnosis and management. These findings suggest that the
HEADS UP to Healthcare Providers online training may be an effec-
tive tool to support implementation of the CDC Pediatric mTBI

Guideline. Expanded use among healthcare providers who care
for pediatric patients with mTBI may be beneficial.

More than 19,000 people accessed the HEADS UP to Healthcare
Providers online training during the study period. High use of this
online training may be attributed to mTBI and concussion training
requirements instituted by some health organizations, schools, and
states, as well as the inclusion of continuing education credits
available through AAP upon its completion (Fischer et al., 2016).
Prior research suggests that continuing education opportunities
and online training for healthcare providers on concussion is asso-
ciated with improvements in clinical practice (Babul, Turcotte,
Lambert, Hadly, & Sadler, 2020; Broshek, Samples, Beard, &
Goodkin, 2014). An online training approach was used for the
HEADS UP to Healthcare Providers training as it is a cost-
effective approach that allowed organizations that require the
training to disseminate it widely and provide flexibility for where
(e.g., home or place of work) and when (during or outside of prac-
tice hours) a healthcare provider could complete their training
requirement. As the use of online trainings to educate healthcare
providers by CDC and other organizations have increased in popu-
larity, evaluation of the effectiveness of this educational approach
is critical. At least two systematic reviews concluded that training
healthcare providers through online trainings in place of non-
computer-based trainings (e.g., in-person presentations, lectures,
and workshops) is equally effective in improving healthcare provi-
ders’ knowledge and clinical behaviors (Cook et al., 2008;
Richmond, Copsey, Hall, Davies, & Lamb, 2017). These findings sug-
gest that health educators may consider the development of an
online training as one component of a comprehensive approach
for guideline implementation.

Healthcare providers with knowledge of and a high self-efficacy
related to clinical recommendations may be more likely to adopt
and adhere to guidelines (Fischer et al., 2016). Consistent with
increases in self-efficacy related to mTBI diagnosis and manage-
ment, some of the largest improvements in knowledge between
pre- and post-tests were observed for the questions aligned with
the CDC Pediatric mTBI Guideline recommendations on diagnostic
use of neuroimaging and managing a patient’s return to activity.
Changing healthcare provider behaviors around CT scans for mTBI
is an ongoing challenge (Halaweish, Riebe-Rodgers, Randall, &
Ehrlich, 2018). Decreasing routine use of CT scans for patients with
mTBI may help reduce adverse health outcomes related to radia-
tion exposure (Mannix, Meehan, Monuteaux, & Bachur, 2012;
Stanley et al., 2014); up to 35% of CT scans conducted in the emer-
gency department for patients with mTBI may not be warranted
based on clinical guidance (Melnick et al., 2012). While some clin-
ical recommendations have been consistent for numerous years
(such as that on neuroimaging), the CDC Pediatric mTBI Guideline
recommendation of a gradual return to non-sports activities repre-
sents a shift in clinical care (Lumba-Brown et al., 2018). Previous
guidance recommended a longer rest period; however, healthcare
providers are now advised to instruct pediatric patients with mTBI
to return to their regular non-sports activities within 2–3 days. As
compared to prescribing ‘‘strict rest,” this change in guidance is
associated with a shorter recovery and a lower symptom burden
(Thomas, 2015). Findings from this study indicate that training
may show promise in furthering adoption of neuroimaging and
return to activity recommendations that can improve patient
health outcomes. However, additional studies are needed to assess
the sustainability of these improvements and their translation into
clinical practice.

Previous studies suggest that medical students and residents
may not receive adequate training on mTBI diagnosis and manage-
ment and that more educational opportunities on this topic are
needed (Donaworth, Grandhi, Logan, Gubanich, & Myer, 2016;
Haider et al., 2017). Donaworth and colleagues (2016) found most
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U.S. medical school curriculums do not include lectures on concus-
sion, and that the majority of medical students do not gain clinical
experience with diagnosis and management of concussion during
their medical school training. Interestingly, approximately two-
thirds of healthcare providers who completed the CDC training
reported working five years or fewer in their profession. A desire
to learn about concussion, widespread use of digital or mobile-
based tools, and use of social media to promote the training, may
be some of reasons why the training was accessed more frequently
by newer healthcare providers (Donaworth et al., 2016; Ventola,
2014). Taken together, this points to the potential of the HEADS
UP to Healthcare Provider training to help fill a current information
gap for healthcare providers new to their profession.

This study only measured changes in knowledge and self-
efficacy based on constructs of the HBM prior to and immediately
following the HEADS UP to Healthcare Providers training. As such,
environmental and individual provider characteristics (a limitation
of the HBM) were not taken into consideration (Janz & Becker,
1984). Moreover, as noted above, the long-term effectiveness on
healthcare providers’ knowledge and self-efficacy was not mea-
sured. Ensuring successful and sustained improvements among
healthcare providers following use of the training may benefit fur-
ther from a multi-pronged approach that is inclusive of system-
based changes (e.g., use of electronic health records (EHR)) and
support from decision-makers (Campanella et al., 2016). Previous
studies suggest that integrating an online training into a compre-
hensive implementation effort may lead to improved patient-
healthcare provider communication and symptom-based assess-
ments (Arbogast et al., 2017). Arbogast and colleagues found that
implementation of a concussion-specific EHR-based decision sup-
port tool, along with use of the HEADS UP to Healthcare Provider
online training, substantially increased documentation of health-
care provider-patient discussions about recovery (e.g., return to
school and sports; Arbogast et al., 2017). This is consistent with
other studies that found that EHR-based systems may strengthen
guideline adherence among healthcare providers (Campanella
et al., 2016).

4.1. Practical applications

Guideline efforts may be inclusive of development, dissemina-
tion, and implementation planning (Fischer et al., 2016). Yet,
approximately one-third of guidelines published between 2010
and 2017 did not offer guideline implementation tools (Liang,
Abi Safi, & Gagliardi, 2017). Including health educators’ and other
public health professionals’ participation in guideline development
may help to ensure that implementation strategies are considered
while recommendations are drafted. This may include ensuring
recommendations are written with patient-centered language
and practical strategies (Fischer et al., 2016).

Guideline implementation tools may improve healthcare provi-
ders’ adherence to guideline recommendations (Liang, Abi Safi,
et al., 2017). This study highlights several factors guideline devel-
opers may take into consideration when creating such tools. First,
guideline implementation tools developed using a theoretical
framework, such as the online training examined in this paper,
are considered to be most effective (Liang, Bernhardsson, et al.,
2017). Guideline developers can ensure that relevant implementa-
tion tools (customized for both patients and healthcare providers)
are designed using health behavior theories and tested to assess
their ability to support evidence-based patient care (Fischer
et al., 2016; Liang, Abi Safi, et al., 2017). The HEADS UP to Health-
care Providers training took advantage of constructs of adult learn-
ing theory and components of the HBM by integrating interactive
knowledge checks and content aimed at building healthcare provi-
der’s self-efficacy and promoting positive learning outcomes (Cook,
Levinson, & Garside, 2010). Second, working with partners and key
stakeholders to promote and disseminate online trainings, such as
this one, can help improve training use among the target audiences
and has benefitted other aspects of the HEAD UP campaign. Finally,
the widespread usage of digital based tools and preferences for
seeking out clinical information from websites suggests that a shift
from print materials to online, tablet, and mobile-based formats
may improve uptake and adherence to guidelines (Gagliardi &
Alhabib, 2015; Ventola, 2014). Online training, which can be a
cost-effective approach to reach a large audience, may be one
important way to achieve this.

Table 2
Background characteristics of respondents (n = 2,105) who completed the Centers for
Disease Control and Prevention HEADS UP to Healthcare Providers online training,
2019.

Frequency Percent

Healthcare provider type
Physician 781 37.1
Nurse practitioner 1,078 51.2
Physician assistant 246 11.7
Total 2,105 100.0
Number of years in practice
0–5 1,377 65.4
6–10 207 9.8
11–20 284 13.5
21–30 166 7.9
31+ 71 3.4
Total 2,105 100.0
Percentage of practice that is pediatric
0–25% 1,145 54.5
26–50% 407 19.4
51–75% 38 1.8
76+% 511 24.3
Total 2,101 100.0
Have you evaluated a patient for a suspected mild traumatic brain injury

(mTBI) in the previous 12 months
Yes 1,166 55.6
No 848 40.5
Unsure 82 3.9
Total 2,096 100.0
Healthcare provider uses decision tools to evaluate for mTBI in their

practice
Very often 418 19.9
Often 458 21.9
Sometimes 613 29.3
Never 607 29.0
Total 2,096 100.0
Healthcare provider uses standardized assessments of concussion in their

practice
Very often 466 22.2
Often 422 20.1
Sometimes 607 29.0
Never 601 28.7
Total 2,096 100.0
Healthcare provider provides written discharge instructions for patients

with mTBI
Very often 865 41.3
Often 443 21.1
Sometimes 354 16.9
Never 434 20.7
Total 2,096 100.0
How healthcare provider prefers to learn about clinical practice

recommendationsa

Websites (like UpToDate and Medscape) 1,654 78.6
Presentations from experts (such as Grand Rounds) 1,085 51.5
Medical conferences 1,067 50.7
Scientific publications 998 47.4
Medical organizations 888 42.2
Blogs and social media 275 13.1

a Respondents were permitted to select multiple responses to this question,
therefore the total adds up to over 100%
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4.2. Limitations

There are several limitations to this study. First, data from the
pre- and post-test modules were obtained from a convenience
sample of healthcare providers who completed the HEADS UP to
Healthcare Providers training. Thus, the findings are not intended
to be generalizable to a wider population. Second, this study did
not have a control group of healthcare providers who did not com-
plete the training with which the authors could compare the
results. Thus, it is unclear if other sources of information identified
as commonly used by healthcare providers in the study (e.g., web-
sites and presentations from experts) are similarly effective. Future
studies may explore this. Third, the pre- and post-test knowledge
questions were composed of multiple choice and true/false ques-
tions. This may have led to an overestimate in the level of knowl-
edge of the respondents, as respondents had a 25–50% chance of
randomly guessing the correct response. Fourth, social desirability
may play a role in the respondents’ answers to questions related to
self-efficacy. It is likely that the respondents know what the ‘‘cor-

rect” response is or what ‘‘should” be the answer, particularly with
the self-efficacy items. This may inflate both the pre- and post-test
agreement with these items; however, it may not impact changes
in responses observed between the pre- and post-tests. Finally,
most healthcare providers completed the post-test immediately
after taking the training. Thus, it is not possible to determine
whether changes in knowledge and self-efficacy will persist over
time. Further, this study did not evaluate actual changes in patient
care. Thus, it is not possible to determine whether an individual’s
gains in knowledge and self-efficacy will translate into changes
in their clinical care practices. Future research that examines
whether the training led to actual improvements in diagnosis
and management decisions may be beneficial.

5. Conclusion

This study examined the effectiveness of the HEADS UP to
Healthcare Providers online training on healthcare providers’ mTBI

Table 3
Comparison of pre- and post-test concussion-related knowledge questions contained in the Centers for Disease Control and Prevention HEADS UP to Healthcare Providers online
training, 2019 (n = 2,105).

Pre-test Post-test Difference

Percent
Correctb

Percent
Correct

s p-value Cohen’s
g

Guideline recommendation 1: Do not routinely image patients to diagnose mTBI
Which indications should prompt admission to a hospital for a patient with mTBI? 59.00 <0.0001 0.19
Correct 76.0 83.4
Incorrect 24.0 16.6
A healthcare provider should order a head CT scan for patients with suspected mTBI: 288.14 <0.0001 0.39
Correct 70.2 87.8
Incorrect 29.8 12.2
Guideline recommendation 2: Use validated, age-appropriate symptom scales to diagnose mTBI
A 14-year old patient hit her head while playing soccer. She presents with a headache and says she ‘‘just

doesn’t feel right.” What is the appropriate course of action?
163.71 <0.0001 0.36

Correct 84.0 94.8
Incorrect 16.0 5.2
Which of the following is TRUE regarding validated mTBI symptom rating scales? 7.47 0.0063 0.07
Correct 74.9 77.8
Incorrect 25.1 22.2
Guideline recommendation 3: Assess evidence-based risk factors for prolonged recovery
Which of the following factors are associated with a prolonged recovery from an mTBI? 159.05 <0.0001 0.25
Correct 59.7 75.2
Incorrect 40.3 24.9
A healthcare provider should refer a patient for further evaluation by a specialist when: 281.03 <0.0001 0.31
Correct 48.5 69.8

Incorrect 51.5 30.2
Guideline recommendation 4: Provide patients with instructions on return to activity customized to their

symptoms.
What happens when an athlete’s symptoms return after they’ve initiated a step-wise return to play

progression?
179.97 <0.0001 0.36

Correct 83.5 95.3

Incorrect 16.6 4.8
A 6-year-old boy diagnosed with mTBI complains of continuing headaches one week after the injury, but

no other neurological symptoms. What is the appropriate action to manage his headaches?
279.34 <0.0001 0.34

Correct 30.5 50.0

Incorrect 69.5 50.0
Guideline recommendation 5: Counsel patients to return gradually to non-sports activities after no more than

2–3 days of rest.
Prior to discharging a patient from the ED or your office, it is important to counsel patients and their

parents that:
103.35 <0.0001 0.27

Correct 80.4 89.4

Incorrect 19.6 10.6
When discharging a patient with mTBI, you should counsel patients and their parents to: 189.72 <0.0001 0.29
Correct 68.5 84.3

Incorrect 31.5 15.7

The questions are displayed as the percentage of respondents who answered the question correctly (i.e., answered a true question as true or a false question as false or
selected the correct response for the multiple-choice item).
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knowledge and self-efficacy related to the five key recommenda-
tions in the CDC Pediatric mTBI Guideline. Findings suggest that
upon completion of the training, healthcare providers demon-
strated significant improvements in knowledge related to the five
key recommendations in the guideline, as well as improvements
in self-efficacy related to mTBI diagnosis and management.
Expanding use of this training may be an effective way to reach a
large number of healthcare providers and improve use of recom-
mendations in the CDC Pediatric mTBI Guideline.
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a b s t r a c t

Objective: Our study investigated risk factors in survival among a subpopulation of drivers in North
Dakota’s 24/7 Sobriety Program. Participants mandated for a second driving-under-the-influence of alco-
hol (DUI) arrest were studied for a three-year interval that commenced with the start date for a 360-day
enrollment. Method: A Stratified Cox regression model was developed to compute the hazard ratios for
survival. A subsequent DUI-related offense as event of interest. Relation to the explanatory variable array
that could be construed from administrative records were investigated. Results: Older drivers were 6.31
times more likely to reoffend than the younger driver cohort of 18–35-years. The survival curve slope
showed the fastest decline in the 361-day to 730-day interval. Neither gender nor residence region
was a significant predictor in DUI reoffense over the three-year monitoring interval. Preliminary work
suggests reoffense was more likely if an individual had program history prior to this court mandated
360-day term in the 24/7 Sobriety Program for a second DUI. The program experience finding was unex-
pected but could not be studied in greater detail due to data and resource limitations. Conclusions:
Administrative records access created a novel opportunity to explore an evolving impaired driving pre-
vention strategy that has shown early promise. Individual driver survival in and after the 24/7
Sobriety Program was studied for three-years. Findings show age, post-program time interval, and pos-
sibly program history as areas to explore to improve survival rates. Driver DUI offense were most com-
mon shortly after program completion. Although limited to a single state, findings increase knowledge for
refining strategies designed to impact driver subpopulations at higher risk for reoffense.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Across the United States nearly 11,000 people died and more
than 300,000 were injured in alcohol-impaired driving crashes in
2017 (NHTSA, 2019). Over one million driving under the influence
of alcohol (DUI) arrests were made in 2019 (Federal Bureau of
Investigation, xxxx). While many were first-time offenders, about
one in three had a prior DUI offense. Therefore, an improved under-
standing of strategies to reduce reoffense propensity among this
prevalent impaired-driver subpopulation would produce more
effective resource and policy decisions in preventing DUI reoffense.

Generally, DUI prevention involves multiple facets including
policy, enforcement, and education strategies. Policy deterrents
such as raising the minimum legal drinking age and lowering the
legal BAC thresholds have had positive impacts as universal popu-
lation strategies (Carpenter et al., 2007; Miron & Tetelbaum, 2007;

NHTSA, 2005; Tippetts et al., 2005; Wagenaar et al., 2007; Fell et al.
2008). Education programs and enforcement campaigns continue
to be widely coupled in supporting these policies. Research shows,
however, only about 1 in 1,000 result in arrest (Zaloshnja, Miller, &
Blincoe, 2013). Technological interventions, such as ignition inter-
lock system (IIS), have also been proven effective (Bjerre, 2005;
Elder et al., 2011; Marques et al., 2010; McCartt et al., 2013;
McGinty et al., 2017, Rauch et al., 2002) but have not been adopted
in several states (National Conference of State Legislatures, xxxx).
Innovative solutions are continually sought and vetted but DUI-
related offenses remain a chronic public safety issue (Ferguson,
2012; Wagenaar et al., 2007).

A novel prevention approach couples policy and technology to
elicit driver self-responsibility is the 24/7 Sobriety Program After
a DUI arrest, drivers that commit to refrain from alcohol while in
the program may obtain a temporary restricted driver license
(Kleiman et al., 2008; Loudenburg et al., 2010). Participant compli-
ance is monitored with methods such as preliminary breath tests
and continuous transdermal monitoring for alcohol presence. Indi-
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viduals found noncompliant are taken into custody and may face
an immediate incarceration. The program is typically focused on
preventing DUI-related violations among repeat offenders. Early
studies have shown effectiveness in reduced DUI recidivism among
participants (Loudenburg et al., 2010; Midgette & Kilmer, 2015).
The U.S. Department of Justice labeled the 24/7 Sobriety Program
as promising (Midgette & Kilmer, 2015).

As programs designed to reduce DUI events among driver sub-
population evolve, increasing knowledge about reoffense propen-
sity is key. The goal here was to investigate independent factor
influences in reoffense among 24/7 Sobriety Program participants
in North Dakota. Interest was focused on drivers mandated to
the program after a second DUI arrest. State administrative records
for the 24/7 Sobriety Program, driver license, and traffic crash were
codified to define the survival interest event and independent fac-
tors for the analysis.

2. Methodology and data

Survival analysis was used to study participant program success
in terms of DUI reoffense events. Survival analysis is an economet-
ric technique used in analysis of time-dependent phenomena. The
method is commonly employed to analyzing data where the out-
come variable is a time interval defined by a common origin time
point and occurrence time point for an event of interest. It has been
widely used in engineering, medicine, and economics fields (Zhao
et al., 2015). In the transportation field, models have been applied
in various aspects including pedestrian risk exposure, motor and
non-motor vehicles transaction analysis, incident duration analy-
sis, and crash analysis (Bagloee & Asadi, 2016; Li, 2015; Tiwari
et al., 2007; Zhao et al., 2015).

2.1. Method

General objectives of survival analysis include examination of
event pattern times, the comparison of survival time distribution
among subgroups, and examining how factors affect the risk for
an event of interest. Survival time is determined by defining two
time points: the time of origin and the time of failure. Survival
analysis can be performed using three main methods: fully para-
metric, semi-parametric, and non-parametric. In parametric sur-
vival analysis, the model is constructed by performing regression
analysis on the assumption that the outcome variables follow a
well-known distribution. Non-parametric and semi-parametric
models are more suitable when little information about the under-
lying distribution is available due to the lack of specific distribution
or small size of the sample (Washington et al., 2010).

Survival analysis possesses an important characteristic that dis-
tinguishes it from other statistical techniques as data are usually
incomplete or censored. Censoring refers to incomplete informa-
tion about the survival time of some participants. This occurs in si-
tuations such as the study terminating before the participant
experiences an event of interest or the participant leaving the
study. Three important functions are the survival, hazard, and
cumulative hazard may be considered (Liu, 2012; Machin et al.,
2006; Washington et al., 2010). Survival function is a key term
along with censoring and event. It is defined as the probability of
the outcome event not occurring up to a specific point in time,
including the time point of observation (t), and is denoted by
S tð Þ, which gives the probability that the random variable T
exceeds the specified time t. The survival (or survivor) function
can be written as:

S tð Þ ¼ P T > tð Þ ¼
Z 1

t

f xð Þdx ð1Þ

where S(t) is a non-increasing function with a value of 0 when time
tends to be infinity and 1 when time is zero.

The hazard function is the instantaneous rate at which events
occur for individuals which are surviving at time t,

h tð Þ ¼ lim
dt!0þ

Pðt � T < t þ dt � tjT � tÞ
dt

¼ f tð Þ
S tð Þ ¼ � d

dt
SðtÞ ð2Þ

where h is the hazard function and the cumulative hazard function
is given as:

H tð Þ ¼
Z t

0

h uð Þdu: ð3Þ

where H is the cumulative hazard function. The cumulative hazard
function is related to the survival function as follows:

S tð Þ ¼ exp½�
Z t

0
h uð Þdu�¼ exp�HðtÞ: ð4Þ

Thus, the higher the hazard, the lower the survival.
Independent variable strata were analyzed for proportionality

hazards (PH) assumption. The inhomogeneity hazard functions
considered subsets of a group with the same characteristic. It is
detailed in the results section.

2.2. Data

Data were collected from state agencies’ administrative records
related to the 24/7 Sobriety Program, driver license, and crash
record systems from 2008 to 2018. The records were obtained
under limited-use agreements with the respective agencies. These
disparate datasets were linked and merged into pseudo driver his-
tories for 24/7 Sobriety Program participants. The final dataset was
parsed to retain de-identified records for drivers entering the pro-
gram for a second DUI conviction.

The 24/7 Sobriety Program participant population database
held 18,697 records in a complete program history covering Jan-
uary 2008 to December 2018.1 During a three-year program entry
period between 2013 and 2015, 1,287 participants, ages 18-years
or older that started the program for a second DUI offense, were
selected for the study. This participant group was defined to mini-
mize effects of legislated program changes that took effect during
2013. It also provided a sufficient duration for a three-year follow-
up period. The final program participant dataset was left-merged
with the driver and crash records in a deterministic matching proce-
dure, using records from 2008 to 2018. Few crash records were
matched to the 24/7 Sobriety Program participants. The count was
determined insufficient and crash records were dropped from the
analysis.

Administrative record information was recoded to identify crit-
ical events for the survival analysis. The first DUI-related citation
date in the driver record, after a participant’s 24/7 Sobriety Pro-
gram entry date, was defined a DUI reoffense event of interest.
The events were collected for each driver during in the three-
year monitoring interval following the start date. Participants
who had no subsequent DUI-related offense were censored at the
three-year point. Participant study-design censoring occurs
because the event dates are analyzed to a specific point in time,
at which point some individuals have not experienced the event
of interest. Here the point in time was three years after the pro-
gram start date, with censoring in cases where no DUI-related cita-
tion event occurred.

1 The 24/7 Sobriety Program was introduced in 2008 as a regional pilot program. It
was implemented statewide by legislation in 2010. The last substantial change to
program administrative rules occurred in August 2012.
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Participant demographic variables were constructed from dri-
ver license records. The driver address, at the time of study entry,
was used to create east and west region driver cohorts. Annual sta-
tewide driver surveys have shown significant regional differences
in drivers’ attitudes and practices with regard to alcohol-
impaired driving (Vachal et al., 2019). Similarly, gender and age
groups were created for the participants based on risk reflected
in the same statewide annual survey of drivers. Two age group
cohorts (18–34 years and 35 years and older) were used to capture
the role of experience and maturity in driving decisions. Younger
adults have greater risk propensity in driving practices and percep-
tions. Gender was also included as males survey responses have
had significantly higher-risk tendencies relative to the female
cohort.

During the study, researchers decided to explore a potential
relation of program history to survival among the second-time
DUI program participant subpopulation (Table 1). Study records
unveiled that a participant may have a start date in the 24/7 Sobri-
ety Program prior to the legally mandated term for a second DUI
arrest. In North Dakota, the 24/7 Sobriety Program is administered
by the state driver licensing agency and managed by the state’s
judicial arm. Legislated DUI sanctions require second-time offend-
ers to complete 360 days in the program. Program history was a
binary variable defined as a driver entry prior to the start date of
the second DUI offense. The entry was determined to be unique
from the second-time offense based on a 30-day period between
start dates, as recommended in discussions with program experts.
The 30-day lapse allows time to complete state driver license and
court in regard to initial event records.

Previous participation may have been court mandated with
another conviction type or a voluntarily first-time DUI offender.
The volunteer aspect was introduced within the past two years
with a program administration change. The program history could
not be studied in detail due to insufficient detail. It was, however,
posited as a negative predictor in participant survival since it was
viewed as a pre-study reoffense event.

The Institutional Review Board at North Dakota State University
reviewed this study and determined it exempt. While the human
subject research review process is continuous, it was determined

that no informed consent and protection of subjects was required.
The identity of the human subjects cannot readily be ascertained,
directly or through identifiers, as recorded by the investigator.

3. Results

Among 1,287 study participants, 1,178 individuals have no sub-
sequent DUI citations within three years of their start in the 24/7
Sobriety Program. The survival rate of second-time DUI offenders
aged 18 or older and who started the program between 2013 and
2015 was 91.5%. The remaining 109 participants had at least one
DUI-related offense within the three years after starting the pro-
gram, so the reoffense rate was 8.5%.

3.1. Hazards function homogeneity

Gender, age, and region were considered in relation to survival
outcomes with regard to independent variable assumptions. The
hazard functions of each stratum were different. In order to check
the PH assumption, Kaplan-Meier curves were specified in log(-log
(survival functions)) versus log(survival time). The PH assumption
is satisfied when the graph of the survival function versus survival
time produce a graph with parallel curves. Observation showed the
PH assumption was not valid since curves were intersecting for
each group (Fig. 1). Therefore, a Stratified Cox regression model
was used since it permits covariates with non-proportional hazard
rates (Lee & Wang, 2003).

Survival probabilities were estimated based on the defined
strata. The Stratified Cox regression model, however, possesses a
limitation of automatically excluding the strata variable from the
set of explanatory variables. Thus, no inferences can be made on
the strata variable. To overcome this issue, both gender and region
were considered as the strata variables since they violated PH
assumption. On the contrary, age group was removed as a strata
variable since it is time dependent. A new variable ‘TD age’ was
created, which is the time dependent version of age variable gen-
erated by multiplying the age with log (survival function).

3.2. Survival findings

The results of Stratified Cox regression model are presented in
the Table 1. The effect of age group and TD age on recidivism can
be observed. A hazard ratio of 6.31 for the age group 35 years
and older implies that the risk of experiencing the event of interest
(i.e., recidivate) was 6.31 times higher in the age group 35 years
and older as compared to the age group of 18–34 years. This find-
ing was surprising since the younger population is usually identi-
fied as higher-risk.

Similarly, more accurate interpretation for age can be obtained
from the TD age variable since it incorporates time dependency of
age. The hazard ratio of 0.99 can be attributed to the higher prob-
ability of suffering the event of interest for one-year increase in TD
age. A total of 109 observations were used in the model develop-
ment. The model fit criterion of �2 Log Likelihood (�2 Log L)
was used for the model selection. According to this criterion, the
lower the statistical value, the better the model. The model results
indicate that the model with covariates is better than the intercept
only model.

The frequency of offender history types described earlier are
presented in Table 2. Almost 91% of the offenders had no 24/7
Sobriety Program history, while 7% had alcohol-related program
history. Initially, it was anticipated that the program history type
may be influential in survival but counts were severely limited.
Only 10 offenders had previous 24/7 Sobriety Program history,
with one offender having a drug-related and other 24/7 Sobriety

Table 1
Study variable definitions and source.

Variable Description Source

Event of interest The first subsequent DUI citation in
driver record after entering into the
24/7 Sobriety Program event date.

Driver license

Gender Driver gender at study entry
(0 = Female, 1 = Male).

Driver license

Age group Driver age group study entry
(0 = 35 years and older, 1 = 18–
34 years).

Driver license

Region Driver license address location in state
at entry (0 = East, 1 = West).

Driver license

Alcohol-related
program history

Alcohol-related traffic conviction as
reason for prior program
participation, transformed to
dichotomous event (0 = No, 1 = Yes).

24/7 Sobriety
Program
records

Drug-related
program history

Drug-related conviction as reason for
program prior participation,
transformed to dichotomous event
(0 = No, 1 = Yes).

24/7 Sobriety
Program
records

Non-alcohol/drug
related program
history

Other conviction (e.g. domestic
violence) as reason for prior program
participation, transformed to
dichotomous event (0 = No, 1 = Yes).

24/7 Sobriety
Program
records

24/7 Sobriety
Program history

Previous participation in the program
prior to the enrollment as a second-
time DUI offender, transformed to
dichotomous event (1 = No, 0 = Yes).

Driver license
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Program history. The largest group, including 99 offenders, had no
previous 24/7 Sobriety Program history. The other three offender
history types are very rare, hence, may provide biased survival
curves. Therefore, further analysis focuses on the participants
who have no previous 24/7 Sobriety Program history before enter-
ing the program as a second-time offender.

Fig. 2 shows the survival rate change within the participants
who have no previous 24/7 Sobriety Program history and have sub-
sequent DUI citations. Fig. 2 shows three trends. In the first ten-
dency, ranging approximately from 0 days to 360 days, the
survival curve declines at a relatively slow rate. Then from approx-
imately 360 days to 750 days, the slope of the survival curve decli-
nes at a substantially greater rate. Finally, from approximately
750 days onward, the survival curve decline slows.

Table 3 shows the number of offenders who have a subsequent
DUI offense and no previous 24/7 Sobriety Program history. Table 3
shows trends similar to Fig. 2. The recidivism rate started with a
slower increase from a period of 3 to 12 months, then significantly
increased from month 12 to month 24, finally slowing between
months 24 and 36. The interval 12–24 months after enrolling in
the program is a high-risk period for the participants without pre-
vious 24/7 program participation. These participants were more
likely to have another DUI-related citation 12–24 months after pro-
gram entry than in the first 12 months or 25–36 months after entry.
The cumulative reoffense rate within three years was 8.18% for
second-time DUI offenders who did not have previous 24/7 Sobri-

Fig. 1. Log of Negative Log of Estimated survival functions for gender, age group and region.

Table 2
Stratified Cox regression model results about DUI recidivism for the participants in all
four program history types.

Parameter Parameter
estimate

Standard
error

Hazard
ratio

Age group (35 years and
older)

1.84 0.35 6.31

TD age �0.01 0.00 0.99
�2 Log L (without

covariates)
681.718

�2 Log L (with covariates) 654.149
Number of observations 109
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ety Program history. Due to the limited number of observations
with program history, comparisons were not drawn (Table 4).

4. Conclusion

Repeat DUI offenders remain a problem for many states in
reducing alcohol-impaired driving incidents. While universal
strategies such as higher legal drinking ages and lowering legal
BAC thresholds have had positive outcomes in deterring alcohol-
impaired driving, other programs are needed to address this
higher-risk driver subpopulation where reoffense remains too
common. One promising strategy is the 24/7 Sobriety Program.
The aim is to elicit driver self-responsibility to prevent alcohol-
impaired driving. Survival analysis was used to study participant
success during and two years following their first mandated pro-
gram term, following a second DUI arrest. Administrative records
were linked and recoded to complete the study. Survival analysis,
including Stratified Cox regression, were developed to investigate
explanatory variable relations in DUI reoffense.

While survival rates were high, results may be useful in target-
ing strategies to older drivers and those with previous program

experience. Results showed that older participants were more
likely to have a DUI reoffense than the younger cohort. Reoffense
was most likely during the 12 month-period after completing the
mandated 360-day program term. Thus, monitoring DUI-related
reoffense events that occur shortly after the program term ends
may be especially beneficial in prevention. An unexpected finding
was the inverse relation between age and longer-term survival.
Investigating this along with potential addiction issues associated
with alcohol use may be informative.

Although the study was limited to North Dakota drivers, find-
ings increase knowledge for refining strategies designed to impact
driver subpopulations at higher risk for reoffense. The administra-
tive records available for this study contained limited participant
detail. It may be possible to expand the independent variable array
in states with stronger administrative record linkages or more
extensive record systems. For instance, comprehensive criminal
history may strengthen future evaluations of the 24/7 Sobriety Pro-
gram, or similar driver-centric efforts, in terms of an individual’s
larger criminal behavior context. Considering external factors, such

Fig. 2. Survival rate change among 24/7 Sobriety Program study participants with no program history, considering DUI reoffense event dates.

Table 3
The 24/7 Sobriety Program history type for the participants regarding DUI subsequent
recidivism from 2013 to 2015.

Offender history Number of participants
without subsequent DUI

Number of
participants with
subsequent DUI

Total

Alcohol-related 24 8 32
Drug-related 11 1 12
Non-

alcohol/drug
related

32 1 33

No 24/7 Sobriety
Program
history

1111 99 1210

Total 1178 109 1287

Table 4
DUI Reoffense among 24/7 Sobriety Program with no program history, rates based on
all participants in study cohort.

Time interval after
program start date

Number of drivers with
DUI reoffense

Reoffense rate
(Percentage)

3 months 7 0.58
6 months 8 0.66
9 months 5 0.41
12 months 3 0.25
15 months 15 1.24
18 months 17 1.40
21 months 11 0.91
24 months 12 0.99
27 months 10 0.83
30 months 8 0.66
33 months 3 0.25
36 months 0 0
Total 99 8.18
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as alternative transport availability and enforcement activity
levels, may further discern program influences in impaired driving
prevention.
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a b s t r a c t

Introduction: Motorcyclists are particularly at risk of being injured when involved in a road traffic acci-
dent. To avoid such crashes, emergency braking and/or swerving maneuvers are frequently performed.
The recent development of dynamic motorcycle simulators may allow to study the influences of various
disturbance factors such as sleep deprivation (SD) and time-of-day (TOD) in safe conditions. Methods:
Twelve young healthy males took part in 8 tests sessions at 06:00 h, 10:00 h, 14:00 h, 18:00 h after a
night with or without sleep, in a random order. Participants had to perform an emergency braking and
a swerving maneuver, both realized at 20 and 40 kph on a motorcycle dynamic simulator. For each task,
the total distance/time necessary to perform the maneuver was recorded. Additional analysis was con-
ducted on reaction and execution distance/time (considered as explanatory variables). Results: Both crash
avoidance maneuvers (emergency braking and swerving) were affected by increased speed, resulting in
longer time and distance at 40 kph than at 20 kph. Emergency braking was mainly influenced by sleep
deprivation, which significantly increased the total distance necessary to stop at 40 kph (+1.57 m; +
20%; p < 0.01). These impaired performances can be linked to an increase in reaction time (+21%;
p < 0.01). Considering the swerving maneuver, TOD and SD influences remained limited. TOD only influ-
enced the reaction time/distance measured at 40 kph with poorer performance in the early morning
(+30% at 06:00 h vs 18:00 h; p < 0.05). Discussion: Our results confirm that crash avoidance capabilities
of young motorcyclists were influenced by the lack of sleep, mainly because of increased reaction times.
More complex tasks (swerving maneuver) remained mostly unchanged in this paradigm. Practical
Applications: Prevention campaigns should focus on the dangers of motorcycling while sleepy.
Motorcycling simulators can be used to sensitize safely with sleep deprivation and time-of-day
influences.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Powered Two-Wheeler (PTW) riders are particularly at risk of
being seriously injured or killed when involved in a road traffic
accident. Although PTWs make up a small proportion of circulating
vehicles in most countries (3–15%), PTW riders contribute to nearly
15–20% of all road deaths worldwide (European Commission,
2018; ONISR, 2019; NHTSA, 2019). The fatality rate (number of
fatal accidents when accounting for per vehicle mile traveled) is
significantly higher for PTW riders than for car drivers. This related
increased risk is 27-fold in the United States (National Highway
Traffic Safety Administration, 2019), 20-fold in Europe (ONISR,

2019), and 29-fold in Australia (Haworth & Mulvihill, 2005). Even
if PTW riding was considered a recreational activity in the last dec-
ades, Day et al. (2013) claimed that PTWs would be an integral part
of the global transport future. The current trends confirm that
PTWs are increasingly used for commuting (in particular to avoid
traffic congestion in dense urban areas) and even for work pur-
poses (e.g., taxi, delivery; de Rome, Brown, Baldock, & Fitzharris,
2018; Wu, Hours, & Martin, 2018; Möller et al., 2020). This may
raise attention to their crash contributing factors.

Various studies based on epidemiological data have been con-
ducted to identify associated risk factors in PTW safety. Regarding
behavioral aspects, age (21–30 years), gender (male), experience
(poor), absence of helmet and/or protective clothes, speeding,
and blood alcohol concentration are highly related to crash occur-
rence and severity (de Rome et al., 2018; Vlahogianni, Yannis, &
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Golias, 2012; Wali et al., 2018, 2019; Wu et al., 2018). However, the
results of these retrospective studies remained limited to the a
posteriori available data. Other potential risk factors (such as fati-
gue and sleepiness) may thus be under-estimated since they are
rarely taken into account in road accident reports, in particular
regarding PTW crashes (Wu et al., 2018). For example, despite a
lower traffic density at night, PTW riders are more at risk of being
seriously injured or killed while riding in the dark (de Lapparent,
2006; Möller et al., 2020; Quddus, Noland, & Chin, 2002). The
severity of the accidents (number of fatalities/100 victims) is 1.5-
fold higher at night than during the day (ONISR, 2019). Therefore,
in France, 2005 road safety statistics reported that 35% of fatal acci-
dents involving PTW riders and 26% of those with a serious injury
happened at night (ONISR, 2007 Similarly, despite the fact that the
riding experience itself is often considered as energizing, which
would help offset feelings of fatigue, recent findings indicate the
opposite. As previously observed for car drivers, international
observations reported that fatigue and sleepiness are also associ-
ated with a higher risk for PTW riders of getting involved into a
crash (Chen & Chen, 2016; Wali, Khattak, & Khattak, 2018; Lam
et al., 2019; Santos, Cêlho, Santos, & Ceballos, 2019; Zheng, Ma,
Guo, Cheng, & Zhang, 2019). More precisely, Chen and Chen
(2016) showed that motorcyclists who had less than 6 hours sleep
were more likely to reveal more risky riding behaviors, especially
for speed. Wali et al. (2018) also indicated that the risk of getting
involved in a crash increased by approximately 200% if the rider
had 5 h or less sleep (surrogate of drowsy-riding and/or fatigue).

Precrash maneuvers are associated with injury severity sus-
tained by PTW riders involved in single-vehicle crashes (Wang
et al., 2016). When a precrash maneuver is performed, the two
most common maneuvers observed are braking and/or swerving
(ACEM, 2009; Wang et al., 2016). Furthermore, emergency braking
and swerving maneuvers performed on the left or on the right are
also learned in PTW training programs and motorcycle license
practice tests (Haworth et al., 1997), contributing to alleviate the
crash risks and improve PTW safety (Wali et al., 2018). Emergency
braking and/or swerving on a PTW require a high-level of percep-
tive and manipulative capabilities (vanElslande, 2012). However,
vigilance impairment, which can be induced by sleep deprivation
(SD) and/or time-of-day (TOD), is recognized to negatively affect
the different components of executive functioning implied in
motorcycling (Bougard et al., 2016a, 2016b). Previous works from
our laboratory have shown that motorcycling performance evalu-
ated through a broad set of basic riding skills on a test track is sen-
sitive to the effects of TOD, with an improvement of riding
performance throughout the day following a normal night of sleep
(Bougard et al., 2008, 2012). These riding performances evolved
concomitantly to the rhythm of body temperature, considered as
a good marker of the biological clock (Colquhoun, 1971). Consider-
ing SD effects, performance impairment depends on the ability
under consideration (reaction time, motor coordination, balance,
flexibility). More precisely regarding precrash avoidance maneu-
vers, Bougard et al. (2012) have shown that emergency braking
was impaired in real motorcycling conditions by both disturbance
factors, TOD and SD, mainly due to an impairment in the reaction
time phase. Swerving capabilities were far less impacted. Nonethe-
less, for safety reasons due to the real motorcycling conditions of
our experiment, the duration of the tests was limited (15 min)
and the speed was reduced (20–40 kph), which may have limited
the impacts of disturbance factors such as sleepiness. Nonetheless,
to improve PTW safety, crash avoidance maneuvers deserve more
research attention (Kuang et al., 2015) and evaluating the influence
of fatigue and sleepiness on their execution is of particular interest.

Recently, the development of PTW simulators allowed for the
analysis of PTW rider behaviors in various situations. The advan-
tage of such material is to propose different critical riding situa-

tions without inducing any risk of injuries (de Winter, Van
Leeuwen, & Happee, 2012). Some studies used a fixed platform in
a static vertical position in order to evaluate the influence of the
level of expertise on hazard detection (Cheng, Ng, & Lee, 2011;
Hosking, Liu, & Bayly, 2010), or the effects of alcohol consumption
on riding performance (Centola et al., 2020; Filtness, Rudin-Brown,
Mulvihill, & Lenné, 2013). Others used a dynamic configuration
that offers greater validity for PTW riding tests (Benedetto et al.,
2014). In particular, this allows evaluating PTW rider behaviors
in more realistic situations, such as lane position while negotiating
a curve (Crundall, van Loon, Stedmon, & Crundall, 2012), or gaze
locations in bends (Lobjois & Mars, 2020). Lastly, Kovácsová et al.
(2020) studied emergency braking at intersections using a
motion-base simulator. They reported that the more dangerous
the situation, the more likely riders were to initiate braking. More-
over, even if riders braked in an impending situation, they were
often unsuccessful in avoiding a collision. For swerving maneuvers,
although motion cueing algorithms are increasingly efficient
regarding PTW dynamics, reproducing these maneuvers on a
dynamic simulator still remains challenging. Nonetheless, and
despite such sophisticated tools presenting numerous advantages,
none has yet evaluated the influences of TOD and SD on PTW riding
behavior during precrash maneuvers using a moving platform.

The aim of this study was to evaluate the influences of time-of-
day and sleep deprivation on two different crash avoidance
maneuvers, namely emergency braking and swerving, performed
on a dynamic motorcycle simulator. To do so, and to allow for pos-
sible comparisons, we choose to reproduce the experimental pro-
cedure used by Bougard et al. (2012), who were, to the best of
our knowledge, the only ones to evaluate these effects in real
motorcycling conditions. We hypothesized that similarly to real
conditions, emergency braking performance on the simulator,
which is a quite simple task, would improve during the day after
a normal night of sleep (according to the diurnal fluctuations of
body temperature) and that this improvement would be affected
by SD. We also hypothesized that modifications of braking perfor-
mance would essentially be paralleled by modifications in reaction
time. In contrast, swerving (being a more complex maneuver)
should remain constant throughout the day, regardless of the sleep
condition.

2. Materials and methods

The study protocol complied with the tenets of the Declaration
of Helsinki and was approved by the local ethics committee
(Comité de Protection des Personnes Nord-Ouest III, France, n�
2007-A00581-52).

2.1. Participants

Twelve healthy young males (age: 22.9 ± 1.9 years old; height:
177.6 ± 7.5 cm; weight: 79.2 ± 13.2 kg) voluntarily signed an
informed consent before being included in this study. To guarantee
the homogeneity of the sample, particular attention was paid to
motorcycling experience (participants held a motorcycling license
for 3.8 ± 2.6 years) and to the participant’s chronotype (person’s
circadian typology, reflecting morning and evening preferences)
according to their answers to the Horne and Ostberg (1976) ques-
tionnaire. All the participants were ‘intermediate type’ (score from
42 to 58), reflecting a mean bedtime between 22:30 h and 00:00 h;
and a wake-up time between 07:00 h and 09:00 h. Moreover, all
the participants had a score <11 on the Epworth sleepiness scale
(Johns, 1991) in order to avoid excessive diurnal sleepiness.
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2.2. Study design

As illustrated in Fig. 1, each participant was evaluated during
four test sessions, set up at 06:00 h, 10:00 h, 14:00 h, 18:00 h, fol-
lowing a night with or without sleep (corresponding to 24, 28, 32
and 36 waking hours in the SD condition) in a random order. The
two days of testing were separated by a period of 1 week to allow
for recovery from the night of sleep deprivation. For each of the
two sleep conditions, the tests described in the following section
were carried out once by each of the 12 participants at each
time-of-day.

The day before the tests, participants were asked to wake up at
07:00 h (controlled by actimetry) before coming to the laboratory
(which had room temperature of 21.6 ± 0.8 �C) at 19:00 h, and
ate a standardized meal at 20:00 h. When the participants were
evaluated following a night of normal sleep, they were asked to
go to bed at 22:30 h in order to guarantee a minimum of 6 h in
bed. An experimenter woke them up at 05:00 h. Under these con-
ditions, sleep duration conformed to the participants’ usual sleep-
ing habits, since participants reported during the inclusion visit
that their mean sleep duration was 7 h. For the night of SD, the par-
ticipants remained in the presence of an experimenter and were
not allowed to lie down. During this night of SD, the participants
were only allowed to take part in activities not involving any phys-
ical load or excitement (such as reading, watching a movie, and
playing cards), and energizing and stimulant drinks (coffee, tea,
etc.) were not allowed (Reilly & Bambaeichi, 2003). All these pre-
cautions were also applied during the day, in between the test
sessions.

A standardized breakfast was provided at 08:30 h, after the
experimental session at 06:00 h (Baxter & Reilly, 1983), in order
to limit inter-individual variability of the results (Bougard,
Moussay, Gauthier, Espié, & Davenne, 2009). A standardized meal
was also provided for lunch at 12:30 h, and a light snack at
16:30 h. To avoid any performance improvement during the exper-
iment due to a practice effect (Millar, 1992), all the participants
were trained during a pre-experimental session set up a week
before at 13:00 h, to obtain stabilization of their performances.
More precisely, they simulator sickness symptoms. After a
30 min break, they had to complete the same riding tests as for
the experimental test sessions during two training blocks of
15 min each, separated by 30 min.

2.3. Measurements

2.3.1. Oral temperature
Before each riding session on the PTW dynamic simulator, the

participants were asked to lie down on a bed for 15 min (Souissi
et al., 2007). Then, oral temperature was measured by an experi-
menter using a digital clinical thermometer (Omron, accuracy:
0.05 �C) inserted sublingually for at least 3 min.

2.3.2. Simulated riding tests
As proposed in Bougard et al. (2012), who studied the influ-

ences of time-of-day and sleep deprivation on real motorcycling
capabilities, participants had to perform an emergency braking

and a swerving maneuver, both realized at 20 and 40 kph in a ran-
dom order, on a motorcycle dynamic simulator (Fig. 2A). The same
environment, an underground private parking area (Fig. 2B), was
reproduced on the simulator (Fig. 2C). This simulator is based on
the framework of a real motorcycle (125 YBR, Yamaha�), fixed on
a mobile platform including 5DDL (roll, yaw, pitch, handlebar rota-
tion, force feedback on the handlebar). It allows the reproduction
of intensive braking, acceleration, and taking curves by tilting the
PTW at ±10�. All the commands from a real PTW were conserved
and encoded via various sensors, allowing to ride in the virtual
environment. A speedometer with LEDs on each side was repro-
duced on the lower screen so that the rider did not need to switch
his gaze and attention between the real and simulated environ-
ment. In order to cover a wide field of view (60�) a video projection
screen (height: 128 cm; width: 177 cm) was placed at 120 cm from
the simulator with the horizon line at the participant’s eye level.

The test course comprised two different zones: a preparation
zone (40 m) in which PTW riders had to achieve the required
speed; an exercise zone (40 m) in which riders had to perform
the required maneuver. At each extremity, an empty zone of
10 m was respected for visual comfort and fidelity with the real
underground parking area.

The emergency braking test was carried out at either 20 kph
(12.43 mph) or 40 kph (24.86 mph) with the brake lever and pedal
in a ‘‘ready-to-brake” position (foot just above the rear wheel brake
pedal and fingers beyond the front wheel brake lever). Participants
had to achieve the required speed before entering the exercise
zone. From the entrance of the exercise zone, one LED was
switched on in a random way. At this signal, the participant had
to brake in order to stop the PTW as soon as possible (Fig. 3). To
better analyze the effects of TOD and SD on emergency braking,
the combination of the different encoders allowed for the calcula-
tion of the following measures, retained as performance indices:

� Stopping time/distance: these measures describe the time/dis-
tance necessary for the rider to stop the PTW, once the LED
was turned on.

� Reaction time/distance: these measures describe the time/dis-
tance between the LED turn-on and the rider pressed the
brakes.

� Braking time/distance: these measures represent the time/dis-
tance during which the brakes were activated.

As for the swerving maneuver, the expected speed also had to
be attained before entering the exercise zone. At the beginning of
that zone, participants had to adjust the path of the PTW to the
median line. Then, one of the two LEDs was switched on and the
participant had to adjust the path of the PTW to the line on the
same side as the LED, as soon as possible. The order in which par-
ticipants had to perform the maneuver on the left or the right were
randomly chosen. The following measures were retained as perfor-
mance indices:

� Total time/distance for the avoidance: these measures corre-
spond to the time/distance separating the LED turn-on and
the stabilization of the PTW path on the designated line accord-

Fig. 1. Experimental protocol. Each participant participated in two days of test sessions ( ), organized after either a normal night’s sleep or a night of SD. During these
days, standardized meals ( ) were provided in between test sessions.
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ing to the LED side (left/right) (Fig. 4). To determine when the
path was stabilized on the line, the recorded data were analyzed
backward from the end of the trial. Once the handlebar position
exceeded three standard deviations from the mean value calcu-
lated in the preparation zone, the path of the PTW was consid-
ered as stabilized.

� Reaction time/distance: these measures represent the time/dis-
tance separating the LED turn-on from the initiation of the turn.
To determine the initiation of the turn, the mean position of the
handlebar in the preparation zone was calculated. Then, once in
the exercise zone, the first time the handlebar position
exceeded three standard deviations from the mean value previ-
ously calculated was considered as the initiation of the turn.

� Swerving time/distance: these measures correspond to the
time/distance necessary for the rider to stabilize the path of
the PTW on the appropriated line once he had initiated the turn.

Emergency braking and swerving are difficult and dangerous
maneuvers on a motorcycle. In real-life conditions, riders can
easily drop the bike or lose control. To improve realism and better

capture the real-life experience of riding a motorcycle, a ‘virtual’
fall occurred (reproduced by the simulation model in the visual
scene and also by little vibrations in the motorcycle seat) when a
rider failed to perform safely (braked too hard or overturned the
bike).

We analyzed first the effects of TOD and SD on the time/dis-
tance necessary to perform the whole maneuver. Then, we further
analyzed the reaction and execution part (braking/swerving) of the
maneuver, considered as explanatory variables.

2.4. Statistical analysis

Since, in this experiment, participants took part in several test
sessions throughout the day following both a normal night’s sleep
and a night of sleep deprivation, they were considered as their own
control. The repeated-measures ANOVA allow for comparing the
effects of each disturbance factor separately (sleep condition or
time-of-day) and also their possible interactions. In addition, with
the motorcycling tests being performed at different speeds (20 kph
and 40 kph) and according to instructions regarding the side of the
maneuver (swerving maneuver), these factors were considered as
categorical factors to identify their respective influence on partici-
pants performance.

The data recorded in temperature measurements during the
eight test sessions were analyzed by a 2 (sleep condition: normal
night; sleep deprivation) � 4 (time-of-day: 06:00 h, 10:00 h,
14:00 h and 18:00 h) repeated-measures analysis of variance
(ANOVA). For the motorcycling tests, both maneuvers were evalu-
ated at two different speeds. Consequently, emergency braking
data were analyzed by a 2 (sleep condition: normal night; sleep
deprivation) � 4 (time-of-day: 06:00 h, 10:00 h, 14:00 h, 18:00 h)
repeated-measures analysis of variance (ANOVA) with a categori-
cal factor (speed: 20 and 40 kph). For the swerving test, riders also
had to perform the maneuver on both sides. The data was thus ana-
lyzed by a 2 (sleep condition: normal night; sleep deprivation) � 4
(time-of-day: 06:00 h, 10:00 h, 14:00 h, 18:00 h) repeated-
measures analysis of variance (ANOVA) with two categorical fac-
tors (speed: 20 and 40 kph; side: left and right). To maintain clarity
and a full understanding of the results, only the main effects and
those of interaction limited to 2-levels are presented further.

For all the collected data, the condition of sphericity was tested
(Mauchly’s test). The p-value levels were corrected for possible
deviations from sphericity by means of the Huynh–Feldt epsilon
(e). We report the uncorrected degrees of freedom, the e value,
and the p-value according to the corrected degrees of freedom.
When significant differences were observed, a post hoc analysis
was then performed with a Bonferroni test.

All differences were considered as significant for p-value <0.05.
For each significant effect, we estimated the size effect using the

Fig. 2. A. Participant on the dynamic simulator during the riding test; B. Real
underground private parking area (Bougard et al., 2012); C. Simulated underground
private parking area.

Fig. 3. Emergency braking test and recorded measurements.
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partial eta squared (partial g2). All statistical analysis results are
presented in detail in the Appendices (Table1 for Emergency brak-
ing and Table 2 for Swerving).

3. Results

3.1. Oral temperature

A significant interaction effect between ‘sleep condition’ and
‘time-of-day’ (F(3,33) = 5.72; e = 1.00; p < 0.01; partial g2 = 0.34)
was observed on oral temperature measurements. The post-hoc
analysis indicated lower levels of temperature at 06:00 h after
the normal night’s sleep than after SD (35.81 ± 0.28 �C vs
35.99 ± 0.24 �C). In contrast, measurements realized at 10:00 h,
14:00 h and at 18:00 h did not depend on the previous sleep con-
dition [(36.16 ± 0.31 �C vs 36.23 ± 0.12 �C), (36.44 ± 0.25 �C vs
36.36 ± 0.17 �C), (36.55 ± 0.24 �C vs 36.48 ± 0.20 �C), respectively].

3.2. Emergency braking

Before any analysis of emergency braking performance, it was
necessary to check whether the participants rode at the correct
speed. They respected speed instructions while riding at
20.86 ± 1.11 kph and 39.85 ± 3.81 kph at the beginning of the exer-
cise zone (F(1,22) = 1582.38; p < 0.001; partial g2 = 0.99). Regarding
the whole maneuver, a significant interaction effect between
‘speed’ and ‘sleep condition’ was observed on both the stopping
distance (F(1,22) = 8.54; e = 1.00; p < 0.01; partial g2 = 0.28) and time
(F(1,22) = 7.76; e = 1.00; p < 0.05; partial g2 = 0.26). At 20 kph, the
participants stopped in a shorter distance (3.28 ± 0.26 m) and fas-
ter (0.63 ± 0.03) than at 40 kph (Fig. 5A). At 40 kph, the distance
necessary to stop the PTW (normal night: 7.58 ± 0.20 m vs SD:
9.16 ± 0.39 m; +21%), and also the stopping time significantly
increased with SD (normal night: 0.85 ± 0.02 s vs 1.01 ± 0.22 s after
SD; +19%).

To have further information, it would be of interest to deter-
mine whether the effects observed on the stopping distance/time
were induced by changes in the ‘reaction’ and/or ‘braking’ part of
the maneuver.

As for the reaction part of the maneuver, a significant interac-
tion effect between ‘speed’ and ‘sleep condition’ was observed on
both the distance (F(1,22) = 9.96; e = 1.00; p < 0.01; partial
g2 = 0.31) and time (F(1,22) = 8.08; e = 1.00; p < 0.01; partial
g2 = 0.27). At 20 kph, participants reacted in a shorter distance
(2.30 ± 0.25 m) and faster (0.39 ± 0.02 s) than at 40 kph. At 40
kph, the reaction distance (normal night: 6.53 ± 0.20 m vs SD:

8.05 ± 0.37 m; +23%) and time significantly increased with SD (nor-
mal night: 0.62 ± 0.02 s vs SD: 0.75 ± 0.03 s; +21%) (Fig. 5B).

Regarding the braking part of the maneuver, a significant effect
of ‘speed’ was observed on the distance during which the brakes
were activated (F(1,22) = 13.45; e = 1.00; p < 0.001; partial
g2 = 0.38). The participants pressed the brakes for shorter distances
at 20 kph than at 40 kph (0.91 ± 0.20 m vs 1.08 ± 0.22 m; �16%).
Surprisingly, the effect of ‘speed’ was not observed on braking
times. In addition, an interaction effect between ‘sleep condition’
and ‘time-of-day’ was observed on braking distance (F(3,66) = 3.16;
e = 0.89; p < 0.05; partial g2 = 0.13) and time (F(3,66) = 3.21;
e = 0.83; p < 0.05; partial g2 = 0.13). The Bonferroni post-hoc analy-
sis reported no significant differences regarding braking distances;
while braking times measured after the normal night’s sleep were
significantly shorter at 06:00 h than at 18:00 h (0.19 ± 0.01 s vs
0.22 ± 0.01 s; �16%).

3.3. Swerving

The target speed recorded at the beginning of the exercise zone
conformed to the instructions since participants rode at
21.32 ± 0.68 kph and 40.31 ± 1.24 kph (F(1,45) = 1796.40;
p < 0.001; partial g2 = 0.98). ‘Speed’ significantly influenced the
total distance (F(1,45) = 15.12; p < 0.001; partial g2 = 0.25) and time
(F(1,11) = 64.57; p < 0.001; partial g2 = 0.59) necessary to perform
the avoidance maneuver while swerving. The participants needed
shorter distance (27.95 ± 0.86 m vs 32.67 ± 0.54 m; �14%) but took
longer (4.88 ± 0.13 s vs 3.52 ± 0.12 s; + 38%) to change their path at
20 kph than at 40 kph.

To have further information, it would be of interest to deter-
mine whether the effects observed on the avoidance distance and
time were induced by changes in reactions and/or changes in the
movement part of the swerving maneuver.

Regarding the reaction part of the maneuver, a significant inter-
action effect between ‘speed’ and ‘time-of-day’ was observed on
both the reaction distance (F(3,135) = 3.16; e = 1.00; p < 0.05; partial
g2 = 0.07) and time (F(3,135) = 2.79; e = 1.00; p < 0.05; partial
g2 = 0.06). At 20 kph, the participants travelled less distance before
initiating their maneuver (1.87 ± 1.11 m) and reacted faster
(0.32 ± 0.01 s) than at 40 kph. At 40 kph, reaction distance and time
were increased at 06:00 h (4.44 ± 0.22 m; 0.42 ± 0.02 s, respec-
tively) in comparison with measurements realized at 10:00 h
(3.50 ± 0.20 m; 0.32 ± 0.02 s, respectively), 14:00 h (3.26 ± 0.20 m;
0.30 ± 0.02 s, respectively), and 18:00 h (3.40 ± 0.21 m;
0.30 ± 0.02 s, respectively).

Fig. 4. Swerving maneuver and recorded measurements.
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Table 1
Repeated-measures analysis of variance (ANOVA) of Emergency braking. Italic: categorical factors. Bold: significant effect (p < 0.05). Speed (20; 40 kph), Sleep: sleep condition (normal night; sleep deprivation), TOD: time-of-day (06:00 h;
10:00 h; 14:00 h; 18:00 h).

ddl F p-value partial g2 ddl F p-value partial g2 ddl F p-value partial g2

Speed instruction Reaction distance Braking distance
Speed (1,22) 1582.38 0.000 0.99 Speed (1,22) 190.42 0.000 0.90 Speed (1,22) 13.45 0.001 0.38
Sleep (1,22) 0.00 0.951 0.00 Sleep (1,22) 13.73 0.001 0.38 Sleep (1,22) 0.25 0.620 0.01
Sleep � Speed (1,22) 0.13 0.721 0.01 Sleep � Speed (1,22) 9.96 0.005 0.31 Sleep � Speed (1,22) 0.81 0.379 0.04
TOD (3,66) 0.51 0.649 0.02 TOD (3,66) 0.40 0.754 0.02 TOD (3,66) 1.20 0.318 0.05
TOD � Speed (3,66) 0.18 0.886 0.01 TOD � Speed (3,66) 1.17 0.327 0.05 TOD � Speed (3,66) 0.20 0.896 0.01
Sleep � TOD (3,66) 2.30 0.086 0.09 Sleep � TOD (3,66) 0.28 0.836 0.01 Sleep � TOD (3,66) 3.16 0.030 0.13
Sleep � TOD � Speed (3,66) 0.45 0.719 0.02 Sleep � TOD � Speed (3,66) 0.92 0.437 0.04 Sleep � TOD � Speed (3,66) 0.15 0.927 0.01

Stopping distance Reaction time Braking time
Speed (1,22) 195.43 0.000 0.90 Speed (1,22) 190.42 0.000 0.90 Speed (1,22) 0.16 0.691 0.01
Sleep (1,22) 10.26 0.004 0.32 Sleep (1,22) 12.65 0.002 0.37 Sleep (1,22) 0.11 0.741 0.01
Sleep � Speed (1,22) 8.54 0.008 0.28 Sleep � Speed (1,22) 8.08 0.009 0.27 Sleep � Speed (1,22) 0.00 0.976 0.00
TOD (3,66) 0.34 0.796 0.02 TOD (3,66) 0.08 0.923 0.00 TOD (3,66) 1.54 0.212 0.07
TOD � Speed (3,66) 0.37 0.775 0.02 TOD � Speed (3,66) 0.79 0.465 0.03 TOD � Speed (3,66) 0.50 0.686 0.02
Sleep � TOD (3,66) 0.12 0.946 0.01 Sleep � TOD (3,66) 0.19 0.880 0.01 Sleep � TOD (3,66) 3.21 0.038 0.13
Sleep � TOD � Speed (3,66) 0.83 0.480 0.04 Sleep � TOD � Speed (3,66) 0.29 0.805 0.01 Sleep � TOD � Speed (3,66) 1.95 0.142 0.08

Stopping time
Speed (1,22) 54.84 0.000 0.71
Sleep (1,22) 9.78 0.005 0.31
Sleep � Speed (1,22) 7.76 0.011 0.26
TOD (3,66) 0.29 0.805 0.01
TOD � Speed (3,66) 0.32 0.776 0.01
Sleep � TOD (3,66) 0.69 0.563 0.03
Sleep � TOD � Speed (3,66) 2.07 0.112 0.09
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Table 2
Repeated-measures analysis of variance (ANOVA) of Swerving. Italic: categorical factors. Bold: significant effect (p < 0.05). Speed (20; 40 kph), Side (left; right), Sleep: sleep condition (normal night; sleep deprivation), TOD: time-of-day
(06:00 h; 10:00 h; 14:00 h; 18:00 h).

ddl F p-value partial g2 ddl F p-value partial g2 ddl F p-value partial g2

Speed instruction Reaction distance Adjustment distance
Speed (1 45) 1796.40 0.00 0.98 Speed (1,45) 113.00 0.00 0.72 Speed (1,45) 7.07 0.01 0.14
Side (1,45) 003 0.87 0.00 Side (1,45) 0.28 0.60 0.01 Side (1,45) 0.03 0.85 0.00
Sleep (1,45) 1.24 0.27 0.03 Sleep (1,45) 0.25 0.62 0.01 Sleep (1,45) 0.62 0.43 0.01
Sleep � Speed (1,45) 0.54 0.04 0.85 Sleep � Speed (1,45) 0.02 0.89 0.00 Sleep � Speed (1,45) 0.07 0.80 0.00
Sleep � Side (1,45) 15.89 1.11 0.30 Sleep � Side (1,45) 0,36 0.55 0.01 Sleep � Side (1,45) 0.95 0.33 0.02
TOD (3,135) 2.51 0.20 0.86 TOD (3,135) 4.28 0.01 0.09 TOD (3,135) 0.41 0.75 0.01
TOD � Speed (3,135) 22.22 1.74 0.17 TOD � Speed (3,135) 3.16 0.03 0.07 TOD � Speed (3,135) 1.23 0.30 0.03
TOD � Side (3,135) 23.36 1.82 0.16 TOD � Side (3,135) 1.23 0.30 0.03 TOD � Side (3,135) 0.02 0.99 0.00
Sleep � TOD (3,135) 16.26 1.59 0.20 Sleep � TOD (3,135) 0.68 0.57 0.01 Sleep � TOD (3,135) 0.95 0.42 0.02
Sleep � TOD � Speed (3,135) 6.77 0.66 0.57 Sleep � TOD � Speed (3,135) 1.51 0.21 0.03 Sleep � TOD � Speed (3,135) 0.67 0.57 0.01
Sleep � TOD � Side (3,135) 34.59 3.38 0.02 Sleep � TOD � Side (3,135) 0.41 0.75 0.01 Sleep � TOD � Side (3,135) 0.51 0.68 0.01

Swerving distance Reaction time Adjustment time
Speed (1,45) 15.12 0.00 0.25 Speed (1,45) 0.88 0.35 0.02 Speed (1,45) 58.48 0.00 0.57
Side (1,45) 0.06 0.81 0.00 Side (1,45) 0.30 0.59 0.01 Side (1,45) 0.00 0.96 0.00
Sleep (1,45) 1.05 0.31 0.02 Sleep (1,45) 0.02 0.89 0.00 Sleep (1,45) 0.05 0.82 0.00
Sleep � Speed (1,45) 0.15 0.70 0.00 Sleep � Speed (1,45) 0.06 0.80 0.00 Sleep � Speed (1,45) 0.64 0.43 0.01
Sleep � Side (1,45) 0.41 0.52 0.01 Sleep � Side (1,45) 0.41 0.52 0.01 Sleep � Side (1,45) 1.87 0.18 0.04
TOD (3,135) 0.34 0.80 0.01 TOD (3,135) 4.08 0.01 0.08 TOD (3,135) 0.03 0.99 0.00
TOD � Speed (3,135) 1.03 0.38 0.02 TOD � Speed (3,135) 2.79 0.04 0.06 TOD � Speed (3,135) 0.76 0.50 0.02
TOD � Side (3,135) 0.07 0.98 0.00 TOD � Side (3,135) 1.38 0.25 0.03 TOD � Side (3,135) 0.38 0.74 0.01
Sleep � TOD (3,135) 1.28 0.28 0.03 Sleep � TOD (3,135) 0.74 0.53 0.02 Sleep � TOD (3,135) 1.11 0.34 0.02
Sleep � TOD � Speed (3,135) 1.19 0.32 0.03 Sleep � TOD � Speed (3,135) 1.70 0.17 0.04 Sleep � TOD � Speed (3,135) 0.29 0.81 0.01
Sleep � TOD � Side (3,135) 0.66 0.58 0.01 Sleep � TOD � Side (3,135) 0.77 0.51 0.02 Sleep � TOD � Side (3,135) 0.50 0.66 0.01

Swerving time
Speed (1,45) 64.57 0.00 0.59
Side (1,45) 0.04 0.84 0.00
Sleep (1,45) 0.02 0.88 0.00
Sleep � Speed (1,45) 0.60 0.44 0.01
Sleep � Side (1,45) 1.09 0.30 0.02
TOD (3,135) 0.02 0.99 0.00
TOD � Speed (3,135) 0.52 0.62 0.01
TOD � Side (3,135) 0.68 0.53 0.01
Sleep � TOD (3,135) 1.04 0.37 0.02
Sleep � TOD � Speed (3,135) 0.37 0.74 0.01
Sleep � TOD � Side (3,135) 0.59 0.59 0.01
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As for the swerving part of the maneuver, a significant effect of
‘speed’ was observed on the distance (F(1,45) = 7.07; p < 0.05; partial
g2 = 0.14) and time (F(1,45) = 58.48; p < 0.001; partial g2 = 0.57) nec-
essary to adjust the trajectory of the PTW. More precisely, the par-
ticipants needed shorter distance (27.14 ± 0.91 m vs
30.56 ± 1.44 m; �11%) but took longer to adjust their path
(4.74 ± 0.14 s vs 3.36 ± 0.12 s; +41%) while riding at 20 kph than
at 40 kph, respectively.

4. Discussion

This study aimed at determining whether motorcycling perfor-
mances evaluated through crash avoidance maneuvers usually
performed (namely emergency braking and swerving) evolved
with sleep deprivation and time-of-day while evaluated on a
dynamic simulator. Our major finding is that emergency braking
performance was significantly affected by lack of sleep, more par-
ticularly at 40 kph. The increase observed in stopping time and dis-
tance when riding at 40 kph could be directly connected to the
reaction part of the maneuver (+0.13 s, +21.4%). In contrast, it
seems that swerving performance remained unchanged according
to TOD or SD in our experiment. At 40 kph, only the reaction part of
the maneuver evolved throughout the day with slower reactions in
the early morning, while these influences had no consequence on
the whole maneuver.

Oral temperature was measured in this study because it is con-
sidered as a major biomarker of circadian rhythmicity (Colquhoun,
1971). As classically observed in the literature, the measurements
realized after the normal night’s sleep fluctuated throughout the
day, according to the circadian rhythm of core body temperature.
The amplitude of this diurnal fluctuation (+0.7 �C) is classically
reported in participants with intermediate chronotype and attests
that the participants selected in this study presented a clear circa-
dian rhythmicity (Reilly & Waterhouse, 2009). The diurnal fluctua-
tion of temperature was preserved after the sleepless night with a
decreased amplitude, induced by higher values recorded in the
morning (Souissi, Sesboüé, Gauthier, Larue, & Davenne, 2003). This
also confirmed that the test sessions were set up at appropriate
time schedules to evaluate marked diurnal fluctuations in motor-
cycling performances.

The results observed in the emergency braking test confirmed
that stopping distance increases with speed (Corno, Savaresi,
Tanelli, & Fabbri, 2008). Our dynamic model induced a 5-m
increase between maneuvers performed at 20 kph and 40 kph

(+155%). Even if these results may seem intuitive, they reproduced
previous measurements obtained in real riding conditions
(Bougard et al., 2012; +9 m, +203%), confirming the pretty good
generalizability of our results obtained on a dynamic simulator.
While evolving at 20 kph faster, a 5 m difference in stopping dis-
tance may have serious consequences if a rider has to brake sud-
denly. Consequently, PTW riders have to respect speed
limitations in dense areas. The stopping distance and time at 40
kph were increased after SD. These worsening performances (dis-
tance: +1.58 m, +21%; time: +0.16 s, +19%) indicated that partici-
pants were not able to stop as quickly as they did after the
normal night’s sleep, even at quite low speeds. This can have fatal
consequences in real-life riding, particularly in a city center where
speed limitations are fixed at 50 kph, with a lot of pedestrian cross-
ings. Further analyses indicated that these impaired performances
after the sleepless night should be mainly related to increased
reaction times. After the normal night’s sleep, reaction times mea-
sured at 20 kph (0.39 s) and 40 kph (0.62 s) were in agreement
with several studies in real motorcycling condition, using artificial
stimuli such as lights and road markings for safety reasons
(Bougard et al., 2012; Davoodi, Hamid, Pazhouhanfar, & Muttart,
2012; Ecker, Wassermann, Ruspekhofer, Hauer, & Winkelbauer,
2001; Vavryn & Winkelbauer, 2004). At 40 kph, reaction times
increased after SD, which is in agreement with previous findings
obtained in laboratory conditions (Corsi-Cabrera, Arce, Del Rio-
Portilla, Perez-Garci, & Guevara, 1999; Doran, vanDongen, &
Dinges, 2001). Nonetheless, most of these studies also reported
that reaction time still fluctuates throughout the day, independent
of the lack of sleep (Arnal, Sauvet, Leger, van Beers, Bayon, Bougard,
Rabat, Millet, & Chennaoui, 2015; Basner, Rao, Goel, & Dinges,
2013; Bougard, Davenne, Espie, Moussay, & Léger, 2016a). This
was not the case on the simulator. It can be assumed that, due to
monotony on the simulator in this relatively simple task, the effect
of sleep deprivation was so important that the influence of diurnal
fluctuations remained limited. Another interesting aspect is that
reaction times were faster at 20 kph than at 40 kph. It has to be
noticed that to ride at 20 kph, the participants only needed to
select the third gear, while the engine was idling. They did not
need to turn the throttle. In contrast, to ride at 40 kph the partic-
ipants also needed to maintain their speed by controlling the throt-
tle, similar to a real motorcycle, which is a bit more complex.
Finally, the braking part of the maneuver remained mostly
unchanged in our study. Only a significant effect of ‘speed’ was
observed on the braking distance, but no effect of TOD nor SD. It
is particularly difficult to reproduce the tire ground contact on a

Fig. 5. Stopping distance (A) and reaction time (B) recorded at 20 kph (on the left) and 40 kph (on the right) after the normal night’s sleep (grey) and sleep deprivation (black);
**p < 0.01.
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motorcycling simulator, even on a dynamic simulator. It can be
inferred that the lack of rendering was a measuring weakness of
this parameter. Nonetheless, in case of emergency, riders might
press the brakes heavily in order to stop the PTW as quick as pos-
sible, in peculiar with an ABS system. These observations confirm
those of Kovácsová et al. (2020), reporting no differences between
braking styles observed with motion and no-motion simulator
configurations. These results are also in agreement with those of
Humphrey, Kramer, and Stanny (1994), reporting that the deleteri-
ous effects of SD on reaction time are mainly induced by an alter-
ation of the first stages of information processing, the perception,
but not from the motor execution part.

As for the swerving maneuver, the total distance and time nec-
essary to perform the maneuver increased with speed. Riding 20
kph faster (from 20 to 40 kph), increased the avoidance distance
by 5 meters approximately. These results are in agreement with
previous observations in real motorcycling conditions (+7 meters
between 20 and 40 kph; Bougard et al., 2012). This tends to indi-
cate a good reproducibility of motorcycling behavior, but also of
motorcycle dynamics on the simulator. In addition, our results con-
firm that up to 40 kph, and without any distraction, emergency
braking requires shorter distance than swerving (Shuman,
Husher, Varant, & Armstrong, 2006). Once again, in critical situa-
tions PTW riders must be aware of the impact of speed on their
crash avoidance capabilities. Furthermore, analyzing the different
components of the maneuver indicated that reaction times and
distances evolved throughout the day. At 40 kph, the participants
reacted slower at 06:00 h than at other times of the day, which
resulted in longer distances travelled before initiating the maneu-
ver (+1 m). These observations confirm that the diurnal fluctuation
of attention, with increased reaction times in the early morning,
evolves closely to the body temperature rhythm (Bougard et al.,
2016a; Rabat et al., 2016). The swerving part of the maneuver only
changed with ‘speed.’ According to PTW dynamics, the participants
adjusted their trajectory faster, but while traveling more distance
at 40 kph than at 20 kph (Shuman et al., 2006). As PTW riders
use the right-hand side of the road in France, and usually need to
avoid an obstacle by swerving on the left (e.g., door of a car parked
could open, right of way violation), we believed that the swerving
maneuver would be performed more efficiently on the left than on
the right. However, the participants of our study, being quite
young, may have lack of exposure to critical situations to develop
such preference. Although the effects of SD are well-known, the
swerving performances remained globally unchanged in our study.
These observations are in agreement with those of Bougard et al.
(2012). This maneuver was the more complex in our study, much
more than the emergency braking. Indeed, the participants had
to maintain speed and control their trajectory while entering the
exercise zone, and then to react as quickly as possible to the light
signal and perform the correct maneuver according to the side
indicated by the LED. Previous studies have shown that compen-
satory mechanisms may be set up to mitigate SD effects in complex
tasks (Drummond, Meloy, Yanagi, Orff, & Brown, 2005). Our results
confirm that TOD and SD have different effects on the initial stages
of information processing and those responsible for executive
functions and motor execution (Frey, Badia, & Wright, 2004;
Humphrey et al., 1994; Kraemer et al., 2000). These last mecha-
nisms seem to be more resistant to the effects of both disturbance
factors and performances remain mostly unaffected.

Some limitations should be considered in our study. The limited
sample size reduces generalization of our results, in particular to
other age ranges, since riders were quite young in our study. More-
over, it should be assumed that even if there was some uncertainty
related to the side on which the maneuver had to be performed,
the participants knew that they had to do something when enter-
ing the exercise zone. As a consequence, they were already in an

alert state, and waited for a LED signal. Therefore, the practical sig-
nificance of these results must be interpreted in the context of the
contrived experimental conditions. However, this methodological
choice was guided by possible comparisons with previous studies
conducted in real motorcycling conditions. The total sleep depriva-
tion was rather severe in our study. Nonetheless, previous studies
using cumulative partial sleep deprivation, which are more compa-
rable with what happens in everyday life, have shown that the per-
formance decrement increased progressively with the
accumulation of the sleep debt (Banks & Dinges, 2007; Van
Dongen, Maislin, Mullington, & Dinges, 2003). It appeared that
cumulative restriction of sleep to 6 h or less per night across 14
nights produced cognitive performance deficits equivalent to up
to two nights of total sleep deprivation. Other studies also reported
that 18, 21, and 28 waking hours had the same deleterious effect as
a blood alcohol concentration of 0.05%, 0.08%, and 0.1%, respec-
tively (Arnedt, Wilde, Munt, & MacLean, 2001; Williamson, Feyer,
Mattick, Friswell, & Finlay-Brown, 2001). In addition, the short
duration of the riding sessions may have allowed for compensatory
mechanisms enabling limiting time-of-day or sleep deprivation
influences (Bougard, Moussay, & Davenne, 2008). Finally, in con-
trast with results observed in real motorcycling conditions
(Bougard et al., 2012), the influence of time-of-day on the simula-
tor remained limited. It is well-known that sleepiness influence on
driving capabilities is increased in simulated conditions (Davenne
et al., 2012). It can be assumed that the effects of sleep deprivation
were strong enough in our paradigm to mask time-of-day influ-
ence. In addition, even if motorcycling performance obtained in
our dynamic simulator does not precisely replicate real motorcy-
cling conditions, different measurements such as reaction times
and stopping distances evolved in the same range between simu-
lated and real driving conditions (Bougard et al., 2012). This tends
to confirm the ‘relative’ validity of riding behaviors in the present
study (Godley, Triggs, & Fildes, 2002).

5. Conclusion

This study is the first to demonstrate, on a dynamic PTW simu-
lator, that motorcycling capabilities evolve with sleep deprivation
and time-of-day, in reference to emergency braking and swerving
maneuvers. The more complex tasks (swerving maneuver) used
in this study were only weakly influenced, but the tests performed
may have been too short. The PTW simulator, as it mimics the
results obtained in real riding conditions at low speed, can be con-
sidered a useful tool to focus on more realistic scenarios. Further
studies may focus on prolonged motorcycle riding sessions with
various road environments (e.g., city, country, and highway) to bet-
ter understand the impact of fatigue and sleepiness on riding
behavior and crashes.

6. Practical Applications

Even during simple tasks at low speed, emergency braking and
swerving maneuvers evolved with TOD alone or combined with
SD. This suggests that, while riding for a longer duration and in a
more complex environment (including numerous distractors),
PTW riders should be aware of their limited capabilities at different
TOD and/or when SD occurred.

Prevention campaigns for road safety should focus on the dan-
gers of motorcycling while sleepy. As for sensitizing drivers to the
dangers of alcohol intoxication using simple equipment (prismatic
glasses), specific scenarios could be developed for low-cost PTW
simulators such as the Honda Riding Trainer (HRT) which are, for
example, already used in motorcycling schools in France.
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a b s t r a c t

Introduction: This study investigates the impact of several risk factors (i.e., roadway, driver, vehicle, envi-
ronmental, and barrier-specific characteristics) on the injury severity resulting from barrier-related
crashes and also on barrier-hit outcomes (i.e., vehicle containment, vehicle redirection, and barrier pen-
etration). A total of 1,685 barrier-related crashes, which occurred on three major interstate highways (I-
65, I-85, and I-20) in the state of Alabama, were collected for a seven-year period (2010–2016), and all
relevant information from the police reports was reviewed. Features that were rarely explored before
(e.g., median width, barrier length, barrier offset or lateral position, left shoulder width, blockout type,
and number of cables) were also collected and examined. Two types of longitudinal barriers were ana-
lyzed: high-tension cable barriers installed on medians and strong-post guardrails installed on medians
and/or roadsides. Method: Two separate mixed logit (MXL) models were used to analyze crash injury
severity in median and roadside barrier-related crashes. Two additional MXL models were separately
adopted for median and roadside barrier-related crashes to estimate the probability of three barrier-
hit outcomes (vehicle containment, vehicle redirection, and barrier penetration). Results: The results of
crash injury severity MXL models showed that, for both median and roadside barrier crashes, barrier pen-
etration, female drivers, and driver fatigue were associated with a higher probability of injury or fatal
crashes. The results of barrier-hit MXL models showed that longer barrier length, Brifen cable barrier sys-
tem, and barrier lateral position were significant predictors of median barrier-hit outcomes, whereas dark
lighting condition, driving under the influence (DUI), presence of curved freeway sections, and right
shoulder width significantly contributed to roadside barrier-hit outcomes. Conclusions: The MXL model
succeeded in identifying several contributing factors of crash severity and barrier-hit outcomes along
Alabama’s interstate highways. Practical applications: One study application is to design longer barrier
run length (greater than 1230 feet or 0.2 miles) to reduce the barrier penetration likelihood.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Roadside appurtenances, such as guardrails and cable barriers,
are designed to prevent crossover crashes or roadway departure
(RwD) crashes. RwD crashes are defined as a crash in which an
errant vehicle leaves its travel way to the left (median crossover)
or to the right (run-off-road ‘‘ROR”), potentially colliding with a
vehicle or fixed object. RwD crashes are among the most severe
traffic crashes because a vehicle’s roadway departure mainly
results in striking a rigid fixed object, overturning on roadside
embankments, or colliding head-on with another vehicle in the
opposite direction after crossing the median (Chitturi et al.,
2011; Roque & Jalayer, 2018; Zou, Tarko, Chen, & Romero, 2014).
As indicated in Russo and Savolainen (2018), per Park et al.

(2015), RwD crashes are responsible for over half of all traffic fatal-
ities in the United States. Longitudinal safety barriers (such as W-
beam/thrie-beam guardrails and cable barriers) are widely
installed on medians and roadsides to prevent errant vehicles from
severe consequences following roadway departure (Hu & Donnell,
2010; Molan et al., 2019; Park et al., 2016; Russo & Savolainen,
2018).

There exist three possible outcomes for any vehicle after leaving
the roadway and striking a median or roadside barrier. These are:
(i) vehicle containment (i.e., vehicle is contained by the barrier;
which is an indication of barrier success or barrier non-
crossover), (ii) vehicle redirection (i.e., vehicle is redirected back
onto the roadway after colliding with the barrier; which is an indi-
cation of barrier success or barrier non-crossover), and (iii) barrier
penetration (i.e., vehicle penetrates through, under, or over the bar-
rier; which is an indication of barrier crossover or non-success).
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The effectiveness of a safety barrier system in reducing or elim-
inating harmful events following a vehicle’s roadway departure
depends on a number of factors, such as barrier-specific conditions
(e.g., barrier type, barrier placement, post type and spacing, barrier
length, etc.), road geometric conditions (e.g., number of traffic
lanes, shoulder width, road alignment), traffic volume, vehicle
type, and weather conditions (Burns & Bell, 2016). It is thus recom-
mended to estimate the performance of different barrier alterna-
tives on barrier-hit outcomes and resulting injury severity (Park
et al., 2016; Zou & Tarko, 2018). However, the effect of barrier-
specific characteristics (i.e., barrier length, barrier lateral position,
type of guardrail blockout, cable barrier type, and number of cable
or strands) has not been extensively documented when analyzing
the severity and hit outcomes of barrier-involved crashes (notable
exceptions are Zou, Tarko, Chen, and Romero (2014), Russo and
Savolainen (2018), Molan et al. (2019), and Rezapour et al. (2019)).

Recognizing the aforementioned gap, this study has two main
objectives: (1) to analyze the impact of roadway, driver, vehicle,
environmental, and barrier-specific factors on the severity of bar-
rier hits using the mixed logit (MXL) model, and (2) to estimate
the probability of three different barrier-hit outcomes (vehicle con-
tainment, vehicle redirection, and barrier penetration) given a
barrier-related crash on median or roadside using the MXL model.
This model has the advantage of varying the parameter estimates
across the crash observations for reliable coefficient estimation.
In this study, two barrier types were investigated: high-tension
cable barriers installed on medians and strong-post W-beam/
thrie-beam guardrails installed on both medians and roadsides.

To achieve the study objectives, extensive data collection effort
has been made through reviewing, in detail, police crash reports
and capturing relevant geometric roadside features. This study
was based on a sample of 1,685 barrier-related crashes that
occurred on three major interstate highways (I-65, I-85, and I-20)
in the state of Alabama over the seven-year period from 2010 to
2016.

2. Literature review

2.1. Studies on the safety performance of road barriers

A number of studies have been conducted to investigate the in-
service performance of road barriers in reducing the consequences
of RwD crashes. Hunter et al. (2001), for example, applied the neg-
ative binomial (NB) regression models to investigate the effects of
three-strand median cable barriers on crash rates for several colli-
sion types. Crash data were collected on North Carolina Interstate
System for the years 1990 through 1997. The authors found that
the number of severe crashes declined on the sections where cable
median barriers were installed, though the frequency of some
crash types, such as run-off-road-left and fixed object-related,
increased. Ray and Weir (2001) evaluated the safety performance
of four different guardrail systems, including the G1 cable guard-
rail, the G2 weak-post W-beam guardrail, and the G 4(1S) and
G4(1 W) strong-post W-beam guardrails. Crash data were collected
on different highways in the states of Connecticut, Iowa, and North
Carolina between 1997 and 1999. The study found that there were
no significant differences in the safety performance of the G1 and
the G2 or the G1 and the G4(1 W). Nevertheless, occupant injuries
were less likely in collisions with a G1 guardrail than in collisions
with the G4 guardrails.

Zou and Tarko (2016) analyzed the probabilities of various haz-
ardous events under different road and barrier conditions when a
vehicle departed the roadway. The study focused on the perfor-
mance of four types of road barriers (median concrete barriers,
median W-beam guardrails, median high-tension cable barriers,

and roadside W-beam guardrails) in preventing high-risk crashes
from occurring. A multinomial logit (MNL) model was applied
using 10-year crash records collected on freeway and non-
freeway segments from 2003 to 2012 in the state of Indiana. The
results showed that no median crossovers were observed where
a median barrier was present. Cable barriers installed on the far-
side edge of a median reduced the probabilities of barrier collisions
and of vehicles’ redirection into traffic. Roadside guardrails were
found to diminish the risk of hazardous off-road crashes. Chimba
et al. (2017) conducted a before-and-after analysis using paired
t-test and empirical Bayes (EB) methods to examine the safety
effectiveness of median cable barriers installed on Tennessee high-
ways between 2006 and 2010. The overall findings indicated that
the installation of cable barriers significantly reduced crash fre-
quency and severity.

Using 10 years (2003–2012) of crashes on arterial roads in Indi-
ana, Zou and Tarko (2018) estimated crash modification factors
(CMFs) and average crash costs for different barrier-related crash
types (concrete barriers, W-beam guardrails, and high-tension
cable barriers). The NB and MNLmodels were, respectively, applied
to estimate the number of barrier-related crashes and the probabil-
ity of barrier-related harmful events. The study concluded that the
total number of barrier-related crashes increased where median
barriers were present. In terms of crash cost, the unit cost of a crash
was reduced for cable barriers installed in medians wider than 50
feet and for concrete barriers and guardrails installed in medians
narrower than 50 feet. Compared to other barrier types, median
cable barriers were found to be the most cost-effective.

2.2. Studies on barrier-related crash severity analysis

Hu and Donnell (2010) adopted a nested logit model to assess
the effects of roadway, environmental, and driver-related factors
on median barrier crash severity on North Carolina interstate high-
ways. The information on roadway and crash data was collected
from the North Carolina Highway Safety Information System (HSIS)
dataset between 2000 and 2004. Several risk factors (such as med-
ian barrier offset, travel speed, overturning, and curved road seg-
ment indicator) were found to be associated with median barrier
crash severity. Furthermore, collisions with cable barriers were
found to be less serious compared to collisions with other barriers.
Zou, Tarko, Chen, and Romero (2014) assessed the effectiveness of
barriers in reducing the injury severity of vehicle occupants in
single-vehicle crashes that occurred on Indiana highways. A
mixed-effects binary logistic regression model was developed
using crash data collected between 2008 and 2012. The results
indicated that striking all barrier types, including cable barriers,
guardrails, and concrete barriers, reduced the probability of injury
when compared to colliding with high-risk roadside object.

Park et al. (2016) conducted a before-after analysis using EB and
full Bayesian (FB) techniques to examine the safety effectiveness of
the installation of roadside barriers (including W-beam guardrails
and concrete barriers) installed on freeway segments in Florida.
The crash data were collected from the crash analysis reporting
system (CARS) for the four-year before (2003–2006) and four-
year after (2008–2011) periods. The results showed that roadside
barriers were more effective in reducing severe ROR crashes that
occurred during nighttime, under rainy weather conditions, and
for middle and old age drivers. Russo and Savolainen (2018) com-
pared the performance of different median barrier types in terms
of crash frequency, severity, and barrier-hit outcomes on Michigan
freeway segments. A random-parameters negative binomial
(RPNB) model and a random-parameters ordered logit (RPOL)
model were developed to estimate crash frequency and severity,
respectively. An MNL model was also fitted to estimate barrier
strike outcomes. The studied median barrier types included high-
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tension cable barriers, thrie-beam guardrails, and concrete barri-
ers. The authors found that the effects of factors related to road-
way, traffic, and environmental attributes on the frequency,
severity, and barrier-hit outcomes varied across the three different
barrier types.

Rezapour et al. (2019) investigated the factors affecting the
severity of barrier-hitting crashes on two-lane highways in Wyom-
ing. A mixed logit model was applied to traffic barrier crashes that
occurred between 2007 and 2017. The results showed that non-
normal (e.g., anger and anxious) driving conditions, driver’s cita-
tion record, older drivers, rollover crashes, barrier offset distance,
barrier height, shoulder width, and dry surface condition were
associated with higher severity of crashes involving roadside safety
barriers.

Molan et al. (2019) developed a random-parameters ordered
logit model to examine the effects of driver attributes, environ-
mental conditions, roadway geometric design, and barrier-
specific characteristics (e.g., barrier type: cable barriers, box-
beam barriers, W-beam barriers, and concrete barriers), height,
post-spacing, side slope ratio, and lateral offset, on the severity
of median barrier crashes that occurred on interstate highways in
Wyoming between 2016 and 2018. The results showed that female
drivers, unbelted drivers, drivers with a record of alcohol citation,
sharp horizontal curves, motorcycles, dry surface conditions, road
segments with higher trucks, and rollover crashes were associated
with more severe injury crashes involving median barriers. In
terms of barrier-specific conditions, barrier height, barrier type,
barrier lateral offset, and barrier post-spacing were found to signif-
icantly affect the risk of severe injury upon crash occurrence. In a
similar study, Molan et al. (2020) investigated the severity of
single-vehicle crashes involving median and roadside barriers.
Using crashes occurred in the state of Wyoming from 2007 through
2016, three separate ordered logistic regression models were
developed for three barriers including cable, guardrail, and rigid
barriers. The authors demonstrated that the effects of different
explanatory variables varied across safety barriers. For example,
higher speed limits had a positive effect on crash severity of guard-
rails, while it had a reverse impact on the severity of crashes
involving cable barriers.

2.3. Summary of the literature review

Table 1 summarizes previous studies discussed in the afore-
mentioned two sub-sections. The review of the existing literature
indicates that few studies have been carried out to investigate
the probability of different barrier-hit outcomes (e.g., vehicle con-
tainment and barrier penetration) in the case of colliding with road
safety barriers. Furthermore, relatively limited studies have inves-
tigated the effects of barrier-specific characteristics (such as bar-
rier length, barrier lateral position, type of guardrail blockout,
cable barrier type, embankment distance behind the guardrail
posts, and number of cable or strands) on consequences following
hitting a barrier, including injury severities or barrier-hit out-
comes. For this, the current study aims to examine the effects of
various barrier-specific factors, along with roadway, vehicle, dri-
ver, and environmental characteristics, on the consequences of
barrier-related crashes, including the crash injury severity and
barrier-hit outcomes (i.e., vehicle containment, vehicle redirection,
and barrier penetration).

3. Study sites & data collection and preparation

The data used in this study were collected on three major inter-
state highways in the state of Alabama. These are I-65, I-85, and I-
20. Interstate-65 is the most used interstate corridor in Alabama. It

runs north–south and spreads for 366 miles in the state of Ala-
bama. Its southmost point ends in Mobile, Alabama and it extends
north through the Alabama/Tennessee border. I-65 runs through
major cities in Alabama, including Mobile, Montgomery (the capi-
tal city of Alabama), Birmingham, and Huntsville. Interstate-85 is a
major corridor that has wide existence of strong-post guardrails
and median high-tension cable barriers. I-85 connects Mont-
gomery with other cities in the south and mid-Atlantic, including
Atlanta in Georgia, Charlotte in North Carolina, and Petersburg in
Virginia. It runs nominally north–south and has an 80-mile exten-
sion in Alabama. Finally, Interstate-20 travels approximately 214
miles through the center of the state. I-20 enters Alabama from the
Mississippi/Alabama border on the west and travels north-
eastward through Tuscaloosa and Birmingham until it crosses the
Alabama/Georgia border on the east. A map highlighting the three
interstate study sites in Alabama is shown in Fig. 1.

3.1. Crash data collection & review of police reports

Two types of longitudinal barriers were investigated in the
study: high-tension cable barriers (installed on medians) and
strong-post W-beam/thrie-beam guardrails (installed on medians
and/or roadsides). A total of 1,685 crashes (2010 through 2016),
involving median and roadside guardrail hits along three major
interstates in the state of Alabama (I-65, I-85, and I-20), were
downloaded from Alabama’s Critical Analysis Reporting Environ-
ment (CARE) and their corresponding police reports were retrieved
from ALDOT’s internal web portal.

The police report’s narrative and sketch were used to categorize
crashes as crossover (i.e., barrier penetration or over-ride) and
non-crossover crashes (i.e., vehicle either contained or redirected
by the barrier), identify involved vehicle type, and record the crash
injury severity. Note that penetrations and over-rides were aggre-
gated together due to the limited sample size for each.

In this study, the crash injury severity for the most-severely
injured occupant was used as the response variable. The injury
severities are categorized into the five-level KABCO scale, where
‘‘K” represents fatal, ‘‘A” represents incapacitating injury, ‘‘B” rep-
resents non-incapacitating injury, ‘‘C” represents minor injury,
and ‘‘O” represents no injury or property damage only (PDO).
Due to the low number of observations for fatal and incapacitating
injury outcomes, the five-level KABCO scale was further grouped
into two main categories: (1) injury/fatal crash (while combining
the KABC injury categories) and (2) non-injury (O) crash. Such
dichotomous injury outcomes have also been used in previous
studies to provide sufficient sample size for modeling (Chimba
et al., 2017; Rezapour et al., 2019; Sacchi et al., 2012; Saleem &
Persaud, 2017). Of the 1,685 barrier-related crashes, 387 (23%)
resulted in injury/fatal crashes and 1,298 (77%) had no injuries.
Crash data were then split into median- and roadside-barrier
crashes, where the former and the latter accounted for 211 (55%)
and 176 (45%) of injury/fatal crashes, respectively. In terms of
barrier-hit outcomes, median cable barriers resulted in the least
injury outcomes, involving only 24% of the total injury/fatal
crashes, while median guardrails and roadside guardrails com-
prised 31% and 45% of the total injury/fatal crashes, respectively.

3.2. Roadway geometric and Barrier-Related variables data collection

In addition to police reports review, the following variables
were collected by the research team:

1. Barrier-related variables: These include the type of traffic bar-
rier hit by the vehicle during the crash (i.e., guardrail or cable bar-
rier) and the length of the traffic barrier. If the crash involved
hitting a cable barrier, then the type of cable barrier (Gibraltar, Bri-
fen, and CASS) and the number of strands were recorded. If the
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Table 1
Summary of previous studies on safety of road barriers.

Authors Safety Barrier Type Case Study (Years) Method of Analysis Main Findings

Hunter et al.
(2001)

Median: three-strand cable
barriers

North Carolina interstate highways
(1990–1997)

Negative binomial (NB) model � The number of severe crashes declined on road sections with median cable
barriers.

� The frequency of other crash types, such as run-off-road-left and fixed object-
related, increased.

Ray and Weir
(2001)

Median and roadside: cable
barriers, and strong-post and
weak-post W-beam guardrails

Roadways of different functional
classifications in Connecticut, Iowa,
and North Carolina (1997–1999)

Observational analyses of crash
frequency, occupant injury, and barrier
damage

� No significant differences were found in the safety performance of the G1 and G2
or G1 and G4(1 W) guardrails.

� Occupant injuries were less likely in collisions with G1 guardrails than in colli-
sions with G4 guardrails.

Hu and
Donnell
(2010)

Median: cable barriers, guardrails,
and concrete barriers

North Carolina interstate highways
(2000–2004)

Nested logit model � Collisions with cable barriers resulted in less severe outcomes compared to col-
lisions with other barriers.

� Median barrier offset affected the probability of severe injuries.

Zou, Tarko,
Chen, and
Romero
(2014)

Median and roadside: cable
barriers, guardrails, and concrete
barriers

Indiana highways (2008 – 2012) Mixed-effects binary logistic model � Striking all studied barrier types reduced the probability of injuries compared to
those strikes with a high-risk roadside object.

Park et al.
(2016)

Roadside: W-beam guardrails and
concrete barriers

Florida freeways (2003–2011) Empirical Bayes (EB) and full Bayesian
(FB)

� Roadside barriers were more effective in reducing severe run-off-road (ROR)
crashes that occurred during nighttime, under rainy weather conditions, and
for middle and old age drivers.

Zou and Tarko
(2016)

Median: concrete barriers, high-
tension cable barriers, and
roadside W-beam guardrails

Indiana freeway and non-freeways
(2003–2012)

Multinomial logit (MNL) model � No median crossovers occurred where a median barrier was present.
� Roadside guardrails reduced the risk of hazardous off-road crashes.

Chimba et al.
(2017)

Median: cable barriers Tennessee highways (2006–2010) Paired t-test and EB method � Median cable barriers significantly reduced the crash frequency and severity
along the studied road segments.

Russo and
Savolainen
(2018)

Median: high-tension cable
barriers, thrie-beam guardrails,
and concrete barriers

Michigan freeways Random-parameters negative binomial
(RPNB), random-parameters ordered
logit (RPOL), and MNL models

� The effects of roadway, traffic, and environmental attributes on the frequency,
severity, and barrier-hit outcomes varied across the three different barrier types
(i.e., high-tension cable barriers, thrie-beam guardrails, and concrete barriers).

Zou and Tarko
(2018)

Median: concrete barriers, W-
beam guardrails, and high-tension
cable barriers

Indiana roadway arterials (2003–2012) NB and MNL models � Total number of barrier-related crashes was higher where median barriers were
present.

� Relative to other barrier types, median cable barriers were found to be the most
cost-effective.

Molan et al.
(2019)

Median: cable barriers, box-beam
barriers, W-beam barriers, and
concrete barriers

Wyoming interstate highways (2016–
2018)

RPOL model � Female drivers, unbelted drivers, drivers with a record of alcohol citation, sharp
horizontal curves, motorcycles, dry surface conditions, road segments with
higher trucks, and rollover crashes were related to more severe injury crashes
involving median barriers.

� Barrier type, barrier height, barrier lateral offset, and barrier post-spacing were
found to significantly affect the risk of severe injury crashes.

Rezapour
et al.
(2019)

Roadside: box-beam barriers, W-
beam barriers, and concrete
barriers

Wyoming two-lane highways (2007–
2017)

Mixed logit model � Non-normal (e.g., anger and anxious) driving conditions, driver’s citation record,
older drivers, rollover crashes, barrier offset distance, barrier height, shoulder
width, and dry surface condition were associated with a higher severity of
crashes involving roadside safety barriers.

Molan et al.
(2020)

Median and roadside: cable
barriers, guardrails, and rigid
barriers

Wyoming highways (2007–2016) Ordered logistic model � The impact of the explanatory variables varied by safety barrier type.
� Higher speed limits had a positive effect on the crash severity involving guard-
rails, while it had a reverse impact on the severity of crashes involving cable
barriers.
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crash involved hitting a guardrail, then the type of blockout was
recorded. The location of the barrier, either on the roadside or on
the median, was also recorded. The information about the afore-
mentioned variables was collected via Google Maps (2018) back
to the year of crash occurred.

2. Geometric design variables: These include median and road-
side elements, such as: median width, median type, posted speed
limits, right and left shoulder widths, presence of left/right rumble
strips, barrier offset distance or lateral position (i.e., distance from
the barrier to the median edge), number of lanes, and embankment
distance behind the guardrail posts (for roadside guardrail
crashes). All these variables were collected using Google Maps
(2018) back to the specific year where the crash occurred using
the Street View time slider on Google Maps (2018) (refer to Fig. 2).

3. Traffic volume: This includes annual average daily traffic
(AADT) collected on the three interstates’ segments. Traffic vol-
umes were counted by traffic counter stations installed along the
three studied interstate highways (I-20, I-65, and I-85). The rele-

vant information on AADT was obtained from the Alabama Depart-
ment of Transportation (ALDOT) and overlaid on each interstate’s
segments using ArcMap 10.2 (ESRI, 2019).

Fig. 2 shows four sample variables obtained using Google Maps
(2018). The figure also shows sample strong-post guardrail system
(having a composite blockout). Blockouts are mainly installed on
guardrail barrier systems to allow for proper separation of the rail
from the post and to absorb the energy resulted from the collision.
A screenshot of the Street View time slider on Google Maps (2018),
which allows traveling back to the specific crash year, is also
shown in Fig. 2. In all, close to 90 variables were collected by the
research team and stored in an Excel Spreadsheet. Table 2 presents
descriptive statistics of all explanatory variables.

The total lengths of safety barriers scanned in this study were
553 miles. Of which, I-65, I-20, and I-85 constituted with 66%
(366 miles), 19% (107 miles), and 15% (80 miles) of the total
lengths, respectively. In terms of barrier-related crashes, a total
of 696 roadside guardrail crashes (RGCs) occurred on these three

Fig. 1. Map of three studied interstates (I-65, I-85, and I-20) in the State of Alabama.
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interstates during the study period, while 989 were attributed to
median barrier crashes. Of the latter, 589 resulted in median cable
barrier crashes (MCBCs), while the rest were median guardrail
crashes (MGCs).

For the studied I-20 running from milepost 107 to 214.4, aggre-
gately 10 miles of the interstate experienced MCBCs during the
study period. Also, about 41 and 93 miles of I-20 involved MGCs
and RGCs, respectively. For I-65, entirely 85 miles experienced
MCBCs, over 153 miles experienced MGCs, and 282 miles experi-
enced RGCs. For I-85, aggregately 53.8, 50.7, and 74.9 miles of
the interstate experienced MCBCs, MGCs, and RGCs, respectively.

4. Methodology

This study adopted the MXL modeling approach to investigate
the effects of various factors on crash injury severity, as well as
barrier-hit outcomes in median and roadside barrier-related
crashes. Regarding the injury severity modeling, two MXL models
were separately developed for median and roadside barrier crashes
to estimate the probability of killed or injured outcome versus no-

injury outcome. Two separate MXL models were also fitted, one for
median barrier and another for roadside barrier crashes, to esti-
mate the barrier-hit outcomes, which were classified into three dif-
ferent outcomes (vehicle containment, vehicle redirection onto
roadway, and barrier penetration). Compared to the traditional
multinomial logit (MNL) model, MXL model can appropriately cap-
ture unobserved heterogeneity, which may result from unmea-
sured factors, by allowing a subset of explanatory variables to
vary across observations. This enables the MXL model to yield
more reliable parameter estimates than the traditional MNLmodel,
where the latter restricts the effects of all explanatory variables to
be fixed and identical across the observations.

The MXL model has widely been used in previous road safety
research (Haleem et al., 2015; Hosseinpour et al., 2018; Islam &
Brown, 2017; Li et al., 2019; Maistros et al., 2014; Manner &
Wünsch-Ziegler, 2013; Russo & Savolainen, 2018; Yu & Abdel-
Aty, 2014). The propensity function (Sni) of a barrier-related crash
n falling into category i is written as

Sni ¼ biXn þ eni ð1Þ

Fig. 2. Sample data collection for some variables on the interstates using Google Maps (2018): (a) measuring right shoulder width, (b) measuring posted speed limit,
(c) measuring barrier length, (d) measuring median width, (e) strong-post guardrail system with composite blockout, and (f) Google street view time slider.
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Table 2
Descriptive statistics of explanatory variables.

Variable Variable Description Frequency Percentage

Crash Characteristics
Crash Injury Severity
PDO 1 if true, otherwise 0 1298 77.0%
Injury/fatal 1 if true, otherwise 0 387 23.0%

Seatbelt Use If seatbelt was used = 1, otherwise = 0 1543 91.7%
Airbag Deployment If airbag deployed = 1, otherwise = 0 366 21.8%
Barrier-Hit Outcome
Contained by the barrier If vehicle was contained by the barrier = 1, otherwise = 0 701 41.7%
Redirected onto roadway If vehicle was redirected onto the roadway = 1, otherwise = 0 799 47.5%
Penetrated the barrier If vehicle penetrated through the barrier = 1, otherwise = 0 156 9.3%
Unknown If barrier-hit outcome is unknown = 1, otherwise = 0 29 1.7%

Barrier Characteristics
Barrier Type
Median cable barrier If type of median barrier was high-tension cable barrier = 1, otherwise = 0 589 35.0%
Median guardrail If type of median barrier was guardrail = 1, otherwise = 0 400 23.8%
Roadside guardrail If type of roadside barrier was guardrail = 1, otherwise = 0 696 41.4%

Cable Barrier System
Gibraltar If cable system is Gibraltar = 1, otherwise = 0 450 26.8%
Brifen If cable system is Brifen = 1, otherwise = 0 100 5.9%
CASS If cable system is CASS = 1, otherwise = 0 39 2.3%

Number of Cable Strands If four-strand cable = 1, if three-strand cable = 0 294 17.5%
Barrier Length
Short If barrier length of coverage is shorter than 616 feet = 1, otherwise = 0 573 34.1%
Medium If barrier length of coverage is between 616 and 1230 feet = 1, otherwise = 0 195 11.6%
Long If barrier length of coverage is longer than 1230 feet = 1, otherwise = 0 917 54.5%

Guardrail Blockout Type
Composite If composite blockout = 1, otherwise = 0 812 48.19%
Steel If steel blockout = 1, otherwise = 0 70 4.15%
Wooden If wooden blockout = 1, otherwise = 0 29 1.72%
Mixed (Mix of more than one
type)

If mixed blockout = 1, otherwise = 0 185 10.98%

Guardrail Configuration If double-faced = 1, if single-faced = 0 160 9.5%
Barrier Lateral Position If the distance between median barrier and median edge ‘‘or yellow stripe” is less than or equal to 8

feet = 1, otherwise = 0
446 26.5%

Roadway/Roadside Characteristics
AADT/10,000* Min. = 1.83, Max. = 13.32, Mean = 5.05, Std. Dev. = 2.59 — —
Posted Speed Limit (mph)* Min. = 45, Max. = 70, Mean = 68.69, Std. Dev. = 4.21 — —
Area Type If rural = 1, otherwise = 0 1,242 73.8%
Right Shoulder Width (ft)* Min. = 1.46, Max. = 19.7, Mean = 10.41, Std. Dev. = 1.97 — —
Right Shoulder Rumble Strips If not present = 1, otherwise = 0 276 16.4%
Left Shoulder Width (ft)* Min. = 0, Max. = 29.4, Mean = 5.86, Std. Dev. = 3.16 — —
Left Shoulder Rumble Strips If not present = 1, otherwise = 0 200 11.9%
Work Zone If crash occurred at work zone = 1, otherwise = 0 106 6.3%
Road Alignment If curved = 1, otherwise = 0 175 10.4%
Vertical Alignment If upgrade or downgrade exists = 1, otherwise = 0 480 28.5%
Total Number of Traffic Lanes
Four lanes If four lanes = 1, otherwise = 0 1,349 80.0%
More than four lanes If more than four lanes = 1, otherwise = 0 336 20.0%

Median Width If greater than 55 feet = 1, otherwise = 0 700 41.6%
Roadside Embankment If present = 1, otherwise = 0 545 32.4%
Embankment Width
EMB2 If embankment width is less than 2 feet 176 10.5%
EMB2-8 If embankment width is between 2 and 8 feet 78 4.6%
EMB8 If embankment width is greater than 8 feet 1,431 85.1%

Environmental Characteristics
Season of Year
Winter If crash occurred in winter = 1, otherwise = 0 414 24.6%
Spring If crash occurred in spring = 1, otherwise = 0 419 24.9%
Summer If crash occurred in summer = 1, otherwise = 0 495 29.4%
Autumn If crash occurred in autumn = 1, otherwise = 0 357 21.2%

Day of Week If crash occurred on weekend = 1, otherwise = 0 576 34.2%
Time of Day
Daytime If crash occurred in daytime (7:00 AM � 6:59 PM) = 1, otherwise = 0 1,005 59.8%
Evening If crash occurred in the evening/at night (7:00 PM–11:59 PM) = 1, otherwise = 0 249 14.8%
Midnight If crash occurred at late night/early morning (12:00 AM � 6:59 AM) = 1, otherwise = 0 431 25.6%

Weather Condition
Clear/Cloudy If clear/cloudy = 1, otherwise = 0 1,041 61.9%
Foggy If foggy = 1, otherwise = 0 246 14.6%
Rainy/Snowy If rainy/snowy = 1, otherwise = 0 366 21.8%
Unknown If weather was unknown = 1, otherwise = 0 32 1.9%

Lighting Condition If dark = 1, otherwise = 0 685 40.7%
Road Surface Condition If road surface was wet or slippery at the time of crash = 1, otherwise = 0 540 32.1%

(continued on next page)
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where Xni is a vector of K explanatory variables; b is a vector of K
estimable coefficients and may vary across crash observations;
and eni denotes the error term.

The term eni is assumed to follow the generalized extreme value
distribution. The probability that a barrier-related crash n falls into
category i (Pni) is specified as follows (Islam & Brown, 2017):

Pni ¼ exp biXnið ÞP
i exp biXnið Þ ð2Þ

The MXL model is a generalized form of the MNL model, where
the former is able to accommodate unobserved heterogeneity by
allowing some of explanatory variables to vary across observa-
tions. The MXL model is thus now specified as follows:

Pni ¼
Z

exp biXnið ÞP
i exp biXnið Þ f bijð Þdb ð3Þ

where f bijð Þ is the density function; and u is a vector of parameters
that is associated with the density function (mean and variance).

In this study, the model parameters were specified to follow the
normal distribution, that is, b Nðb;rÞ, where b is the mean and r is
the standard deviation. A parameter was considered as random if
the corresponding standard deviation was statistically significant.
This study adopted the maximum simulation likelihood method
to estimate the MXL models. The parameter estimates were based
on 200 Halton draws, which have been reported to produce reliable
parameter estimates (Anastasopoulos & Mannering, 2009;
Hosseinpour et al., 2018; Russo & Savolainen, 2018; Wang et al.,
2011). The MXL models in this study were developed using a
user-written command that is referred to as mixlogit in the statis-
tical software STATA (Hole, 2007).

Due to the inclusion of random parameters in the MXL model,
the model coefficients alone are not sufficient to explain the real
impacts of significant explanatory variables on the probability of
a specific barrier-crash category (e.g., injury severity or barrier-
hit outcome; Kim et al., 2013; Hosseinpour et al., 2014). To better
interpret the effects of significant variable on the probabilities of
barrier-hit consequences, the corresponding marginal effects were

calculated and presented in this paper. The marginal effects reflect
the change in the probability of a specific barrier crash outcome
due to one unit change in the value of a continuous variable or
the effect on the injury outcome of an indicator variable changing
from zero to one (Al-Bdairi & Hernandez, 2017; Behnood &
Mannering, 2017). The marginal effects of continuous and binary
indictor variables were computed using Eqs. (4) and (5), respec-
tively (Wu et al., 2014):

EPni
Xnik

¼ @Pni

@Xnik

Xnik

Pni
ð4Þ

EPni
Xnik

¼ Pni Xnik ¼ 1½ � � Pni Xnik ¼ 0½ �
Pni½Xnik ¼ 0� ð5Þ

where Xnik is the kth variable value for barrier-related crash n in the
propensity function of barrier crash category i.

5. Results and discussion

5.1. Analysis of injury severity outcome

Table 3 presents the results of two separate MXL models esti-
mated for the injury severity of each of median and roadside
barrier-related crashes. The no-injury outcome was selected as
the reference case. Hence, the estimated coefficients represent
the probability of injury or fatal outcomes relevant to no-injury
level. A deviance statistic was used in this study to show the over-
all goodness-of-fit for the developed models. The test follows the
Chi-squared (x2) distribution with degrees of freedom equal to
the number of predictors in the final model. The values of deviance
statistic were found to be highly significant for the median and
roadside barrier-related severity models, rejecting the null hypoth-
esis that ‘‘the resulting models had the same explanatory power in
relation to their intercept-only (or null) models.”

From Table 3, for the median barrier-related crash model, two
indicator variables ‘‘Redirected onto Roadway” and ‘‘Young Driver”
turned to be random across crash observations. For the roadside

Table 2 (continued)

Variable Variable Description Frequency Percentage

Driver Characteristics (Driver of Vehicle Hitting the Barrier)
Driver Gender If female = 1, otherwise = 0 634 37.7%
Driver Age**

Young If driver was 30 years or under 755 44.9%
Middle If driver was between 31 and 49 years old 518 30.8%
Old If driver was 50 years or above 376 22.4%
Unknown If driver age was unknown 36 2.1%

Driver License Status If license issued in Alabama (in-state) = 1, otherwise (out-of-state) = 0 1,105 65.7%
Crash Primary Cause
Fatigue/sleepiness If ‘‘driver was fatigued or asleep” was the primary cause = 1, otherwise = 0 302 18.0%
DUI ‘‘Driving under the
Influence”

If ‘‘driving under the influence of alcohol or drug” was the primary cause = 1, otherwise = 0 92 5.5%

Aggressive driving If ‘‘aggressive driving (e.g., speeding, improper lane change, following too close)” was the primary
cause = 1, otherwise = 0

131 7.8%

Distraction If ‘‘distraction or inattention” was the primary cause = 1, otherwise = 0 118 7.0%
Loss of control If ‘‘vehicle loss of control” was the primary cause = 1, otherwise = 0 788 46.8%
Defective equipment If ‘‘defective equipment (tire blow-out, improperly loaded trailer, load shift)” was the primary cause = 1,

otherwise = 0
160 9.5%

Others If other factor was the primary cause = 1, otherwise = 0 94 5.6%

Vehicle Characteristics
Vehicle Type
Passenger car If vehicle was passenger car = 1, otherwise = 0 891 53.0%
SUV/pick-up If vehicle was sport utility vehicle (SUV) or pick-up = 1, otherwise = 0 568 33.8%
Heavy vehicle If vehicle was heavy vehicle (e.g., large trucks or buses) = 1, otherwise = 0 183 10.9%
Others If other vehicle types = 1, otherwise = 0 43 2.6%

* Continuous variable (non-discrete).
** Similar studies (e.g., Baker et al. (2003) and Li et al. (2018)) used ‘‘30 years” and ‘‘50 years” as thresholds to separate different age groups.
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barrier-related crash model, ‘‘Driver License Issued in Alabama” was
the only variable found to have a random effect on the severity
outcome.

The effects of each variable on the severity of barrier crashes are
discussed in the following subsections. To explore the actual
effects of the variables on the probability of injury/fatal crash
severity outcomes, the marginal effects were estimated and are
provided in Table 4. It should be noted that, in addition to investi-
gating the main effects of variables of interest, several interaction
effects among the independent variables were examined (e.g., the
interaction effect of speed limit groups and airbag deployment in
the crash injury severity model). However, no interaction effects
were found to be significant in the final models. As a result, only
main effects of the independent variables were included and
discussed.

5.1.1. Crash-specific characteristics
From Table 3, seatbelt use was found to be correlated with a

reduced probability of injury severity in median barrier crashes,
which is expected. Wearing a seatbelt protects vehicle occupants
from serious injuries when a crash occurs. According to the esti-
mated marginal effect, wearing a seatbelt reduced the risk of sus-
taining fatal or injury severity outcomes by 15.6% in median barrier
crashes. Airbag deployment was associated with an increased
probability of injury or fatal outcomes in both median and roadside
barrier crashes. Airbags are usually activated in the event of high-

Table 3
MXL model results for crash injury severity of median and roadside barrier-related crashes.

Variable Median Barrier Crashes* Roadside Barrier Crashes*

Coef. Std. Err. P-Value Coef. Std. Err. P-Value

Constant �2.113 0.382 0.000 �2.325 0.275 0.000

Crash Characteristics
Seatbelt Use �1.019 0.315 0.001 — — —
Airbag Deployment 0.726 0.206 0.000 1.000 0.217 0.000

Barrier Characteristics
Barrier-Hit Outcome:
Redirected onto roadway 1.035 0.244 0.000 — — —
Redirected onto roadway (SD)** 0.558 0.274 0.042 — — —
Penetrated barrier 2.073 0.292 0.000 1.655 0.289 0.000

Median Guardrail Barrier 1.075 0.213 0.000 — — —
Median Barrier Position (�8 feet) 0.470 0.191 0.014 — — —

Roadway Characteristics
Work Zone-Related �0.959 0.526 0.068 — — —
Presence of Roadside Embankment — — — 0.422 0.222 0.058

Driver Characteristics
Female Driver 0.855 0.193 0.000 0.539 0.205 0.008
Young Driver (�30 Years) �0.338 0.268 0.206 �0.537 0.202 0.008
Young Driver (SD)** 0.874 0.259 0.001 — — —
Driver License Issued in Alabama — — — 0.432 0.236 0.068
Driver License Issued in Alabama (SD)** — — — 0.477 0.197 0.015
Crash Primary Cause:
Fatigue/Sleepiness 0.759 0.223 0.001 0.658 0.251 0.009
DUI 0.668 0.359 0.063 — — —
Aggressiveness — — — 0.843 0.351 0.016

Vehicle Characteristics
Passenger Car �0.585 0.192 0.002 — — —

Goodness-of-Fit Statistics
Number of Observations 989 696
Number of Significant Parameters 15 10
Log-Likelihood at Zero (LL0) �512.082 �393.567
Log-Likelihood at Convergence (LL) �422.068 �348.764
Deviance x2 Statistic ¼ �2½LL0 � LL�(P-Value) 180.028

(<0.001)
89.61
(<0.001)

AIC (Akaike Information Criterion) 874.14 717.53
BIC (Bayesian Information Criterion) 947.59 762.98

* ‘‘No injury” used as the reference category & parameters at 10% significance level were retained.
** SD means standard deviation of estimated parameter.

Table 4
Marginal effects results for crash injury severity of median and roadside barrier-
related crashes.

Variable Median Barrier
Crashes

Roadside Barrier
Crashes

% Change in Injury/
Fatal

% Change in Injury/
Fatal

Seatbelt Use �15.6
Airbag Deployment 10.4 18.1
Barrier-Hit Outcome:
Redirected onto roadway 14.6 —
Penetrated barrier 35.0 33.0

Median Guardrail Barrier 15.0 —
Median Barrier Position (�8

feet)
6.3 —

Work Zone-Related �10.7 —
Presence of Roadside

Embankment
— 6.5

Female Driver 11.6 8.9
Young driver (�30 Years) �2.7 �8.4
Driver License Issued in

Alabama
— 7.5

Crash Primary Cause:
Fatigue/Sleepiness 10.9 11.5
DUI 9.8 —
Aggressiveness — 15.2

Passenger Car �7.9 —
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speed related crashes, which could result in serious injuries to the
vehicle occupant. Other studies found similar results (Amarasingha
& Dissanayake, 2014; Behnood & Mannering, 2017; Khorashadi
et al., 2005; Savolainen & Ghosh, 2008; Schneider et al., 2009).
The marginal effects indicate that airbag deployment increased
the probability of injury consequences by 10.4% and 18.1% for med-
ian and roadside barrier-related crashes, respectively.

5.1.2. Barrier-specific characteristics
Regarding the effect of barrier-hit outcomes, the results indi-

cated that both the category ‘‘penetrated the barrier” was posi-
tively associated with an increased probability of injury or fatal
barrier-related crashes, while ‘‘redirected onto the roadway” con-
tributed to the severity of median-barrier crashes. These findings
are expected because when a vehicle penetrates the barrier or is
redirected onto its travel lane after striking the barrier, the risk
of severe injury outcomes increases, as compared to the situation
where the vehicle is contained by the barrier. According to the
marginal effects (in Table 4), ‘‘penetrated the barrier,” on average,
increased the probability of killed or injury outcomes in median
and roadside barrier crashes by 34%. For the median barrier type,
the effect of vehicle redirection onto the roadway was found to
be random and normally distributed with a mean of 1.035 and
standard deviation of 0.558, indicating that over 97% of the distri-
bution is above zero. This means that vehicle redirection onto the
roadway increased the probability of injury or fatal outcomes for
over 97% of the median barrier crashes and reduced the likelihood
of fatalities or injuries for 3% of the sample.

For median barrier crashes, the probability of injury or fatal out-
comes is higher for guardrails compared to high-tension cable bar-
riers, which is an expected result. This may be due to the fact that
cable barriers are more flexible than guardrails, and hence absorb
more impact energy than guardrails when being struck by an
errant vehicle and could result in less injury outcome. This finding
is consistent with that of previous studies (Alberson et al., 2003;
Hu & Donnell, 2010; Hunter et al., 2001; Zou & Tarko, 2018). Based
on the marginal effect, a collision with median guardrails had a
15% increase in the probability of sustaining fatal or injury
outcomes.

The result for median barrier lateral position shows that a near-
side median barrier (where the distance between the barrier and
edge of the nearest travel lane is less than or equal to 8 feet) was
associated with an increased probability of injury or fatal outcomes
in median barrier crashes. This might be due to the fact that far-
side median barriers (distance >8 ft) could provide drivers with
more recovery room, so that they can reduce their speed or regain
control of the vehicle in the case of striking a median barrier;
hence, lowering the risk of fatal or injury outcomes. This finding
is consistent with that of previous studies (Hu & Donnell, 2010;
Zou, Tarko, Chen, & Romero, 2014). From the marginal effect esti-
mated, there was a 6.3% increase in the probability of fatal or injury
outcomes for a nearside median barrier (distance to the nearest
travel lane �8 ft).

5.1.3. Roadway characteristics
From Table 3, regarding road work zones, the result showed

that median barrier crashes that occurred at work zones were asso-
ciated with a reduced probability of injury or fatal severity out-
comes. This finding could be explained by the fact that drivers
tend to travel more cautiously nearby road work and construction
zones, resulting in lower vehicle impact speeds in median barrier-
related crashes. The corresponding marginal effect shows that
work zones reduced the probability of sustaining injury outcomes
by 10.7%.

The presence of roadside embankment was positively associ-
ated with the severity of roadside barrier crashes. Roadside

embankments increase the risk of rollover crashes when an errant
vehicle runs off the roadway, which mainly results in severe inju-
ries. This finding is supported by previous studies (Anarkooli et al.,
2017; Martin et al., 2013; Zou, Tarko, Chen, & Romero, 2014). From
the marginal effect, the presence of roadside embankments
increased the probability of fatal or injury outcomes by 6.5%.

5.1.4. Driver characteristics
Female drivers were found to be more involved in injury or fatal

crashes in both median and roadside barrier collisions. In general,
females have lesser physiological strength compared to males. As a
result, they are more likely to sustain severe injuries in traffic
crashes. Yasmin et al. (2004), for example, found that female dri-
vers increased the probability of severe injury crashes involving
guardrails. A similar finding was also reported in other studies
(Li et al., 2019; Molan et al., 2019; Schneider et al., 2009; Wu
et al., 2016; Yasmin et al., 2014; Zou, Tarko, Chen, & Romero,
2014). The marginal effect indicates that female drivers increased
the probabilities of fatal or injury outcomes by 11.6% and 8.9%
for median and roadside barrier crashes, respectively.

The indicator for young drivers (30 years or under) was nega-
tively associated with injury severity in median and roadside bar-
rier crashes. In median barrier crashes, the young driver indicator
was found to be random (mean of �0.338 and standard deviation
of 0.874). This implies that for about 65% of the median barrier
crashes involving young drivers, hitting a median barrier is less
likely to result in injury or fatal outcomes. One possible reason is
that young drivers possess fitter physical conditions than middle
and elderly age groups, which enable them to avoid severe injuries.
This result was also supported by Liu and Fan (2019) and Rezapour
et al. (2019). From the marginal effect, there were, respectively,
2.7% and 8.4% reductions in fatal or injury probability for median
and roadside barrier crashes involving young drivers.

The result for driving license status showed that in-state drivers
(with an Alabama-issued driving license) were more likely to be
involved in severe roadside barrier crashes. The effect of this factor
was random (mean of 0.432 and standard deviation of 0.477).
These values suggested that for 82% of roadside barrier-related
crashes involving drivers with an Alabama-issued driving license,
the probability of being killed or injured is higher. A potential
explanation is that native or in-state drivers are more familiar with
the road environment; hence, they tend to drive more aggressively
and at relatively higher speeds than out-of-state drivers (who tend
to drive more cautiously due to their unfamiliarity of the roadway
conditions). The marginal effect indicated that Alabama native dri-
vers increased the risk of injury-resulting roadside barrier crashes
by 7.5%.

Driver fatigue/sleepiness was found to be as a primary factor
affecting the injury severity of median and roadside barrier
crashes. The marginal effects showed that being fatigued or falling
asleep increased the probability of injury severities, on average, by
11.2% in median and roadside barrier-related crashes. Driving
under the influence (DUI) of alcohol or drugs was another driver
factor that affected injury severity in median barrier crashes. This
finding was expected as DUI drivers tend to drive aggressively
and they are more often unable to react in time to avoid barrier-
related crash. Based on the marginal effects, DUI drivers experi-
enced a 9.8% increase in the risk of severe injuries in median-
related barrier crashes.

Aggressive driving (or aggressiveness) was found to increase
the probability of injury outcomes in roadside barrier crashes. This
finding is not surprising as driving aggressive behaviors (such as
speeding or following too closely) significantly contribute to severe
injury consequences. A similar finding was found by Zou and Tarko
(2018). Based on the marginal effect, a roadside barrier collision
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involving aggressive driving was associated with a 15.2% increase
in the probability of fatal or injury outcomes.

5.1.5. Vehicle characteristics
Compared to other vehicle types, passenger cars were less likely

to be involved in injury or fatal outcomes in median-related barrier
crashes. One possible explanation is that passenger cars have lower
mass compared to other heavy vehicles. As such, they are more
likely to be contained by the barrier in the event of a median bar-
rier crash, lowering the risk of an injury or fatal outcome (Russo &
Savolainen, 2018). From the marginal effect, passenger cars
reduced the probability of injury outcomes by 7.9% in median bar-
rier crashes.

5.2. Analysis of Barrier-Hit outcome

This section describes the results of MXL models estimating the
probabilities of different barrier-hit outcomes for median and
roadside barrier crashes. As previously illustrated, there were three
different barrier-hit outcomes (vehicle containment, vehicle redi-
rection onto the roadway, and barrier penetration). The first two
types denote barrier success (or non-crossover consequence),

whereas the latter denotes barrier failure (i.e., a crossover). Note
that ‘‘barrier penetration” served as the reference case. It should
be noted that information regarding barrier-hit outcomes was
not available for 29 crash records. As a result, the total number
of observations for barrier-hit outcomes was reduced to 1,656
cases (as opposed to 1,685). Also, as previously illustrated in the
injury severity model, the interaction effects of several indepen-
dent variables were examined in the barrier-hit outcome model
(e.g., the interaction effect of passenger cars and speed limit
groups). However, no interaction effects were found to be signifi-
cant in the final models.

The modeling results are shown in Table 5 and the correspond-
ing marginal effects are presented in Table 6. Note that two coeffi-
cients (for vehicle containment and vehicle redirection after hitting
the barrier) are shown for each parameter since the response vari-
able had three levels and one level was used as the reference case
(barrier penetration). The deviance statistic values (that follow the
Chi-square distribution) for the two models were found to be sta-
tistically significant, which reject the null hypothesis that ‘‘the
resulting models had the same performance as their intercept-
only (or null) models, implying an overall good statistical fit for
the fitted MXL models.”

Table 5
MXL model results for barrier-hit outcomes for median and roadside barriers.

Variable Median Barrier Crashes* Roadside Barrier Crashes*

Vehicle Contained Vehicle Redirected Vehicle Contained Vehicle Redirected

Coef. Std. Err. P-Value Coef. Std. Err. P-Value Coef. Std. Err. P-Value Coef. Std. Err. P-Value

Constant 0.888 0.698 0.203 �0.943 0.67 0.159 4.964 2.292 0.030 1.280 2.262 0.571

Barrier Characteristics
Brifen Cable Barrier 0.685 0.923 0.458 �1.112 0.586 0.058 — — — — — —
Long Barrier Length (>1230 feet or 0.2 miles) 2.123 0.467 0.000 1.118 0.375 0.003 — — — — — —
Long Barrier Length (>1230 feet) (SD)** 3.475 1.571 0.027 — — — — — — — — —
Median Barrier Position (�8 feet) �1.010 0.361 0.005 �0.919 0.318 0.004 — — — — — —

Roadway Characteristics
Posted Speed Limit — — — — — — �0.061 0.033 0.065 �0.012 0.032 0.712
Rural Area Type �1.941 0.511 0.000 �0.077 0.415 0.852 �0.720 0.383 0.060 �0.095 0.338 0.778
Right Shoulder Width — — — — — — 0.114 0.061 0.063 0.125 0.057 0.029
Right Shoulder Width (SD)** — — — — — — 0.054 0.015 0.000 — — —
Curved Road Alignment — — — — — — �0.774 0.42 0.066 �0.353 0.387 0.361

Environmental Characteristics
Winter Season �0.781 0.42 0.063 0.126 0.358 0.725 — — — — — —
Weekend — — — — — — �0.868 0.303 0.004 �0.586 0.303 0.053
Weekend (SD)** — — — — — — — — — 0.551 0.257 0.032
Time of Day:
Daytime (7:00 AM to 6:59 PM) 0.739 0.514 0.151 1.033 0.472 0.029 — — — — — —
Daytime (SD)** 2.225 0.983 0.024 — — — — — —
Midnight (12:00 AM to 6:59 AM) 0.262 0.559 0.639 1.001 0.439 0.023 — — — — — —

Dark Lighting Condition — — — — — — �0.596 0.290 0.039 �0.341 0.274 0.213

Driver Characteristics
Young Driver (�30 Years) 0.898 0.373 0.016 0.787 0.328 0.017 — — — — — —

DUI Crash Cause — — — — — — �1.138 0.602 0.059 �0.634 0.505 0.209
Vehicle Characteristics
Vehicle Type:
Passenger car 1.273 0.512 0.013 2.142 0.469 0.000 1.192 0.325 0.000 1.312 0.311 0.000
SUV/Pick-up 0.902 0.531 0.089 1.426 0.445 0.001 — — — — — —

Goodness-of-Fit Statistics
Number of Observations 978 678
Number of Parameters 24 20
Log-Likelihood at Zero (LL0) �902.162 �636.748
Log-Likelihood at Convergence (LLb) �824.866 �593.789
Deviance x2Statistic ¼

�2½LL0 � LLb �(P-Value)
154.592
(<0.001)

85.92
(<0.001)

AIC (Akaike Information Criterion) 1697.73 1227.58
BIC (Bayesian Information Criterion) 1814.98 1317.96

* ‘‘Barrier penetration” used as the reference category & parameters at 10% significance level were retained.
** SD means standard deviation of estimated parameter.
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Among others, four variables were found to be random and had
varying effects across the median and roadside crash observations,
including barrier length longer than 1230 feet (median-contained),
daytime (median-redirected), right shoulder width (roadside-
contained), and weekend (roadside-redirected). A variety of vari-
ables was found to significantly influence barrier-hit outcomes.
The effects of those significant variables are discussed in the fol-
lowing subsections.

5.2.1. Barrier-specific characteristics
From Table 5, for median cable barriers, the results showed that

Brifen cable barriers were associated with a lower probability of
vehicle redirection after being hit (i.e., higher probability of barrier
penetration) when compared to other barrier systems. This result
warrants further investigation, as very few studies have been con-
ducted to investigate the effect of different cable barrier types on
barrier-hit outcomes. As one of those few studies, the Utah DOT
investigated 2-mile-long Brifen and 8-mile-long CASS high-
tension systems on I-15 in Ohio in 2003 (Clayton, 2005). The
results showed that the Brifen cable barrier systemwas more likely
than the CASS system to be involved in cable barrier penetrations.
The marginal effects in Table 6 showed that Brifen cable barrier
type increased the barrier penetration probability by 0.7%, but,
on the contrary, it reduced the probability of vehicle redirection
onto the roadway by 17.2%.

The barrier length indicator (longer than 1230 feet or 0.2 miles)
was found to reduce the probability of barrier penetration in med-
ian cable barrier collisions. This is because more strike forces are
absorbed as the barrier length increases; thus, the probability of
barrier penetration is reduced. According to the American Associa-
tion of State Highway and Transportation Officials (AASHTO) Road-
side Design Guide, shorter barrier lengths may not effectively
prevent penetration or provide adequate redirection capability
(AASHTO, 2011). The long barrier length indicator was random
and normally distributed for median contained outcome (mean
of 2.123 and standard deviation of 3.475), which indicates that
73% of the median-hit observations had a mean greater than zero.
That is, longer barrier lengths were more likely to result in vehicle
containment for 73% of the median-hit observations, but less likely
for 27%. From the marginal effects in Table 6, longer barrier lengths
increased the probability of vehicle containment by 16.2% and
reduced the probabilities of the vehicle being redirected onto the
roadway and barrier penetration by 13.9% and 2.3%, respectively.

For median barrier crashes, the effect of barrier lateral position less
than or equal to 8 feet was significant and had negative coefficients
for the outcomes of vehicle containment and redirection onto the
roadway. This can be attributed to the fact that as the lateral dis-
tance between the safety barrier and edge of the nearest travel lane
increases, drivers have more room to avoid a more serious strike,
like barrier penetration, with median barrier. The marginal effect
showed a 2.9% increase in the probability of barrier penetration
by an errant vehicle in the case of median barrier crashes.

5.2.2. Roadway characteristics
The probability of a vehicle being contained or redirected onto

the roadway for roadside barrier crashes declined with increasing
posted speed limit. An argument for this finding is that higher
speed limits are posted in rural areas, where drivers tend to drive
at high speeds, and thus they are more likely to lose control of the
vehicle and hit a roadside barrier at high speeds resulting in barrier
penetration. Interestingly, increasing the speed limit by one mile
per hour increased the probability of barrier penetration by 4.5%.

Confirming the ‘‘posted speed limit” finding, rural areas had a
negative impact on all barrier-hit outcomes for median and road-
side categories, indicating that the risk of vehicle penetration
through the barrier was higher in rural areas. As previously indi-
cated, drivers tend to travel at high speeds in rural areas, so that
the risk of a serious barrier-hit outcome, like barrier penetration,
increases when the vehicle leaves the roadway and hits a barrier
on the median or roadside. The marginal effects in Table 6 indicate
that median and roadside barrier-related crashes that occurred in
rural areas increased the probabilities of vehicle redirection onto
the roadway and barrier penetration, but reduced the probability
of vehicle containment by the barrier.

Wider right shoulders were associated with a higher probability
of vehicle being contained or redirected back onto the roadway
compared to barrier penetration. This finding is consistent with
expectations as wider shoulder widths provide more room for dri-
vers to avoid a barrier hit resulting in serious outcomes, such as
barrier penetration. For the vehicle containment outcome of road-
side barrier hits, the effect of right shoulder width was found to be
random (mean of 0.114 and standard deviation of 0.054). These
values indicate that wider right shoulder widths increase the prob-
ability of vehicle containment for over 98% of the observations.

Curved freeway sections were more likely, than straight or tan-
gent sections, to experience a barrier penetration outcome in the

Table 6
Marginal effects results for barrier-hit outcomes for median and roadside barriers.

Variable Median Barrier Crashes Roadside Barrier Crashes

Contained* Redirected* Penetrated* Contained** Redirected* Penetrated*

Brifen Cable Barrier System 16.5 �17.2 0.7 — — —
Long Barrier Length (>1230 ft) 16.2 �13.9 �2.3 — — —
Median Barrier Position (�8 feet) �2.1 �0.8 2.9 — — —
Posted Speed Limit — — — �11.0 15.4 4.5
Rural Area Type �19.6 15.3 4.3 �13.4 10.5 2.9
Right Shoulder Width — — — 0.3 0.8 �1.1
Curved Road Alignment — — — �7.5 2.9 4.5
Winter Season �9.2 7.9 1.2 — — —
Weekend — — — �7.4 0.7 6.7
Time of Day:
Daytime �2.1 6.3 �4.1 — — —
Midnight �5.4 8.3 �2.9 — — —

Dark Lighting Condition — — — �5.1 1.4 3.7
Young driver (<30 Years) 2.0 0.3 �2.4
DUI Crash Cause — — — �10.8 5.5 5.2
Vehicle Type:
Passenger car �3.7 12.6 �8.8 1.5 9.2 �10.7
SUV/Pick-up �3.4 6.6 �3.1 — — —

* Denotes % change in each category.
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event of roadside barrier crashes. This might be since drivers are
more likely to lose control of their vehicles and run off the roadway
when negotiating a horizontal curve; hence, increasing their risk of
barrier penetration (especially at high speeds). This finding is con-
sistent with that of Jama et al. (2011). From the marginal effect, the
presence of curved sections increased the probability of roadside
barrier crashes leading into barrier penetration by 4.5%.

5.2.3. Environmental characteristics
Median barrier hits that occurred in winter were less likely to

result in a vehicle being contained. A possible explanation is that
winter driving conditions are typically associated with slippery
road surface, which increases the risk of RwD crashes involving
median barriers. A similar finding was reached in previous studies
(Donnell et al., 2002; Sicking et al., 2009). According to the mar-
ginal effects, barrier crashes in wintertime were associated with
a 9.2% reduction in the probability of vehicle containment and a
1.2% increase in the probability of barrier penetration. Roadside
barrier crashes that occurred during the weekend increased the
probability of barrier penetration. This result is consistent with
previous studies (Jama et al., 2011; Yu et al., 2019). The weekend
indicator was found to be random (mean of �0.586 and a standard
deviation of 0.551) for the vehicle redirection outcome of roadside
barrier hits. These values suggested that 85% of the roadside barrier
crashes that occurred on weekends were less likely to result in a
vehicle redirection onto the roadway. A possible explanation is
the relatively lower traffic volume during weekends, where drivers
were more likely to travel at high speeds. In addition, there might
be a higher likelihood of DUI driving during the weekend (Roque &
Jalayer, 2018). Based on the marginal effects, roadside barrier
crashes that occurred on weekends increased the probability of
barrier penetration by 6.7%, but reduced the probability of vehicle
containment by 7.4%.

Regarding the time of day of crash, daytime (7 a.m. to 6:59 p.m.)
and midnight (12.00 a.m. to 6:59 a.m.) periods of the day lead to
higher probability of a vehicle being redirected onto the roadway
for median-related barrier hits. The estimated parameter for day-
time period was found to be random (mean of 1.033 and standard
deviation of 2.225). This indicates that the probability that a vehi-
cle being redirected onto the roadway in daytime median barrier
crashes was higher for 68% of the observations. The marginal
effects suggested that barrier crashes occurring during the daytime
or midnight reduced the probabilities of vehicle containment and
barrier penetration, but increased the probability of vehicle redi-
rection onto the roadway. Dark lighting condition was associated
with a higher probability of a barrier being penetrated in roadside
barrier crashes, though it had no significant effect on vehicle redi-
rection. This might be due to the reduced sight distance associated
with dark lighting condition. Similar results were reported by
Islam and Hernandez (2013), Anarkooli et al. (2017), and Uddin
and Huynh (2017). From the marginal effects, roadside barrier
crashes occurring in dark lighting condition reduced the probabil-
ity of vehicle containment by 5.1%, but increased the probability of
barrier penetration by 3.7%.

5.2.4. Driver characteristics
Young drivers (�30 years old) were found to be positively asso-

ciated with the probability that a vehicle being contained or redi-
rected by the barrier in the event of median barrier crashes. A
possible reason for this finding is that young drivers have faster
reaction times and more ability than old drivers to regain control
of an errant vehicle; hence, avoiding a barrier hit with severe out-
comes. The marginal effects suggested that median barrier crashes
involving young drivers increased the probability of vehicle con-
tainment by 2%, but reduced the probability of barrier penetration
by 2.4%. DUI of alcohol or drugs was found to increase the risk of

barrier penetration in roadside barrier crashes. This finding is not
surprising because DUI drivers tend to drive aggressively and take
risky maneuvers; hence, in the case of leaving the roadway, DUI
drivers are more likely to be involved in a severe-impact barrier
crash.

5.2.5. Vehicle characteristics
Regarding the vehicle type, the results showed that passenger

cars were less likely to be involved in a crash resulting in barrier
penetration in both median and roadside barrier-related crashes.
A similar finding was reached for SUVs/pick-ups involving in med-
ian barrier crashes. The reason for these findings is that passenger
cars and SUVs are categorized as light vehicles (compared to large
truck and truck-trailers); hence, imposing lower impact forces on
the barrier in an event of barrier crash. Therefore, such light vehi-
cles were less likely than heavy vehicles (e.g., large trucks and
buses), to penetrate the barrier. From the marginal effects, passen-
ger cars reduced, on average, the probability of barrier penetration
by about 10% in median and roadside barrier-hit crashes. For SUVs
and pick-ups, there was a lesser percentage (3.1%) reduction in the
risk of barrier penetration in median barrier-related crashes.

6. Conclusions and recommendations

This study provided a comprehensive investigation of several
factors related to barrier-specific, roadway, driver, vehicle, and
environmental characteristics that affected the consequences of
barrier-related crashes including crash injury severity and
barrier-hit outcomes (e.g., vehicle containment, vehicle redirec-
tion, and barrier penetration). Two types of safety barriers were
investigated in this study, including high-tension cable barriers
installed on medians and strong-post guardrails installed on medi-
ans and/or roadsides. Separate MXL models were developed for
crash injury severity and barrier-hit outcomes for median and
roadside barrier-related collisions. The MXL model has the advan-
tage to capture unobserved heterogeneity by allowing a subset of
explanatory variables to vary across observations. A total of
1,685 crashes that occurred on three major interstates in the state
of Alabama (I-65, I-85, and I-20) between 2010 and 2016 were
used.

When modeling the crash injury severity from median and
roadside barrier-related crashes, it was found that barrier penetra-
tion, female drivers, and being fatigued or falling asleep were asso-
ciated with a higher probability of injury or fatal crashes. The
factors vehicle redirection onto the roadway, median barrier lateral
position (>8 feet), median guardrails, and DUI resulted in higher
injury or fatal probability outcomes in median barrier-related
crashes, while presence of work zones, young drivers, seatbelt
use, and passenger cars increased the probability of no-injury
crashes. Presence of roadside embankment, drivers with
Alabama-issued driving license, and aggressive driving contributed
only to the increase in the crash injury severity probability in road-
side barrier crashes.

The results of barrier-hit models showed that different factors
were associated with the probability of barrier-hit outcomes in
median and roadside crashes. Longer barrier length (greater than
1230 feet or 0.2 miles), daytime, right shoulder width, and week-
end were heterogeneous across crash observations. For median
barrier crashes, the results showed that longer barrier length
(greater than 0.2 miles), barrier’s far-side lateral position (>8 feet),
passenger cars, SUVs and pick-ups, urban areas, daytime, midnight,
and young drivers were associated with a lower probability of bar-
rier penetration. For roadside barrier-hit outcomes, barrier-related
crashes that occurred on high speed-limit segments, in rural areas,
on curved sections, on segments with narrower shoulder widths,
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on weekends, in dark lighting conditions, due to the influence of
alcohol or drugs, and involving vehicles other than passenger cars
were correlated with a higher probability of barrier penetration.

The findings obtained in this study could help road safety prac-
titioners improve the design of road barriers with the aim of min-
imizing the consequences of barrier-related collisions. Two design-
related study applications are to design longer barrier run length
(greater than 1230 feet or 0.2 miles) to reduce barrier penetration
outcomes and to also ensure a minimum 8-feet lateral offset dis-
tance between the median barrier and median edge (or edge of
the nearest travel lane) to reduce the resulted severity and barrier
penetration outcomes. Moreover, the significant impacts of DUI,
aggressive driving, fatigued driving, and seatbelt use on the crash
injury severity and/or barrier-hit outcomes highlight the impor-
tance of launching public awareness campaigns that aim at mini-
mizing the association of these driver-specific factors on the
consequences of barrier-related crashes. Another effective solution
is to intensify law enforcement targeting DUI driving and aggres-
sive driving behaviors. Because of more forgiving performance of
cable barriers, they were found to be less associated with crash
injury severity. As such, cable barriers could be installed where
the historical number of severe median guardrail hits is high,
though requiring wider medians to allow for increased deflection.

Future studies can investigate the impacts of the aforemen-
tioned barrier-specific factors on the effectiveness of cable and
guardrail barriers using crash observations from other U.S. regions,
and then compare the impact of the significant variables with this
study. Another research avenue is to compare the results of the
flexible and semi-rigid barriers in this study with rigid-type barri-
ers (e.g., concrete barriers) to see how the impact of the significant
variables might concur or differ.
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a b s t r a c t

Introduction: Freeway accidents are a leading cause of death in China, which also triggers substantial eco-
nomic loss and an emotional burden to society. However, the internal mechanism of how microscopic
kinetic parameters of vehicles influenced by road characteristics determine the occurrence of different
types of accidents has not been explicitly studied. This research aimed to explore the ‘‘link role” of tire
microscopic kinetic parameters in road characteristic variables and traffic accidents to aid in facilitating
the traffic design and management, and thus to prevent traffic accident. Method: A mountain freeway in
Zhejiang Province, China was used as the research object and the data used in this paper were obtained
through a real-time vehicle experiment. Multiple estimation models, including the standard ordered logit
(SOL) model, fixed parameters logit (FPL) model, and random parameters logit (RPL) model were estab-
lished. Results: The findings show that road characteristics will affect the longitudinal kinetic character-
istics of the vehicle and, consequently, map the level of risk of rear-end accidents. Driving compensation
effects were also identified in this paper (i.e., the drivers tend to be more cautious in complicated driving
circumstances). Another finding relating to the mountain freeway is that different tunnel characteristics
(e.g., tunnel entrance and tunnel exit) have different effects on different types of traffic accidents.
Practical Applications: The framework proposed in this article can provide new insight for researchers
to enlarge the research subjects of both explanatory and outcome variables in accident analysis. Future
research could be implemented to consider more driving conditions.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Freeway crashes are recognized as a leading causes of death in
China, which also triggers substantial economic loss and an emo-
tional burden to society. According to data from the National
Bureau of Statistics, more than 240,000 traffic accidents occur each
year in China, with about 60,000 people killed, ranking first in the
world for many consecutive years. With the advantages of a large
capacity and low delay, the freeway has developed into a major
artery of road transportation in China. However, due to the high
traffic volume and high speed, the freeway, which only accounts
for 3% of the total mileage, bears 10% of the death toll (Liu, He,
Zhang, Xing, & Zhou, 2020). This phenomenon is particularly evi-
dent on mountain highways, with complex and changeable road
features being a latent precursor to increase the occurrence and

frequency of severe crashes. Under the aforementioned back-
ground, much analyses has been conducted to investigate the
causes of freeway traffic accidents (Dadashova, Ramírez,
McWilliams, & Izquierdo, 2016; Ellison, Greaves, & Bliemer,
2015). Past studies have identified the diversity of the causes and
conditions of different types of traffic accidents, which deserves
more exploration for a better understanding of the inherent mech-
anism of various accidents and, thus, to provide the targeted
strategies and countermeasures of traffic safety management and
control.

Ye, Pendyala, Washington, Konduri, and Oh (2009) proposed
that traffic accidents occurring at specific locations tend to be
due to the joint impact of the complex roadway geometric charac-
teristics and traffic flow conditions. The study also demonstrated
that location-related accidents may not occur frequently, whereas
some specific location-related accidents have a propensity to share
a preponderate proportion, among which mountain freeway acci-
dents have been considered as significant but not adequately stud-
ied subjects. Likewise, empirical evidence has proven that there is a
critical necessity to further investigate the potential factors that
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induce the frequency of mountain freeway accidents, given the
complicated mountain freeway circumstances of varied topogra-
phies and intricate road facilities such as tunnels, ramps, and
interchange.

1.1. Accident analysis and in-vehicle data research

Traffic accidents are classified according to injury-severity in
the existing accident analysis studies, which have focused on the
investigation of how the variation in the numerous indicator vari-
ables such as human factors, vehicle factors, and environmental
factors can be determinant in the injury-severity of accidents
(Mannering & Bhat, 2014; Mothafer, Yamamoto, & Shankar,
2016). It should be illustrated that accident type such as rear-end
accidents, fixed-object collision accidents, and overturning acci-
dents are often identified as indicator variables instead of outcome
variables in the previous studies, whereas further research could
attempt to use the accident type as an outcome variable in accident
analysis to reveal the internal mechanism of the occurrence of dif-
ferent accident types for better prevention of these accidents.
Additionally, past work has been restricted to the analyses of the
macroscopic and after-event accident-related factors such as
weather, lighting condition, and road surface condition, neglecting
the microscopic kinetic parameters of real-time tire output when
the vehicle is driving normally.

Ye et al. (2009) found that the traffic flow on the main road has
a significant impact on rear-end accidents, and the larger shoulder
width was more likely to cause side collision and skidding. Park
and Lord (2007) concluded that the brightness is negatively corre-
lated with fatal accidents, and as the severity of the accident
decreased, the correlation gradually turned into a positive correla-
tion and increased. De Oña, Mujalli, and Calvo (2011) took the
Spanish freeway as the research object, studied the causes of acci-
dents of different severity from the aspects of accident characteris-
tics, freeway characteristics, vehicle characteristics, driver
characteristics, and environmental factors, and found the charac-
teristics of the accident, driver age, light conditions, and number
of injuries are highly correlated with severe accidents. Li, Wang,
Liu, Bigham, and Ragland (2013) studied the determinant influence
of country-level in fatal accidents and found that an increasing
proportion of freeways in the region is correlated with fewer fatal
accidents, and a larger proportion of drivers under the age of 18
tend to cause more fatal accidents. Beshah and Hill (2010) focused
on research on the impact of road conditions on the severity of
accidents with data mining technology.

In recent years, the method of using in-vehicle data for accident
analysis is developing rapidly, and the most representative one is
Naturalistic Driving Studies (NDS), which has been verified by
the Virginia Tech Transportation Institute (VTTI) and US Strategic
Highway Research Program Phase 2 (SHRP 2) to be effectively
applied to road traffic safety analysis (Hao, Eric, Medina, Gibbons,
& Wang, 2020; Seacrist et al., 2020; Simons-Morton et al., 2020).
Naturalistic driving data (such as the vehicle’s driving trajectory,
speed, heading angle, and road infrastructure characteristics) over
a period of time were captured with data collection equipment
installed on volunteers’ vehicles, and some scholars have utilized
the relevant data relating to certain road accidents to quantita-
tively analyze the location of high accident risk in a road or a road
network (Dingus & Klauer, 2006; Ghasemzadeh & Ahmed, 2018;
Molnar, Eby, Bogard, LeBlanc, & Zakrajsek, 2018). Benefiting from
the characteristics of easy access, large amount, and high quality
in-vehicle data analysis approach, researchers have been more
and more inclined to use these data in various fields of traffic
safety, such as: driver factors (Molnar et al., 2018), features of road
facilities (Gitelman et al., 2018), surrogate events (Wu & Jovanis,
2013), the relationship between regional economic level, and vehi-

cle speeding (Ghasemzadeh & Ahmed, 2019). Although the safety
research on in-vehicle data has been continuously expanded, the
related studies involving in-vehicle data to explore the causes of
different types of traffic accidents are still insufficient.

1.2. Research on the association between in-vehicle data and other
factors

The generation of real-time in-vehicle data when driving under
the naturalistic environment is the result of the joint effects of var-
ious factors such as road conditions, driver behavior, and traffic
flow environment. Therefore, uncovering the inherent correlation
between in-vehicle data and other factors will facilitate better
comprehension of the internal mechanism of accidents.

Garber and Gadiraju (1989) proposed that changes in speed
have a direct impact on traffic safety, and on a well-shaped road,
speeding tends to occur more easily, but it does not cause a higher
accident rate. Speed variance was found to have a significant pos-
itive correlation with accident rate in this study. Mahmud, Ferreira,
Hoque, and Tavassoli (2019) took two-lane and two-way freeways
as the research object to explore the relationship of vehicle speed,
road geometry characteristics, and roadside environment. Their
findings provided a more detailed insight to better understand dri-
ver’s speed tendency in different road segments. Medina and Tarko
(2005) developed free-flow speed models based on the analysis of
speed distribution influenced by road characteristics of tangent
segments and horizontal curves of two-lane freeways in rural
areas. Gitelman et al. (2018) employed the in-vehicle data record
(IVDR) system to obtain the critical events occurring in the process
of naturalistic driving, such as braking, steering braking, and speed
warning and constructed a negative binomial regression model to
explore the relationship between the occurrence of these events
and the operation of road infrastructure characteristics. It was
found that the increase of speed warning and decrease of emer-
gency braking could occur under a better road condition, while
the opposite effect could be observed when the constraints of the
road increased or the vehicle was approaching the intersection.

It can be concluded that the correlation between some macro-
scopic vehicle driving data, such as speed, braking, and other road
characteristics has been fully identified by previous studies,
whereas the microscopic kinetic parameter response of the tire
of the vehicle still lacks explicit unraveling, which can also serve
as a powerful instrument in the field of traffic safety. Compared
with their macroscopic factor counterparts, the microscopic kinetic
parameters may reflect the real-time driving state of the vehicle
from a more intuitive perspective and subsequently help to pro-
vide a statistical basis for the establishment of a more comprehen-
sive real-time accident risk prevention system.

1.3. Modeling approach

The accident estimation models can be categorized into two
aspects based on different modelling purposes: accident frequency
prediction and accident cause analysis. Regarding quantitative
analysis of the effects of different levels of factors on the frequency
of accident types, univariate Poisson regression models are widely
used (Geedipally & Lord, 2010; Lyon, Oh, Persaud, Washington, &
Bared, 2003; Milton, Shankar, & Mannering, 2008). However, one
limitation should be emphasized that the univariate models tend
to ignore the correlation between different types of accidents,
resulting in deviations in the independently estimated results
(Park & Lord, 2007). The multivariate regression models, compared
to the univariate models, exhibit better performance in simultane-
ously dealing with multiple indicator variables and, thus, signifi-
cantly ameliorate the prediction accuracy, whereas the
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complexity of the models may increase the difficulty of model
estimation.

Logit models are generally utilized to conduct the analysis of
the contribution of different factors to accidents. Abdel-Aty and
Pemmanaboina (2006) constructed a log-linear regression model
to fit the impact of real-time traffic flow and weather on accidents.
Tay, Choi, Kattan, and Khan (2011) established a multinomial logit
(MNL) model to investigate the main factors that affected the
severity of pedestrian traffic accidents. Abrari et al. (2020) con-
structed a MNL model to study the motorcycle crash severity at
Australian intersections. Chen et al. (2015) explored the remark-
able causes of rear-end accidents based on driver behavior, vehicle
factors, natural environment, and road geometry parameters
through the MNL model. Fan, Kane, and Haile (2015) divided the
severity of accidents and employed an MNL model to explore the
effect of explanatory variables on traffic accidents of different
levels of injury-severity. Fixed parameters logit (FPL) models were
generally estimated in numerous previous studies, while they were
found to be incapable of observing the heterogeneity in the data,
leading to biased estimation results of the coefficients and infer-
ences of the models. The random parameters logit (RPL) models/
mixed logit models were subsequently proposed as a useful and
effective instrument to better identify the unobserved heterogene-
ity and gradually became a research hotspot in recent studies
(Dong, Ma, Chen, & Chen, 2018; Haleem & Gan, 2013). Yu and
Abdel-Aty (2014) compared the fit effect of FPL models and RPL
models using ROC and found that the performance of RPL models
was better. Xing, He, Abdel-aty, Wu, and Yuan (2020) constructed
a RPL model considering the effects of time and space and analyzed
the factors that caused traffic conflicts in the upstream area of the
toll station. Li et al. (2019), Li et al. (2019) and Behnood and
Mannering (2015) used a mixed logit model in the accident study
to explain the heterogeneity of unobservable variables.

According to the research results of the existing literature, the
macroscopic factors, such as traffic flow, weather, road conditions,
driver characteristics, and vehicle operating parameters (speed,
acceleration/deceleration, heading, etc.) have been extensively dis-
cussed, while there is a lack of research on the microscopic force
characteristics of tires when the vehicle is driving under a normal
condition. This paper aims to explore the ‘‘link role” of tire micro-
scopic kinetic parameters in road characteristic variables and traf-
fic accidents. The authors are not aware of any previous research
similar to this study. Using a mountain freeway in Zhejiang Pro-
vince, China as the research object, by installing the six-
component force meter on the vehicle, the real-time microscopic
kinetic parameter response generated by the tire was obtained,
and then the microscopic kinetic parameters were used as the indi-
cator variables to build the standard ordered logit (SOL) model, FPL
model, and RPL model for the exploration of the quantitative rela-
tionship among microscopic kinetic parameters, road characteris-
tics, and accident types.

To aid in the real-time traffic accident analysis and prevention,
the study will reveal different road characteristics and different
types of traffic accidents corresponding to the changes in the
microscopic kinetic parameters. The model estimation can be
employed to intuitively analyze the probability of different road
characteristic variables to cause abnormal fluctuations in the
microscopic kinetic parameters as well as the type of traffic acci-
dents that tend to occur.

2. Data

The accident statistics and road characteristic data were pro-
vided by the Zhejiang Provincial Department of Transportation (re-
lying on the science and technology project ‘‘Application Research

on Rapid Identification of Highway Safety Defects.” Related studies
have been successfully published based on these data (Li & He,
2016; Liu et al., 2020).

2.1. Accident data

Wenli Freeway is located in Zhejiang Province, China, also
known as ‘‘bridge and tunnel club” because up to 90% of its length
is tunnels and bridges; there are also numerous mountains and
complicated geographical environment along the route. The acci-
dent database used in this paper contains the accident data of
K117-K189 segments (two directions: Wenzhou direction and
Lishui direction) of Wenli Freeway from 2007 to 2013, including
the following two types of statistics: (1) the location of each acci-
dent; (2) the type of each accident; The types of accidents include
rear-end, overturning, fixed-object hitting, and so forth.

The total number of accidents was 2,026, including 670 rear-
end accidents, 1,087 fixed-object hitting accidents, 200 overturn-
ing accidents, and 69 other types of accidents (e.g., scratch, fire).
From the perspective of accident statistics, rear-end, fixed-object
hitting, and overturning accidents are the three most common
types of accidents. Hence, this study will focus on an in-depth anal-
ysis of these three types of accidents. The distribution of accident
types are shown in Fig. 1.

2.2. Highway characteristic data

Road characteristic data for the K117-K189 segments of the
Wenli Freeway were obtained from the Zhejiang Transportation
Administration. The road characteristics database mainly includes:
curve radius, length of transition curve, elevation difference, eleva-
tion standard deviation (STD), tunnel, riverside bridge, conflict
zone (diversion/merge zone), etc. (see Table 1). Referring to Liu
et al. (2020) for the division method and results, the left and right
lines of K117 � K189 were divided into 144 road segments with
1 km as the unit (i ¼ 1;2; � � �144).

Table 2 provides the mean, STD, minimum, and maximum val-
ues of the road characteristic variables. Among them, ‘‘geometry” is
a variable describing road geometry alignment. When the values 0,
1, and 2, respectively, represent that the road segment is a straight

one, a circular curve one, and a composite alignment one (circular
curve + straight), it is recorded as ‘‘straight,” ‘‘circular curve,” and
‘‘composite alignment.”

To analyze the impact of the tunnel on the driving vehicle, the
‘‘tunnel” is innovatively decomposed into five categorical variables:
when there is no tunnel in a road segment, the value is 0 (‘‘no tun-
nel”); when there is only tunnel exit, the value is 1 (‘‘tunnel exit”);
when there is only tunnel entrance, the value is 2 (‘‘tunnel
entrance”); the value is 3 when there is both the exit and entrance
of the tunnel (‘‘both exit and entrance”); and the value is 4 when a
certain segment is completely inside the tunnel (inside the tunnel‘‘).

When a bridge along the river is built on a certain road segment,
the value of ‘‘bridge along the river” is 1, otherwise it is 0.

Some road segments have some areas called ‘‘conflict zone,”
including interchange hubs, service areas, and other areas where
there is a separation and convergence of traffic flows. The discrete
transform approach was also used to describe whether there are
diverging and merging zones. When there is no diversion/merging
zone in a road segment, the value is 0 when there is only existing
diversion zone, the value is 1 (‘‘diversion zone”); when there is only
existing merging zone, the value is 2 (‘‘merge zone”); when there is
existing both diversion and merge zone at the same time, the value
is taken as 3 (‘‘diversion and merge”).
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2.3. Tire kinetic data

Fig. 2 shows the equipment used to obtain kinetic data: a six-
component force meter. A vehicle loaded with a six-component
force meter (installed on the tire) was employed to conduct a real
vehicle experiment. After 3-round driving on the target freeway
segments, the microscopic kinetic parameters of the tire traversing
144 road segments at a frequency of 100HZ were collected. The
experimental conditions are shown in Table 3. The obtained micro-
scopic kinetic parameters include: longitudinal force ‘‘Fx,” lateral
force ‘‘Fy,” vertical force ‘‘Fz,” turning moment ‘‘Tx,” rolling
moment ‘‘Ty,” homing moment ‘‘Tz,” and vehicle speed ‘‘V.” In
order to avoid the influence of traffic flow status on experimental
results, the experiment selected non-holiday time with free traffic
flow. Table 4 displays some of the original data obtained from the
experiment.

An experimental HONDA CR-V car and automotive instrumen-
tation (six-component force meter) were used for the experimental
study. Automotive instrumentation consisted of a 6-component
force axle load sensor SLW-ND, a wheel alignment measuring sys-

tem, a wireless signal receiver DT-24R, a 6-component force mea-
suring analyzer MFT-306T, control software WAM-701A, a
multifunction car recorder TMR-200, and a laptop PC. The wheel
alignment measuring system consisted of wheel alignment sensor
WAD-1A and special measuring analyzer WAM-1A installed
together with the SLW-ND in the right front wheel of the HONDA
CR-V car, as shown in Fig. 2.

Lateral tire forces were measured by the SLW-ND and then
were transferred to the MFT-306T by the DT-24R. The WAD-1A
ensured the signal acquisition precision of the SLW-ND, while
the SLW-ND ensured the signal processing precision for the
WAM-1A.

In this paper, the microscopic kinetic parameters of vehicles
were used as intermediate variables to explore the joint mecha-
nism of road characteristics and traffic accidents. Therefore, in
the experimental design, strict control of the driver characteristics
was carried out to weaken the interference of the driver factors on
the research results. The driver, with 15-year driving experience,
was explicitly informed of the purpose of this experiment and
had sufficient rest before driving. There was no behavior such as

Fig 1. Different type of accidents distribution on Wenli Freeway.

Table 1
Road characteristic statistics.

Segment Elevation change
(m)

Elevation
STD

Horizontal radius
(m)

Length of transition
curve (m)

Transition curve
ratio

Tunnel Bridge along the
river

Conflict
zone

1 15.69 15.96 12,000 0 0 Y N N
2 �25.63 12.86 2000 240 0.120 Y N N
3 11.66 8.56 2000 0 0 Y N N
. . . . . . . . . . . . . . . . . . . . . . . . . . .

142 2.52 1.91 2100 250 0.119 N Y N
143 1.58 2.07 12,000 0 0 N Y N
144 7.25 3.88 1250 170 0.136 N Y N

Table 2
Descriptive statistics.

Variable Obs Mean Std.Dev. Min Max

Elevation_change 144 0 22.525 �78.6 68.81
Elevation_STD 144 7.398 7.455 0 28.07
Geometry 144 0.917 0.642 0 2
Horizontal radius (m) 144 4422.361 4649.364 500 12,000
Length of transition curve (m) 144 85.42 87.721 0 250
Tunnel 144 1.076 1.49 0 4
Bridge along the river 144 0.431 0.497 0 1
Conflict zone 144 0.208 0.699 0 2
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drinking and drug use that had a detrimental influence on driving
control. The driver remained sober and focused throughout the
driving. Besides, to further ensure that the relationship among
microscopic kinetic parameters, road characteristics, and accidents
is accurately extracted, cruise mode was applied throughout the
experiment. Such an experimental design can not only contribute
to more accurate research results by minimizing the interference
of driver factors on the relationship between kinetic parameters

and accidents, but also ensure that the results will be of conve-
nience, feasibility, and versatility.

However, such experimental design also has some defects. Due
to the strict control of the driver and other realistic factors, the
microscopic kinetic parameters may be insensitive to certain types
of accident risks (such as traffic accidents dominated by driver
characteristics) or road characteristic (such as road characteristics
significantly related to driver characteristics). But as a preliminary
investigation, this research has reached the expected goal. In the
follow-up, larger-scale experiments covering different drivers, dif-
ferent vehicle types, and different weather could be organized to
build a more complete traffic safety analysis theory with micro-
scopic kinetic parameters as the core.

To ensure the validity and reliability of the data analysis, the
raw data of various microscopic kinetic parameters obtained from
the experiment were filtered and pretested before the model esti-
mation. To eliminate the significant influence of the vehicle’s
weight on tire force, this paper intended to use the STD of various
microscopic kinetic parameters in the time series to carry out the
research. Selecting 1 s as the time window unit to calculate the
STD sequence, the total STD of various microscopic kinetic param-
eters of each road segment was calculated to represent the fluctu-
ation level of microscopic kinetic parameters of each segment (see
Fig. 3).

Fig 2. Experimental setup and testing: (a)–(d) Experimental HONDA CR-V car and automotive instrumentation; (e) field test.

Table 3
Experimental conditions.

Conditions Content

Weather Sunny, breeze
Traffic flow

state
Free flow

Road section Wenli Freeway South and North Lines, K117-K189
Road surface Class A highway pavement
Experimental

vehicle
Dongfeng Honda CR-V

Collection data
type

Longitudinal force / moment, lateral force / moment,
vertical force / moment, speed

Data collection
interval

0.01 s

Test wheel Right front wheel
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It can be seen from the frequency analysis that there are four
road segments with missing kinetic data with the frequency of 0.
In addition, the distribution of the STD level of the kinetic param-
eters of most segments is relatively concentrated. Only a few seg-
ments have large fluctuations in tendency, and the exposure of the
kinetic data (refers to the number of STD for each type of kinetic
parameters on each road segment) is mostly concentrated around
120, which implies that the vehicle is in a state of stable operation
over most periods.

3. Methodology

3.1. Data processing

To eliminate the effects of different dimensions of indicator
variables and ensure all continuous indicator variables will be on

the same scale, the Max-Min standardized approach was used to
in this paper transform the STD level of various kinetic parameters
into the interval [0,1]:

std dij ¼ dij �min½dj�
max½dj� �min½dj� j 2 Fx; Fy; Fz; Tx; Ty; Tz;Vgf ð1Þ

where std dij is the standardized sizes of microscopic kinetic param-
eter j on segment i; dij is the total STD of microscopic kinetic param-
eter j on segment i; max½dj� and min½dj� are the maximum and
minimum STD of the microscopic kinetic parameter j on all
segments.

Then, the kinetic data are discretized by dividing the kinetic
sequence std dij ¼ fd1j;d2j;d3j; � � � ; dijgðj ¼ 1;2; � � �7Þ into three equal

parts reflected by K � f0;1;2g(note as D dk
ij, 0 means the diver-

gence of the STD values in std dij ¼ fd1j;d2j;d3j; � � � ; dijg is the small-

Table 4
Part of the original data.

Sample clock 10 msec
Type Fx Fy Fz Tx Ty Tz V

Unit kN kN kN N�m N�m N�m km/h
0 �0.612 �0.132 4.58 0.1232 0.0848 0.0144 105.915
0.01 �0.36 �0.048 4.588 0.1216 0.0768 0.0168 106.119
0.02 �0.436 0.068 4.848 0.072 0.0832 0.0288 106.46
0.03 �0.544 0.016 4.652 0.1096 0.0888 �0.0056 106.324
0.04 �0.348 0.068 4.68 0.1088 0.0808 0.0224 105.983
0.05 �0.372 �0.132 4.528 0.1344 0.0864 0.0096 105.983
0.06 �0.624 �0.06 4.62 0.1048 0.0848 0 105.983
0.07 �0.62 �0.168 4.344 0.1512 0.0832 �0.004 106.392
0.08 �0.412 �0.076 4.484 0.1088 0.0856 0.0352 106.528
0.09 �0.34 0.016 4.504 0.1216 0.0792 0.0296 106.392

Fig 3. Frequency distribution of STD of microscopic kinetic parameters.
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est, which represents the most stable road segment condition;
while 2 represents the largest divergence of this variable set, which
denotes the least stable road segment condition). Likewise, to
weaken the collinearity and heteroscedasticity between indicator
variables, reduce the data scale, and make the data more stable,
the logarithmic method (which will not change the correlation
between variables and the monotonicity of variables) was used
to balance variables ‘‘horizontal radius” and ‘‘length of transition
curve:”

ri � Ln ri
li � Ln li

ð2Þ

where riand lirepresent the radius of the ‘‘horizontal radius” and
‘‘length of transition curve” of the road segment i.

3.2. Modeling approach

3.2.1. Binary logit model (FPL model)
Discrete choice model represented by Logit model has been

widely used in accident cause analyses in the field of traffic safety
(Abdel-aty, Hassan, Ahmed, & Al-ghamdi, 2012), of which the bin-
ary logit is the most basic one. For the accident type m, the risk
probability of road segment i for this accident type being relatively
high and relatively low can be, respectively, defined by the binary
logit models as follows:

PðYmi ¼ 1jXiÞ ¼ 1
1þe�gðXi Þ

PðYmi ¼ 0jXiÞ ¼ 1� 1
1þe�gðXiÞ

ð3Þ

where Xiis the sequence of explanatory variables; Ymi ¼ 1and
Ymi ¼ 0indicate the segment being with relatively high accident risk
and relatively low accident risk. The variableoddsdenotes the ratio
of the observed ‘‘relatively high risk” to ‘‘relatively low risk” proba-
bility, after taking a logarithm of odds, the linear function is as
follows:

InðoddsÞ ¼ InðPðYmi ¼ 1jXiÞ
PðYmi ¼ 0jXiÞÞ ¼ InðegðxiÞÞ ¼ gðXiÞ

¼ b0 þ b1x1 þ b2x2::: ð4Þ
Additionally, to calculate the intercept b0 and coefficients in Eq.

(4), the maximum likelihood estimation method was used.

3.2.2. Standard ordered logit model
To deal with the multi-classification variables with specific

orders such as the test scores (measured by ordinal variables such
as A, B, C, D) and the economic income (measured by ordinal vari-
ables such as low, medium, and high), the standard ordered logit
model (SOL model) is more powerful with the ability to analyze
the probability of indicator variables determining the ordered out-
come variables. In this paper, SOL model estimation will be per-
formed to investigate the road segment stability K(0, 1, 2)
determined by the microscopic kinetic parameters
(j ¼ fFx; Fy; Fz; Tx; Ty; Tz;Vg). The utility function of the SOL model
is as follow (Haghighi, Liu, Zhang, & Porter, 2018):

Uik ¼ bkXik þ eik ð5Þ
where, bj is the coefficient of the explanatory variables Xij and eij is
a disturbance term. For a certain type of microscopic kinetic param-
eter, the road segment stability K can be expressed as follows:

K ¼
0; if Ui 6 l0

1; if l0 < Ui 6 l1

2; if Ui > l1

8><
>:

9>=
>; ð6Þ

where l0;l1 are the threshold values of different road segment sta-
bility categories 0, 1, 2 (stable, slightly fluctuating, seriously fluctu-

ating) and the probability of different road segment stability
categories can be calculated by:

PðK ¼ 0Þ ¼ 1� expðxib�l0Þ
1þexpðxib�l0Þ

PðK ¼ 1Þ ¼ expðxib�l0Þ
1þexpðxib�l0Þ �

expðxib�l1Þ
1þexpðxib�l1Þ

pðK ¼ 2Þ ¼ expðxib�l1Þ
1þexpðxib�l1Þ

ð7Þ

3.2.3. Random parameters logit model
The RPL model can explain the heterogeneity among unobserv-

able variables (Islam &Mannering, 2020; Mannering & Bhat, 2014).
According to previous research (Li et al., 2019a, 2019b), the utility
functions of different accident types are generally expressed
linearly:

Umi ¼ bmXmi þ emi ð8Þ

where,bmi is the parameter vector of the explanatory variable Xmi

that affects the judgment of the accident type; emi is the disturbance
term indicating the unobserved heterogeneity. Assuming that emi

follows the generalized extreme value distribution, the probability
of the road segment i being a segment with relatively high accident
risk for type m can be calculated as follows:

Pmijbm ¼ expðbmXmiÞ
1þ expðbmXmiÞ ð9Þ

Regarding the random distribution of unobserved factors
among different observations, the probability of the RPL model
can be expressed as follows (Liu & Fan, 2020):

Pmi ¼
Z

ðPmijbmÞf ðbjuÞdb ð10Þ

where f ðbjuÞ represents the probability density function of the ran-
dom parameter vectorb, and udenotes a vector of parameters
describing the probability density function (mean and variance).
In general, the distribution of random parameters varies, including
lognormal distribution, normal distribution, uniform distribution,
triangular distribution, and so forth. In addition, since the RPL
model involves substantial integration of the logit formula over
observation-specific parameters, which can be extremely time-
consuming, its estimation is undertaken based on stimulated max-
imum likelihood method (Behnood & Mannering, 2015).

3.3. Margins effects analysis

For multi-classification models, the estimated results of model
parameters cannot truly reflect the actual impact that the slight
change in any specific explanatory variable has on the probability
of the outcome variable (Osman, Paleti, Mishra, & Golias, 2016), so
further marginal effect analysis of the model is required. Since
there are both continuous and discrete variables in this study, dif-
ferent formulas are needed for calculation (Chang, Xu, Zhou, Chan,
& Huang, 2019; Liu & Fan, 2020):

EP
X ¼ PðX ¼ 1Þ � PðX ¼ 0Þ ð11Þ

EP
X ¼ @P

@X
ð12Þ

where, the marginal effects of discrete variables and continuous
variables can be calculated using Eq. (9) and Eq. (10), respectively.
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4. Results

4.1. Relationship between microscopic kinetic parameters and
highway characteristics

4.1.1. SOL model results
The SOL model was used to analyze the fluctuation of the

microscopic kinetic parameter variables (Fx; Fy; Fz; Tx; Ty; Tz;V).
The estimated results of the model are shown in Table 5. As illus-
trated in Table 5, the road characteristics ‘‘elevation_change,” ‘‘tun-
nel exit,” and ‘‘inside the tunnel” have no significant effect on all the
microscopic kinetic parameter variables.

With regard to ‘‘Fx,” it was found that the variables ‘‘eleva-
tion_STD,” ‘‘bridge along the river,” and ‘‘diversion and merge” have
a positive effect on ‘‘Fx” (coefficients = 0.072, 1.056, and 2.690,
respectively), that is, when the vehicle is driving on these seg-
ments, the longitudinal force on its tires may produce large fluctu-
ations. In terms of ‘‘Fy,” ‘‘horizontal radius,” ‘‘length of transition
curve,” and ‘‘circular curve” were found to have a negative effect
on ‘‘Fy” (coefficients = -1.590, �1.142, and �0.298, respectively).
On the contrary, ‘‘bridge along the river,” ‘‘merge zone,” and ‘‘diver-
sion and merge” could be regarded to be positively related to ‘‘Fy”
(coefficients = 0.993, 2.145 and 2.071), indicating that when the
vehicle is driving on these segments, the lateral force on the tire
may suffer the corresponding fluctuations. Additionally, ‘‘Fz” was
found to be positively correlated with the variables ‘‘both exit and
entrance,” ‘‘bridge along the river,” and ‘‘diversion and merge” (coef-
ficients = 1.44, 1.379, and 2.948, respectively), and the increase of
these variables will bring about the increase of the fluctuations
in the vertical force on the tire.

Unlike the effects of force, the influence of road characteristics
on the torque of the tire is majorly negative. For instance, it was
found that as the variables ‘‘elevation_STD,”‘‘circular curve,”‘‘hori-
zontal radius,”‘‘length of transition curve,” increase, the torque ‘‘Tx”

tends to decrease (coefficients = -0.069, �1.512, and �0.900,
respectively), and similar conclusions can also be observed in out-
come variables ‘‘Fy,” indicating ‘‘Tx” and ‘‘Fy” may be of certain con-
sistency. The variables ‘‘elevation_STD,” ‘‘circular curve,” ‘‘composite
alignment,” and ‘‘diversion zone,” were found to have a restrictive
influence on ‘‘Ty” (coefficients = -1.082, �1.735, �1.939, �2.076,
respectively). Besides, ‘‘horizontal radius” appeared negative associ-
ation with ‘‘Tz.” Among all the significant explanatory variables,
the variable ‘‘tunnel exit” is the only road characteristic that has a
positive effect on the torque variables, whose increase may cause
a large fluctuation in the ‘‘Tx” (coefficient = 1.145).

With reference to the vehicle speed ‘‘V,” it was found that only
the variable ‘‘ length of transition curve” had a significant effect on
the fluctuation of this outcome variable (coefficient = -0.290). This
is consistent with the empirical evidence that a longer transition
curve will reduce the difficulty of driving and make it easier for
the driver to maintain speed stability.

Although the coefficients of the SOL model can reflect the quan-
titative relationship between explanatory variables and outcome
variables to some extent, it is not enough to simply make a cross
comparison of different coefficients among three outcome vari-
ables. Further exploration of the inherent mechanism of how
one-unit change in any specific explanatory variable influences
the outcome variables needs to be undertaken and this paper used
marginal effect analysis to carry out more precise discussions.

4.1.2. Margins effects analysis
The marginal effect analysis shown in Table 6 can reflect the

quantitative relationship between each explanatory variable and
different level of outcome variables. In this study, seven micro-
scopic kinetic parameter variables were divided into three cate-
gories (0-stable, 1-slightly fluctuating, 2-seriously fluctuating)
according to the degree of fluctuation. The two categories of ‘‘000

and ”200 were found to be sensitive to most of the road characteris-
tic variables, while the category of ‘‘100 was hardly affected. One
possible explanation is that the category ”100 corresponds to the
well-designed road segments, where the operation of vehicles is
less likely to be disturbed by adverse road conditions, and the gen-
eration of abnormal kinetic behavior of vehicles is mainly attribu-
ted to human errors.

Every additional unit of the explanatory variable ‘‘eleva-
tion_STD” was found to generate the increase of the possibility of
the category ‘‘200 (seriously fluctuating) in the outcome variable
‘‘Fx” by 1.5%. When there is a river bridge within the road segment
(‘‘bridge along the river”=1), the probability of the category ‘‘2” (se-
riously fluctuating) in the outcome variable ‘‘Fx ” is 21.1% higher
than the road segment without it (‘‘bridge along the river”=0). Like-
wise, the positive coefficient value of ‘‘diversion and merge” indicat-
ing that segments with such road characteristics generally
sustained larger fluctuation degree in ‘‘Fx.”

Compared with the straight line, the ‘‘circular curve” showed a
decline of 29.2% in the possibility of the category ‘‘200 in the out-
come variable ‘‘Fy,” indicating the increase of the stability of ‘‘Fy”
in the road segment with ‘‘circular curve.” This situation can be
explained by the driving compensation principle (i.e., the driver
has a more cautious operation and a lower driving speed in a more

Table 5
Parameter estimation of the SOL model.

Variables Fx Fy Fz Tx Ty Tz V

Elevation_change - - - - - - -
Elevation_STD 0.072*** - - �0.069** �1.082*** - -
Geometry (base: straight segments)
1.Circular curve (Geometry = 1) - �1.590** - �1.512** �1.735** - -
2.Composite geometry(Geometry = 2) - - - - �1.939** - -
Ln_Horizontal radius - �1.142*** - �0.900*** - �0.833** -
Ln_Length of transition curve - �0.298*** - - - - �0.290***
Tunnel (base: without tunnel)
1.Tunnel exit (Tunnel = 1) - - - 1.145** - - -
2.Tunnel entrance(Tunnel = 2) - - - - - - -
3.Both exit and entrance(Tunnel = 3) - - 1.440*** - - - -
4.Inside the tunnel(Tunnel = 4) - - - - - -
Along the river bridge 1.056** 0.993** 1.379*** - - - -
Conflict zone (base: without conflict)
1.Diversion zone(Conflict zone = 1) - - - - �2.076** - -
2.Merge zone(Conflict zone = 2) - 2.145** - - - - -
3.Diversion and merge(Conflict zone = 3) 2.690*** 2.071*** 2.948*** - - - -
Note:* means p � 0.1, ** means p � 0.05, *** means p � 0.01.
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complicated environment such as a segment with circular curve;
Haleem & Gan, 2013), which makes it easier for the vehicle to keep
running smoothly and generates more moderate longitudinal and
vertical force fluctuations of the tires. With regard to the influence
of log variables ”horizontal radius‘‘ and ”length of transition curve‘‘ in
the outcome variables, one-unit increase of them will bring about
the decrease of the possibility of the category ‘‘2” of ”Fy‘‘ by 20.8%
and 5.4%, respectively, implying that the gentle curve helps vehi-
cles keep stable operation. Besides, the road characteristics of
”bridge along the river,‘‘ ”merge zone,‘‘ and ”diversion and merge‘‘
were found to make the lateral force ”Fy‘‘ suffer greater fluctuation
(the increase in one-unit will lead to the probability of ‘‘2” of ”Fy‘‘
increasing by 17.9%, 43.7%, and 42.3%, respectively). This may be
the result that drivers tend to adopt more lane-changing behaviors
in the conflict zone, triggering the increase in the lateral force fluc-
tuation of the tire (Jiang & Dong, 2012).

Considering ‘‘Fz,” when there are both tunnel exits and
entrances in the road segment, the probability of ‘‘200 (seriously
fluctuating) in ‘‘Fz” was associated with an increase of 29.6% com-
pared to the ordinary segments without tunnels. In addition, the
other two variables (‘‘bridge along the river” and ‘‘diversion and
merge”) have similar effects with the aforementioned, causing
the probability of ‘‘seriously fluctuating” increased by 26.7% and
56.5%. There may be three possible reasons for the above situation.
The first is the abnormal reaction of the driver caused by the sud-
den change of the driving environment (such as brightness and
lane width; Hoeven, 2011; Rudin-brown, Young, Patten, Lenné, &
Ceci, 2013). Secondly, the road surface materials of the tunnel
and bridge are generally different, resulting in different road
response to the tires. The third explanation is that different exter-
nal conditions will bring about different pavement performances.,
that is, the tunnel environment is characterized with minor tem-
perature difference, high humidity, abundant groundwater and
surface water and being such long-term humid state causes the

adhesion performance and damage degree of tunnel pavement to
be significantly different from that of ordinary road segments
(Cong, Chen, Zheng, & Zhou, 2020), resulting in differences of tire
force. With regard to the conflict zone, whose surrounding differs
from the tunnel, it was also found to have a tendency of serious
fluctuation of ‘‘Fz,” with the reasons mainly attributed to the fre-
quent braking and acceleration operations caused by the traffic
flow intersection.

Through the fluctuation analysis of ‘‘Fx,” ‘‘Fy,” and ‘‘Fz,” it was
found that the existence of ‘‘bridge along the river” will lead to an
increase in the probability of ‘‘seriously fluctuating” of all three
outcome variables. Currently, regarding this phenomenon, some
scholars have put forward relevant views on this: although bridges
have promoted the development of transportation in areas with
mountains and rivers, they also bring about the problems of bridge
vibration and strong winds on passing vehicles, while the sudden
crosswise wind and the resonance of wind-vehicle-bridge will
cause uneven forces in X, Y, and Z directions of tires, resulting in
a significant increase in the fluctuation degree (Han, Hu, Cai, & Li,
2013).

Similarly, some road characteristic variables also have signifi-
cant impacts on the probability of being seriously fluctuating in
‘‘Tx,” ‘‘Ty,” ‘‘Tz,” and ‘‘V.” It is worth mentioning that as the propor-
tion of ‘‘diversion and merge” being ‘‘100 value increases, the proba-
bility of being ‘‘stable” in ‘‘V” will be reduced by 18.4%, while it will
not lead to more occurrences of being ‘‘seriously fluctuating.” The
same situation also occurs in ‘‘Fz” and ‘‘Tx” under the influence of
‘‘merge zone” and ‘‘both exit and entrance,” respectively.

From the aforementioned results, it can be seen that the micro-
scopic kinetic characteristics of tires under normal driving circum-
stances are generally related to the complex road characteristics
such as tunnels, bridges, diverging/merging zones, circular curves,
but it is still unclear what the connection between the abnormal
fluctuation of these micro-kinetic variables and driving safety is.

Table 6
The result of margins effects.

Category Variables Fx Fy Fz Tx Ty Tz V

0 Elevation_STD �0.015 - - 0.013 - - -
Geometry (base: straight segments)
Circular curve - 0.265 - 0.250 0.264 0.239 -
Composite geometry - - - - 0.302 - -
Ln_Horizontal radius - 0.215 - 0.171 0.208 0.156 -
Ln_Length of transition curve - 0.056 - - - - 0.056
Tunnel (base: without tunnel)
Tunnel exit - - - �0.184 - - -
Both exit and entrence - - �0.246 �0.159 - - -
Inside the tunnel - - �0.178 - - - -
Along the river bridge �0.212 �0.185 �0.268 - - - -
Conflict zone (base: without conflict)
Diversion zone - - - - 0.438 - 0.414
Merge zone - �0.278 �0.219 - - - -
Both the diversion and merge �0.290 �0.274 �0.310 - - - �0.184

1 Bothe diversion and merge �0.256 - �0.255 - - - -
2 Elevation_STD 0.015 - - �0.014 - - -

Geometry (base: straight segments)
Circular curve - �0.292 - �0.291 �0.322 �0.269 -
composite geometry - - - - �0.355 - -
Ln_Horizontal radius - �0.208 - �0.177 �0.215 �0.156 -
Ln_Length of transition curve - �0.054 - - - - �0.058
Tunnel (base: without tunnel)
Tunnel exit - - 0.234 - - -
Both exit and entrence - - 0.296 - - - -
Along the river bridge 0.211 0.179 0.267 - - - -
Conflict zone (base: without conflict)
Diversion zone - - - - �0.264 - �0.252
Merge zone - 0.437 - - - - -
Both the diversion and merge 0.546 0.423 0.565 - - - -

Note: Indicates a positive relationship
Indicates a negative relationship
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To address this issue, the relationship between the microscopic
kinetic parameters and different kinds of traffic accidents will be
further discussed.

4.2. Relationship between microscopic kinetic parameters and
accidents

This section first used factor analysis to extract two mutually
independent kinetic factors, which are named tire cornering
kinetic characteristic (TCKC) and tire longitudinal kinetic charac-
teristic (TLKC), from several highly correlated microscopic kinetic
parameters. Then we built the FPL model and the RPL model to
explore the relationship between microscopic kinetic parameters
and different types of traffic accidents, and found some interesting
phenomena. The flowchart in this section is provided in Fig. 4.

4.2.1. Factors analysis
The relationship of microscopic kinetic parameters and acci-

dents was examined through a correlation analysis of seven micro-
scopic kinetic parameter variables to avoid model estimation
deviation caused by high collinearity and correlation in modeling.
Since the variables of the microscopic kinetic parameters are all
discrete variables, the Spearman correlation coefficient method
was adopted. As presented in Fig. 5, most of the microscopic kinetic
parameter variables are positively correlated, indicating high
collinearity exiting among variables; only ‘‘Fz” is weakly correlated
with others.

To deal with the collinearity of microscopic kinetic parameters,
factor analysis was conducted. Factor analysis (FA) is based on the
principle of least information loss (generally with the eigen-
value > 1 or cumulative variance > 80%) to extract unobservable
factors affecting explanatory variables with high correlation and
convert them into linear combinations of independent factors

(Johnson & Wichern, 1992). The model construction and matrix
expression is shown in Eq. (11) and Eq. (12):

X1 � l1 ¼ ‘11F1 þ ‘12F2 þ :::þ ‘1hFh þ e1
X2 � l2 ¼ ‘21F1 þ ‘22F2 þ :::þ ‘2hFh þ e2

..

. ..
. . .
. ..

. ..
.

Xp � lp ¼ ‘p1F1 þ ‘p2F2 þ :::þ ‘phFh þ ep

ð11Þ

X - lð Þp�1 ¼ Lp�hFh�1 þ ep�1 ð12Þ

where, Fh is the extracted new factor; ‘ph is the factor load with the
value between 0 and 1, while 1 indicates the greatest the influence

Fig 4. The framework of Section 4.2.

Fig 5. Correlation analysis of micro kinetic parameters.
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of ‘ph has on the original variable (Washington, Karlaftis, &
Mannering, 2010); ep is the random error term only related to Xp.

KMO (Kaiser-Meyer-Olkin) test was carried out before FA.
According to statistics experience, when the KMO value is more
than 0.6, FA could be conducted (De Castro et al., 2017; Yang,
Feng, Zhao, Jiang, & Huang, 2020). In this case, the original KMO
value of seven variables is less than 0.6. Considering the correlation
of ‘‘Fz” and other variables is not significant, ‘‘Fz” was excluded in
FA process and the KMO value of 0.7456 was finally obtained, indi-
cating an acceptable internal consistency reliability (Bian, 2017;
Wei et al., 2012).

As illustrated in Table 7, factor 1 highly reflects the cornering
kinetic characteristic including ‘‘Fy,” ‘‘Tx,” and ‘‘Tz,” and factor 2
highly reflects the longitudinal kinetic characteristic including
‘‘Ty” and ‘‘V.” The two factors were thus interpreted as tire corner-
ing kinetic characteristic (TCKC) and tire longitudinal kinetic char-
acteristic (TLKC), respectively, according to the distribution law of
high loading variables and the tire mechanical characteristics (as
shown in Fig. 6). To have a primary understanding of the road seg-
ment performance of these two factors, the corresponding factor
scores were calculated and shown in Fig. 7.

4.2.2. FPL model results
A primary FPL model was first performed to analyze the quan-

titative relationship of microscopic kinetic parameter variables and
traffic accidents. In order to improve the accuracy and feasibility of
the model, three road characteristic variables with no correlation
with microscopic kinetic parameters were incorporated into the
model, including the ‘‘elevation_change,” ‘‘inside the tunnel,” and
‘‘tunnel entrance.”

Previous to model estimation, the term relating to ‘‘road seg-
ment accident rate” was defined based on the accident numbers
of certain types happening in the chosen road segment; for exam-
ple, if the number of rear-end accidents on a road segment exceeds
the average number of the samples, the road segment can be
defined as a ‘‘road segment with a high rear-end accident rate” (vari-
able value = 1 if ‘‘yes” and = 0 if ‘‘no”), otherwise it is a ‘‘road seg-
ment with a low rear-end accident rate” (variable value = 1 if ‘‘yes”
and = 0 if ‘‘no”). Likewise, this method was used to complete the
definition of the other two accident types (fixed-object hitting
and overturning accidents).

Table 8 presents the estimated results of the FPL model for rear-
end, fixed-object hitting, and overturning accidents. The model
results show that under normal driving conditions, the real-time
output of TCKC has no remarkable relationship with all three acci-
dent types, which does not indicate that the tire cornering kinetics
characteristics are not correlated with safety. A possible explana-
tion may be that the driving test was conducted under a windless,
rainless, and snowless environment, which decreased the fluctua-
tion of the operation of the vehicle and led to the ambiguous
results of the model estimation, while the severe weather condi-
tions such as rain, snow, and crosswinds are more likely to cause
bad kinetic behaviors of high-speed vehicles such as side deflec-
tion, skidding, and deflection (He, Liu, Chen, & Zhao, 2011). There-

fore, more comprehensive real-time driving experiments including
various driving condition need to be further developed. Addition-
ally, the variables ‘‘elevation_change” and ‘‘Fz” were also found to
be unrelated to all three accident types .

The coefficient value of TLKC was negative related with the
rear-end accidents (p � 0.01). It indicates that when TLKC increases
by one unit, the occurrence of the value ‘‘100 of the variable ‘‘road
segment with a high rear-end accident rate” will be reduced by
0.64 times (the value ‘‘1” means that the road segment is with a
high rear-end accident rate). This result is original but significant,
since it reveals that the more unstable the tire is, the less likely
it is that a rear-end accident will occur, contrary to the traditional
concept that the stable operation of vehicles symbolizes higher
traffic safety. A more in-depth analysis will be shown in the ‘‘Dis-
cussion” section. TLKC will be used as an intermediate variable
between road characteristics and traffic accidents, so as to more
accurately interpret the results of the models.

In terms of road characteristics, compared with those segments
without the tunnel, when there is only a tunnel entrance (the tun-
nel begins at certain part of the targeted road segment while end-
ing at another road segment), it’s more likely for this segment to
suffer a higher probability of rear-end accidents, fixed-object hit-
ting and overturning accidents (coefficients = 1.92, 1.8 and 2.11);
when the road segment is completely contained in the tunnel
(the tunnel both begins and ends at other road segments), the

Table 7
Results of FA of the remaining six variables.

Variable Factor 1:tire cornering
kinetic characteristic (TCKC)

Factor 2: tire longitudinal
kinetic characteristic(TLKC)

Fx 0.4730 0.0655
Fy 0.7432 0.3632
Tx 0.6769 0.1624
Ty 0.2175 0.8350
Tz 0.7116 0.2867
V 0.1956 0.8259

Fig 6. Schematic diagram of tire kinetics.

Fig 7. Radar chart of factor scores.
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probability of ‘‘road segment with a high rear-end accident rate” as
well as ‘‘road segment with a high overturning accident rate” will
increase (coefficients = 1.92, 2.55)

It is demonstrated that the tunnel has laid a serious hidden dan-
ger for traffic safety. This is because the environment of the tunnel
is closed and dark, and drivers will have physiological pressure
such as tension and fear to different degrees when entering and
leaving the tunnel (Mehri et al., 2019; Zhou et al., 2020). In other
words, the sudden changes in environmental conditions and
abnormal driver responses may cause the tunnel to become a place
where various types of accidents occur frequently and accumulate,
especially in tunnel entrances (Dai, Guo, Ma, & Ni, 2010).

Nevertheless, the kinetic characteristics of the tires are undesir-
able in identifying fixed-object hitting and overturning accidents.
It can be speculated that these two types of accidents are more cor-
related with driver characteristics, such as driving distraction, dri-
ver personality differences, and driving habits. However, in the
experimental design of this paper, the driver was familiar with
the purpose of the experiment and focused their attention on driv-
ing throughout, which is consistent with previous studies that
believed that participants will be influenced by expectancy effect
and tend to show an inherent need to perform well under test con-
ditions (Harvey & Burnett, 2019). Moreover, the use of cruise mode
might further restrict the impact of driver characteristics. In addi-
tion, the vehicle in this experiment is a small car, and its kinetic
characteristics are different from that of a larger one, which is
more likely to cause traffic accidents such as overturning, skidding,
and deflection because of the higher center of gravity and larger
windward area on the side (Miller, Davis, Reed, Doraiswamy, &
Fu, 2003). On the other hand, overturning, skidding, and deflection
may further cause vehicles to hit the roadside guardrails, isolation
piles, and other fixed facilities, thereby increase the occurrence of
fixed-object hitting accidents.

In other words, driver characteristics and vehicle types may off-
set the influence that vehicle kinetic factors have on the occurrence
and frequency of fixed-object hitting and overturning accidents,
indicating that more relevant research should be implemented in
future research; that is, it is necessary to carry out extensive ranges
of the naturalistic driving experiments in China to explore more
detailed driving information relating to Chinese road conditions,
especially the relationship between the kinetic characteristics of
vehicles and traffic accidents.

4.2.3. RPL model results
This paper focused on the ‘‘link role” of microscopic kinetic

parameters of vehicle tires in the road characteristics and acci-
dents, and based on the previous results of FPL model, it was found
that fixed-object hitting and overturning accidents were unrelated
to the microscopic kinetic parameters. Therefore, only rear-end
accident model will be estimated in this section with three signif-
icant variables TLKC, ‘‘inside the tunnel,” and ‘‘tunnel entrance”

being identified as random parameters. Table 9 shows the compar-
ison results of the RPL model and the FPL model.

Wald-test was used to compare the performance of the two
models (Sarrias, 2016). The resulting v2 statistic can be used to
determine if the null hypothesis that the performance of the RPL
model and the FPL model are equal can be rejected. As illustrated
in Table 10, p-value (�0.01) shows that the null hypothesis is
rejected and the performance of the RPL model is superior to the
FPL model.

The RPL model estimation results indicate that the explanatory
variable TLKC with random parameters follows the normal distri-
bution (mean = -0.52, standard error = 0.36) which is recorded as
X � Nð�0:52;0:362Þ. This reveals that under a probability of
92.64%, TLKC may have a negative influence on the occurrence of
rear-end accidents, while under a probability of 7.36% it will exhi-
bit the opposite tendency.

The road characteristic variables ‘‘inside the tunnel” and ‘‘tunnel
entrance” were identified to obey uniform distribution. This paper
also found that 99.99% of the segments with only tunnel entrance
were more likely to trigger rear-end accidents compared to those
segments without tunnels. Likewise, random parameter estimation
of ‘‘inside the tunnel” illustrates that under a probability of 53.77%,
the segments completely contained inside the tunnel have a ten-
dency to be positively related to rear-end accidents (while the
remaining 46.23% probability leads to the opposite conclusion).
This also explains why the variable ‘‘inside the tunnel” is not signif-
icant in the mean value. It may be due to the counteracting effect of
the random parameter distribution, which is balanced between the
negative and positive coefficients. From this result, it can also be
demonstrated that RPL model is more explanatory in understand-
ing the heterogeneity problems.

5. Discussion

Since only rear-end accidents were found to be significantly
correlated with the microscopic kinetic parameters generated by
tires during normal driving, this section only discussed rear-end
accidents.

Only considering the relationship between the microscopic
kinetic parameters and traffic accidents may draw fragmentary
conclusions that the increase of divergences of longitudinal kinetic
characteristic indicators such as ‘‘Ty” and ‘‘V” will lead to decrease
in the rear-end accidents, which is obviously unrealistic since lim-
ited by the driving road environment, the microscopic kinetic char-
acteristics of the tire have thresholds for increasing and decreasing.
On the other hand, the relationship between road characteristics
and rear-end accidents cannot fully reflect the changes of vehicle
driving status (i.e., although the results can be obtained, the inher-
ent mechanism is still ambiguous).

Therefore, it is necessary to consider the simultaneous effects of
the road characteristics, microscopic kinetic parameters, and traffic

Table 8
Estimation results of FPL model.

Variables Rear-end Fixed-object hitting Overturning

Coefficient t-stat. Coefficient t-stat. Coefficient t-stat.

Constant �0.647985*** �3.138 �0.3248408* �1.715 �0.537994*** �2.705
TCKC �0.125863 �0.818 0.0420165 0.301 0.004820 0.034
TLKC �0.443961*** �3.198 0.0884184 0.703 0.145536 1.103
Fz �0.079634 �0.497 0.0055200 0.038 �0.037168 �0.247
Elevation_change 0.002377 0.511 �0.0003913 �0.083 0.003730 0.749
Tunnel entrance 0.652842** 2.286 0.5902991** 2.164 0.748793** 2.719
Inside the tunnel 0.654032* 1.856 0.4297278 1.207 0.934856*** 2.635
Log Likelihood �77.32 �93.24 �86.55
Note:* means p � 0.1, ** means p � 0.05, *** means p � 0.01.
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accidents, by employing the microscopic kinetic parameters as a
critical link to explain the internal mechanism of how the road
characteristics affect traffic safety.

It can been seen in Table 11 that microscopic kinetic parameters
(Ty and V) has different impacts on determining the occurrence of
rear-end accidents under different road circumstances. Take
straight segments as the base group, the segments with the geom-
etry characteristics of ‘‘circular curve” and ‘‘composite alignment”
will reduce the possibility of ‘‘Ty,” producing large fluctuations
and thus lead to the increase of the probability for this segment
to suffer rear-end accidents. Likewise, when there is a diversion
zone in a road segment, the ‘‘Ty” and ‘‘V” tend to decline compared
to the segment without any conflict area, which reflects the
increased probability of the segment becoming a high-risk seg-
ment of a rear-end accident.

Another interesting finding is that when there are both diver-
sion and merging zones existing in the road segment, the occur-
rence of rear-end will be reduced, presumably because the
drivers will be more cautious and focused when the road environ-
ment is complicated to a certain degree. The similar findings were
also obtained considering the other two road characteristics, ‘‘hor-
izontal radius” and ‘‘length of transition curve.” Generally speaking,
the larger the radius and the longer the transition curve, the lower
the driver’s operation requirements, and the easier the vehicle
drives smoothly. But in this environment, the driver is more likely
to be distracted, and the concentration of driving will be signifi-
cantly reduced, resulting in an increased risk of rear-end accidents.

Also, road characteristics such as tunnels can directly affect the
road traffic safety. As exhibited in Fig. 8, tunnel-related variables

can increase the accident risks of all three types (by setting the seg-
ments without tunnels as a base [note the value is 1] according to
the frequency of the segments with relatively high accident rate).
Additionally, it can be seen intuitively that the tunnel entrance is
more likely to cause rear-end accidents, and the tunnel exit is more
likely to cause fixed-object hitting accidents. When a road segment
has both a tunnel exit and a tunnel entrance, the risk of accidents is
greater than in other cases. Therefore, how to ameliorate the
design and management of the tunnel traffic is of extraordinary
research significance for accident prevention.

6. Conclusion

This paper took a mountainous freeway in Zhejiang Province,
China as an object. By installing a six-component force meter on
the tire, the microscopic kinetic parameters (Fx; Fy; Fz; Tx; Ty; Tz;V)
of the tire’s real-time output under normal driving conditions were
obtained. For statistical analysis, a SOL model was primarily built
to analyze the quantitative relationship between microscopic
kinetic parameters and road characteristics (such as tunnels,
geometry alignments, bridges along rivers, conflict zones). Then,
a FPL model and a RPL model were estimated and compared to fur-
ther explore the internal correlation of microscopic kinetic param-
eters and traffic accidents with different categories (rear-end,
fixed-object hitting, overturning). Lastly, the link function of
microscopic kinetic parameters was also investigated to unravel
the inherent mechanism of how road characteristics lead to roads
having certain types of accident-prone segments by combining the
results of the above models

The findings of this paper demonstrated that the road charac-
teristics including ‘‘circular curve,” ‘‘composite alignment,” ‘‘tunnel
exit,” and ‘‘diversion zone” will cause longitudinal kinetic character-
istics to stabilize (shown as a smaller value). At the same time, the
kinetic variables TLKC have a significant negative relationship on
the occurrence of rear-end accidents on the road segments. It can
be concluded that the above-mentioned road characteristics can
be defined as potential risk-trigger factors that result in higher
occurrence and frequency of rear-end accidents by affecting the
longitudinal kinetic of the tires. In addition to road characteristics,
other external conditions (e.g., stagnant water, crosswind, turbu-
lent traffic flow, and driver distraction) may also be triggers, which
could be further studied in the future.

Driving compensation principles were also found in this study.
For example, the road elements ‘‘circular curve” and ‘‘diversion and
merging,” generally considered to be related with higher driving
risk, were found to decrease the fluctuations of ‘‘Fy” and the prob-
ability of the occurrence of rear-end accidents. This can be
explained by driving compensation principles, that is, when driv-
ing environments such as road geometry design and traffic flow
become complicated, the drivers will be more cautious and con-

Table 9
Estimation results of RPL model.

Variables FPL model RPL model

Coefficient t-stat. Coefficient t-stat.

Constant �0.647985*** �3.138 �0.789294 *** 2.582
TCKC �0.125863 �0.818 �0.163777 �0.860
TLKC �0.443961*** �3.198 �0.519908**(0.358710) �2.195
Fz �0.079634 �0.497 �0.005616 �0.029
Elevation_change 0.00237 0.511 0.001939 0.370
Tunnel entrance 0.652842** 2.286 0.697090**(0.001443) 2.031
Inside the tunnel 0.654032* 1.856 0.703528(7.435321) 0.373
Log Likelihood �77.32 �76.27
Note:* means p � 0.1, ** means p � 0.05, *** means p � 0.01; values in parentheses indicate the standard error of the random parameters.

Table 10
Result of Wald-test.

Model v2 P-value

FPL model - -
RPL model 18.854 0.0002931 ***

Table 11
Relationship between microscopic kinetic parameters, road characteristics and rear-
end accident.

Variables TLKC Risk of
rear-end

Ty V

Circular curve (base: straight
segments)

Decrease - Increase

Composite geometry (base: straight
segments)

Decrease - Increase

Ln_Horizontal radius Decrease - Increase
Ln_Length of transition curve – Decrease Increase
Diversion zone(base: without conflict

zone)
Decrease Decrease Increase

Diversion and merging zone(base:
without conflict zone)

- Increase Decrease
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centrated. It is an interesting finding and further research could be
conducted from this perspective.

The main contribution of this study can be summarized from
the following three aspects:

� The method proposed in this paper provides an innovative
insight of how to employ the data obtained from a real-time
vehicle experiment to analyze the accident risk on different
road segments based on microscopic kinetic characteristics of
the vehicle. The traditional accident analyses tended to utilize
the historical accident report, which is less useful to provide
real-time perceptions and warnings of accidents compared to
the vehicle microscopic kinetic parameter. The results show
that this was successful in the is study, as longitudinal kinetic
characteristics are highly correlated with the risk of rear-end
accidents, which can be used to predict whether any specific
location is of high risk of some specific accidents, such as
rear-end, fixed-object hitting, overturning.

� The ‘‘link role” in traffic accidents was investigated. Unlike pre-
vious studies that directly used road characteristics and traffic
accidents to build models for analysis, this paper used micro-
scopic kinetic parameters as intermediate variables to construct
two types of models to deeply analyze the mechanism of the
rear-end accidents occurred. The advantage of this approach is
that it can intuitively observe the changes in the state of the
vehicle when driving on a road with high accident risk, and
these changes are important conditions that cause accidents.
That is, when these changes are superimposed with some other
factors (rain, snow, driver characteristics, traffic flow character-
istics), it is more likely to cause an accident.

� The conclusions of this article lay the foundation for subsequent
research on the relationship between vehicle microscopic force
and driving safety on a larger scale, and thus form a complete
‘‘safe driving theory” based on vehicle microscopic force, which
can provide a new perspective for the design and active safety
control of intelligent vehicles in the future (e.g., trying to con-
trol the operation of the vehicle in a certain running state).

However, this study is not free of limitations; as it is a prelim-
inary investigation, the current research has not yet formed a sys-
tem. More data of microscopic kinetic parameters in dynamic
environments such as rain, snow, and winds could be obtained in
future studies. Also, simulation experiments using multi-body
dynamics software such as ADAMS/Car should be further
undertaken.
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a b s t r a c t

Background: Understanding parents’ concussion-related knowledge and attitudes will contribute to the
development of strategies that aim to improve concussion prevention and sport safety for elementary
school children. This study investigated the association between parent- and child-related factors and
concussion symptom knowledge and care-seeking attitudes among parents of elementary school children
(aged 5–10 years). Methods: Four hundred parents of elementary school children completed an online
questionnaire capturing parental and child characteristics; concussion symptom knowledge (25 items,
range = 0–50; higher = better knowledge); and concussion care-seeking attitudes (five 7-point scale
items, range = 5–35; higher = more positive attitudes). Multivariable ordinal logistic regression models
identified predictors of higher score levels. Adjusted odds ratios (aOR) with 95% confidence intervals
(CI) excluding 1.00 were deemed statistically significant. Results: Select parent and child characteristics
were associated with higher score levels for both outcomes. For example, odds of better knowledge level
in parents were higher with increased age (10-year increase aOR = 1.59; 95% CI = 1.10–2.28), among
females (aOR = 3.90; 95% CI = 2.27–6.70), and among white/non-Hispanics (aOR = 1.79; 95%CI = 1.07–
2.99). Odds of more positive concussion care-seeking attitude levels were higher among parents with a
college degree (aOR = 1.98; 95%CI = 1.09–3.60). Child sports participation was not associated with higher
score levels for either outcome. Conclusions: Certain elementary school parent characteristics were asso-
ciated with parents’ concussion symptom knowledge and care-seeking attitudes. While the findings sug-
gest providing parents with culturally and demographically relevant concussion education might be
helpful, they also emphasize the importance of ensuring education/prevention regardless of their chil-
dren’s sports participation. Practical Applications: Pediatric healthcare providers and elementary schools
offer an optimal community-centered location to reach parents with this information within various
communities.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Concussion and mild traumatic brain injury (TBI) in children
have received more attention in recent years as the rate of these
injuries in children is increasing (Centers for Disease Control and
Prevention, 2019; Haarbauer-Krupa et al., 2018; Sarmiento et al.,
2019). Currently, much of the literature on concussion prevention
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and management focuses on high school age children (Nanos,
Franco, Larson, Mara, & Laskowski, 2017; Sarmiento, Donnell,
Bell, Tennant, & Hoffman, 2019; Suskauer et al., 2019; Wallace,
Covassin, & Nogle, 2017). However, elementary school children
can incur concussions from a variety of mechanisms, including
sports participation (Haarbauer-Krupa et al., 2018; Master et al.,
2020). When considering injury risk among younger children,
especially those participating in sports, a focus on parents is essen-
tial as they often manage concussion identification and care for
their children after an injury is sustained.

In consideration of sport safety and the prevention and manage-
ment of concussion, it is important to assess parent concussion
knowledge and attitudes as they have been shown to contribute
to youth athletes’ view of concussion and willingness to report a
concussion (Register-Mihalik et al., 2018; Sarmiento et al., 2019).
Parents’ opinions towards seeking care after a concussion may be
affected by factors such as socioeconomic status (Kroshus et al.,
2018; Lin et al., 2015). Further, parents’ beliefs about concussion
reporting and seeking care can be influenced by their own concus-
sion history (Kroshus et al., 2018), if their child has previously
experienced a concussion (Kroshus, Stellino, Chrisman, & Rivara,
2017; Sarmiento et al., 2019), and if they are currently healthcare
workers (Nanos et al., 2017). Beliefs and attitudes about their
child’s sports participation and performance also affect parents’
opinions about concussion reporting and seeking medical care
(Kroshus et al., 2017; Sarmiento et al., 2019). Parents may have
concerns that their child will miss playing time or specialized
sports achievement and these concerns can contribute to their
communication with their children about reporting concussion
(Kroshus et al., 2017; Sarmiento et al., 2019).

Although there is little evidence on concussion knowledge in
children younger than age 10, there are reports from other
domains related to risk taking that children in this age group have
some understanding about their vulnerability and causality of risks
(Cook, Peterson, & DiLillo, 2000; Kroshus, Gillard, Haarbauer-
Krupa, Goldman, & Bickham, 2016; Morrongiello & Matheis,
2004; Morrongiello & Sedore, 2005). Children in this age group
are more likely to rely on their parents for concussion education
and care. The younger children are targeted with developmentally
appropriate education about concussions, the less time they will be
exposed to uncontested cultural messages about sport injury;
however, it is important that children in this age group receive
information based on rules to follow (Kroshus et al., 2016). Inter-
ventions for this stage of development about concussion preven-
tion are likely to be different that those designed for adolescent
athletes (Kroshus et al., 2016).

As such, the evidence suggests that parents play an integral role
in the reporting and management of concussion in their children.
While the previously mentioned research shows a robust associa-
tion between parental opinions about concussion and subsequent
attitudes and behaviors in their children, the bulk of this research
has been conducted among parents of high school age children.
Comparatively, little is known about whether this same relation-
ship exists in elementary school age children (ages 5–10 years).
Moreover, elementary school age years are a formative time for
development of healthy attitudes around general well-being and
safety. The aim of this study was to understand concussion symp-
tom knowledge and concussion care-seeking attitudes among par-
ents of children enrolled in elementary school.

2. Methods

The current study used a cross-sectional survey design. Our
population of interest was parents of children enrolled in elemen-
tary school. A previous publication reported findings from this sur-

vey (for parents of middle school children) and describes the
methodology in detail (Kerr et al., 2021). The study was approved
by the Institutional Review Board at University of North Carolina at
Chapel Hill.

2.1. Participants and recruitment

The study sample was recruited by Survey Sampling Interna-
tional (SSI), which used a pool of U.S. residents who agreed to par-
ticipate in online survey research. These individuals provide
demographic information from which SSI can identify those eligi-
ble for specific studies. SSI used certification processes such as dig-
ital fingerprinting, IP-verification, and built-in quality control
questions to ensure data quality.

For the elementary aim of the larger study, SSI only targeted
individuals who had self-reported as parents of children aged 5–
10 years. Among this group of eligible participants, SSI randomly
generated a sample that received an invitation to participate in this
study. To avoid self-selection bias, specific study details were not
included in the invitation; rather participants were simply invited
to ‘‘take a survey,” with study details provided upon accepting the
invitation. Upon completion of a survey study, SSI reimbursed par-
ticipants with ‘‘reward points” that can be redeemed for cash, gift
cards, etc.

2.2. Data collection

Our online questionnaire was hosted on Qualtrics and was
based off a modified version of a previously validated question-
naire. (Register-Mihalik et al., 2018; Kerr et al., 2021) Further,
the questionnaire was refined for this study with input from injury
epidemiologists, athletic trainers, sports medicine practitioners,
and youth sport parents. The survey was piloted with a sample
of five parents of young children and revised accordingly.

We provided the finalized survey via the URL of the online ques-
tionnaire to SSI, who integrated it into their survey platform. From
September to October 2018, 475 randomly selected U.S. residents
(aged�18 years) identifying as parents of children aged 5–10 years
were invited and agreed to complete the online questionnaire. Of
these 475 individuals, 400 respondents (81.2%) confirmed having
children currently enrolled in elementary school at the time of
responding (via a screening question within our questionnaire),
completed all survey items, and were thus included in analyses.
Information regarding items pertinent to the current study is pro-
vided below in results.

2.3. Measures

Our outcomes of interest were measurements of concussion
symptom knowledge and care-seeking attitudes, modified for the
current study population (Register-Mihalik et al., 2018; Kerr
et al., 2021). These outcomes have been reported among a sample
of middle school sport parents in a previous publication (Kerr et al.,
2021). Table 2 includes measures on concussion symptom knowl-
edge and concussion care-seeking attitudes. Concussion symptom
knowledge included 25 symptoms (responses of yes/no/maybe).
Correct answers scored 2 points; ‘‘maybe,” 1 point; and incorrect
answers, 0 points. The possible score range was 0 to 50, with
higher scores indicating higher concussion symptom knowledge.
Concussion care-seeking attitudes included five items on a 7-
point scale. Items examined how a respondent would feel about
seeking medical care for their children in elementary school if they
had a concussion. The potential range of scores was 5 to 35, with
higher scores indicating more positive attitudes toward seeking
care.
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Our explanatory variables of interest were parent and elemen-
tary school children characteristics. These variables were chosen
because previous work in older athletes suggests potential connec-
tions between such variables and care-seeking outcomes (Register-
Mihalik et al., 2013; Wallace, Covassin, Nogle, Gould, & Kovan,
2017). Parent characteristics included age (in years), sex, race/eth-
nicity (Register-Mihalik et al., 2013), education, concussion history,
and competitiveness. The competitiveness (capturing an individ-
ual’s desire to win in interpersonal situations) scale aimed to
examine the extent of an individual’s ‘‘desire to win in interper-
sonal situations‘‘ and included 20 statements on a 5-point Likert
scale (Smither & Houston, 1992). The range of potential scores
was 20–100, with higher scores indicating higher levels of compet-
itiveness. Child characteristics (reported by the parent) included
participation in organized sports within the past year and concus-
sion history. Participating parents were instructed to provide char-
acteristics only for their children currently enrolled in elementary
school. If parents had multiple children in elementary school, they
were asked to consider child characteristic questions collectively,
and as a result we were unable to distinguish child characteristics
on a child-by-child basis. Organized sports included sports played
in elementary school or in youth club/recreation leagues.

Respondents whose children in elementary school played
sports were asked to list all the sports that their children played
from a pre-selected set (with a fill-in ‘‘other” option). We then clas-
sified sports according to contact level, based on the existing liter-
ature (Rice, 2008). Non-contact sports included: archery, cross
country, dance, golf, swimming, tennis, and track and field. Limited
contact sports included: baseball, fencing, flag football, racquetball,
softball, and volleyball. Contact sports included: basketball, boxing,
cheerleading, field hockey, gymnastics, ice hockey, lacrosse, mar-
tial arts, soccer, water polo, and wrestling. Although tackle football
is classified as a contact sport, we opted to keep this as a separate
category as previous research has found it to have higher concus-
sion rates than other contact sports across multiple levels of play
(Kerr et al., 2019; Kerr, Cortes, & Caswell, 2017; Rice, 2008;
Tamimalam et al., 2018), If children played multiple sports, they
were categorized according to the highest contact-level to which
they were exposed (e.g., a child participating in ice hockey and ten-
nis was classified in the ‘‘contact sports” category). As the count for
non-contact sports was low, we merged non-contact and limited
contact sports into one category.

2.4. Statistical analysis

Data were analyzed using SAS (version 9.4; SAS Institute Inc.,
Cary, NC). This analysis was similar to data from a middle school
cohort that was part of the larger parent study (Kerr et al., 2021).
Descriptive analyses were conducted for all measures of interest.
For quantitative data, means and standard deviations were calcu-
lated when data followed normal distributions; medians and
interquartile ranges (IQR) were calculated when data followed
non-normal distributions. For categorical data, frequencies were
calculated.

Multivariable ordinal logistic regression models identified pre-
dictors of higher score levels for each outcome (concussion symp-
tom knowledge and care-seeking attitudes). Due to the discrete
nature of the outcome measures, an a priori decision was made
to categorize scores into 3 ordinal levels based on �33% incre-
ments in the overall range of each score. Score cut-offs were
selected to represent meaningful elevations in the levels of the out-
comes. Thus, concussion symptom knowledge levels were 0–16,
17–33, and 34–50, while concussion care-seeking attitudes were
5–15, 16–25, and 26–35. Tests for the proportional odds assump-
tion were conducted prior to fitting models.

In these models, parent characteristic-related adjusted odds
ratios (aOR) were computed for: age (maintained as discrete vari-
able, with the aOR examining the effect of 10-year increases); sex
(female versus male); race/ethnicity (person of color versus white/
non-Hispanic); education level (bachelor’s degree or more versus
less than a bachelor’s degree); parent concussion history (yes ver-
sus no); and competitiveness (maintained as discrete variable,
with the aOR examining the effect of 10% increases). Similarly,
child characteristic-related aORs were computed for: concussion
history (yes versus no) and sport participation (each contact level
of sport participation versus no sports participation). All aORs with
95% confidence intervals (CI) excluding 1.00 were deemed statisti-
cally significant.

3. Results

3.1. Descriptive statistics

Overall, 400 parents completed the questionnaire, with most
being female (70.0%), white/non-Hispanic (76.5%), without a col-
lege degree (52.3%), and with children in elementary school play-
ing organized sports (72.0%). The mean parent age was
36 ± 8 years. The mean competitiveness score was 61 ± 11. In addi-
tion, 24.3% of parents reported a concussion history, while 15.5% of
parents reported a concussion history for their children in elemen-
tary school.

We observed median scores of 39/50 (IQR = 32–44) for concus-
sion symptom knowledge (Fig. 1) and 32/35 (IQR = 28–35) for con-
cussion care-seeking attitudes (Fig. 2). Symptoms that were the
most commonly answered correctly were: headache (79.3%),
blurred vision (79.3%), confusion (77.3%), and nausea/vomiting
(74.0%; Table 2). Parents were less likely to answer emotional
symptoms correctly such as: sadness (30.0%), more emotional
(33.3%), and feeling nervous or anxious (34.3%). For concussion
care-seeking attitudes, the mean scores for each item were high,
ranging from 5.62 to 6.25 (on a 7-point scale), with the lowest item
mean being ‘‘extremely difficult. . .extremely easy” for care seek-
ing. Data for both outcomes were skewed left, with 70.0% and
82.0% of parents in the highest-level groups for concussion symp-
tom knowledge and care-seeking attitudes, respectively. In con-
trast, 4.5% and 2.8% of parents were in the lowest level groups
for concussion symptom knowledge and care-seeking attitudes,
respectively (Table 1).

3.2. Multivariable ordinal logistic regression models

In the multivariable model for concussion symptom knowledge,
odds of greater knowledge level were higher with increased paren-
tal age (10-year increase aOR = 1.59; 95%CI = 1.10–2.28), with
increased competitiveness (10% scale increase aOR = 1.25; 95%
CI = 1.04–1.50), in female versus male parents (aOR = 3.90; 95%
CI = 2.27–6.70), in white/non-Hispanic parents versus parents that
were not white/Non-Hispanic (aOR = 1.79; 95%CI = 1.07–2.99), and
in parents with a personal concussion history versus without a
concussion history (aOR = 2.34; 95%CI = 1.25–4.36; Table 3). How-
ever, odds of greater knowledge level were lower in parents whose
elementary school children did not have versus had a concussion
history (aOR = 0.40; 95%CI = 0.21–0.78). In the multivariable model
for concussion care-seeking attitudes, odds of more positive con-
cussion care-seeking attitudes were only higher among parents
with a college degree versus no college degree (aOR = 1.98; 95%
CI = 1.09–3.60). In both models, higher levels of respective out-
comes were not associated with whether parents’ elementary
school children aged 5–10 years played organized sports.
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4. Discussion

Elementary school age is a formative time for developing
healthy and safe sport practices. It is important to understand
how parents of elementary aged children perceive concussion
safety because of their involvement with children’s activities. This
is one of the first studies utilizing a national sample to examine

parent concussion knowledge and care seeking attitudes for ele-
mentary school children (aged 5–10 years). In combination with
previous work in youth sports (Rice & Curtis Jun, 2019; Thomas
et al., 2018; Waltzman & Sarmiento, 2019), these findings provide
key data to inform parental education strategies to maximize
health and safety for schools and other community programs that
include this younger age group.
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Fig. 1. Distribution of scores of concussion symptom knowledge among sample of 400 United States parents of elementary school children, September–October 2018.
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Generally, parents overall had a high level of knowledge about
concussion and positive attitudes toward seeking care. However,
our study noted factors associated with higher levels of each indi-
cating the need to tailor educational efforts to specific demograph-
ics and cultural considerations. Older parents, females, white/non-
Hispanic parents, those with a personal concussion history and
whose children had a concussion history, and those with higher
competitiveness scores displayed higher levels of concussion
knowledge. Older parents potentially had more time to accrue
concussion-related knowledge, however, specific reasons for this
difference are unknown. As such, younger parents may benefit
from additional concussion-related education. While it is also not
fully known why female parents displayed higher concussion
knowledge levels, this difference suggests varied education may
be needed to provide foundational knowledge to both male and
female parents. The findings of higher knowledge in those parents
who identify as white/non-Hispanic illustrate potential disparities
in concussion education. Such findings may be due to lack of avail-
ability of concussion materials in languages other than English
(Krochus, Gonzalez, Chrisman, & Jimenez, 2019). Additionally,
these findings highlight the need for more culturally relevant
materials and diverse strategies for elementary school parents.
Our competitiveness findings are novel, as the current study is
one of the first to include competitiveness as a potential factor con-

cerning concussion-related outcomes. The reasons between these
associations are unknown; however, provide a foundation that var-
ied parent characteristics, including competitive nature, may
impact concussion knowledge.

Concussion knowledge in parents with a personal history of
concussion was higher, implying that following a concussion par-
ents may have more exposure to information that could improve
knowledge levels. However, parental concussion knowledge was
lower among those with a child with a history of concussion. This
finding was unexpected. Our findings concerning concussion his-
tory differed from previous work in youth athletes (Kay, Register-
Mihalik, Ford, Williams, & Valovich McLeod, 2017), where few
associations were observed between parental and child experi-
ences and concussion related knowledge and attitudes. Future
studies should examine other factors that mediate parent concus-
sion knowledge in the presence or absence of their child’s experi-
ence with concussion; however, this may be tied into
relationships with parents’ own personal experiences.

Level of education (i.e., having at least a bachelor’s degree)
showed a positive relationship to care-seeking attitudes for con-
cussion in elementary school children. This finding, as with previ-
ous findings, highlights potential disparities and access to
information that may influence concussion perceptions. Future
work should examine how to improve the gap in concussion per-
ceptions that may be present among different levels of education
and other factors closely associated with socioeconomic status.

In addition to understanding parent characteristics related to
concussion education, elementary school aged children are able
to understand about vulnerabilities for risk taking and how to fol-
low rules that will contribute to their understanding of concussion
and the importance or reporting this type of injury to their parents
or a trusted adult. It is important to create developmentally appro-
priate materials on concussion symptoms, reporting, and preven-
tion for this younger age group that parents can use to provide
education to children.

Table 1
Demographics of parents of elementary school children (n = 400).

Variable n (%)

Parent characteristics
Age in years (Mean ± SD = 36 ± 8)
<30 78 (19.5)
30–39 231 (57.8)
40–49 67 (16.8)
>49 24 (6.0)

Gender
Male 120 (30.0)
Female 280 (70.0)

Race/Ethnicity
White/non-Hispanic 306 (76.5)
Person of color 94 (23.5)
Black/African-American 23 (5.8)
Asian/Pacific Islander 13 (3.3)
Latinx 46 (11.5)
Mixed race/other 12 (3.0)

Education
Less than a bachelor’s degree 209 (52.3)
Less than high school 9 (2.3)
High school graduate or GED 73 (18.3)
Some college; no degree 84 (21.0)
Associate’s degree 43 (10.8)

Bachelor’s degree and above 191 (47.8)
Bachelor’s degree 116 (29.0)
Master’s degree 51 (12.8)
Doctorate 18 (4.5)
Professional degree 6 (1.5)

Parent concussion history
No 303 (75.8)
Yes 97 (24.3)
Competitiveness Index (Mean ± SD = 61 ± 11)
20–39 17 (4.3)
40–59 164 (41.0)
60–79 198 (49.5)
80–100 21 (5.3)

Children characteristics
Played organized sports within past year
No sports 112 (28.0)
Yes, non-/limited contact sports 32 (8.0)
Yes, contact sports 227 (56.7)
Yes, football 29 (7.3)

Child concussion history
No 338 (84.5)
Yes 62 (15.5)

Table 2
Concussion symptom knowledge descriptive statistics for parents of elementary
school students (n = 400).

Concussion symptom knowledge (Options of Yes, Maybe, No)a

Question: Do you think the following are signs and symptoms of a concussion?

Responses, n (%)

Yes Maybe No

Headache 317 (79.3) 58 (14.5) 25 (6.3)
‘‘Pressure in the head” 273 (68.3) 98 (24.5) 29 (7.3)
Skin rash 47 (11.8) 93 (23.3) 260 (65.0)
Nausea or vomiting 296 (74.0) 81 (20.3) 23 (5.8)
Dizziness 326 (81.5) 45 (11.3) 29 (7.3)
Blurred vision 317 (79.3) 57 (14.3) 26 (6.5)
Balance problems 305 (76.3) 65 (16.3) 30 (7.5)
Sensitivity to light 243 (60.8) 119 (29.8) 38 (9.5)
Neck pain 224 (56.0) 139 (34.8) 37 (9.3)
Joint pain 89 (22.3) 185 (46.3) 126 (31.5)
Feeling slowed down 238 (59.5) 119 (29.8) 43 (10.8)
Feeling like ‘‘in a fog” 267 (66.8) 100 (25.0) 33 (8.3)
‘‘Don’t feel right” 284 (71.0) 81 (20.3) 35 (8.8)
Difficulty concentrating 282 (70.5) 87 (21.8) 31 (7.8)
Difficulty remembering 280 (70.0) 89 (22.3) 31 (7.8)
Fatigue or low energy 239 (59.8) 122 (30.5) 39 (9.8)
Confusion 309 (77.3) 63 (15.8) 28 (7.0)
Drowsiness 286 (71.5) 82 (20.5) 32 (8.0)
Sensitivity to noise 200 (50.0) 144 (36.0) 56 (14.0)
Trouble falling asleep 150 (37.5) 158 (39.5) 92 (23.0)
More emotional 134 (33.5) 182 (45.5) 84 (21.0)
Irritability 166 (41.5) 173 (43.3) 61 (15.3)
Sadness 120 (30.0) 166 (41.5) 114 (28.5)
Nervous or anxious 137 (34.3) 177 (44.3) 86 (21.5)
Teeth pain 99 (24.8) 178 (44.5) 123 (30.8)

a Yes = correct answer, except for ‘‘skin rash,” ‘‘joint pain,” and ‘‘teeth pain”.
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In summary, many of our findings align with previous work
suggesting various parent and child characteristics are related to
parental concussion knowledge in studies of older children
(Kroshus et al., 2018; Lin et al., 2015; Sarmiento et al., 2019). Addi-
tionally, no differences in concussion knowledge were observed
between parents with children who played organized sport and
those who do not. Our combined findings highlight that the diver-
sity of parent and child characteristics may also indicate the need
to ensure that concussion prevention and sport safety information
is tailored for specific audiences to aid dissemination among par-
ents of elementary aged children. Furthermore, in combination
with previous literature, findings illustrate the importance of
devising approaches for concussion prevention and management
that involve education of all elementary school parents, regardless
of child sport participation. Efforts for this age group can include
guidance for return to activities since children can experience con-
cussion from a wide variety of injury mechanisms such as falls,
playground injuries, in gym class and recess at school, dancing,
and so forth (Haarbauer-Krupa et al., 2018). It is particularly
important to begin concussion education for children at a young
age to help shape future attitudes for concussion safety (Kroshus
et al., 2016).

As many youth settings lack on-site access to athletic trainers or
other medical professionals, children are increasingly seen in the
emergency department for concussion care, especially following
the passage of legislation in 50 states that requires medical clear-
ance for return to play in organized sports (Tamimalam et al.,
2018; Thomas et al., 2018). However, a recent study identified that
parents may not always understand specific discharge advice or
concussion symptoms and follow-up instructions provided in the
healthcare setting (Thomas et al., 2018). Even for parents seeking
care, they may not always know what to do to ensure safe return
to activities and when to be seen for follow-up care, especially
for persistent symptoms in young children. The current study find-
ings provide the foundational considerations around parental and
child factors that should be considered in educational initiatives
to address such concussion-related information. Additionally,
schools are important community resources to provide education
and information through school health initiatives and parent
groups (such as the Parent Teacher Association (PTA)). School pro-
fessionals recognize the importance of care for a concussion
(Romm et al., 2018) and can also offer further information to par-
ents in their setting.

5. Limitations and future research

There are several limitations to this study. First, the question-
naire used was developed by investigators for this study and inter-
nal and external validity have not been confirmed. Responses
obtained are from a cross-sectional sample that reflected respon-
dents’ knowledge and opinions at a particular time point. Although
we used a nationwide sampling pool that SSI used to recruit partic-

ipants for this study, we acknowledge the potential for different
profiles of parents who completed the survey compared to those
who did not. Further, although participant demographics varied
across the sample, it is difficult to comprehend the representative-
ness of this sample in generalizing to the entire population. Sec-
ond, parent responses to the survey may have been biased based
on their level of education, which could have contributed to their
understanding of the survey questions. Third, we acknowledge that
additional parental-, child-, and community-level factors exist that
we were not able to collect through the questionnaire used for this
study. Third, race/ethnicity is often a proxy for SES and this study
did not examine these areas specifically. Further prospective stud-
ies that can quantify aspects of the community (i.e., urban/rural
communities, SES, and race/ethnicity), parents, and children as
contributors to parent knowledge and willingness to seek care
for concussions will be helpful for devising educational products
and prevention efforts.

6. Conclusions

Parent demographics/characteristics were associated with con-
cussion symptom knowledge and care-seeking attitudes for chil-
dren aged 5–10 years. Such differences highlight the need for
targeted strategies for parents regarding concussion prevention
and management for their young children to achieve optimal
health and safety. Further, the lack of associations with children’s
organized sports participation points to approaches offering mes-
sages to all parents and considering all causes of concussion
beyond sport participation. Parent knowledge and care-seeking
attitudes influence management of young children, which con-
tributes to health and wellness in this age group.

7. Practical implications

The findings from this study offer key information to inform
community safety initiatives concerning concussion among ele-
mentary school parents and their children.

8. Disclaimer

The findings and conclusions in this report are those of the
authors and do not necessarily represent the official position of
the Centers for Disease Control and Prevention.
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a b s t r a c t

Introduction: This study investigated the extent to which five human resource management (HRM) prac-
tices—systematic selection, extensive training, performance appraisal, high relative compensation, and
empowerment—simultaneously predicted later organizational-level injury rates. Methods: Specifically,
the association between these HRM practices (assessed via on-site audits by independent observers) with
organizational injury rates collected by a national regulatory agency one and two years later were mod-
eled. Results: Results from 49 single-site UK organizations indicated that, after controlling for industry-
level risk, organization size, and the other four HRM practices, only empowerment predicted lower sub-
sequent organizational-level injury rates. Practical Applications: Findings from the current study have
important implications for the design of HRM systems and for organizational-level policies and practices
associated with better employee safety.
Crown Copyright � 2021 Published by the National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

The last three decades have seen considerable research interest
in the effects of human resource management (HRM) systems on
employee outcomes (e.g., Arthur, 1994; Becker & Huselid, 1998;
Beijer, Peccei, van Veldhoven, & Paauwe, 2021; Boon, den Hartog,
& Lepak, 2019; Delery & Doty, 1996; Huselid, 1995; MacDuffie,

1995; Toh, Morgeson, & Campion, 2008; West, Guthrie, Dawson,
Borrill, & Carter, 2006; Youndt, Snell, Dean, & Lepak, 1996). A range
of labels, such as ‘high involvement management’ (e.g., Forth &
Millward, 2004), ‘high commitment management’ (e.g., Wood &
de Menezes, 1998), and ‘high performance work systems’ (e.g.,
Huselid, 1995; Liao, Toya, Lepak, & Hong, 2009) have been used
to describe various sets of organizational practices that aim to
involve employees, generate employee commitment towards their
work and the organization, and ultimately improve organizational
performance.

Organizational practices that comprise HRM systems are ‘‘the
specific methods and procedures that the organization adopts to
implement the organization’s principles and policies” (Posthuma,
Campion, Masimova, & Campion, 2013, p. 1189). HRM systems
comprise ‘bundles’ of these organizational practices that have com-
plementary effects (Ogbonnaya, Daniels, Tregaskis, & Van
Veldhoven, 2013), with each bundle of practices preferably ‘‘creat-
ing synergistic effects in which certain practices reinforce one
another to increase organizational efficiency and effectiveness”
(Posthuma et al., 2013, 1185). Many studies have focused on how
these HRM systems are measured and how they affect perfor-
mance (for reviews, see Boon et al., 2019; Godard, 2004; Wall &
Wood, 2005; Wright, Gardner, Moynihan, & Allen, 2005). Most of
these studies tend to concentrate on conventional financial and
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labor performance indices, to the neglect of more employee-
centered criteria such as occupational health and safety (Delery
& Gupta, 2016; Godard, 2004; Shaw & Delery, 2003). Yet, meta-
analytic evidence suggests that several mechanisms by which
HRM systems are posited to affect outcomes, such as by boosting
employee engagement and organizational commitment, might also
affect employee-centered criteria such as workplace injuries
(Harter, Schmidt, & Hayes, 2002). Despite decades of HRM-
performance research, we know relatively little about how HRM
systems affect workplace injuries at the organizational level (Gran-
ger, Turner, & Grocutt, in press; Ogbonnaya et al., 2013; Turner &
Dueck, 2015; Zacharatos & Barling, 2004), with greater under-
standing of the organizational-level determinants of workplace
injuries needed more generally.

Drawing from reviews (e.g., Posthuma et al., 2013) of the preva-
lence of HRM practices in organizations, we identify five key HRM
practices warranting investigation with organizational injuries: (1)
systematic selection, (2) extensive training, (3) performance
appraisal, (4) high relative compensation, and (5) empowerment.
The current research examines the relationship among these key
HRM practices and workplace injury rates at the organizational
level of analysis. In doing so, we extend previous research by
simultaneously assessing the association among these five HRM
practices and subsequent organizational injury rates, thereby
delineating organizational-level determinants of occupational
safety. Furthermore, we respond to calls (e.g., Wright & Ulrich,
2017) in the recent literature for more rigorous prospective
research designs, such as collecting multi-source data when
assessing HRM-outcome linkages.

2. Theoretical background and hypotheses

After being virtually ignored within the organizational litera-
ture for many years (Barling & Frone, 2004; Campbell, Daft, &
Hulin, 1982; Hofmann & Tetrick, 2003), workplace safety is
increasingly the focus of theoretical and empirical attention at
multiple levels of analysis (Clarke et al., 2016; Nunez & Prieto,
2019). Contemporary research draws on earlier studies that have
examined the role of antecedents—such as high-quality leadership
(e.g., Barling, Loughlin, & Kelloway, 2002), work design (e.g.,
Parker, Axtell, & Turner, 2001), job insecurity (e.g., Probst, 2004),
and safety climate (e.g., Zohar, 2002)—of occupational safety-
related outcomes such as workplace injuries. Such research is
important given the worldwide rates of workplace injuries
(Takala, 2019), with recent global estimates of lost-time injury
rates as high as 11,096 per 100,000 persons in the workforce
(Hämäläinen, Takala, & Tan, 2017).

Knowledge of the organizational-level determinants of safety,
however, remains limited. Current evidence suggests a potential
role for HRM practices designed to ‘‘enhance employee competen-
cies, commitment, and productivity” (i.e., high performance work
systems; Posthuma et al., 2013, p. 1843), but very little of this
research has incorporated an organizational level of analysis. For
example, Zacharatos, Barling, and Iverson (2005) showed that indi-
viduals’ perceptions of high performance work systems were pos-
itively related to personal safety orientations and negatively
related to occupational injuries, demonstrating how trust in man-
agement and perceptions of safety climate served as mechanisms
by which HRM systems may exert effects. Additionally, Wallace,
Popp, and Mondore (2006) examined the foundational climates
(i.e., organizational support, management-employee relations)
generated by HRM practices, demonstrating a positive relationship
with workgroup safety climate and a negative relationship with
workplace injuries. At the unit level, Lauver and Trank (2012)
showed that organizations with higher levels of organizational

decentralization and alignment of HR practices were less likely to
suffer workplace injuries (as measured by regulator-collected logs
of workplace incidents). Similarly, Newnam, Warmerdam,
Sheppard, Griffin, and Stevenson (2017) showed in a sample of
83 organizations that high-performance work practices, particu-
larly selection and work design, negatively related to work-
related driving behaviors, but this effect was attenuated when
upper management demonstrated commitment to safety.

While this evidence suggests that using practices that make up
HRM systems is likely to reduce workplace injuries under some
conditions, those data were collected at the individual-,
workgroup-, and the unit-level (as reported by an upper-level
manager in the organization) of analyses, and it cannot be assumed
that the findings will apply at the organizational level (Chan,
1998). As scholars have argued, different processes might operate
at different levels (Fulmer & Ostroff, 2016). Moreover, from the
overall HRM constructs used in these aforementioned studies, it
is not always clear which particular sets of practices might be neg-
atively associated with workplace injury rates. It is important to
tease out which or how many practices are important, in part to
give insight into the mechanisms that might explain HRM-injury
linkages, but also to provide practical guidance to organizations.

The aim of the study is to investigate the relationship between
HRM systems and organizational injury rates. A further ambition is
to examine multiple HRM practices concurrently, since research
has often considered practices in isolation. For each of five HRM
practice—systematic selection, extensive training, high relative
compensation, performance appraisal, and empowerment—we
generate hypotheses about their potential association with occu-
pational injuries. We focused on these five practices because they
characterize key elements of high performance work organization
both historically (e.g., Huselid, 1995; Pfeffer, 1998) and more
recently (e.g., Boon et al., 2019).

2.1. A taxonomy of human resource management practices

Posthuma et al. (2013) developed a taxonomy of high perfor-
mance work practices based on a comprehensive review of the
HRM-performance literature, examining the frequency with which
HRM practices appear among peer-reviewed articles published
between 1992 and 2011. They classified 61 specific HRM practices
into nine categories and further synthesized them into five cate-
gories: recruiting and selection, training and development, com-
pensation and benefits, performance management and appraisal,
and job and work design. They then divided the practices within
each category into three categories: core practices, practices that
are frequent in the literature, and practices either maintaining or
steadily growing within the literature. As an example, empower-
ment is central to the job and work design category, in that the
core practice within job and work design includes decentralized
and participative decisions. The five practices operationalized in
the current study share similarities with Posthuma et al.’s taxon-
omy categories, reflecting the prevalence of HRM practices studied
in the high performance work systems literature.

The current paper focuses on general HRM practices rather than
criterion-focused practices (i.e., safety-specific HRM practices such
safety training). General HRM practices focus on the specific meth-
ods and procedures that organizations adopt (Posthuma et al.,
2013), rather than a specific criterion. For example, organizations
may use selection practices to screen candidates (Posthuma
et al., 2013), and a variety of selection tools to gather more infor-
mation about a candidate (Youndt & Snell, 2004). Selection prac-
tices may include high-quality tools such as structured
interviews (Posthuma et al., 2013), but may not necessarily focus
on a criterion—for example, selecting for safety-specific competen-
cies—but rather enable the organization to select individuals on a
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wide range of competencies. These general HRM practices reflect
ways of improving employee capabilities, commitment, and
productivity, which are also likely to have an impact on safety. In
the following sections, we describe the conceptual reasons why
each of these general HRM practices—and the set of them—may
enhance organizational safety without a particular focus on the
safety criterion.

2.1.1. Systematic selection practices and occupational safety
We propose that organizations with systematic selection prac-

tices will have lower levels of occupational injuries. Systematic
selection practices involve organizations deciding in advance what
the critical skills and attributes for success are in the organization,
taking applicants through a systematic selection process, and, in
their hiring decisions, focusing on skills, attitudes, and behaviors
that are less amenable to change through training. The net effect
of systematic selection processes should be organizational mem-
bers that have a skill set consistent with job requirements and
organizational aspirations, and therefore a reduction in on-the-
job injuries. In addition, from a symbolic perspective, systematic
selection processes signal to both current and future employees
that management is committed to selecting the best possible orga-
nizational members (Pfeffer, 1998), with members wanting to
reciprocate this commitment by doing their best work for the
organization.

We propose that systematic selection strategies employed by
organizations promote skill matching and facilitate skill develop-
ment in their workforces, resulting in a link between systematic
selection and lower organizational-level injury rates. Specifically,
when organizations focus on matching skills with the require-
ments of the job, the selected workforce have the required com-
petencies and experience to enable them to correctly carry out
their work, and are thus more capable of completing tasks safely.
Further, we expect that systematic selection systems will be
related to lower organizational-level injury rates through other
higher-level processes. For example, these systems may be used
to create a highly skilled workforce (Takeuchi et al., 2007),
which may promote more effective co-ordination within and
across units, thereby enhancing safety at the organizational level.
From an empirical perspective, there is evidence that organiza-
tions that use systematic selection procedures typically experi-
ence lower injury rates (e.g., Cohen, 1977; Smith, Cohen,
Cohen, & Cleveland, 1978), although these studies do not provide
evidence for the reasons why and reflect cross-sectional
relationships.

Hypothesis 1: Systematic selection procedures will be negatively
associated with injury rates.

2.1.2. Extensive training and occupational safety
Training provides employees with the opportunities to learn the

competencies required for a given role (Posthuma et al., 2013). The
degree to which extensive training is provided involves the inten-
sity (e.g., duration) and the scope of training (e.g., breadth of train-
ing provided; Youndt & Snell, 2004). Extensive training may
involve the amount of time spent training (e.g., Tharenou, Saks, &
Moore, 2007), frequency and variety of training provided (e.g.,
Gong, Law, Chang, & Xin, 2009), and formalization of training pro-
grams (e.g., Delery & Doty, 1996). As such, we suggest that exten-
sive training offered within an organization will influence
occupational safety for several reasons. First, general workplace
training can increase employees’ problem-solving skills
(Osterman, 1995) and commitment to the organization
(Tannenbaum, Mathieu, Salas, & Cannon-Bowers, 1991). Similarly,
training for teams increases communication and information shar-
ing (Baker, Day, & Salas, 2006). These skills may be useful for

improving occupational safety: problem-solving skills are used to
identify and find solutions to safety issues or communication skills
may be used to clearly describe safety issues to other organiza-
tional members. Indeed, knowledge levels (e.g., Smith-Crowe,
Burke, & Landis, 2003), commitment (e.g., Parker et al., 2001),
and communication (Parker et al., 2001) have all been shown to
be positively associated with safety outcomes.

Second, organizations that choose to introduce extensive train-
ing, beyond the mandatory training that is required by govern-
ments and unions, enhance the likelihood that employees have
all the skills and knowledge needed to perform their job safely.
By providing training that goes beyond the bare minimum also sig-
nals high commitment to employees, which we would expect
employees to want to reciprocate through working safely.
Kaminski (2001) finding that, amongst small manufacturing orga-
nizations, those offering more training hours were more likely to
report lower lost-time injuries, is consistent with this explanation.
More recently, Camuffo, De Stefano, and Paolino (2017) conducted
a single firm, multi-plant study finding fewer lost-time injuries on
average in units where front-line managers focused on developing
subordinates’ capabilities and skills through teaching and
coaching.

Hypothesis 2: Extensive training will be negatively associated with
injury rates.

2.1.3. Performance appraisals and occupational safety
Performance appraisal remains an integral part of HRM sys-

tems (Daley, Vasu, & Weinstein, 2002), and a critical component
of performance management (DeNisi & Smith, 2014). One purpose
of performance management is to focus on employee develop-
ment, and the information gathered from such appraisals can be
used to document performance and decisions concerning pay
and promotion (DeNisi & Smith, 2014). High-quality performance
management and performance appraisals generally include
appraisals for development, appraisals based on objective results
and behaviors, as well as frequent performance appraisal meet-
ings (Posthuma et al., 2013). To our knowledge, there is an
absence of research assessing the relationship between perfor-
mance appraisal and occupational safety outcomes. However,
the core components of performance appraisal—information
sharing and feedback—suggest that an association between
high-quality performance appraisal and occupational safety could
exist, for several reasons.

First, feedback from performance appraisals can be used to
identify employees’ training needs (London & Smither, 2002), and
as such lead to increases in the skills and behaviors that positively
correlate with safety outcomes. Further, more frequent perfor-
mance appraisal meetings can provide employees with the oppor-
tunity to review goals and adjust their training and developmental
needs accordingly. Second, feedback from performance appraisals
can enable learning from errors and near misses, both of which
serve to enable safety improvement in the future (Littlejohn,
Lukic, & Margaryan, 2014). Third, high-quality performance
appraisals might also help to generate norms about the importance
of information sharing and feedback, which in turn are likely to
enhance organizational-level outcomes (Murphy & Cleveland,
1995). Further, organizations focusing more on seeking informa-
tion and providing feedback, particularly with respect to safety
incidents, can open up opportunities for learning (Dekker &
Breakey, 2016), and may encourage important safety behavior such
as speaking up. From a safety perspective, Cohen (1977), Smith
et al. (1978), and Wallace et al. (2006) present evidence that more
feedback between management and employees predicted lower
injury rates. As a result, we hypothesize:
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Hypothesis 3: Performance appraisals will be negatively associated
with injury rates.

2.1.4. High relative compensation and occupational safety
We propose that high relative compensation in an organiza-

tion—that is, higher pay relative to market norms—will be associ-
ated with lower injury rates. Compensation has consistently been
considered an integral part of HRM systems (Pfeffer, 1998), with
competitive pay, incentive compensation, and pay for performance
as some of the core components of compensation practices gener-
ally found in a HRM systems (Posthuma et al., 2013). Research
relating pay to safety has focused on performance incentives and
intra-organizational pay dispersion. Consistent with the possible
negative effects of performance-contingent pay (Dahl & Pierce,
2020; Parker, Bell, Gagné, Carey, & Hilpert, 2019), the existence
of performance-based incentives was positively associated with
injury rates in a sample of 86 manufacturing companies
(Kaminski, 2001). Similarly, pay dispersion is negatively associated
with satisfaction (Pfeffer & Langton, 1993), individual and team
performance (Bloom, 1999), and positively related to turnover
(Bloom & Michel, 2002) - presumably because it encourages
employees to focus more intensively on relative individual worth
(Pfeffer, 1998) and heightens perceptions of unfairness. For exam-
ple, Shaw, Gupta, and Delery (2002) found that pay dispersion
based on individual incentives for performance was a positive pre-
dictor of lost-time injuries in a sample of concrete production
plants, over-and-above the effects of either pay dispersion or indi-
vidual incentives.

In the same way that compensation fairness is an issue among
employees within the same organization, we argue that employees
in organizations who are paid above-market compensation relative
to pay offered by similar organizations will perceive their work sit-
uation to be more than fair, and therefore exert more effort
towards working safely. Werner, Kuiate, Noland, and Francia
(2016) investigated the effect of supplemental retirement plans
and safety behavior in the U.S. trucking industry, suggesting that
as a part of a high performance work system, supplemental retire-
ment plans act as a form of pay-above-market strategy. Offering
supplemental retirement plans was negatively associated with dri-
ver insurance costs, indirectly indicating safer driver behavior
through lower accidents, crashes, and driving violations. Pay-
above-market strategies may also include additional benefits to
employees that may have a positive influence on safety. For exam-
ple, Weahrer, Miller, Hendrie, and Galvin (2016) investigated
workplace injury rates across different sized organizations and
industries finding that employee assistance programs (EAP) were
negatively associated with workplace injury rates, particularly
when EAP employees are on-site and when organizations offered
telephone EAP services. Taken together, the symbolic advantage
of paying employees above market rate implies a commitment-
oriented approach to HRM, in which employees are valued and
which previous research suggests is positively related to commit-
ment and organizational performance (Tsui, Pearce, Porter, &
Tripoli, 1997) and safety (Barling & Hutchinson, 2000).

Hypothesis 4: High relative compensation will be negatively asso-
ciated with injury rates.

2.1.5. Empowerment and occupational safety
Central aspects of structural empowerment involve autonomy

and participation (Seibert, Wang, & Courtright, 2011). Within
HRM systems, structural empowerment practices involve the
methods and procedures that enhance employees’ opportunity to
participate in decision-making, as well as employees’ opportunity
to exercise their discretion and use their skills (Posthuma et al.,
2013). As such, these practices emphasize enhancing employees’

opportunity to contribute and perform (Lepak, Liao, Chung, &
Harden, 2006). Organizations implementing empowerment prac-
tices may seek to increase autonomous work, that is, work is
designed to have employees participate in decision-making (e.g.,
self-managing teams, quality circles; Wall, Wood, & Leach, 2004).
Of all HRM practices, research on the relationship between auton-
omous work and safety has received comparatively more research
coverage than other HRM-safety links. Theoretically, enhancing
autonomy and participation will reduce injuries for several
reasons.

First, from a socio-technical systems perspective, when employ-
ees’ jobs are designed in a way that maximizes job control and
responsibility, they are able to manage the variances (i.e., changes
in job demands) more quickly, encouraging a broader role orienta-
tion towards safety (Turner, Chmiel, & Walls, 2005) and potentially
preventing injuries. Second, autonomy promotes learning (Wall,
Jackson, & Davids, 1992) and the development of greater expertise
(Wall et al., 2004), which again likely leads to safer working. Third,
autonomy fosters intrinsic motivation and commitment (Parker,
2014), which should increase employees’ motivation to work
safely. Last, empowerment practices may signal to employees that
speaking up and sharing constructive ideas intended to invoke pos-
itive organizational change or improvement are encouraged and
valued by the organization (i.e., voice; Chamberlin, Newton, &
LePine, 2018). Extending this to a safety perspective, empower-
ment practices may also signal to employees that speaking up
about safety-related concerns (i.e., safety voice; Tucker & Turner,
2015) is encouraged, which in turn, may promote safer working
conditions.

Consistent with these arguments, a number of studies and
reviews at the individual- (e.g., Barling, Kelloway, & Iverson,
2003; Nahrgang, Morgeson, & Hofmann, 2011; Parker et al.,
2001) and group-level of analyses (e.g., Hechanova-Alamay &
Beehr, 2001; Simard & Marchand, 1997; Turner & Parker, 2004)
show the benefits of more autonomous work on occupational
safety. At the organizational level of analysis, existing research is
less abundant and less systematic, although consistent with find-
ings at lower levels of analysis. For example, Shannon et al.
(1996) found that managers of companies with lower lost-time
injury compensation claim rates were more likely to perceive
employee involvement in organizational decision-making, and
have a greater expectation that employees use their own initiative.
Similarly, Yassi et al. (2004) found that hospital facilities offering
staff greater discretion in conducting their work had, on average,
lower staff injury rates than those facilities limiting staff discre-
tion; Arocena, Nunez, and Villanueva (2008) showed same-year
negative correlations between organizational-level empowerment
and lost-time work injury rates in a sample of Spanish organiza-
tions; and Camuffo et al. (2017) demonstrated the negative associ-
ation between empowerment and lost-time injury rates.

Hypothesis 5: Employee empowerment will be negatively associ-
ated with injury rates.

3. Present study

We hypothesize that the presence of each of the HRM practices
will uniquely predict organizational injury rates. It is important to
note that, while there is evidence for some of the practices when
considered in isolation, no organizational-level study has consid-
ered the effect of multiple related HRM practices on occupational
safety at the same time. Our approach provides a more compre-
hensive perspective on the association of HRM practices compris-
ing HRM systems and occupational injuries for both conceptual
and statistical reasons. Conceptually, HRM practices do not occur
in isolation from one another. Statistically, examining these prac-
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tices in isolation might well exaggerate their apparent effective-
ness. We therefore test a model of the simultaneous associations
of five HRM practices on organizational injury rates, seeking to
understand if each practice makes a unique contribution.

To test this model, we used a prospective, multi-method
approach with several advantages over existing research. First, pre-
vious research on HRM has been criticized for its sole reliance on
singular and often untrained sources providing the data on the
use of practices (Wall & Wood, 2005). Our assessment of HRM
practices in each organization derives from a team of trained
observers who were aware of the possible range of use of the sep-
arate practices, but unaware of the study hypotheses. This enabled
consistent and informed ratings of the effectiveness of the five sep-
arate practices. Second, data on the five practices used in this study
derive from multiple sources: interviews with managers and
employees, site inspections, and written documentation. Multiple
ratings can result in a more reliable composite (Horowitz,
Inouye, & Siegelman, 1979), and avoids the potential threat of
mono-source biases. Third, the dependent variable was collected
by the Health and Safety Executive in the United Kingdom, a regu-
latory body that is involved in inspecting and collecting data on
organizational safety performance. Fourth, we used a sample of
single-site companies to ensure that data on HRM practices pertain
to that site, and the injury data could not be confused with that of
another site of a multi-site organization. One of the challenges of
conducting research on the relationship between organizational
practices and variables such as organizational injury rates is ‘‘to
have reliable and compatible data” (Askenazy, 2001, p. 493) on
both sides of the equation. This study meets that criterion.

Fifth, the relationships tested here are predictive insofar as the
HRM practice data precede in time the injury data. Existing
research (e.g., Shannon et al., 1996; Kaminski, 2001) on organiza-
tional practices and safety conducted at the organizational level
of analysis has been based on data collected at the same time.
Our prospective design is an improvement over this approach
because we collected data on the dependent variable subsequent
to the independent variable. Finally, we implement necessary sta-
tistical controls to reflect industry differences in risk and organiza-
tion size. Taken together, these methodological features heighten
the extent to which strong inferences can be drawn.

4. Method

4.1. Sample and data collection

We collected data from 58 single-site manufacturing companies
throughout the United Kingdom, as part of a wider study on orga-
nizational practices, employee attitudes, and economic perfor-
mance.1 Organizations reflected a number of sectors: mechanical
engineering (n = 21), plastics and rubber manufacturing (n = 20),
electronics (n = 3), and other miscellaneous sectors (n = 14). These
sectors were chosen because they were the most populous in terms
of number of firms, and number of employees, in the United King-
dom. Company size ranged from 50 to 900 employees, reflecting
small- and medium-sized enterprises.

To assess the use of HRM practices, a team of researchers con-
ducted a three-stage audit of each company, drawing on a range
of sources of information. First, detailed structured interviews with
senior managers responsible for each practice were conducted on
site. The total time spent interviewing in each company was
approximately three hours, with an average of three different man-

agers. Second, the audit team toured the facilities and interviewed
shop-floor employees, enabling them to observe the practices-in-
use (rather than the espoused practices) and hear opinions from
the workforce directly affected by these practices. Third, the
research team reviewed written documentation (e.g., training
schedules, quality documents) related to the practices. Taking all
this information together with the comparative experience of
auditing the other companies in the sample, the audit team then
made a series of ratings of the sophistication of each of these prac-
tices. We provide more detail about the ratings in the Measures
section.

A key criterion for selecting these companies was the fact that
they were single-site organizations. This has two benefits for the
present study. First, the interviews with site managers focused
specifically on the HRM practices at that site, rather than the
use of these practices across multiple sites. This meant that
respondents provided answers about the site they knew best,
and the subsequent rating of the site practices by the audit team
was based on information provided during the in-depth inter-
views and documents pertaining to practices in that site only.
Second, obtaining injury data on this type of organization from
the Health and Safety Executive (HSE) archives minimized the
possibility of confusion with another site of the same organiza-
tion. This way, we ensured that the level of analysis used to mea-
sure the practices corresponded directly to the workplace injury
data (Askenazy, 2001).

We were able to obtain data on the number of injuries for one
and two years following the practice audit for 49 of these 58
single-site organizations. Of these 49 companies, 18 were in the
engineering sector, 18 in rubber/plastics, 3 in electronics, and 10
in other miscellaneous manufacturing areas. All 49 were small or
medium sized companies, ranging from 63 to 900 employees (M
employees = 174, Mdn employees = 126).

4.2. Measures

Five HRM variables were assessed, namely systematic selection,
extensive training, performance appraisal, high relative compensa-
tion, and empowerment. Systematic selection, extensive training,
and performance appraisal were derived from interviewer ratings,
whereas high relative compensation and empowerment were
formed directly from responses given by interviewees. In 27 of
the 49 organizations, there were two interviewers who rated
the HRM practices separately, allowing inter-rater reliability
[ICC (2, k); Shrout & Fleiss, 1979] to be established.

4.2.1. Systematic selection
The interview included detailed questions about what selection

methods were used for each staff type (i.e., shopfloor, clerical/ad-
ministrative staff, professional/technical staff, and management),
and which of the 10 selection procedures (ranging from application
forms to assessment centers) were used for each staff type. After
assessing answers to all the previous questions on selection, inter-
viewers then rated the overall approach to selection used by the
company for each of the four staff types, on a scale ranging from
1 = ‘‘Non-existent” to 5 = ‘‘Excellent with careful planning.” These
four ratings then formed a scale, with Cronbach’s alpha = 0.88.
The ICC(2, k) was 0.92.

4.2.2. Extensive training
A large number of open and closed-ended questions were asked

about training in the organization. These included whether: (a)
there was an overall training strategy (if there was, the documen-
tation was requested); (b) the average annual hours of formal
training for a typical employee of each staff type; (c) a series of
questions about Investors in PeopleTM status (a sought-after stan-

1 Previous papers resulting from these data include: Neal et al. (2005); Patterson,
Warr, and West (2004); Patterson et al. (2005); Patterson, West, and Wall (2004);
Shipton et al. (2002); Shipton et al. (2006a); and Shipton et al. (2006b).
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dard, awarded to UK organizations that meet a series of criteria
relating to the management and development of their staff);
(d) questions about systems for assessing training needs; and
(e) general questions about the type of training that occurred.
Interviewers rated the extent of training for shopfloor employees,
supervisors and management, on a scale ranging from 1 = ‘‘Very
limited” to 5 = ‘‘Very extensive.” These formed a scale, with Cron-
bach’s alpha = 0.91. Inter-rater reliability as measured by ICC(2,
k) was 0.97.

4.2.3. Performance appraisal
The interview included questions on whether there was a for-

mal appraisal system, and if so: (a) how long it had been in oper-
ation for each of the four types of staff; (b) whether and how
often these types of staff were appraised; (c) whether the apprai-
sal was linked to remuneration; and (d) whether appraisers
received any formal training. Interviewees were also asked a ser-
ies of open questions about the appraisal scheme, allowing them
to describe the details of the scheme more fully. Interviewers
then rated the sophistication of the scheme for each of the four
types of staff, on a scale ranging from 1 = ‘‘Nonexistent” to
5 = ‘‘Highly sophisticated.” These formed a scale, with Cronbach’s
alpha = 0.96. Inter-rater reliability measured by ICC (2, k) was
unity.

4.2.4. High relative compensation
Interviewees were asked how compensation for shopfloor staff,

supervisors, and management compared with local companies or
competitors’ rates. Responses were given on a scale ranging from
1 = ‘‘Well below average” to 5 = ‘‘Well above average.” These were
added together to form a scale (Cronbach’s alpha = 0.74), but
weighted so that shopfloor employees’ pay counted for four times
as much as the other groups. This reflected the approximate num-
ber of each type of staff in the organizations used in the final
sample.

4.2.5. Empowerment
Interviewees were asked to what extent shopfloor operators

were responsible for or involved in eight tasks: a significant quality
problem, material supply problem, machine repair following minor
breakdown, routine maintenance of machines, setting up machines
for changeover of product, setting up machines for a new product,
when to take breaks, and the order in which they do their work
(Wall, Jackson, & Mullarkey, 1995). Responses were given on a
scale from 1 = ‘‘Not at all” to 4 = ‘‘Very much.” Cronbach’s alpha
was 0.75.

4.2.6. Workplace injuries
Data on the number of injuries reported at each company were

collected from the UK Health and Safety Executive, a government
body responsible for overseeing safety in the workplace. Data were
collected for both the year following the interviews and the subse-
quent year. Injuries were classed as fatal, major, or minor. How-
ever, there were no fatal and very few major injuries (14% of all
injuries). The total number of injuries reported for the two years
combined across 49 companies was 252, ranging from 0 (in 22
companies in year 1, and 20 companies in year 2) to 20 (in one
company in year 2), and with the majority falling in between. As
such, we used the total number of injuries across both years for
each company.

4.2.7. Control variables
In the analyses, we included data on organization size and

industry-level average injury rate as calculated by Office of
National Statistics for companies in the Standard Industry Code
to which each organization in the current sample belonged.

5. Results

5.1. Analytic strategy and descriptive findings

The means (or medians), standard deviations (or interquartile
ranges), and Spearman’s Rank (i.e., non-parametric) correlations
of all study variables appear in Table 1. Analysis of the dependent
variable (number of injuries) reveals that its distribution is
severely non-normal, being positively skewed with its peak and
lower limit at zero, as is typical for counts of rare events. A
goodness-of-fit test showed that the data differed significantly
from such a standard Poisson distribution (in which the mean is
equal to the variance), being over-dispersed (i.e., with higher vari-
ance, and hence a longer tail), and hence more similar to a negative
binomial distribution. This concurs with McCullagh and Nelder
(1989, p. 199), who suggest that the number of incidents in an
organization may be the sum of individual Poisson variables, form-
ing a negative binomial distribution. Consequently, we chose to
analyze the injury data by fitting a negative binomial regression
model with a logarithmic link function (i.e., transformation of the
dependent variable). Given that organizations had differing num-
bers of employees, it was appropriate to model injuries per
employee as opposed to total injuries: as such, we included the
logarithm of the number of employees in each organization as an
offset term in our model, therefore effectively modelling injury
rate per employee. We also controlled for industrial sector by
entering the sector-average injury rate. The analysis was con-
ducted in SPSS.

5.2. Hypothesis testing

The hypotheses address the collective and separate effects of
each of five HRM practices on injury rates. The models presented
in Table 2 represent the following pattern: Model 1 is a baseline
model controlling for the log of organization size and industry sec-
tor injury rate, and Model 2 includes the HRM practices as an
omnibus test of the hypotheses.

As a block, the HRM practices added significant explanatory
power to the baseline model, Dv2 (5, N = 49) = 73.05, p < 0.001.
This suggests that there is an overall effect of the HRM variables
on organizational injury rate. However, the only HRM practice to
have a significant unique effect on injury rates is empowerment.
The coefficient of �0.78 (see Table 2) is equivalent to an incidence
rate ratio of exp (�0.78) = 0.46: an increase of one point on the
empowerment scale is associated with a reduction in the injury
rate by a factor of 0.46, or a 54% reduction, all else being equal.

In the above analysis, all five practices were entered together as
a set. Supplementary analyses, in which the HRM variables were
entered individually into separate models, resulted in the same
conclusion (i.e., empowerment was the only significant predictor
of injury, whether assessed alongside other HRM practices or
alone).

6. Discussion

We set out to contribute to human resource management and
occupational safety research by investigating the relative effects
of particular HRM practices on safety performance. Specifically,
we tested simultaneously five practices—systematic selection,
extensive training, performance appraisal, high relative compensa-
tion, and empowerment—as predictors of organizational injury
rate, controlling for company size and industrial sector injury rate.
The present data show that, in this sample, higher empowerment is
related to lower injury rates. The significant finding for
empowerment is consistent with previous findings at the

N. Turner, J. Barling, J.F. Dawson et al. Journal of Safety Research 78 (2021) 69–79

74



organizational- (e.g., Camuffo et al., 2017; Shannon et al., 1996;
Yassi et al., 2004), group- (e.g., Hechanova-Alamay & Beehr,
2001), and individual-level of analysis (e.g., Parker et al., 2001) that
indicate more autonomous working is related to better safety per-
formance. Our study extends these findings using multiple sources
of data and predicting organizational injury rates in the future to
show that the relationship between empowerment and safety
operates at the organizational-level analysis. Like previous
organizational-level analyses, it shows associations between
organizational-level constructs and organizational-level outcomes
that appear stronger than in individual-level research (Ostroff &
Bowen, 2000). Our study also extends prior research because it
shows the value of empowerment over-and-above other inter-
correlated HRM practices.

From a practical perspective, the current findings suggest that
to reduce workplace injury rates, designing work to provide
greater opportunity for autonomous work is one way organizations
might achieve this. This could also be achieved by enriching jobs
(e.g., job enrichment programs) or developing leadership skills
among supervisors that value psychological empowerment
(Parker & Wall, 1998). This finding is interesting in that it is the
same practice (empowerment) that is most strongly associated
with organizational productivity (Birdi et al., 2008). Thus, it
appears that a key initiative likely to promote safety is consistent
with, rather than at odds with, the basic economic need to enhance
performance.

Contrary to our hypotheses, however, none of systematic selec-
tion, extensive training, performance appraisal, nor high relative
compensation were associated with organizational injury rates.
One factor that might account for these null effects is the relatively
small size of the sample (49 companies with complete HRM prac-
tice and organizational injury data) may have insufficient power to
find true relationships among the study variables. One specific con-
sequence of this is that any effects are underestimated in the form

of non-significant regression coefficients, increasing the likelihood
of a Type II error; any results indicating null effects need to be con-
sidered as tentative. This possibility especially applies to the prac-
tices of performance appraisal and extensive training, which both
had negative correlations with injury rates. These effects might
have been significant had the power in the study been greater. In
contrast, high relative compensation had a positive correlation
with injuries, and selection practices had a negligible association,
so, irrespective of sample size, these practices may seem less likely
to be important. However, it is more likely that a complex relation-
ship among HRM practices and organizational safety exists. Specif-
ically, we cannot reasonably determine, due to the small size of the
current sample, whether the interaction of certain practices (e.g.,
extensive training and systematic selection), or ‘‘bundles” of mul-
tiple practices, explain additional variance in organizational injury
rates over-and-above the main effects of the five practices
together. Thus, while there may not be main effects for systematic
selection, extensive training, performance appraisal, and high rela-
tive compensation, their effects may still interact with other HRM
practices.

Finally, despite the fact that measures used in the current study
were not safety-specific and instead more general HRM practices,
findings suggest the importance of safety-oriented HRM practices
and safety outcomes. Similarly, there is a separate stream of liter-
ature focused on safety-specific management practices (i.e., occu-
pational health and safety management systems (OHSMS),
Fernández-Muñiz, Montes-Peón, & Vázquez-Ordás, 2007; Li &
Guldenmund, 2018; Yorio & Wachter, 2014), which emphasize
the integration of safety into all organizational capabilities
(Fernández-Muñiz, Montes-Peón, & Vázquez-Ordás, 2009). The
existing evidence suggests safety-specific practices such as
safety-specific selection criteria (e.g., Vredenburgh, 2002), safety-
specific training (e.g., Burke, Holman, & Birdi, 2006), safety-
related compensation (e.g., safety incentive programs; Lauver,
2007), and safety-specific empowerment (e.g., employee involve-
ment in safety-related activities; Yorio & Wachter, 2014) might
predict organizational injury rates, although there is also evidence
on the contrary that some safety-specific management practices
may not contribute to the reduction of organizational injury
(Lauver, 2007; Vredenburgh, 2002). Thus, the inconsistent findings
from previous literature and the current findings emphasize the
need to bridge HRM research and OHSMS research. In doing so,
we may enhance our understanding of the relative importance of
general HRM practices and safety-specific management practices
in predicting organizational injury rates (cf. Robinson &
Smallman, 2006).

6.1. Study limitations and future research

Like all studies, our study has a number of limitations. First, an
important methodological concern is the generalizability of the

Table 1
Means, standard deviations, and correlations among study variables.

M/Mdn SD/IQR 1 2 3 4 5 6 7

1. Injury rate (1-year lag)a 0.63 0–1.67
2. Injury rate (2-year lag)a 1.04 0–2.22 0.42**
3. Organizational sizeb 174.24 178.90 0.09 0.23
4. Performance appraisal 2.31 1.10 �0.21 �0.11 0.27
5. Systematic selection 3.19 0.59 0.06 0.03 0.24 0.31*
6. High relative compensation 3.46 0.66 0.18 0.18 0.12 0.02 0.07
7. Extensive training 2.95 0.92 �0.06 �0.17 0.15 0.58*** 0.58*** 0.00
8. Empowerment 2.40 0.68 �0.14 �0.22 0.02 0.23 0.08 0.45** 0.16

Note. Correlations involving injury rate variables are non-parametric (Spearman) correlations. Injury rate measured as number of injuries per 100 employees. *p < 0.05,
**p < 0.01, ***p < 0.001. aThe median (Mdn) and interquartile range (IQR) are reported these variables, due to a large skew. bThe mean and standard deviation reported here are
for the raw variable, even though the log of this variable is used in the inferential analysis.

Table 2
Regression of organizational injury rates on HRM practice variables.

Model 1 Model 2

Intercept B = 0.504 (0.270) B = 0.159 (0.233)
Organizational size (log) �0.350 (0.188) �0.494 (0.145)
Sector-average injury rate 0.450 (0.221) 0.339 (0.190)
Systematic selection – 0.529 (0.214)
Extensive training – �0.232 (0.262)
Performance appraisal – �0.167 (0.246)
High relative compensation – 0.551 (0.192)
Empowerment – �0.780*(0.192)
Model v2 175.21 102.15
df 46 41
Dv2, Ddf – 73.06, 5,

p < 0.005

Note. Figures in central section of table are regression coefficients (standard errors
in brackets). N = 49. *p < 0.05.
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final model. Despite the methodological strengths of our study (i.e.,
multi-source data and prospective design), we cannot be sure that
some unmeasured third factor, such as a climate of trust, does not
lead to both empowerment and lower injury rates. Second,
although this study tested the hypotheses in a prospective design
and found that empowerment was associated with organizational
injury rates collected at a later point, this does not rule out the pos-
sibility of a reverse causal explanation. As the research design is
not a ‘true’ longitudinal design in that it did not assess both
empowerment and injuries at multiple time points (as recom-
mended by Zapf, Dormann, and Frese (1996), the possibility exists
that lower injury rates in some way led to the implementation of
HRM practices such as empowerment.

Third, there might be a degree of error in the injury rates
reported, with employees underreporting injuries and underesti-
mation of organizational-level injury rates (Probst, Brubaker, &
Barsotti, 2008). However, this is unlikely to be related systemat-
ically to empowerment or the other HRM practices, thus it would
attenuate any observed relationship. A fourth possible limitation
stems from the measurement of some of the key variables, such
as systematic selection and extensive training, which were based
on managers’ ratings. Obtaining data from several different
sources, as was the case in this study, has the advantage of min-
imizing concerns about common method variance. Nevertheless,
it does raise the question of whether managers or other non-
incumbents have a more accurate sense of how these HRM prac-
tices are implemented. Halo effects or other demand characteris-
tics may bias respondent judgments (e.g., Semmer, Zapf, & Greif,
1996), and even asking trained raters to make judgments of HRM
practices across a range of jobs may bias the relationships
depending on the raters’ point of view. Again, however, unless
such biases are related to the number of injuries recorded, which
is unlikely in that raters were unaware of those injury rates, the
association would be to attenuate rather than exaggerate
relationships.

Another possible limitation is that the current study did not
include a measure of efficacy for the HRM practices. Mendelson,
Turner, and Barling (2011) suggest that measuring the presence
of a practice does not indicate whether the practice is actually effi-
cacious. Inclusion of efficacy measures could help validate the
measures used in the current study, and provide an indication of
whether these practices were having an impact on intended out-
comes. For example, extensive training practices may be validated
by whether there are observed behavioral changes in the work-
place. Additionally, turnover rates may be used as an indicator of
whether systematic selection practices are effectively selecting
people with the required knowledge, skills, and abilities (e.g.,
determining fit of candidate; Seldon & Sowa, 2015). As such, it is
important for future research to consider more than the mere pres-
ence of HRM practices.

A final limitation is that we have not addressed the mechanisms
by which HRM practices may exert their effects. It would be bene-
ficial to examine potential intermediate linkages to better under-
stand the role HRM practices have in shaping workplace safety
outcomes (Granger et al., in press). There are several possible ways
in which HRM practices might lead to lower injuries. First, at the
organizational level of analysis, one potential mechanism is safety
climate. Safety climate refers to employees’ shared sense of the
policies, practices, and procedures that reflect the extent to which
safety is valued and rewarded (Zohar, 2014). HRM systems— com-
prised of practices that are designed to enhance employees’ abili-
ties, motivation, and opportunities to perform (Applebaum,
Bailey, Berg, & Kalleberg, 2000)—may signal to employees that
the organization encourages workplace safety. For example,
empowerment practices aimed to enhance employees’ autonomy
(e.g., employees might proactively address safety issues with hav-

ing control over their work methods; Turner et al., 2005) and
encourage employee participation in organizational issues (e.g.,
speaking up about safety concerns; Tucker & Turner, 2015) may
promote a positive safety climate. Furthermore, context-specific
HRM practices may send stronger signals to employees about
desirable behaviors and attitudes (Bowen & Ostroff, 2004). As we
suggested previously, safety-specific HRM practices may send
stronger signals about the relative importance of safety (e.g.,
safety-specific training) than general HRM practices do.

Second, in addition to an organization’s HRM practices
exerting effects on organizational-level injury rates, they may
also be linked with employee-level injuries, especially if there
are systematic differences between employees in different com-
panies; this could be explored by cross-level analysis. A cross-
level model consisting of HRM practices might explain
between-organization variance in an employee-level mediating
variable; this in turn can explain additional employee-level
variance in an employee-level outcomes, while controlling for
other employee-level factors.

Two possible paths through which this may occur are a mutual
gains perspective and the conflicting outcomes perspective
(Ogbonnaya et al., 2013; Van De Voorde, Paauwe, & Van
Veldhoven, 2012). A mutual gains pathway suggests that both
the organization and employee benefit from implementing HRM
practices (Van De Voorde et al., 2012). Specifically, HRM practices
may be negatively associated with employee-level injuries by fos-
tering positive employee attitudes such as satisfaction, commit-
ment, and trust (Ogbonnaya et al., 2013). For example, job
autonomy might enhance employees’ commitment to the organi-
zation, strengthening their motivation to meet organizational goals
such as safety (Parker et al., 2001). This latter explanation would be
consistent with findings that employee engagement might mediate
the association between work practices and injury rates (Harter
et al., 2002; Nahrgang et al., 2011). A second path suggests a
trade-off between organizational outcomes and employee out-
comes. In this view, organizations may reap the benefits of HRM
practices, but HRM practices may not be beneficial, and may even
be detrimental to employee outcomes (Van De Voorde et al., 2012).
This critical perspective suggests that employee injuries may be
positively associated with HRM practices through work intensifica-
tion (Ogbonnaya et al., 2013). For example, increased perceived job
demands is one way work intensification may manifest itself
(Boxall & Macky, 2014), with evidence indicating that extended
and overtime hours are related to increased risk of injury
(Dembe, Erickson, Delbos, & Banks, 2005). In addition, more gen-
eral job demands within the context of workplace safety (i.e., risks
and hazards, physical demands, and complexity) are positively
related to worsened safety outcomes through increased burnout
(Nahrgang et al., 2011). Taken together, future research should
explore the intermediate and cross-level linkages between HRM
practices and injuries to enable a greater understanding of the con-
ditions that promote safety

7. Conclusion

In summary, this study advances our understanding of
organizational-level workplace safety. The results support the idea
that organizations that promote empowered working also have
lower injury rates, and that there is this association in the presence
of other HRM practices. Future research should test the robustness
of the model in other samples. Meanwhile, a clear policy implica-
tion from these findings is that there is merit in going beyond tra-
ditional occupational health and safety management systems to
understand how more general HRM practices may help to improve
workplace safety.
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a b s t r a c t

Introduction: COVID-19 has disrupted daily life and societal flow globally since December 2019; it intro-
duced measures such as lockdown and suspension of all non-essential movements. As a result, driving
activity was also significantly affected. Still, to-date, a quantitative assessment of the effect of COVID-
19 on driving behavior during the lockdown is yet to be provided. This gap forms the motivation for this
paper, which aims at comparing observed values concerning three indicators (average speed, speeding,
and harsh braking), with forecasts based on their corresponding observations before the lockdown in
Greece. Method: Time series of the three indicators were extracted using a specially developed smart-
phone application and transmitted to a back-end platform between 01/01/2020 and 09/05/2020, a time
period containing normal operations, COVID-19 spreading, and the full lockdown period in Greece. Based
on the collected data, XGBoost was employed to identify the most influential COVID-19 indicators, and
Seasonal AutoRegressive Integrated Moving Average (SARIMA) models were developed for obtaining
forecasts on driving behavior. Results: Results revealed the intensity of the impact of COVID-19 on driving,
especially on average speed, speeding, and harsh braking per 100 km. More specifically, speeds were
found to increase by 2.27 km/h on average compared to the forecasted evolution, while harsh brak-
ing/100 km increased to almost 1.51 on average. On the bright side, road crashes in Greece were reduced
by 49% during the months of COVID-19 compared to the non-COVID-19 period.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

The first cases of COVID-19 (also reported as SARS-CoV-2 or
simply Coronavirus) were reported in the city of Wuhan in China
in December 2019 (Cheng & Shan, 2020; Lau et al., 2020; Wu
et al., 2020). After a significant rise in the new cases across the
globe, it was declared a pandemic in March 2020 (WHO, 2020).
At present, confirmed cases of COVID-19 are more than 93.1 mil-
lion, while COVID-19-induced casualties are more than 1.98 mil-
lion (WHO, 2020).

In an effort to restrict the spread of the virus among susceptible
population groups, a ‘‘lockdown” restricting all non-essential activ-
ities was imposed by the majority of governments worldwide. Citi-
zens were also instructed to practice ‘‘social distancing” by means
of keeping at least 2 meters away from each other. Confinement
and ‘‘social distancing” aimed to slow down the spread of the
disease. Moreover, in combination with the aforementioned
measures, schools, theaters, cinemas, restaurants, fitness centers,

and shops were closed to avoid crowding. As a result, financial,
environmental, and social impacts were observed (Anderson
et al., 2020; Hendrickson & Rilett, 2020; Zhang et al., 2020a, 2020b).

Driving behavior also changed radically. Road traffic volume,
public transport users, and overall mobility activity reduced signif-
icantly (Apple, 2020; Google LLC, 2020; Moovit, 2020). For exam-
ple, a study in the city of Santander, Spain, analyzed the impact
of COVID-19 confinement and demonstrated that overall activity
decreased by 67% and public transport use decreased by 93%
(Aloi et al., 2020), while forecasts on travel demand revealed less
traffic, public transport usage, and congestion or flow levels (Aloi
et al., 2020; De Vos, 2020). In the same context, nearly 80% of peo-
ple in the Netherlands reduced their activities outdoors, and subse-
quently elderly people had a greater decrease (de Haas et al., 2020).
A behavioral change in mobility as a result of COVID-19 could also
be on track, as according to de Haas et al. (2020) 27% of Dutch peo-
ple stated that they will work from home more frequently, while
20% expressed the willingness to cycle and walk more in the
future. Road traffic crashes were found to be reduced as road traffic
and pedestrian volume decreased (Aloi et al., 2020). Furthermore,
data provided by TomTom showed that traffic volumes decreased
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by 70–85% in the majority of European cities (ETSC, 2020;
TomTom, 2020). Despite a dramatic decline in traffic volumes
due to COVID-19 restrictions, in urban areas there was a 35%
increase in speeding and an almost 200% increase in stunt driving
offences in the March 15–31, 2020 timeframe, compared to the
same period last year (City of Toronto, 2020).

Nevertheless, to date, the impact of COVID-19 on transportation
can only be assessed through individual reports (e.g., Molloy, 2020)
or web applications of data companies such as Google (Google LLC,
2020), Apple (2020), and TomTom (2020), which have recorded
mobility activities during the lockdown phase. Τhe impact on driv-
ing behavior still remains relatively unknown. This fact is the moti-
vation for the current paper, which aims at quantifying the effect of
the COVID-19 lockdown on driving behavior through a naturalistic
driving dataset captured through a novel mobile phone applica-
tion. More specifically data on driving speed, speeding, and harsh
braking/100 km are recorded before, during, and slightly after the
imposition of a lockdown state in Greece. Time series forecasts of
driving indicators based on the normal (pre-lockdown) phase are
used to compare observed driving behavior with a normal evolu-
tion of itself, so as to quantify the change during lockdown.

A variety of published studies and reports were examined con-
cerning road collisions, injuries, and fatalities. Road crashes were
reduced in the majority of countries as road traffic and pedestrian
volume decreased (Aloi et al., 2020). Road crashes in Germany
decreased by approximately 23% during a quarantine month,
injured people by 27%, and fatalities by 32% compared to the same
period last year (DW, 2020). The same impact was observed in the
Netherlands, where 50% less collisions were reported. Italy, France,
and Spain displayed a drop in road deaths of 40–70%, however, in
Australia the reported deaths had not declined despite the overall
reduced traffic (ETSC, 2020). Barnes et al. (2020) revealed that the
total number of crashes decreased; but unfortunately, crashes
involved individuals (especially males) from age 25 to 64. Lin
et al. (2020) highlighted that, although the number of nonfatal
crashes reduced, the severe and fatal cases of road crashes were
not changed during the pandemic. The overall number of road
crashes as well as crash fatalities reported across United States
was also reduced (Wagner et al., 2020). Although the number of
road crashes was in general positively correlated with the amount
of traffic volumes, the number of fatalities, surprisingly, was
observed to experience an increase at some states during COVID-
19 period (Vingilis et al., 2020).

This study is structured as follows: (a) an introduction to the
subject of the paper (see above); (b) a brief literature review on
driving behavior in relation with the effect of COVID-19 or other
pandemics on transportation; (c) a description of the methodolog-
ical approach and the utilized data; (d) XGBoost analyses, which
are used to explore the importance of contributor variables, are
then conducted; (e) the main part of the paper is dedicated to
time-series forecasting and the comparison between observed
driving behavior indicators and the forecasted ones; and (f) conclu-
sions on the impact of COVID-19 on driving behavior are drawn
and a discussion on how policy-makers and researchers should
take advantage of the analysis is provided.

2. Literature review

The literature research aimed to link driving behavior, mobility,
and transportation with the COVID-19 pandemic. The literature
search was conducted in popular scientific databases such as Sco-
pus, Science Direct and Google Scholar. The Boolean terms used to
search these databases were ‘‘COVID-19” or ‘‘Corona Virus” or ‘‘SARS
Cov 2” and ‘‘road” or ‘‘traffic” or ‘‘safety” or ‘‘accidents” or ‘‘collisions”
or ‘‘mobility” or ‘‘transport” or ‘‘transportation” or ‘‘behavior” or ‘‘be-

havior.” The searches were limited to engineering and social
sciences, and the results included approximately 18,500 studies
(at present: 5/1/2021). These studies were screened concerning
their titles and abstracts, and the most relevant papers to the
investigating topic are included in this review.

Initially, De Vos (2020) analyzed the effect of COVID-19 in terms
of the impact of social distancing on travel behavior, while Budd
and Ison (2020) introduced a new theoretical concept of responsi-
ble transport that tries to reconsider transport policy due to behav-
ioral change of passenger during the pandemic. Moreover, Vingilis
et al. (2020) investigated the COVID-19 disease and its effects on
road safety and it was revealed that travel decreased and drivers
were exposed to a lower risk of collisions. Inada et al. (2020) indi-
cated that empty roads triggered some speed-related traffic law
violations among drivers, such as speeding, failing to stop at a stop
sign, red light running, and failing to yield to pedestrians. In addi-
tion, Neuburger and Egger (2020) revealed an increase in risk per-
ception of COVID-19, travel risk perception, and travel behavior
over a short period of time. However, the aforementioned studies
were limited to discussions over the impact of COVID-19 and did
not provide quantifiable results on the impact of the pandemic
on driving behavior.

Apart from studies discussing the impact of COVID-19 on travel
behavior, particular emphasis was given on descriptive statistics
regarding average speed, speeding, harsh events, mobile phone
use, and driving distance per trip during the pandemic. For exam-
ple, Aloi et al. (2020) conducted an empirical study and concen-
trated exclusively on urban mobility and COVID-19. Only
descriptive results were included in that study and the authors
demonstrated the change of mode choice, purpose of trip, number
of trips, macroscopic traffic flow, public transport trips travel time
and demands, and general trip features during lockdown. It was
also revealed that, in Tokyo, speeding increased by 52% in March
2020 compared to March 2019, while the police officially enhanced
enforcement of fines and penalties for speeding during the follow-
ing months (Inada et al., 2020). Similarly, Katrakazas et al. (2020)
provided descriptive evidence from Greece and Saudi Arabia on
the deterioration of road safety levels during the period of the lock-
down. In particular, it was shown that reduced traffic volumes due
to lockdown led to a slight increase in average driving speed by 6–
11%, but more importantly, to more frequent harsh accelerations
and harsh braking per 100 km (up to 12%). Additionally, during
March and April 2020, which were the months where COVID-19
spread was at its peak, mobile phone use while driving increased
by 42%, while driving within the risky hours (00:00am–05:00am)
dropped by up to 81%. Furthermore, spatial patterns of speeding
pre (2019) and post (2020) the COVID-19 outbreak were visualized
and compared in order to examine if the spatial extent of speeding
increased (Lee et al., 2020).

Regarding studies employing questionnaires, a large-scale sam-
ple survey was conducted by de Haas et al. (2020) with questions
concentrating mostly on mobility behavior, population, or demo-
graphic characteristics. Their findings concern the mobility behav-
ior change since the COVID-19 outbreak. They investigated the
change concerning the purpose of traveling, number of trips travel
modes, stated opinion for future outdoors activities, remotely
working, or education aspects. In the same context, Mogaji
(2020) conducted an online survey to evaluate the impact of
COVID-19 on transportation. More explicitly, the examined vari-
ables were mode choice, public transportation choice, and reduc-
tion of social, religious, and economic activities during the
COVID-19.

To date, only a few studies have conducted statistical analyses
on the effect of COVID-19 on driving behavior. One of them is
Stavrinos et al. (2020), which utilized multi-level modelling to
investigate driving behavior of adolescents in the United States
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before and during the pandemic period. Their results indicated that
after the appearance of COVID-19 pandemic and its corresponding
restrictions, driving days per week decreased by 37%, while vehicle
miles driven dropped by 35. Nevertheless, the data used were con-
cerned with self-reported driving behavior, and as a result a bias
existed. Within-subjects general linear models were used in Roe
et al. (2020) to investigate driving behavior of older adults during
COVID-19. Indicators used includedmean length in miles, the aver-
age speed in miles per hour of each trip, along with the mean num-
ber of three types of aggressive behaviors (i.e., harsh braking, harsh
accelerations, and speeding) per mile per trip. It was clearly high-
lighted that participants reduced the proportion of days driven
during the pandemic compared with the same period the year
before. At the same time, trips per day showed a similar decline.
Participants also took shorter trips, drove slower, had fewer speed-
ing incidents, and had different trip destinations.

As can be understood from the previous paragraph, no study
has statistically analyzed the impact of the COVID-19 pandemic
on driving behavior and road safety, nor has any study taken into
account time patterns in corresponding data. As a result, a gap in
the literature exists that the current paper hopes to fill by perform-
ing time-series analysis in driving behavior data during the COVID-
19 pandemic. In order to quantify the daily impact of COVID-19 on
driving behavior, time-series analysis is deemed the most appro-
priate method and, as a result, a review of the literature was also
conducted on methodological issues. Several published papers
have used the corresponding variables to estimate the driving
behavior.

3. Methodology

In order to quantify the daily impact of the COVID-19 pandemic
on driving behavior indicators, a statistical relationship between
COVID-19 and observed driving indicators had to be established.
Therefore, a feature importance algorithm was used to evaluate
the significance of variables on forecasting speed, speeding and
harsh braking/100 km. After the initial explanatory analysis, in
order to assess how driving behavior changed over time during
the pandemic, time-series forecasting was exploited. For each of
the three indicators (i.e., speed, speeding, harsh braking/100 km),
the daily time-series was extracted as well as the time-series
describing the evolution of COVID-19 cases and casualties. For
the time-series analysis using ARIMA models, the following steps
were followed according to Bisgaard and Kulahci, (2011),
Box and Jenkins, (1976) and Essi, (2018):

� Seasonal decomposition to identify the trend, seasonality and
residual variance

� Stationarity check using the augmented Dickey-Fuller test
(Dickey & Fuller, 1979)

� Consideration of a general ARIMA Model
� Autocorrelation and Partial Autocorrelation plots to explore the
relationship between time point and individual lags and find a
tentative model

� Determination of the model using a parameter search
� Split into training and test dataset
� Forecasting and evaluation of the predictions

The aforementioned methods and steps are further elaborated
in the following paragraphs.

3.1. XGBoost algorithms

As a preliminary step, Extreme Gradient Boosting (XGBoost)
algorithms were implemented so that the importance of the col-
lected variables, including the COVID-19 related variables, could

be assessed and quantified in regards to the examined driving
behavior indicators (i.e., speed, speeding, and harsh brak-
ing/100 km). XGBoost is a potent machine learning (ML) technique,
encompassing multiple Classification And Regression Trees (CART),
also known as tree ensemble. Additionally, XGBoost belongs to the
family of supervised ML techniques, meaning that it uses labeled
training data, the structure of which is defined by the researcher.
In practice, this means that the independent/dependent variable
division is known and present in the examined variables, and the
outcome is a mapping function to the effect of y = f(x).

XGBoost algorithms apply the gradient boosting decision tree
algorithm, also known as multiple additive regression trees,
stochastic gradient boosting, or gradient boosting machines. The
learning process of the algorithm is iterative and includes correc-
tion of previous errors in future iterations of the algorithm. A
detailed presentation of the algorithm is described in the seminal
study by Chen and Guestrin (2016). XGBoost has been demon-
strated to outclass other ML methods such as Random Forests
and Support Vector Machines in performance both in road safety
(Ting et al., 2020) and in other fields (Nielsen, 2016).

Furthermore, XGBoost algorithms have functions that can cal-
culate the importance of each predictor variable. This is known
as Gini feature importance, or, equivalently, Mean Decrease in
Impurity (MDI), and was proposed in a seminal study by Breiman
(2001). One definition for Gini Importance for tree-based algo-
rithms is the following: Gini Importance is the value obtained as
the sum over the number of splits that include the feature across
all trees, optionally divided by the number of samples it splits. This
allows for powerful and accurate models to be created by utilizing
only the most important predictor variables from a given dataset.

In XGBoost, three particular variable importance metrics are
observed (XGBoost developer team, 2019):

� Gain, describing the improvement in accuracy added by a fea-
ture to the branches it is on.

� Cover, describing the relative quantity of observations (or num-
ber of samples) concerned by a feature.

� Frequency, describing the number of times a feature is used in
all generated trees.

These variable importance metrics used by the XGBoost algo-
rithms were calculated in the analysis and examined to reveal that
variables are informative to describe the examined driving behav-
ior indicators.

3.2. Time-series forecasting

Autoregressive Integrated Moving Average (ARIMA) type mod-
els are considered the most popular time-series models, and are
extensively used in the transportation research field. Their popu-
larity can be explained due to their well-defined theoretical back-
ground and their quite straightforward calculations (Karlaftis &
Vlahogianni, 2009). Thus, ARIMA models were deemed the most
appropriate to model the impact of COVID-19 on daily driving
behavior. An ARIMA model is a generalization of an Autoregressive
Moving Average (ARMA) model and are generally denoted as:

ARIMA p; d; qð Þ ð1Þ
where: p denotes the autoregressive order (i.e., number of time
lags), d denotes the differencing (i.e., the number of differencing
transformations required by the time series in order to become sta-
tionary.), q denotes the non-seasonal moving average order (i.e., the
lag of the error component, which is the part of the time series not
explained by trend or seasonality).

Then, the model can be written more formally as (Wang et al.,
2020):
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Up Bð Þ 1� BÞdyt ¼ hq Bð Þ�t
�

ð2Þ

where: U2Rp is a vector of coefficients for the AR terms, h2Rq is a
vector of coefficients for the MA terms, yt is the outcome variable
measured at time t, B is a vector used equivalently to indicate the
lag operator, �t is random error (white noise, residual) associated
with measurement t with et�N(0,r2)

On the other hand, Seasonal ARIMA models are used when the
time series exhibits seasonality. These models are similar to ARIMA
models and they are usually denoted as:

ARIMA p;d; qð Þ P;D;Qð Þm ð3Þ
where: p denotes the non-seasonal autoregressive order, d denotes
the non-seasonal differencing, q denotes the non-seasonal moving
average order, P denotes the seasonal autoregressive order, D
denotes seasonal differencing, Q denotes seasonal moving average
order, m is the number of periods in each season and the seasonal
ARIMA model can be generalized as:

Up BS
� �

Up Bð Þ 1� BÞd 1� BS
� �

yt ¼ hq BS
� �

hq Bð Þ�t
�

ð4Þ

where: p denotes the non-seasonal autoregressive order, S is the
period at which the seasonal trend occurs, B is a vector used equiv-
alently to indicate the lag operator, U is a vector of coefficients for
the AR terms, d denotes the non-seasonal differencing and yt is the
outcome variable measured at time t.

3.2.1. Seasonal decomposition and stationarity
In cases of evident seasonality, ARIMA models can be extended

to seasonal ARIMA (SARIMA) models. SARIMA models are consid-
ered as a straightforward extension of the non-seasonal ARIMA
(Hipel & McLeod, 1994). With regards to SARIMA models, related
studies were found to perform better than models of random walk
(Clark et al., 2003; Ghosh et al., 2005;Williams, 2003), support vec-
tor regression (SVR) (Lippi et al., 2013), historical average (Chung &
Rosalion, 2001; Williams, 2003) as well as regular ARIMA (Lippi
et al., 2013; Clark et al. in Williams, 2003). Another study reported
that the seasonal ARIMA models predicted more accurately, com-
pared to the best performing k-NN (k-nearest neighbors algorithm)
forecast models (Smith et al., 2002 in Kumar & Vanajakshi, 2015).

As a first step for the model identification and the interpretation
of time-series data, the decomposition of the time series of the
observed variable was required in order to identify its fundamental
(and unobserved) parts: trend, seasonality, and residuals. A time
series decomposition was used to measure the strength of trend
and seasonality in a time series (Wang et al., 2006). The manner
in which the decomposition is performed depends on whether
time-series data are multiplicative or additive (Hyndman &
Athanasopoulos, 2018). The decomposition can be written as:

yt ¼ Tt þ St þ Rt ð5Þ
where: yt is the outcome variable measured at time t, Tt is the
smoothed trend component, St is the seasonal component, Rt is a
remainder component.

It was also essential to make sure that the utilized time series
were stationary (Hyndman & Athanasopoulos, 2018). In order to
make a time series stationary, a transformation was applied to
the data, using the method of differencing. The latter removed
the changes in the level of a time series, eliminating trend and sea-
sonality and consequently stabilizing the mean of the time series.
In order to check a time series for stationarity the Augmented
Dickey-Fuller test was utilized (Dickey & Fuller, 1979). The Aug-
mented Dickey-Fuller (ADF) test is checking if u ¼ 0 in models of
the form:

Dyt ¼ aþ bt þuyt�1 þ d1Dyt�1 þ d2Dyt�2 þ � � � et ð6Þ

where: yt is the observed time series data, a is a constant, b is the
coefficient of the time trend, et is a zero-mean error term. Using
the ADF test, ifu = 0, then a unit root does not exist for the observed
time series and the time series is non-stationary. In the different
case that u < 0, the time series is stationary.

3.2.2. Autocorrelation and partial autocorrelation
In order to identify an initial ARIMA model, the plots of the

Autocorrelation (ACF) and Partial Autocorrelation functions (PACF)
were used.

Correlation between two random variables X and Y can be
defined as (Dettling, 2018):

Corr X;Yð Þ ¼ Cov X;Yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Xð ÞVar Yð Þp ð7Þ

where: Corr X; Yð Þ is the correlation between the two variables,
Cov X;Yð Þ is the covariance of the two variables, and
Var Xð Þ;Var Yð Þ are their individual variances.

For stationary time series, autocorrelation (i.e., the correlation
of a specific variable with its earlier iteration) can be defined as a
function of the lag k (Dettling, 2018):

q kð Þ ¼ Corr Xtþk;Xtð Þ ð8Þ
where: Xt is the measurement at time t and Xtþk is the measure-
ment at lag k. It can be understood that the ACF defines the corre-
lation of an observation Xtþk with previous measurements Xt of
the same variable.

Similarly, partial autocorrelation at lag k can be defined as:

p kð Þ ¼ Corr Xtþk;Xt jXtþ1 ¼ xtþ1; � � � ;Xtþk�1 ¼ xtþk�1ð Þ ð9Þ
which denotes the association between Xtþk and Xt , given that the
linear dependence between Xtþ1 and Xtþk�1 is removed.

By plotting both ACF and PACF it was easier to identify the cor-
relation between more recent observations of the variable and
simultaneously the existence of either actual lagged autocorrela-
tions or autocorrelations caused by other measurements.

3.2.3. Model identification
In order to decide the parameters p, d, q for the ARIMA model as

mentioned in equation (3) and the corresponding parameters for a
potential SARIMA model, an automatic search of the best parame-
ters according to the Akaike information criterion (AIC) or Bayesian
Information Criterion (BIC) was used. The automatic search was
based on popular packages in R and Python programming lan-
guages (Hyndman & Khandakar, 2007; Smith, et al., 2017), which
have been found to be implemented successfully in recent publica-
tions (Ma et al., 2018, 2020). The best fitting model was selected
based on the smallest AIC and BIC.

The Ljung-Box test (Ljung & Box, 1978) a popular diagnostic tool
to test model fitness was also utilized. The Ljung-Box test is
defined as:

� H0 :The model does not exhibit lack of fit
� H1 :The model exhibits lack of fit

given the test statistic:

Q ¼ n nþ 2ð Þ
Xm
k¼1

br2k
n� k

ð10Þ

where: n is the length of the time series, brk is the estimated autocor-
relation of the time series at lag k and m is the number of lags being
tested.

The test rejects the null hypothesis if:

Q > v2
1�a;h ð11Þ
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where: v2
1�a;h is the chi-square distribution table value with h

degrees of freedom and signicance level a. The degrees of freedoms
should be equal to m� p� q, where m is the number of residual
autocorrelations that need to be checked, and p; q are the autore-
gressive and moving average ARIMA parameters, respectively.

3.2.4. Choosing the training and testing samples
As the purpose of this paper was to quantify the effect of

COVID-19 on three driving behavior indicators (i.e., driving speed,
speeding, and harsh braking/100 km), the ARIMA models were
trained using a representative dataset of normal operations (i.e.,
prior to COVID-19) and tested on the early stages of COVID-19
spread in Greece when no countermeasures were taken. Following
the development of training and testing procedures for the algo-
rithm, then forecasts of these normal operations-based models
during the lockdown time period would give a picture of how these
traffic indicators would normally evolve and could enable compar-
isons between the actual observations during the lockdown phase
and the forecasted ones. In order to assist comparisons, time series
models were trained using data from the months of January and
February (i.e., when no COVID-19 case was reported in Greece),
were tested on the period before the lockdown and were validated
on the time period concerning mid-March until early May when
the lockdown status was lifted. It should be noted that the training,
test, and validation set was the same for all the examined variables
(i.e., average speed, speeding, harsh braking/100 km). Fig. 1 depicts
an example of training, test, and validation set.

3.2.5. Evaluation of predictions
After developing the ARIMA models on the testing and valida-

tion sets, forecasts were evaluated using popular forecasting eval-
uation metrics such as:

� Mean Error (ME), which gives the mean of the forecasting error:

ME ¼ 1
N

X
et ð12Þ

� Mean Absolute Error (MAE), which gives the mean of the abso-
lute forecasting error:

MAE ¼ 1
N

X
etj j ð13Þ

� Mean Percentage Error (MPE), which gives the mean of the fore-
casting error in percentage:

MPE ¼ 1
N

X et
observedt

� 100 ð14Þ

� Mean Absolute Percentage Error (MAPE), which depicts the
mean error in percentage terms:

MAPE ¼ 1
N

X etj j
observedt

ð15Þ

� Root Mean Squared Error (RMSE), which is the square root of
the average squared error:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

X
e2t

r
ð16Þ

where: N is the number of forecasted points, and et is the error (i.e.
observedt � forecastedt)

Finally, statistical significance of the non-seasonal and seasonal
components of the ARIMA models was checked.

4. Data overview

For the purposes of this study, a large naturalistic dataset of
daily driving trips was used. The datasets correspond to a complete
5-month timeframe spanning from 01/01/2020 to 09/05/2020 in
Greece. The timeframe was chosen so that sufficient periods are
available both before the spread of COVID-19 to represent normal
operations and during the COVID-19 pandemic to quantify the
effect of the lockdown measures.

The first case of COVID-19 in Greece was diagnosed on
26/02/2020. The first reactive measure that was enforced in
Greece, after the initial diagnosis of coronavirus, was the nation-
wide suspension of the operation of educational institutions of
all levels on 10/03/2020. This was followed by the decision to close

Fig. 1. An overview of training, test and validation sets.
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down all cafes, restaurants, bars, shopping centers, sports facilities,
museums, and all services in the areas of religious worship of any
religion and finally, a restriction on all non-essential movement
was put in place on the 23/03/2020. The lockdown was lifted on
the 04/05/2020 after 42 days.

For the purpose of the analyses, microscopic trip data and a rep-
resentative subset of 122,275 trips was provided by OSeven Telem-
atics. It should be noted that the microscopic trip data used
referred to the users of OSeven smartphone application and not
the entire population of Greece. Both male and female drivers aged
18–65 participated and a large database of thousands of trips was
obtained through the OSeven application. The sample utilized in
this research was also counterbalanced regarding age group and
gender, in order to be as representative as possible. The raw driving
behavior data from the mobile phone sensors (i.e., GPS, accelerom-
eters, or gyroscope) was collected through driving behavioral ana-
lytics platforms, state-of-the-art technologies and smart
algorithms, reliable metrics and novel gamification schemes,
developed by OSeven. Several published studies have used natural-
istic driving data from smartphone sensors provided by OSeven
Telematics for investigating driving parameters such as driving
behavior (Papadimitriou et al., 2019; Stavrakaki et al., 2020;
Tselentis et al., 2019). Regarding data collection, data from smart-
phone sensors have been shown to allow for continuous and rapid
data collection and seamless storage and analysis. Since smart-
phones are programmable, flexible implementation possibilities
become available. However, there are increased demands in data
storage and analysis, and considerable upfront costs during devel-
opment of the data handling infrastructure, with much lower costs
as time progresses and participant numbers increase (Ziakopoulos
et al., 2020).

It should be mentioned that as privacy and security consist two
of the platform’s main design principles, all data are stored and
specific measures are taken to protect them based on encryption
standards for data in transit and at rest. The above procedure is
done using the latest technologies that comply with the national
regulation in EU as well as with the General Data Protection Regu-
lation (GDPR). As a result, all data has been provided by OSeven
Telematics in a completely anonymized format. Readers are also
referred to the studies provided in section 2.1 for a more detailed
description of the OSeven application and platform in the scientific
literature.

The collected trip data contained information on driving perfor-
mance regarding average driving speed, average total speed, aver-
age speed limit exceedance (speeding), harsh events (i.e., harsh
accelerations, harsh braking), other trip characteristics (i.e., total
distance and total duration), as well as mobile phone use or driving
during risky hours (00:00am–05:00am). The descriptive statistics
of the aforementioned indicators during the collection period
(i.e., between 01/01/2020 and 09/05/2020) are depicted in Table 1.

Within this paper, three variables were selected and analyzed in
detail:

� average speed (km/h)
� speeding (km/h); namely average excess speed over the limit
� harsh braking per distance (100 km)

Furthermore, the enforcement of quarantine measures during
the critical period for Greece is treated as a binary quantity: the
value 1 is assigned for trips during the period from 23/03/2020
to 05/05/2020, and the value 0 is assigned for all other examined
trips.

Table 2 illustrates descriptive statistics (i.e., mean, standard
deviation, maximum value, minimum value) with regards to the
examined variables for the complete subset of trips (122,275 trips),
while Table 3 depicts descriptive statistics for the examined vari-
ables for the months of COVID-19 in Greece (46,614 trips). It
should be also noted that the sample size for each variable in
Table 2 is N = 130, while for the examined variables for the months
of COVID-19, the sample size is denoted by n = 56 values.

5. Exploratory feature analysis with XGBoost

An initial exploration of feature importance as yielded by the
implementation of XGBoost methodology is conducted in this
section. All variables are positive continuous variables, and are

Table 1
Driving performance indicators along with their corresponding description (Source: OSeven, Data processing: NTUA).

Variables Unit Description

Average speed km/h Average speed during driving with stops excluded from the duration of the trip
Average total speed km/h Average speed during the total duration of the trip
Speeding km/h Average speed over the speed limit
Duration of speeding sec Total duration of speeding in a trip
Harsh accelerations/100 km – Number of harsh acceleration events per distance (100 km)
Harsh braking/100 km – Number of harsh braking events per distance (100 km)
Total distance km Total trip distance
Total duration sec Total trip duration
Driving duration sec Total duration of driving, i.e. duration of stops has been excluded
Risky hours driving km Distance driven during risky hours (00:00–05:00)
Duration of mobile phone use sec Total duration of mobile usage
GR-Total Cases – Total number of confirmed cases due to COVID-19 pandemic in Greece

Table 2
Descriptive statistics for the examined variables for the complete subset of trips in
Greece (from 01/01/2020 to 09/05/2020).

Variable Mean Standard
deviation

Maximum
value

Minimum
value

Average speed (km/h) 43.16 2.65 49.68 38.82
Speeding (km/h) 4.09 0.53 5.28 2.68
Harsh braking/100 km 13.07 1.91 20.33 7.06
Total trips 122,275
Sample size of each

variable (N)
130

Table 3
Descriptive statistics for the examined variables for the months of COVID-19 in
Greece (from 26/02/2020 to 09/05/2020).

Variable Mean Standard
deviation

Maximum
value

Minimum
value

Average speed (km/h) 44.34 2.68 49.68 38.82
Speeding (km/h) 4.17 0.61 5.28 2.68
Harsh braking/100 km 13.26 2.08 20.33 7.70
Total trips 46,614
Sample size of each

variable (n)
56
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therefore examined with a regression with squared loss function.
In order to calibrate the XGBoost tree ensemble, a uniform split
was applied in the described data: 75% was randomly designated
as the training subset, while the remaining 25% was randomly des-
ignated as the test subset. Furthermore, a number of hyperparam-
eters can be optimized for each XGBoost ensemble, such as
learning rate (eta), gamma, maximum tree depth, minimum child
weight, number of rounds and mean squared error. The selection
of the optimal values is conducted by examining large numbers
of hyperparameter combinations, as described by Bischl et al.
(2016); in this research, a grid search of 5000 hyperparameter
combinations was conducted for each analysis. All XGBoost analy-
ses were conducted in R-studio (R Core Team, 2019).

5.1. Average speed (km/h)

The examined range and obtained parameters from the
XGBoost tuning for average speed are provided in Table 4.

The predictive power was provided by the application of the
XGBoost tree ensemble on the test subset, and yielded
RMSE = 1.106 and MAPE = 0.024. The respective obtained feature
importance is provided in Table 5.

5.2. Speeding (km/h)

The examined range and obtained parameters from the
XGBoost tuning for speeding is provided in Table 6.

The predictive power was provided by the application of the
XGBoost tree ensemble on the test subset, and yielded
RMSE = 0.318 and MAPE = 0.062. The respective obtained feature
importance is provided in Table 7.

5.3. Harsh braking/100 km

The examined range and obtained parameters from the
XGBoost tuning for harsh braking/100 km is provided in Table 8.

The predictive power was provided by the application of the
XGBoost tree ensemble on the test subset, and yielded
RMSE = 1.279 and MAPE = 0.08. The respective obtained feature
importance is provided on Table 9.

In summary, the COVID-19-related parameter of total cases in
Greece seems to exert a considerable influence in allowing the pre-
diction of average speed, speeding, and harsh braking/100 km, as
expressed by the gain scores of each XGBoost tree ensemble. This
applies for the presence and enforcement of quarantine measures
for average speeding as well. It is apparent that the exposure vari-
ables of total trip distance and duration also affect all examined
quantities, and a small contribution is also provided by driving
during risky night-time hours.

6. Time-series modelling assessment

6.1. Model specification

Following the identification of the influence of COVID-19-
related parameters on driving behavior indicators, Seasonal
Autoregressive Integrated Moving Average (SARIMA) modelling
was followed to quantify the impact of the pandemic. The three
components (i.e., trend, seasonality, and residuals) for the time-
series of the considered indicators were analyzed. It was observed
that the seasonal component for all three indicators changed over
time, and similar patterns were observed for consecutive months.
However, later observations displayed greater difference. With
regards to average speed and speeding, there was an overall
increasing trend through the months, which means that there
was a significant rise in average speed and speeding during the
period of COVID-19 pandemic. Taking into consideration harsh
braking/100 km, a smaller seasonal trend was evident. With
regards to the non-seasonal trend, values reached a maximum dur-
ing mid-March, but started to decrease thereafter. Lastly, the con-
tribution of random noise was negligible for all the examined
variables.

Table 4
Examined and optimized hyperparameters for average speed XGBoost algorithms.

Hyperparameter Examined range Optimized Value

Learning rate 0.000–1.000 0.38
Gamma 0–100 4.17
Maximum tree depth 1–50 9
Minimum child weight 1–10 2
Number of rounds 1–1000 42
Mean Squared Error as low as possible 1.256

Table 6
Examined and optimized hyperparameters for speeding XGBoost algorithms.

Hyperparameter Examined range Optimized Value

Learning rate 0.000–1.000 0.06
Gamma 0–100 0.34
Maximum tree depth 1–50 2
Minimum child weight 1–10 4
Number of rounds 1–1000 250
Mean Squared Error as low as possible 0.177

Table 5
Feature importance of average speed XGBoost algorithms.

Feature Gain Cover Frequency

1 GR-Total Cases 0.574 0.306 0.308
2 Total distance 0.387 0.489 0.500
3 Trip duration 0.035 0.154 0.154
4 Risky hours 0.005 0.051 0.038

Table 7
Feature importance of speeding XGBoost algorithms.

Feature Gain Cover Frequency

1 Total distance 0.551 0.558 0.467
2 GR-Total Cases 0.212 0.224 0.228
3 Trip duration 0.130 0.142 0.152
4 Duration of mobile use 0.054 0.053 0.076
5 Quarantine 0.027 0.018 0.033
6 Risky hours 0.026 0.006 0.043

Table 8
Examined and optimized hyperparameters for harsh braking/100 km XGBoost
algorithms.

Hyperparameter Examined range Optimized Value

Learning rate 0.001–0.6 0.374
Gamma 0.001–10 1.37
Maximum tree depth 2–10 6
Minimum child weight 1–10 1
Number of rounds 1–250 242
Mean Squared Error as low as possible 0.018

Table 9
Feature importance of harsh braking/100 km XGBoost algorithms.

Feature Gain Cover Frequency

1 Duration 0.541 0.396 0.327
2 Totaldist 0.278 0.211 0.173
3 GRTotalCases 0.075 0.043 0.135
4 Risky_hours 0.058 0.206 0.192
5 Time_mobile_usage 0.049 0.144 0.173
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As described in the methodology, the next step in the time ser-
ies pipeline was to check for stationarity. For that purpose, the ADF
test was performed for the 1st difference (Yt-Yt-1) of average speed,
speeding, and harsh braking/100 km. In order to eliminate the sea-
sonal effect from the time series observations, a seasonal first dif-
ferencing was utilized for all considered time-series. The first
difference was used because all the original time series were not
stationary. Such a transformation also assisted to consolidate the
variance of a time series. Moreover, differencing can help stabilize
the mean of a time series by removing changes in the level of a
time series, and therefore eliminating, or reducing, trend and
seasonality.

Table 10 illustrates the ADF test for the original variables, while
Table 11 depicts the ADF test for the 1st difference of each variable.
In addition, Table 12 illustrates the Box-Ljung Test (white noise
check) for the examined variables, which was performed on the
1st difference of average speed, speeding and harsh
braking/100 km.

ACF and PACF plots for the 1st difference of driver behavior
indicators (i.e., average speed, speeding and harsh braking/100 km)
were performed that indicated the levels at which the autocorrela-
tion is significant and determined the order of the autoregressive
term. It was found that both ACF and PACF dropped to zero

relatively quickly. For all the candidate SARIMA models, p-values
of the autoregressive and seasonal autoregressive terms were
found to be less or equal to 0.05, which indicates their statistical
significance. Table 13 shows the final selected candidate models
along with their corresponding ARIMA terms. The specifications
of the best model per driving behavior indicator with regards to
AIC and BIC are also demonstrated.

Following the observation of the ACF and PACF plots, the best
models were obtained through the forecast package in R
(Hyndman et al., 2020), as described in Table 14. The number in
brackets (i.e. [7]) represents the exponential decay in weekly lags.
As described in section 3.2, the corresponding values for the best
SARIMA models denote the non-seasonal and seasonal autoregres-
sive order, differencing as well as moving average order,
respectively.

In order to further validate the models, their residuals were also
checked. As depicted in Fig. 2, the residuals appear to be randomly
scattered, and no evidence of the error terms being correlated with
each other exists. Consequently, the residuals or errors can be con-
ceived as independently and identically distributed (i.i.d.)
sequences with a constant variance and a zero mean. Therefore,
the developed SARIMA models appeared to be well-fitted and were
chosen to be used for prediction.

Table 15 illustrates the results of the estimated SARIMA models
for each of the three variables. With regards to the error terms of
RMSE and MAE, the values of RMSE were proven to be larger,
which means that all the errors are not of the same magnitude;
actually, the greater difference between them, the greater the vari-
ance in the individual errors.

Regarding RMSE, the best performance is observed for speeding
with 0.45, while the worst performance is observed using the aver-
age speed time series. Looking, however, at the MAPE indicator, it
is distinguishable that the speed time series resulted in the best
forecasting performance, with only 3.46% difference from the
observed measurements. This is further resembled in the MPE indi-
cator with speed having a 0.23% difference from the observed val-
ues. Lastly, with regards to the first-order autocorrelation
coefficient (ACF1), all three SARIMA models perform well, with
the speeding time series having the best performance. It should
be noted that as the autocorrelation function can provide the cor-
relation among different points separated by various time lags,
ACF1 is a measure of how much is the current value influenced
by the previous values in a time series.

Table 11
Augmented Dickey-Fuller Test for the 1st difference of each variable.

Augmented Dickey-Fuller Test

Variable Test statistics Lag order p-value

diff(Average speed) �8.94 5 0.01
diff(Speeding) �10.09 5 0.01
diff(Harsh braking/100 km) �8.39 5 0.01

Table 12
Box-Ljung Test for the 1st difference of each variable.

Box-Ljung Test

Variable X2 df p-value

diff(Average speed) 78.1 24 1.218e-07
diff(Speeding) 55.64 24 2.563 e-04
diff(Harsh braking/100 km) 44.75 24 6.22 e-03

Table 13
Summary of estimated candidate SARIMA models for the 1st difference of each variable.

Variable Candidate model Estimate Std. Error z value Pr(>|z|) AIC BIC

diff(Average speed) ma1 �0.95 0.13 �7.12 1.07e-12 *** 116.94 122.36
sma1 �0.74 0.36 �2.01 0.042 *

diff(Speeding) ar1 �0.60 0.12 �4.99 6.15e-07 *** 25.11 30.53
sar1 �0.49 0.14 �3.65 2.61e-04 ***

diff(Harsh braking/100 km) ma1 �0.45 0.13 �3.43 6.09e-04 *** 194.11 205.70
ma2 �0.34 0.14 �2.49 0.013 *
sar1 0.66 0.22 2.93 3.337e-03 **
sma1 �0.92 0.31 �2.95 3.174e-03 **
sma2 0.69 0.37 1.87 0.061 .

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

Table 14
SARIMA models for the 1st difference of each variable.

Variable SARIMA Model

diff(Average speed) (0,1,1)x(0,1,1)[7]
diff(Speeding) (1,1,0)x(1,1,0)[7]
diff(Harsh braking/100 km) (0,1,2)x(1,0,2)[7]

Table 10
Augmented Dickey-Fuller Test for the considered variables.

Augmented Dickey-Fuller Test

Original Test statistics Lag order p-value

Average speed �2.49 5 0.37
Speeding �3.59 5 0.04
Harsh braking/100 km �3.53 5 0.04
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6.2. Forecasting

After validating the performance of the developed model, focus
was given on the forecasting performance. The results of the mod-
els with regards to the COVID-19 lockdown period is described in
the following sections.

6.2.1. Average speed (km/h)
With regards to average speed, the forecasted values were

based on the (0,1,1)x(0,1,1) SARIMA model. It can be observed that
speed significantly increased over the COVID-19 lockdown with
large fluctuations, while in normal conditions speed would not
increase above 46 km/h. To further illustrate the effect of COVID-
19 lockdown on average speed, the differences between forecasted
and observed values, as well as the RMSE, MAPE and ACF1 were
estimated. Fig. 3 depicts the SARIMA model for average speed for
the prediction time along with the differences between average
speed observed and predicted values.

6.2.2. Speeding (km/h)
Concerning speeding, the forecasts were based on the (1,1,0)x

(1,1,0) best-fit SARIMA model. It is evident that speeding was fore-
casted to be increased during the months of March and April, but
actually demonstrated a downwards trend during the pandemic.
Regarding the difference between the observed and forecasted val-
ues, Fig. 4 illustrates that in the beginning of March and until the
beginning of April, the actual values for speeding were higher than
the potential normal forecasted values, while within April speeding
gradually decreased.

6.2.3. Harsh braking/100 km
It was found that observed values differ a lot from the forecasts.

In more detail, harsh braking/100 km was forecasted to have a fre-
quency of around 12 and 13 events/100 km, but observed values
are largely higher than the forecasts, reaching a maximum of 21
and minimum of 9 harsh braking/100 km. From Fig. 5, it is further
validated that during the COVID-19 pandemic, values for harsh
braking/100 km were much higher than the forecasted values.

6.2.4. Overall evaluation
In order to have an overall picture of the difference between

forecasted and observed values, the MAPE, RMSE, ACF1 errors as
well as the minimum and maximum and average of the three indi-
cators were obtained and are described in Table 16.

From Table 16, it can be observed that in terms of RMSE, speed
is performing worse than the rest of the three indicators, but better
in terms of MAPE. As a result, forecasts for speed tend to be more
accurate than forecasts for speeding and harsh braking/100 km.
With regards to the average difference between observed and fore-
casted values, similar to RMSE speed provided larger errors but this
is due to the fact that speed units (i.e. km/h) are larger than the
measurement units of speeding or harsh braking per distance.
Finally, observing the dates for minimum and maximum values
of forecasts, the minimum difference between observed and fore-
casted values was identified on the 3rd of May, the last day of
the lockdown, for speed and speeding, while the minimum differ-
ence for harsh braking/100 km was found on the 9th of March. In
addition, the maximum difference for the average speed and
speeding time series was observed on the 25th of March, a tradi-
tional Greek holiday (i.e., Greek Independence Day), and with
regards to harsh braking/100 km, the maximum difference was
identified in the 11th of April.

7. Discussion

This study aimed to quantify the effect of the COVID-19 pan-
demic on driving behavior by forecasting the evolution of time-

Fig. 2. Residual Plots for the 1st difference of each variable: (a) average speed, (b) speeding, (c) harsh braking/100 km.

Table 15
Performance metrics for the estimated SARIMA model on the test set.

Variable ME RMSE MAE MPE MAPE ACF1

diff(Average speed) 0.19 2.23 1.51 0.23 3.46 0.17
diff(Speeding) �0.05 0.45 0.31 �1.98 7.25 �0.01
diff(Harsh braking/100 km) �0.33 1.98 1.61 �5.60 15.04 0.34
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series data based on values before the pandemic and comparing
forecasts with actual values during the COVID-19 lockdown in
Greece. Initially, the importance of COVID-19 indications (e.g.,
cases, casualties, lockdown countermeasures) was investigated
using the feature importance extracted from XGBoost algorithms.
The number of total cases was one of the two most important fac-
tors for three out of the three examined indicators (i.e. speed,
speeding, and harsh braking/100 km). As a result, it can be derived

that the spread of the virus had a significant effect on driving
behavior. Total distance and trip duration were also among the
most influential factors for all examined indicators. This can be
explained by the significant decrease in trip duration and distance
driven during the lockdown phase as seen in Fig. 6.

The effect of the lockdown initiation was not found to have a
significant effect on driving behavior indicators, as was indicated
in section 5 of the current paper. This is probably explained by

Fig. 3. SARIMA model forecasts for average speed and Differences between observed and predicted average speed values.

Fig. 4. SARIMA model forecasts for speeding and differences between observed and predicted speeding values.
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the fact that Greek drivers did not change their behavior due to the
lockdown but rather because of the spread of the virus that led
them to minimize trips and car driving.

The authors recognize that there is no immediate causal con-
nection between total COVID-19 cases and/or quarantine presence
and road safety, in the form of an established road safety risk factor
or measure. The findings of the exploratory analysis through
XGBoost, however, suggest a correlational value of the parameter
of number of cases at least temporally. Therefore, they provided
additional incentive for the time-series modelling and examination

of trends that impact the three examined road safety indicators, as
the pandemic progresses.

Τhe effect of COVID-19 on driving behavior in terms of average
speed, speeding, harsh braking/100 km both during the COVID-19
pandemic and the time period before the first case of the disease
in Greece was quantified through seasonal time series modeling
approach. With regards to the forecasting of the ‘‘normal evolu-
tion” (i.e., the potential evolution if COVID-19 had not spread
and no lockdown measures were applied) it was observed that
the best model was obtained for average speed with only 3.46%

Fig. 5. SARIMA model for harsh brakings /100 km and differences between observed and predicted harsh braking values.

Table 16
MAPE, RMSE, ACF1, min, max, average difference for observed and forecasted values.

Variables MAPE RMSE ACF1 Minimum Difference (Date of occurrence) Maximum Difference (Date of occurrence) Average

Average speed 7.12 3.76 0.50 �5.30 (3/5/2020) 7.51 (25/3/2020) 2.27
Speeding 17.76 0.87 0.44 �2.72 (3/5/2020) 1.11 (25/3/2020) �0.22
Harsh brakings/100 km 12.27 2.51 0.43 �3.06 (9/3/2020) 8.37 (11/4/2020) 1.51

Fig. 6. Total duration and distance of trips during the COVID-19 period in Greece.
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of MAPE. In general, no large errors were observed with harsh
braking/100 km (i.e., the variable with the larger MAPE) being able
to forecast with 84.96% accuracy on the test dataset. Βy applying
the developed models on the validation dataset that described
the lockdown period in Greece and looking at the difference
between observed and forecasted values, the effect of COVID-19
could be evaluated for all three indicators.

With respect to average speed, it was revealed that the
observed values were higher than the forecasted ones, which
means that a significant increase in average speed was identified
during the COVID-19 lockdown. Τhe maximum difference (7.51)
between observed and predicted values of average speed was iden-
tified in 25/03/2020, during the lockdown period due to COVID-19,
which seems reasonable as the 25th of March is a public holiday.
Conversely, the minimum difference (-5.30) between actual and
forecasted values of average speed was found in 03/05/2020, a
day before the gradually lift restrictions in Greece, when drivers
started to restart their business activity and return to their daily
routines. On average, it was demonstrated that observed speeds
are 2.27 km/h higher than the forecasted ones, but as seen from
the maximum and minimum values a lot of variance existed. This
finding can be explained by the fact, that with emptier streets and
much lower volumes, average vehicle speed tends to be increased.
This finding can be supported by Inada et al. (2020) who indicated
that the empty roads possibly triggered speed-related violations
among drivers.

Speeding was forecasted to be increased during the months of
March and April; however, a downward trend during the pandemic
was demonstrated, but the models failed to predict it. Especially in
March, it was demonstrated that actual values for speeding were
higher than forecasted, while within April speeding gradually
decreased, with an overall average difference of 0.22 fewer events
between observed and predicted values. The demonstrated average
reduction is contradicting with the increase of speed that was
observed, but can be explained by the fact that the forecasting
model for speeding was the worst in terms of RMSE and MAPE.
As a result, the forecasting ability of the model cannot capture suc-
cessfully the evolution of speeding occurrence and results should
be interpreted with caution.

The forecasting results on harsh braking/100 km demonstrated
that if no lockdown was imposed, the average number of harsh
brakings/100 km would be lower for the majority of the lockdown
days. Increases of harsh braking/100 km with lower traffic and
higher speeds are compliant with recent research using similar
data (i.e., from smartphones), where it is stated that with higher
speeds more harsh braking events occur (Petraki et al., 2020).

Lastly, a more comprehensive picture of the effects of COVID-19
pandemic on road safety can be drawn from the high quality data
on total number of road crashes along with the corresponding
fatalities, severe and slight injuries. Table 17 illustrates the differ-
ence in the total number of road crashes and persons injured from
January to April 2020 in Greece. In particular, a 49% reduction in
the total number of road crashes was observed during March-
April 2020 (i.e., months of COVID-19) compared to January–Febru-
ary 2020 (i.e., when no COVID-19 case was reported in Greece).
Furthermore, during March–April 2020, the total number of fatali-
ties decreased by 53%, severe injuries were reduced by 39%, while

slight injuries were reduced by 53% compared to January–February
2020.

Despite the fact that provisional data for road crashes occurred
in 2020 (Hellenic Statistical Authority, 2021) showed that there
was a decrease in absolute numbers of crashes, fatalities, and inju-
ries, driving performance was found to be more careless and more
risky overall during the lockdown period. This finding can be sup-
ported by previous studies in which it was found that less vehicle
traffic volumes and empty roads led to higher speeds and harsh
events (Carter, 2020). Results from the current research are also
consistent with findings reported by Wagner et al. (2020), who
analyzed U.S. data from the second quarter of 2020 compared to
the first quarter. It was revealed that the total number of road
crashes and fatalities reported across states was reduced, while
drivers were more willing to take risks that included speeding,
driving while impaired, and not using their seat belts. These dri-
vers, along with a potential reduction in law enforcement and
safety messaging, were identified as possible factors that created
an environment favoring risky driving. The same finding was
recently reported by Brodeur et al. (2020) who used difference-
in-differences in order to evaluate the impact of Stay-at-Home
orders on road crashes for five states in the United States and a
50% reduction in road crashes was identified. However, some of
the conclusions delivered from Lin et al. (2020) were found to be
different compared to the present ones. In particular, the impact
of COVID-19 on road traffic safety in Los Angeles and New York
was examined. Results indicated that the pandemic has dispropor-
tionately affected certain age groups and that nonfatal road crashes
decreased, while the number of fatal crash cases remained the
same during the pandemic (Lin et al., 2020).

8. Conclusions

This paper presented an investigative approach to quantify the
impact of the COVID-19 pandemic on driving behavior using natu-
ralistic driving data obtained from smartphone sensors and time
series forecasting in Greece. The evaluation of the impact of
COVID-19 was based on the comparison between observed values
for three driving indicators (i.e., speed, speeding, and harsh brak-
ing) and forecasts based on the period before the coronavirus
spread. Methodologically, the influence of COVID-19 was initially
evaluated with explanatory XGBoost feature importance and was
primarily modelled using seasonal ARIMA models, which have
been a popular choice for transportation-related forecasting.

Results demonstrated the magnitude of the impact due to the
COVID-19 lockdown, as it was observed that the ‘‘natural evolu-
tion” of the three aforementioned indicators was forecasted with
major differences compared to the actual observations. Measure-
ments regarding speed were the ones demonstrating the larger dif-
ference. The most reliable forecasting model for speed
demonstrated that speeds increased by 2.27 km/h on average and
up to 7.5 km/h on a national holiday day during the lockdown. Fur-
thermore, the increase in speeds also assisted in manifesting an
increase in harsh braking/100 km, which is supported by recent lit-
erature. The number of road crashes and road traffic fatalities and
injuries decreased during the COVID-19 period (i.e., from March to

Table 17
Road crashes and persons injured from January to April 2020 in Greece (Hellenic Statistical Authority (2021)).

January February March April Change (March–April) – (January–February)

Road crashes 788 858 507 326 �49%
Fatalities 49 47 24 21 �53%
Severe injuries 46 31 26 21 �39%
Slightly injuries 909 965 545 332 �53%
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April 2020), compared to non-COVID-19 period (i.e., from January
to February 2020).

Nevertheless, this paper is not without shortcomings. The
developed models for speeding have limitations and do not seem
to capture the trend and seasonality of the original time series
effectively. More sophisticated models, such as deep neural net-
works (e.g., Convolutional Neural Networks (CNNs) or Long
Short-Term Memory Networks (LSTMs)) could have a better fit
on the time series data and provide better forecasts. Furthermore,
rates for harsh acceleration events per km were not found statisti-
cally significant in this work, but the aforementioned sophisticated
models could succeed in forecasting using these variables as well.

Future research should initially concentrate on comparing
COVID-19 driving indicators from different countries so as to com-
pare and contrast different effects. Furthermore, the development
of more sophisticated models (as those mentioned in the previous
paragraph), as well as multivariate forecasting models using Vector
AutoRegression (VAR) in order to capture the interdependencies
between time series should provide more insights on the impact
of COVID-19 on driving behavior. Finally, more driving behavior
indicator time series, such as the use of mobile phone during driv-
ing or aggressiveness levels, would also assist in quantifying the
effects of lockdown on driving.
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a b s t r a c t

Introduction: Long Term Care (LTC) facilities are fast-paced, demanding environments placing workers at
significant risk for injuries. Health and safety interventions to address hazards in LTC are challenging to
implement. The study assessed a participatory organizational change intervention implementation and
impacts.Methods: This was a mixed methods implementation study with a concurrent control, conducted
from 2017 to 2019 in four non-profit LTC facilities in Ontario, Canada. Study participants were managers
and frontline staff. Intervention sites implemented a participatory organizational change program, con-
trol sites distributed one-page health and safety pamphlets. Program impact data were collected via
Survey (self-efficacy, control over work, pain and general health) and observation (Quick Exposure
Checklist). Interviews/focus groups were used to collect program implementation data. Results:
Participants described program impacts (hazard controls through equipment purchase/modification,
practice changes, and education/training) and positive changes in culture, communication and collabora-
tion. There was a statistically significant difference in manager self-efficacy for musculoskeletal disorder
(MSD) hazards between the control and intervention sites over time but no other statistical differences
were found. Key program implementation challenges included LTC hazards, staff shortage/turnover,
safety culture, staff time to participate, and communication. Facilitators included frontline staff involve-
ment during implementation, management support, focusing on a single unit, training, and involving an
external program facilitator. Conclusion: A participatory program can have positive impacts on identifying
and reducing MSD hazards. Key to success is involving frontline staff in identifying hazards and creating
solutions and management encouragement on a unit working together. High turnover rates, staffing
shortages, and time constraints were barriers as they are for all organizational change efforts in LTC.
The implementation findings are likely applicable in any jurisdiction. Practical Application:
Implementing a participatory organizational change program to reduce MSD hazards is feasible in LTC
and can improve communication and aid in identification and control of hazards.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Long Term Care (LTC) facilities are fast-paced and demanding
environments placing workers at significant risk for
occupational-related injuries. In 2018, the Ontario healthcare sec-
tor had the third highest lost-time injury rate – overall as well as
for sprains and strains (the category that captures musculoskeletal
disorders (MSD)) (Workplace Safety & Insurance Board (WSIB),
2019). LTC healthcare support staff, such as personal support
workers, dietary staff, nurses, and environmental workers, repre-
sent workers at high risk for occupational injuries. Personal sup-

port workers constitute a significant component of the LTC labor
force and are the backbone of the LTC sector (Blair & Glaister,
2005; Canadian Research Network for Care in the Community
(CRNCC), 2010). Healthcare support staff comprise approximately
70% of LTC sector employees. Personal support workers complete
approximately 90% of all resident care provided (Zhang et al.,
2011). The two primary hazards for LTC employees are slips, trips,
and falls hazards and ergonomic hazards.

Health and safety interventions to address hazards in LTC are
challenging to implement due to high staff turnover levels and
the nature of the work with residents (Armstrong & Daly, 2004;
Boakye-Dankwa, Teeple, Gore, & Punnett, 2017; Garg & Owen,
1992; Holmberg et al., 2013; Kurowski, Gore, Buchholz, &
Punnett, 2012; Owen, Keene, & Olson, 2002). To date, hazard

https://doi.org/10.1016/j.jsr.2021.05.002
0022-4375/� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Institute for Work & Health, 481 University Ave, Suite
800, Toronto, ON M5G 2E9 Canada.

E-mail address: dvaneerd@iwh.on.ca (D. Van Eerd).

Journal of Safety Research 78 (2021) 9–18

Contents lists available at ScienceDirect

Journal of Safety Research

journal homepage: www.elsevier .com/locate / jsr

http://crossmark.crossref.org/dialog/?doi=10.1016/j.jsr.2021.05.002&domain=pdf
https://doi.org/10.1016/j.jsr.2021.05.002
mailto:dvaneerd@iwh.on.ca
https://doi.org/10.1016/j.jsr.2021.05.002
http://www.sciencedirect.com/science/journal/00224375
http://www.elsevier.com/locate/jsr


reduction interventions have yielded limited evidence of effective-
ness (Kamioka et al., 2011; Kennedy et al., 2010; Wahlstrom,
Ostman, & Leijon, 2012). Without well-designed and properly
implemented hazard reduction programs, workplace safety haz-
ards will continue to negatively affect workers and ultimately, res-
ident safety.

Recent studies examining the implementation and effectiveness
of participatory organizational interventions have shown some
promise (Carayon et al., 2006; Framke, Sorensen, Pedersen, &
Rugulies, 2018; Jakobsen, Aust, Kines, Madeleine, & Andersen,
2019; Kotejoshyer, Zhang, Flum, Fleishman, & Punnett, 2019;
Rasmussen, Holtermann, Bay, Sogaard, & Birk Jorgensen, 2015;
Schelvis et al., 2017; Van Eerd et al., 2018). Participatory programs
can improve workplace conditions through participation, commu-
nication, and group problem solving (Carayon et al., 2006; Hignett,
Wilson, & Morris, 2005; Rasmussen, Holtermann, Mortensen,
Sogaard, & Jorgensen, 2013; Rasmussen, Larsen, Holtermann,
Sogaard, & Jorgensen, 2014; van Eerd et al., 2010; Wilson &
Haines, 1997). Kotejoshyer et al. (2019) and Jakobsen et al.
(2019) have recently shown positive impacts of participatory orga-
nizational interventions in busy healthcare settings. Kotejoshyer
et al. (2019) showed positive impacts on staff awareness and par-
ticipation, and communication in the intervention sites even
though there was little change in desired organizational outcomes.
Jakobsen et al. (2019) implemented a participatory organizational
intervention to increase the use of assistive devices in patient
transfer and found an increase in communication and general
use of assistive devices. However, the effectiveness of participatory
programs has not been consistently established (Haukka et al.,
2008; Pehkonen et al., 2009; Rivilis et al., 2008). Mixed effective-
ness findings may be related to the implementation process (Cole
et al., 2009; Driessen, Proper, Anema, Bongers, & van der Beek,
2010; van Eerd et al., 2010; Wells, Laing, & Cole, 2009). Inconsis-
tent findings on the effectiveness of participatory programs in
reducing occupational hazards requires a research focus on the
implementation process.

The study objective was to follow the implementation of a par-
ticipatory organizational change intervention and assess the pro-
gram implementation effects on important intermediate
outcomes. A mixed methods approach was chosen to minimize
LTC worker burden and allow detailed data collection on participa-
tory change program implementation. In this study, we used
Meyers et al. (2012) Quality Implementation Tool (QIT) as a frame-
work for assessing program implementation.

2. Methods

2.1. Study design

This was a mixed methods study of the implementation of a
participatory organizational change intervention in non-profit
LTC facilities with a control group comparison. Quantitative and
qualitative data were collected regarding program impacts and
qualitative data were collected about the program implementation
process.

2.2. Participatory organizational change intervention

The Employees Participating in Change (EPIC) program was
developed to address occupational hazards in healthcare settings
with a relatively mature health and safety infrastructure, including
a well-functioning internal responsibility system, to ensure that
organizations are ready to support a change process. In Canadian
jurisdictions, an internal responsibility system is a consistent
underlying philosophy of occupational health and safety (OHS) leg-

islation whereby both employers and employees work together to
ensure workplace health and safety. EPIC program implementation
involves five steps: (1) selection of a program champion to lead
implementation activities and act as the main liaison between pro-
gram committees and external program facilitators; (2) formation
of a participatory steering committee (includes site administrators,
departmental supervisors, a joint health and safety chairperson,
HR, and union representatives) that supports implementation suc-
cess ensuring key organizational performance metrics are
achieved; (3) formation of a participatory change team (composed
mainly of frontline staff) responsible for hazard identification, risk
assessment, and hazard control activities; (4) provision of training,
mentoring, and coaching from program facilitators; and, (5) the
LTC facility further develops the OHS management system to build
accountability for change and to support change processes. EPIC
was implemented in two intervention sites, with implementation
steps guided by a trained facilitator and safety consultant who
was one of the program developers. The facilitator conducted a
pre-implementation site review to ensure the sites were able to
implement the program. The facilitator provided all the training
and facilitated team meetings at the onset of implementation,
mentored both the steering committee and the change team, grad-
ually decreasing involvement over six months, and then became
available as needed for consultation for the remainder of program
implementation (approximately another six months). The overall
goal was to implement a sustainable program.

2.3. Control site intervention

The control site intervention was chosen to be more broadly
focused on OHS without participatory engagement. The control
intervention was designed to: (1) help improve participation rates
in the control groups by providing a nominal intervention and
encourage leadership engagement, and (2) allow a comparison
between similar facilities receiving OHS interventions over time.
The concurrent comparison group allowed us to better attribute
any changes observed in the intervention to EPIC and not secular
trends.

The two control sites received one-page OHS information pam-
phlets at approximately Time 1 (denoted as C1 in Fig. 1) for distri-
bution: (1) managers, supervisors, and joint health and safety
committee (JHSC) team members received Empowerment and
Self-Protection: Occupational Health and Safety for Workers, Health
and Safety Management Systems and Caught in the Middle: The
Supervisor and Occupational Health and Safety at the start of the
EPIC program; (2) all staff received Hazards in Health Care Work-
places at approximately Time 1 (C1); (3) all staff received Occupa-
tional Health and Safety is Everyone’s Business at approximately
Time 2 (C2); and (4) all staff received An Introduction to the Joint
Health and Safety Committee at approximately Time 3 (C3). The tim-
ing of the control intervention (informational pamphlets) delivery
was chosen to coincide with key program implementation time
points at the intervention sites. Once all Time 3 data collection
was completed the remaining study time was for data analysis
and interpretation. The study began in June 2017 and ended in June
2019. See Fig. 1 for a timeline of the study implementation and
data collection.

2.4. Sample

Four non-profit LTC facilities in Ontario were recruited to par-
ticipate. Intervention and control facilities were matched on
municipality, facility age, and client composition. Intervention
and control sites were not randomly chosen but volunteered,
which was necessary to ensure willingness to implement the inter-
vention program. EPIC program participants at each intervention
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facility were decided upon through a voluntary and participatory
approach. Program champions and site leaders were asked to be
part of the EPIC program steering committee. The steering commit-
tee with support of the facilitator then selected the target area for
program implementation and sought relevant volunteer frontline
staff to participate as change team members. These two groups
(steering committee and change team) were each to be composed
of 9–12 members who participated in program team meetings, as
well as research interviews, focus groups, and self-report surveys.
Members of the existing JHSC of the participating sites were
approached or volunteered to be members of the steering commit-
tee or change team. A JHSC is an advisory body that helps to stim-
ulate or raise awareness of health and safety issues in the
workplace, including recognizing and identifying workplace risks
and developing recommendations. In Ontario, a JHSC is to be com-
posed of worker and employer representatives and must be in
place in all workplaces with greater than 20 employees.

The intervention sites chose to focus on one unit of the facility
and include all staff (from different departments) that work on the
target unit. Study participants were managers and frontline staff
recruited from steering committee members, change team mem-
bers, and a random selection of all frontline staff from the partici-
pating unit (using site staff lists) not involved in either the
committee or team. Additional frontline staff from the unit were
recruited to replace those who were not available at data collection
time points. Our goal was to recruit 30 participants from each
intervention site (10 steering committee members, 10 change
team members and 10 frontline staff) and control site.

At control sites we randomly selected a similar number of man-
agers and frontline staff from matching units/departments so that
the intervention and control participant groups would be matched
by position/department. To be eligible for study participation, staff
had to work at least 30 hours a week and be able to complete a
self-report survey in English (Grade 6 reading level). The partici-
pants from each site were followed over time, and invited to par-
ticipate in self-report surveys, observations, and at the
intervention sites, interviews, and focus groups.

Project research staff met with EPIC team members at their first
meeting, provided them with the study details, and asked them to
read and sign an informed consent. The randomly selected staff
were asked to attend a meeting where the study details were
described. Consent forms were read and signed prior to data collec-
tion. If a potential study participant declined to participate,
another staff member was randomly selected to ensure the project
started with the same number of consenting participants at each
facility.

2.5. Data collection

Data were collected using three different methods: (1) self-
administered questionnaires; (2) staff observations; (3) interviews
and focus groups. The questionnaires and observations concerned

program impacts and the interviews and focus groups addressed
the program implementation process (Pinnock et al., 2017).

2.5.1. Program impacts
Self-Administered Questionnaire: A self-report surveywas admin-

istered at baseline pre-intervention (Time 1 – pre-implementation),
6 months (Time 2 – mid-point of implementation), and 12 months
(Time 3 – end of implementation). There were separate question-
naires for managers and frontline staff, containing the same ques-
tions but directed to managers or workers. All questionnaires were
at agrade six reading level orbelow.Thequestionnaire took less than
10 minutes to complete and was administered to the steering com-
mittee and change team members (who completed them during
meetings), and directly to the frontline staff participants at each
facility. All survey participants received small incentives (typically
coffeeandsnacksprovidedatmeetingsor in thebreak room).All sur-
veys were completed on paper.

Self-Efficacy: Based on an existing measure by Greene, DeJoy,
and Olejnik (2005), this 7-item scale assesses self-efficacy in iden-
tifying MSD hazards and managing workplace changes in individ-
uals regarding MSD prevention in the LTC workplace. This scale
had high internal consistency (alphas > 0.8) in pilot work. Scores
from 1-7 were summed for all answered items and divided by
the number of items to create a scale score varying between 1
(not confident at all) and 7 (highly confident). Mean scale scores
were used for all comparisons.

Pain in past week: A single visual analog scale item indicating
level of pain in the past week on a 0 (no pain) to 10 (worst pain
ever) scale. Higher scores indicate higher pain.

Control over work: We asked participants how much say they
had in what they do at work and how much freedom they had in
how they do their work. Each of these was a single item scored
from 0-3. Item scores were used for all comparisons.

General health: In addition, we asked participants to rate their
general health (on a 5-point scale), which we expected to remain
stable (on average) in both groups over approximately a 12-
month period. Mean scores were used from all comparison.

2.5.1.1. Staff observations. The Quick Exposure Check (QEC) (David,
Woods, Li, & Buckle, 2008) tool was used to quantify the postural
hazards at the LTC sites. The QEC covers a variety of physical risk
factors including posture, load, frequency of movement, and vibra-
tion for four main body regions (back, neck, shoulder/arm, wrist/
hand). The tool also captures psychosocial risk factors (e.g., work
stress, pace of work) by consulting with workers during the obser-
vation. A higher QEC score indicates greater risk. The observers (TD
and EMF) were trained in using the QEC by the lead author. Train-
ing consisted of using the QEC to evaluate mock-up workplace sce-
narios. Observers’ QEC responses were compared to the lead
author’s and each other; differences were discussed until consen-
sus was achieved. The QEC has good validity and reasonable relia-
bility for an observational tool (David et al., 2008).

Fig. 1. Study timeline showing intervention and data collection.
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2.5.2. Program implementation
2.5.2.1. Interviews/focus groups. Interviews were used to evaluate
EPIC program implementation. At each intervention site, members
of the steering committee (program champion, JHSC committee
worker representatives, participating department supervisors,
facility administrators), and change team members (program co-
champion, workers from the participating department) were
invited to participate in interviews at three time-points (Time 1
– pre-implementation, Time 2 – mid-point of implementation,
and Time 3 – end of implementation). As well, frontline staff
who did not participant in the EPIC program implementation, were
recruited to participate in interviews to gain a broader unit per-
spective. Interviews were conducted either in-person or over the
phone. A semi-structured interview guide was followed. Interview
questions were based on Meyers et al.’s (2012) QIT framework
focusing on the structural and supportive aspects of the implemen-
tation including facilitators and barriers, and program satisfaction.

Two focus groups were conducted at one intervention site: one
for managers and one for frontline staff. Separate groups were
done to ensure that frontline staff would be able to speak openly
without the presence of supervisors and managers. These focus
groups were done in place of Time 3 interviews for this site due
to a delay in program implementation (caused by factors unrelated
to the intervention program or study protocol).

The interviews and focus groups explored participants’ experi-
ences regarding EPIC program activities and achievements. Partic-
ipants were asked how the participatory program was
implemented and what they felt they accomplished regarding haz-
ard identification and reduction.

Ethics approval was obtained from the University of Toronto
Research Ethics Board.

2.6. Data analysis

Survey data were analyzed descriptively as well as with an
exploratory approach using regression models with robust covari-
ance estimators to correct for the dependence between repeated
observations at the three time points. Within and between (inter-
vention and control) group differences were examined for self-
efficacy, control over what and how work activities are performed,
pain, and general health. We hypothesized: self-efficacy would
improve over time in the intervention group and remain stable
in the control group; pain levels would decrease over time in the
intervention group and remain stable in the control group; and
control over how work is done and what work activities are done

would increase in the intervention group and remain stable in
the control group. We did not expect to see a change in the general
health measure across time in either group since the third mea-
surement is immediately at the end of program implementation.
Intervention and control group characteristics were analyzed
descriptively. In the regression models, we examined the interac-
tion between study arm (control vs. intervention) and time (Time
1(baseline), Time 2, Time 3). Separate analyses were conducted
for managers and frontline staff. Statistical significance was
assessed at the p < 0.05 level with 95% confidence limits. The
observational outcomes were QEC scores (David et al., 2008). The
QEC scores are based on combinations of risk factors (posture,
weight, and duration) identified by the observer for each body
area. These scores represent the potential relationship between
the increased level of exposure and potential health outcomes.
Summed scores range from 4 to 56 (with higher scores indicating
higher risk) depending on the body area and risk factors observed
(David et al., 2008). We examined within group differences and
also between (intervention and control) group differences to see
if postural hazards changed over time and between groups. All data
were analyzed using Statistical Analysis Software (SAS�) V9.3.

Interviews and focus groups were transcribed and de-identified.
Interview transcripts were coded using conceptual categories
derived from the Meyers et al. (2012) implementation framework
adapted for OHS program implementation. The analysis of inter-
views was iterative and reflexive. Additional codes were developed
for new concepts and emergent themes. Interview coding was
done independently by two coders using a coding guide until the
coding guide no longer changed. Subsequent coding was com-
pleted by a first coder and checked by a second. Coding was
focused on the barriers and facilitators to implementation. Data
reduction and display were guided by methods described by
Miles and Huberman (1994) and Saldana (2015).

3. Results

There were 132 participants with 65 participating from the con-
trol sites and 67 participating from the intervention sites. A partic-
ipation rate is not calculable as the managers and frontline staff on
the steering committees and change teams were recruited by the
workplace. A description of the study participants is provided in
Table 1. There are managers and frontline workers from multiple
departments who were study participants as both intervention
sites chose to implement EPIC to address MSD hazards in a single
unit and include all departments that work on the unit.

Table 1
Participant characteristics.

Control sites Intervention sites

Facility Size Site C1: 150 beds
Site C2: 160 beds

Site I1: 300 beds
Site I2: 270 beds

Number of participants 65 67
Staff type Managers: 17

Frontline: 48
Managers: 19
Frontline: 48

Employment status (Full time or Part time/Casual)* Full time: 53
Part time/Casual: 12

Full time: 47
Part time/Casual: 16

Shift worked** (Day/afternoons/nights) Days: 41
Afternoons/evenings: 6
Nights: 0
Combination: 22

Days: 29
Afternoons/evenings: 6
Nights: 0
Combination: 23

Departments represented (%) Personal support workers: 15
Nursing (RNs/RPNs): 15
Dietary, maintenance, housekeeping and recreation: 17
Management: 18

Personal support workers: 22
Nursing (RNs/RPNs): 12
Dietary, maintenance, housekeeping and recreation: 16
Management: 17

*there were missing responses in the intervention site surveys.
**multiple responses could be selected therefore will not add up to total.
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3.1. Program impacts

3.1.1. Self-report survey
Survey results for frontline staff revealed no significant group

by time interactions (see Table 2). There is little change over time
for the intervention group in any of the measures for frontline staff.

Survey results for managerial staff revealed a significant group
by time interactions for self-efficacy (Chi-square 6.04, p = 0.049;
see Table 3). Control group self-efficacy scores did not increase
over time whereas for the intervention group, self-efficacy scores

increase over time. Regression analysis revealed no significant
group by time interactions for all other measures (p values ranged
from 0.12 to 0.75).

3.1.2. Observations
There is no statistically significant interaction effect (group by

time) for any QEC measure (p values ranged from 0.23 to 0.85).
However, three of the six measures (back (motion), shoulder/
arm, wrist/hand) favored the intervention sites (see Fig. 2).

Table 2
Survey results for frontline staff participants.

Variable
mean (standard deviation)
n

Control group Intervention group P-value**

T1
N = 43

T2
N = 42

T3
N = 24

T1
N = 39

T2
N = 42

T3
N = 21

Group by
Time

Self-efficacy 4.90 (1.1)
n = 43

5.15 (0.9)n = 38 4.83 (1.3)n = 24 4.50 (1.2)
n = 39

4.67 (1.2)
n = 40

4.61 (1.3)
n = 21

0.8461

Control over what activities are done 2.47 (0.7)
n = 43

2.39 (0.7)
n = 38

2.33 (0.7)
n = 24

2.13 (0.7)
n = 38

2.18 (0.8)
n = 40

1.81 (0.8)
n = 21

0.6973

Control over how activities
performed

2.14 (0.7)
n = 43

2.11 (0.7)
n = 38

2.29 (0.6)
n = 24

1.92 (0.6)
n = 37

1.98 (0.7)
n = 40

2.14 (0.7)
n = 21

0.7179

Pain 3.86 (2.7)
n = 42

3.95 (2.8)
n = 37

4.32 (2.7)
n = 22

3.29 (2.3)
n = 35

4.08 (2.6)
n = 40

4.40 (2.6)
n = 20

0.6010

General health 4.08 (0.7)
n = 39

4.00 (0.7)
n = 37

4.08 (0.7)
n = 24

3.95 (0.7)
n = 37

3.92 (0.9)
n = 39

4.05 (0.6)
n = 20

0.5134

Table 3
Survey results table – for managers.

Variable
mean (standard deviation)
n

Control group Intervention group P-value**

T1
N = 14

T2
N = 16

T3
N = 12

T1
N = 18

T2
N = 19

T3
N = 13

Group by Time

Self-efficacy 5.18 (1.0)
n = 14

5.47 (1.0)
n = 16

4.97 (0.9)
n = 12

4.77 (1.1)n = 18 5.15 (1.0)
n = 19

5.49 (1.0)
n = 13

0.0488

Control over what activities are done 2.71 (0.5)
n = 14

2.31 (0.7)
n = 16

2.67 (0.5)
n = 12

2.69 (0.5)
n = 16

2.61 (0.5)
n = 18

2.77 (0.4)
n = 13

0.1158

Control over how activities
performed

2.71 (0.6)
n = 14

2.31 (1.0)
n = 16

2.50 (0.7)
n = 12

2.69 (0.5)
n = 16

2.78 (0.4)
n = 18

2.54 (0.5)
n = 13

0.1528

Pain 1.93 (2.4)
n = 14

2.50 (1.9)
n = 14

2.42 (2.2)
n = 12

4.25 (2.8)
n = 16

4.00 (3.1)
n = 18

3.23 (1.7)
n = 13

0.3420

General health 3.93 (1.1)
n = 14

3.94 (0.9)
n = 14

4.08 (0.5)
n = 12

3.81 (0.9)
n = 16

4.06 (0.6)
n = 18

4.31 (0.6)
n = 13

0.7461

Fig. 2. QEC scores by site. (Max scores: Back (motion) = 56; Back (static) = 40; Shoulder/Arm = 56; Wrist/Hand = 46; Stress = 16; Work Pace = 9).
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3.1.3. Interview/focus group: hazard changes implemented
Participants were asked to describe any changes as a result of

EPIC program implementation. They reported the EPIC program
implementation resulted in positive workplace changes. The
implementation in both intervention sites targeted a single unit
in the facility. Therefore, any solutions implemented on the unit
could have originated in the housekeeping, maintenance, dietary,
nursing, or recreation departments. Participants from both sites
indicated that pushing, pulling, and lifting hazards were of con-
cern. Consequently, many changes described were related to
reducing hazards from pulling, pushing, or lifting. These included
acquiring new (or modifying existing) equipment such as carts.
There were descriptions of new carts to move laundry to and from
laundry facilities. The new linen carts used on the unit were lighter
and easier to pull. The new carts and bins for dirty laundry had a
lower edge to reduce lifting of loads above shoulder level. Partici-
pants also mentioned newmedication carts that were easier to pull
with lower shelves to reduce reaching and improve visibility when
moving through the hallways. There were also changes noted for
garbage carts, which included acquiring an electric cart to pull
the garbage bins outside of the facility. Large garbage bins were
acquired that would fit under the existing garbage chutes, ensuring
that the garbage was not spilled, which would require additional
lifting and clean up. These large bins were dump-able to reduce
forces when emptying in outdoor bins.

Additional changes were implemented to reduce push and pull
forces such as adding wheels to large dining tables so they could be
moved more easily for recreation activities that require space. Par-
ticipants also reported reconfiguration of spaces and equipment
including changing laundry and storage room layouts to reduce
lifting and carrying of loads. One site described changes to decrease
the distance between carts and shelves for linens to reduce lifting
and carrying (or tossing) of heavy linens. These changes also
reduced twisting motions with heavy loads. Shelving units were
reorganized to reduce lifting of loads above the shoulder level.
Higher shelves were used to store equipment that was not used
frequently. At one site, the height of the dryers was adjusted to
reduce bending to lift loads. In the dining area, one site added fau-
cets to the steam tables to eliminate the need to fill them with
buckets of water.

In addition to equipment purchase, modification, or reorganiz-
ing the workspace, there were education initiatives for proper lift-
ing techniques implemented. The education was provided by on-
site physiotherapy staff thereby reducing costs. The increased
training opportunities for proper lifting techniques occurred on
different days and different shifts to cover most staff. Participants
reported that there was an increased awareness of proper lifting
techniques. The education/training programs were not imple-
mented in isolation but accompanied new/modified equipment
and practice changes. Practice changes included stacking chairs
to lower heights to reduce lifting above the shoulder, providing
keys to the elevator for recreation staff to reserve an elevator so
that there was less rush to get clients to their unit/floor. This
helped resolve an issue of recreation staff pushing/pulling more
than one client at a time as the rush to reach the elevator was
resolved. Staff were also trained on how to tie garbage bags. Both
laundry and garbage staff were asked not to fill the bags to full
capacity (or overfilled!). Interviewees reported these two changes
resulted in lower loads and less spills. A practice change related to
volunteer scheduling was implemented to have more volunteers
available when there was a need to move larger numbers of clients.

More broadly, implementing EPIC increased staff communica-
tion and collaboration. Participants consistently remarked there
was increased MSD hazards communication within health and
safety committee meetings and communication of solutions with
staff. It was noted that MSD hazards were more consistently on

the health and safety committee agenda and that there was
engagement with staff to determine where changes could be made
to reduce MSD hazards. Additionally, interviewees indicated there
was increased awareness of near-misses and hazardous condition
reporting. Often respondents noted that this led to more proactive
hazard identification and solution suggestions.

3.2. Program implementation

3.2.1. Implementation facilitators and barriers themes
3.2.1.1. Theme: LTC sector-specific challenges. Respondents
described some challenges that they felt were specific to LTC. The pri-
mary OHS challenges noted by both frontline and managerial staff
concerned pushing, pulling, and lifting activities. These activities
could involve various types of carts (laundry, food, garbage, tools)
or the movement of clients in wheelchairs. Pushing and pulling
activities were often linked with MSD experiences. Key aspects of
the challenges of pushing and pulling were a shortage of staff (re-
lated to number of clients) and long distances between locations.
The shortage of staff meant that individuals would often try to
move more than they should in a given timeframe.

Quote: ‘‘I have too much persons who are hard to move and it’s
affecting me as a worker, . . . when you break [your body] in the
next 5 years it’s whatever, it’s your body, we can’t afford to get
more staff on the floor,” Frontline FG

Related to staff shortage, LTC staff consistently described staff
turnover and absences as a common concern. Staff turnover and
absence challenges were noted for day to day workload and was
also a concern for implementing OHS programs such as EPIC.
Absences from committee meetings and having new staff come
to the team were considered somewhat disruptive and tended to
slow the implementation progress. The concern about staff
changes were consistent over time as one manager noted about
sustaining the participatory program was at times challenged by
a recent administrator change.

Quote: ‘‘we’ve had so many changes I can’t even keep track, we
just got a new administrator who has just started and [Um
hmm] we have a new assistant administrator, everybody here
is brand new, so we haven’t had, we’ve had so much on our
plates, . . .” Manager 10909

Respondents’ concerns about safety and worker health most
often concerned MSDs. They often referred to MSD hazards related
to force and posture. In addition, some staff raised concerns about
stress levels and overarching concerns about resident safety over
staff safety.

Quote: ‘‘Certainly from the perspective [of] resident care equip-
ment and moving to a better product, a more reliable product,
. . . I mean if you are talking about pushing or moving shower
chairs and that, a better quality that makes it easier to transport
a resident.” Frontline 10201

Some staff also raised issues regarding culture and staff dynam-
ics. Frontline staff often felt that management did not listen to or
respond to the issues frontline staff brought forward, which was
considered to be a longstanding problem. Another issue all staff
noted was related to a lack of engagement and uptake of practice
or equipment changes from frontline staff. Here, respondents
noted a culture of resistance to change, even though many felt
the changes were likely to be beneficial.

Quote: ‘‘for frontline workers, I have too much persons who are
hard to move and it’s affecting me as a worker, and I need more
staff, what I will get back if I speak out is, we don’t have it in our
budget so basically you are telling me, when you break up your-
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self in the next 5 years it’s your body, we can’t afford to get
more staff on the floor, so it’s going to deaf ears” Frontline FG.

3.2.1.2. Theme: implementation barriers/facilitators. Respondents
were asked specifically about the barriers and facilitators related
to EPIC implementation. Early in EPIC program implementation
(Time 1) all staff noted that a major barrier was devoting time to
the program and meetings. Getting people to meetings was a chal-
lenge. This issue seemed to be related to staff workload issues
and staff turnover. In later stages of implementation (Time 2 and
Time 3) the challenges were linked to issues of communication.
One aspect of communication was between team members and
staff to keep everyone ‘‘in the loop’ about proposed changes as well
as their role in the changes. Another aspect of communication
mentioned at Time 3 was managerial staff felt that there could
have been better communication about expectations about their
role throughout the implementation process. However, staff and
administrator turnover was a key element in the perceived lack
of communication about roles. At Time 3 there was still some men-
tion of time challenges, but this was related more to how to sustain
the program than about working on solutions or changes on the
unit.

Quote: ‘‘I think just resources, just making sure that people are
available is the biggest thing” MGR 22109

Implementation facilitators were mentioned mostly in Time 2
and Time 3. The main facilitators mentioned were related to having
frontline staff involvement throughout the program implementa-
tion. Managerial staff felt that the frontline staff were empowered
by being involved in EPIC from the beginning.

Quote: ‘‘The frontline, having the frontline staff engaged from
the beginning yeah. Yeah, that was a big help because they kind
of held together even when our team was falling apart, when
we had so many changes happening and leadership changes,
. . . it was really trying for us as the leadership team, but they
were the core people so they were still there and still engaged.”
Manager FG

Another facilitator was the addition of the EPIC process as a
standing agenda item on the monthly OHS meetings. The inclusion
of the participatory program in standing procedures was consis-
tently noted in the later stages of implementation. This was con-
sidered important for continuity and to ensure that the process
of hazard identification and control was sustained in the
organization.

3.2.1.3. Theme: Organizational level barriers/facilitators. Overall,
respondents felt that there was good support from upper manage-
ment for the EPIC program. Managerial staff noted that they were
involved and trying to be responsive as the program was being
implemented. Some managers noted they were initially concerned
about the types of recommendations they might get from staff but
in later stages noted that the changes suggested were not overly
costly. Those that noted less support from management often
pointed out that the steering committee and change team struc-
ture of EPIC allowed for changes to be proposed even when upper
management support was not considered strong. There was no
indication of change over time with respect to management sup-
port during EPIC implementation. It was perceived as present at
the beginning of implementation and consistent throughout.

Quote: ‘‘I understand what the staff are going through, I under-
stand what’s happening in this building and I really see the
need, the need for change and I think this is an excellent way
for me to go forward to advocate for those things that are out-

side of the scope of the staff other than to recommend and we
require some assistance at a divisional level . . . because I think
there are some things that we can do that can impact change,
but I think there’s some very realistic things that staff have
identified that would, would require a, a higher level of, of
involvement to ensure that they can have a safe effective work-
ing environment.” Manager FG

Both intervention sites chose to implement EPIC in a single unit
and include staff from all departments that work on the unit.
Therefore, the participatory approach involved problem solving
among different groups of workers. Both sites felt this was better
than focusing on a single department. Throughout the implemen-
tation process comments about the focus unit reflected the oppor-
tunity to have frontline staff from different departments work
together to solve MSD hazards. Managerial and frontline staff
remarked that they saw improved communication and less ‘silos.’

Quote: ‘‘so by getting everybody to give input hopefully people
are also going to give support to each other throughout it and
there will be less of people working in silos, like, this is my
job, I do this.” Manager 10,809

3.2.1.4. Theme: Benefit of a participatory process for organizational
improvement. The main benefit of a participatory approach noted
by both managerial and frontline staff was the opportunity for
frontline staff to engage and describe hazards as well as discuss
potential solution ideas. Many reported that the increased staff
engagement and the opportunity for increased communication
both to managers, as well as among frontline staff, was particularly
beneficial. Over time, participants noted that the increased com-
munication translated to action and changes being made in their
work areas. Frontline staff felt encouraged to bring their sugges-
tions forward. Team meetings were considered positive spaces to
address concerns. Managers noted that opportunities for ‘‘continu-
ous feedback” were very helpful when trying out potential solu-
tions such as new equipment or procedures.

Quote: ‘‘I just like the fact that you know, we, we felt like we
were being heard. That was you know, the, the biggest thing.”
Frontline staff 21701

The MSD training provided as part of EPIC implementation was
considered a facilitator when it was received. Prior to program
implementation, individuals on EPIC teams (both managers and
frontline staff) reported getting training from the program facilita-
tor. Frontline staff often reported not having much prior MSD
training, or noted that the training they received prior to EPIC
was recently moved online, which they felt was not as effective.
At later stages in implementation (Time 2 and Time 3), frontline
staff noted having some interaction with the EPIC facilitator related
to training for hazard identification and solutions. Those that
received training from the EPIC facilitator found it to be quite use-
ful. Those that reported not receiving any training or getting only
online training were somewhat frustrated.

Quote: [EPIC Facilitator] has been very good in explaining all of
that kind of stuff and what we could be looking at, . . ., in our
meetings he has brought forward a lot of examples and um,
what we should be looking for”. Frontline staff 23049

It was clear that the EPIC facilitatorwas a valued part of the EPIC
program implementation. All staff noted that he provided impor-
tant training that was required and helpful throughout program
implementation. Participants also noted that he provided impor-
tant guidance about the implementation process (steps) and con-
sistently pointed out the importance of frontline staff
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involvement and engagement. At later stages of implementation,
he was also able to provide specific information about MSD hazard
identification and control when requested.

Quote: ‘‘I think having [the EPIC facilitator] as a resource was,
was really, really helpful I, I mean I, I would call him up and
I’d say do you have any information about this information or
I am having a hard time with this and, and he was, he was great,
he was fantastic like he, he was very key to the success of that
program.” Manager 22209

4. Discussion

The results from this mixed-methods implementation study
suggest that an organizational change intervention such as EPIC
can be successfully implemented in busy LTC facilities. We exam-
ined program impacts on important outcomes related to MSD haz-
ard identification and control as well as program implementation.
Regarding program impacts, our results suggest that the EPIC pro-
gram had a positive impact on managers’ self-efficacy regarding
MSD hazards and a reported impact on MSD hazards. The increase
in operational leadership confidence to address MSD hazards is
important for program implementation but also for program
impact and sustainability. However, we did not find that the pro-
gram impacted other outcomes related to pain, control over work,
general health, or observed postural hazards. It is not surprising
that we observed few program impacts based on survey outcomes.
The study was not well-powered, nor was the study long enough in
duration to allow the EPIC program to develop hazard controls that
could affect many outcomes (Abildgaard et al., 2019; Driessen
et al., 2010; Gupta et al., 2018; Rasmussen et al., 2017).

Important barriers to consider for program implementation
include LTC specific factors related to staff shortages and turnover,
high levels of MSD hazards, and a non-supportive safety culture.
Challenges related specifically to implementing a participatory
intervention were securing sufficient staff time to be involved
and ensuring there is a good level of communication about the
intervention and role expectations for all staff involved. Similar
challenges have been reported in the literature (Andersen &
Zebis, 2014; Driessen et al., 2010; Murta, Sanderson, &
Oldenburg, 2007; Rasmussen et al., 2017; van Eerd et al., 2010).
An important facilitator to implementing a participatory approach
is early frontline staff involvement. Early involvement helps to
maintain engagement throughout the implementation process.
Organizational factors important for a successful implementation
process include: managerial support, incorporating good training
as a starting point to implementation, and having a program facil-
itator and/or champion involved. These findings are consistent
with other research that has evaluated participatory approaches
(Abildgaard et al., 2019; Haines & Wilson, 1998; Haines, Wilson,
Vink, & Koningsveld, 2002; Hignett et al., 2005; Rasmussen et al.,
2015; van Beurden, Vermeulen, Anema, & van der Beek, 2012;
van Eerd et al., 2010).

Staff experiences highlighted the participatory program was
implemented as planned. Staff interviewees expressed satisfaction
with the program and implementation process. Study participants
noted that there was increased awareness and communication
about MSD hazards and a change in safety culture. Previous studies
have also noted worker and management satisfaction with the
implementation of participatory approaches even when there have
been few statistically significant changes in health or symptom
outcomes (Abildgaard et al., 2019; Gupta et al., 2018). Though
beyond our focus on implementation, we note that study respon-

dents felt reducing MSD hazards and working more safely would
have a positive impact on the quality of care in LTC sites. More
research is required to explore the link between employee health
and quality of care in LTC.

Further research is necessary to determine the effectiveness of
participatory interventions. Our research shows that the choice
of outcomes is paramount. The typical outcomes of lost-time
claims and pain or symptoms may not be appropriate. Measures
of engagement, hazard controls, communication, and culture may
be more important to consider in the controlled trials since health
changes may take longer to observe. In order for changes to occur
in MSD symptom and lost-time claim outcomes, participatory pro-
grams must be sustained in workplaces. Longer duration studies
with well implemented participatory interventions (programs)
are necessary to understand overall effectiveness and contribute
new knowledge to the scientific evidence. Proper implementation
of programs and practices in real world settings is key for work
and health research. The continued research of poorly imple-
mented interventions does a disservice to work and health
research and to improving workplace health and safety.

5. Strengths and limitations

The strengths of the study include: using a mixed methods
design to collect and analyze multiple and rich sources of data
on the implementation process, evaluating program implementa-
tion using an established implementation framework, and incorpo-
rating a concurrent comparison group, providing more confidence
that program implementation impacts are actually due to the
intervention. A process evaluation paper is being prepared describ-
ing the implementation framework and process outcomes in more
detail.

Our primary limitation is a relatively small sample size decreas-
ing the ability to detect program impacts quantitatively. It also pre-
vents us from accounting for the nesting of individuals in
workplaces, which may have increased the risk of a Type 1 error.
However, we purposely restricted the sample size to ensure that
we could collect good quality data but keep the burden on partic-
ipants and sites low. We developed and tested data collection pro-
cedures in pilot work to ensure we collected good data with low
burden. We also collected little information about study partici-
pant characteristics. This was done to reduce the burden on study
participants and participating sites given busy schedules and chal-
lenging work. In busy workplaces, researchers must keep surveys
short and conducting interviews and observations are key to col-
lecting important data, even though it is more expensive and
resource intensive for researchers. The relatively short follow-up
time in this study also limits our ability to robustly evaluate pro-
gram impacts. However, we chose outcomes that we considered
could change during the study period, based on a previous study
(Van Eerd et al., 2018). Overall, the proposed study resulted in rich
data to increase our understanding about implementation.

Importantly the implementation of a participatory approach
was possible in busy workplaces with staff shortage and turnover
challenges. This suggests that a participatory program could be
implemented in other jurisdictions. In addition, subsequent to
implementation, the intervention sites began to incorporate key
participatory elements of the EPIC program into their general
health and safety procedures, suggesting that the participatory
approach may be sustained. Key program impact variables such
as those we included should be explored further in larger, longer
duration, controlled studies specifically designed to assess inter-
vention effectiveness and sustainability.
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6. Conclusion

Our results suggest that participatory approaches to reduce
MSD hazards can be implemented in LTC environments. Further-
more, the results provide some evidence that the programs can
have positive impacts on staff communication as well as identify-
ing and reducing MSD hazards. Our results also suggest that a par-
ticipatory approach such as EPIC can have a positive impact on
managers’ self-efficacy for MSD hazards. In addition, our results
regarding program implementation show that key barriers include
staff shortage/turnover, staff time to participate, and communica-
tion issues. Key implementation facilitators include frontline staff
involvement/engagement, support from management, MSD train-
ing, and involving an external program facilitator. The results of
this research regarding facilitators and barriers to implementation
will allow future research to achieve better implementation and
therefore provide better evidence of effectiveness.

7. Practical applications

Implementing a participatory organizational change program to
reduce MSD hazards is feasible for LTC workplaces. A participatory
program can improve communication and aid in the identification
and control of a variety of MSD hazards. Importantly this type of
program can be implemented in busy caregiving environments
regardless of common challenges such as staff shortage/turnover.
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a b s t r a c t

Problem: The rollover crash is a serious crash type that often causes higher injury severities. Moreover,
factors that contribute to the injury severities of rollover crashes may show instabilities in different vehi-
cle types and time periods, which requires further investigations. This study utilizes the rollover crash
data in North Carolina from Highway Safety Information System (HSIS) to study the effect instabilities
of factors in vehicle type and time periods in rollover crashes. Methods: The injury severities of drivers
are estimated using the random parameters logit (RPL) model with heterogeneity in means and vari-
ances. Available factors in HSIS have been categorized into three groups, which are drivers, road, and
environment, respectively. This study also justifies the segmentations through transferability tests. The
effects of identified significant factors are evaluated using marginal effects. Results: Factors such as
FWP (farm, wood, and pasture areas), unhealthy physical condition, impaired physical condition, road
adverse, and so forth have shown instabilities in marginal effects among vehicle types and time periods.
Practical Applications: The finding of this research could provide important references for policy makers
and automobile manufactures to help mitigate the injury severity of rollover crashes.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Rollover crashes are dangerous incidents that often result in
higher fatalities. Based on 2009–2018 public crash records (Fatality
Analysis Report System and Crash Report Sampling System) from
the National Highway Traffic Safety Administration (NHTSA),
motor-vehicle rollover crashes are more likely to cause injuries
and even fatal injuries of drivers compared to non-rollover crashes,
as shown in Fig. 1. On average, the fatality rate for rollover crashes
and non-rollover crashes are 0.036 and 0.004, respectively, indicat-
ing that rollover crashes are more likely to incur severe injuries. In
rollover crashes, the injury severities may also vary among differ-
ent vehicle types and time periods. In the traffic safety facts report
(NHTSA, 2016), it was stated that, from 1982 to 2016, 22–24% pas-
senger car rollover crashes involve fatalities, while the percentages
for SUVs and pickups are 41–68%. As for the different time periods,

it was found that the fatal passenger car rollover crashes had been
decreasing, while the fatal light truck (SUV, vans and pickup
trucks) rollover crashes were increasing from 1996 to 2000
(Deutermann, 2002).

The identification of significant factors influencing injury sever-
ities and their associated impact magnitudes can help policymak-
ers develop effective guidelines to reduce the severity and
frequency of accidents. Although much effort has been made in
investigating rollover crashes in the areas of single vehicle
(Anarkooli et al., 2017), gender (Wu et al., 2016), and large truck
(Khattak et al., 2003; Azimi et al., 2020), to the best knowledge
of the authors, research on the injury severity analysis of light
truck rollover crashes are limited. Further, the temporal stability/
instability in the effects of contributing factors has not been taken
into account in the rollover crashes by considering passenger cars
and light trucks separately. As larger vehicles become more popu-
lar in the Unites States, the safety concerns for SUVs, pickups, and
minivans deserve more attention. An exploration of impacts of the
environment, vehicle, and drivers’ characteristics on the rollover
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crashes will deliver safety insights for all stakeholders, such as gov-
ernmental entities, vehicle manufacturers, and drivers.

Hence, this study aims to explore the potential influencing fac-
tors that could exert a significant impact on the drivers’ injury
severity in the rollover crashes considering two time periods of
crash records. Also, to further explore effects of factors of different
vehicle types, two types of vehicles are defined for comparison in
this research, that is, passenger car and light truck (minivans,
SUV and pickup).

2. Literature review

The following literature review section consists of two parts
that can help illustrate the significance of this research: (a) existing
studies on rollover crashes; and (b) studies on random parameter
logit model with heterogeneity in means and variances.

Much effort has been put into investigating rollover crashes,
with topics ranging from SUV, large trucks, severe rollover crashes,
passenger vehicle, and single vehicles. This indicates the necessity
of considering impacts of certain vehicle types during the investi-
gation of rollover crashes. They are summarized and ordered by
time in Table 1. Important information including authors, years
of publication, models, topics, and their associated findings are
presented.

Based on the literature review, although there are some rollover
crash studies that considered vehicle types (such as large trucks,
passenger vehicles, pickups, and SUVs), a systematic comparison
has not been fully explored for different vehicle types. Recently,
numerous crash studies have demonstrated temporal instabilities
of contributing factors in vehicle crashes (Mannering, 2018;
Behnood & Mannering, 2019; Al-Bdairi et al., 2020; Yu et al.,
2020; Li & Fan, 2020). Additionally, existing studies on rollover
crashes have also proved the necessity of investigating rollover
crashes with the segmentation of vehicle types (Islam et al.,
2016). Nevertheless, previous rollover crash studies mainly uti-
lized the RPL model, which has proven to be less effective com-
pared to RPL with heterogeneity in means and variances.
Overestimation or underestimation for effects of certain significant
parameters may occur. Hence, by utilizing the RPL model with
heterogeneity in means and variances, this research attempts to
study the rollover crashes with a combined consideration of tem-
poral instabilities and different vehicle types to provide more
insight on rollover crash analysis.

The RPL model is a major advancement of the discrete choice
model because of its ability to account for unobserved heterogene-
ity by allowing parameters to vary across observations. The RPL
model with heterogeneity with means and variances differs from
the RPL model in that it allows for different means and variances
in the parameter distribution. Such extensions for the RPL model
are statistically superior to the RPL-only model, as proven in other
studies (Mannering, 2018; Al-Bdairi et al., 2020; Li & Fan, 2020;
Islam & Mannering, 2020). By applying the RPL model with hetero-
geneity in means and variances, the heterogeneity in factor effects
can be captured in greater detail compared to the RPL-only model.
In the case of rollover crashes, previous work with the RPL-only
model may have overestimated or underestimated the effects of
certain factors toward injury severities without accounting for
heterogeneity in means and variances. This research aims to
employ the RPL model with heterogeneity in means and variances
to explore injury severity of rollover crashes by considering poten-
tial instabilities and stabilities of contributing factors in different
vehicle types and time periods.

3. Data descriptions

This study uses the crash records of North Carolina from 2008 to
2017, with 10 years in total. The crash records are retrieved from
the Highway Safety Information System (HSIS), which is a database
that contains the crash data as well as the relevant environment
characteristics across several states, including California, Illinois,
Maine, Michigan, Minnesota, North Carolina, Ohio, Utah, and
Washington. To guarantee the data sufficiency for measuring the
model performance, two periods are defined, one being 2008–
2012 and the other being 2013–2017. To explore possible hetero-
geneity effects between vehicle types, segmentation on light trucks
and passenger vehicles are also implemented. Therefore, both seg-
mentations result in four subgroups of data in total (passenger car
in 2008–2012, light trucks in 2008–2012, passenger car in 2013–
2017, light trucks in 2013–2017). The available crash attributes
in the dataset are classified into three categories (driver, road,
and environmental characteristics). After removing records with-
out necessary information listed in Table 2, a total number of
18,476 observations are extracted. The property damage only
(PDO) is selected as the base reference. Due to the relatively small
sample size of fatal injury and incapacitating injury, they have

Fig. 1. Injury severity proportions for non-rollover crashes (left) and rollover crashes (right) from 2009 to 2018 based on crash records provided by NHTSA.
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combind as severe injury (SI). Evident injury and possible injury
have also been combined as minor injury (MI).

4. Methodology

This study uses the RPL model with heterogeneity in means and
variances to model the injury severities of drivers of rollover
crashes for different time periods and vehicle types (i.e., passenger
car in 2008–2012, light truck in 2008–2012, passenger car in
2013–2017, and light truck in 2013–2017). The injury severity
function of the model is a linear function, which has two compo-
nents that capture the observed variable and the unobserved fac-
tor, respectively, as shown in Equation (1).

U ¼ bXþ e ð1Þ
where U represents the utility, b is the vector of parameters to be
estimated for the observed variable vector X, e collectively stands
for the unobserved factors, which is represented by a certain type
of distribution. For a closed-form of choice probability, the distribu-
tion of e is assumed to follow a Gumbel distribution. The resulting
closed-form expression for the choice probability for individual n
given alternative j is shown in Eq. (2).

Pn;j ¼ eUnjP
je

Unj
ð2Þ

where Unj represents the utility for individual n given an alternative
choice (or injury severity level) j. In the multinomial logit model, b
is assumed to be a fixed constant for all observations. However, this
assumption might not be valid since individuals have different sen-
sitivity towards the variables. For example, in the injury severity
analysis, the impact of the dark roadway with light is different for
individuals with various visionary capabilities. This assumption is
released in the RPL model by allowing the coefficients to follow a
random distribution described by a set of parameters h (usually
means and variances). Eq. (3) provides a form of the RPL model.

Pn;j ¼
Z

eUnjP
je

Unj
f ðbjhÞdb ð3Þ

The distribution of b can be normal, lognormal, or triangular
distribution. Many studies have demonstrated that valid results
can be obtained if b is assumed to follow a normal distribution
(Li & Fan, 2020; Liu & Fan, 2020). Instead of fixing the means and

variances in the RPL model, the RPL model accounting for hetero-
geneity in means and variances allows different distribution for
means and variances. The resulting form of such model is shown
as below according to Greene et al. (2006) and Seraneeprakarn
et al. (2017):

bn;j ¼ bþ dn;jzn;j þ rn;jexpðxn;jwn;jÞmn;j ð4Þ
where b represents the mean parameter estimated across all obser-
vations, dn;j denotes the vector of estimated parameters for zn;j ,
which is a vector of attributes describing the heterogeneity in the
mean for injury severity level j.rn;j is standard deviation estimated
across all observations, xn;j means the vector of the estimated
parameters forwn;j , which is a vector of attributes capturing hetero-
geneity in standard deviation. If no heterogeneity has been found in
the standard deviation, then the model would fall into an RPL model
with heterogeneity in means. Further, if no heterogeneity in means
is found, then the model will collapse into an RPL model. Finally, the
RPL model can collapse into a multinomial logit model if no random
parameter is found among identified significant parameters. The
models for each segmentation have been estimated by using the
maximum likelihoodmethod. The selection of the number of Halton
draws is not a definite decision and a higher number of Halton
draws does not necessarily produce better fitting performances.
The number of Halton draws can range from 100 to 1,000 (Train,
2009; Bhat, 2003; Gong & Fan, 2017). According to the literature,
500 Halton draws are popularly applied for their efficiencies
(Moore et al., 2011; Liu & Fan, 2020). Therefore, in this research,
500 Halton draws are used to estimate the models.

5. Transferability test

In this research, separated models are developed for different
vehicle types and time range. However, it needs to be answered
whether these separated models are significantly different from
each other or a unified model is sufficient for identified segmenta-
tions. A transferability test can be used to test the significance of
separated models. First, to test whether the developed models
regarding time periods and vehicle types are significantly different,
Eq. (5) is applied. The test statistic X2 is assumed to follow a v2

distribution.

X2 ¼ �2 LL bs2;s1

� �� LL bs1ð Þ� � ð5Þ

Table 1
Existing studies in Rollover Crashes.

Authors Year Model Topics Findings

Khattak and Rocha 2003 negative binomial
model

SUV rollover crashes curvatures and dangerous driving behavior can directly increase injury severity

Khattak et al 2003 binary logit model Large truck rollover crashes dangerous driving behavior, truck exposure, hazardous materials and post-
crash fires can increase the risk of higher injuries

Conroy et al. 2006 binary logit model Serious rollover crashes intrusion at the occupant’s position, the vehicle interior side and roof are
identified as sources of injury

Keall and
Newstead

2009 logit regression
analysis

Passenger vehicle rollover
crashes

teenager drivers, older vehicles are highly risky factor for rollover crashes

Hu and Donnell 2011 multinomial logit
model

Cross-median and rollover
crashes on rural divided
highways

median cross-slopes and narrower medians were more likely to cause severer
injury

Islam et al. 2016 RPL model SUV and pickup rollover
crashes

horizontal curve and intersection are random parameter in the SUV rollover
crashes while horizontal curve and dry roadway surfaces are random parameter
in pickup rollover crashes

Wu et al. 2016 RPL model Single vehicle rollover
crashes

female drivers are more likely to suffer severe or fatal injuries in rollover
crashes than male drivers.

Anarkooli et al 2017 random effect
generalized ordered
probit model

Single vehicle rollover
crashes

REGOP model is found to outperform the RPL model, significant factor toward
injury severity were identified

Azimi et al. 2020 random parameter
ordered logit model

Large truck rollover crashes Impacts of lighting conditions and driving speed had significant variation across
observations
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where LL bs2;s1

� �
denotes the log-likelihood of the converged model

for the data of segmentation s1, using the estimated parameters
from data of segmentation s2, LL bs1ð Þ represents the log-likelihood
of the converged model for the data of segmentation s1 using the

estimated parameter from the data segmentation s1. The degree
of freedom is the number of parameters. The reverse procedure is
also conducted, in which the segmentation s2 and s1 are replaced
with each other. The test statistic results are summarized in Table 3

Table 2
Descriptive Statistics for the Rollover Crashes.

Severe Injury Minor Injury Property Damage
Only

Total
(Incapacitating/Fatal
Injury)

(Evident/Possible
Injury)

Overall Data Segmentation
Passenger

Vehicles
2008–2012 96 1913 1645 3654
2012–2017 102 1718 1606 3426

Light Trucks 2008–2012 239 2884 2642 5765
2012–2017 195 2645 2791 5631

Driver Attributes
Age young (if the age of the driver is less than 25) 209 3877 3764 7850

middle age (if the age of driver is between 25–50) * 303 3937 3688 7928
old (if the age of the driver is greater than 50 years) 120 1346 1232 2698

Gender Male 439 5318 5974 11,731
female* 193 3842 2710 6745

Physical
Condition

normal* 349 6947 7508 14,804
unhealthy physical condition (illness, fatigue, fell asleep, loss of
consciousness)

24 492 272 788

impaired physical condition (impairment due to medications,
drugs or alcohol)

259 1721 904 2884

Road Attributes
Traffic control no control* 208 3198 2850 6256

sign control (stop, yield, warning) 12 167 215 394
signal control (stop and go signal, flashing signal) 1 55 77 133
double yellow line 411 5740 5542 11,693

Speed limits 30 mph (speed limit less than or equal to 30 mph) * 2 64 88 154
30–50 mph (speed limit between 30 mph to 50 mph) 105 1670 1809 3584
�50 mph (speed limit great than 50 mph)

Road
configuration

straight level* 208 3471 3290 6969
adverse straight road (bottom, grade, crest) 61 1024 1161 2246
curve level 237 2649 2324 5210
curve-adverse (hillcrest, grade or bottom) 126 2016 1909 4051

Road condition dry* 568 7116 5781 13,465
road adverse (wet, watery, icy, snowy, sandy, mudy, dirty, or
graveled)

64 2044 2903 5011

Road type Undivided 528 7630 7421 15,579
two-way divided* 104 1530 1263 2897

The number of
lanes

1–2 lanes* 526 7556 7309 15,391
3–4 lanes 94 1312 1066 2472
More than 4 lanes 12 292 309 613

Road class rural arterial 113 1426 1363 2902
rural collector 184 2807 2555 5546
rural local 212 2574 2440 5226
urban arterial 68 1300 1251 2619
urban collector 26 453 437 916
urban local* 29 600 638 1267

Environment Attributes
Region Rural 615 8778 8300 17,693

urban* 17 382 384 783
Weather clear* 507 6464 5526 12,497

Snow 6 256 554 816
Cloudy 87 1549 1558 3194
Rain 29 812 972 1813
fog, smog, smoke 3 79 74 156

Light daylight* 309 5224 5029 10,562
dusk and dawn 23 350 383 756
dark lighted road 9 126 117 252
dark no lighted road 291 3460 3155 6906

Workzone Workzone 5 78 59 142
no workzone* 627 9082 8625 18,334

Terrain flat* 184 2210 1964 4358
Rolling 375 5692 5015 11,082
Mountain 73 1258 1705 3036

Development FWP (farm, woods, pasture) 508 7280 6741 14,529
residential* 99 1477 1465 3041
Commercial 22 363 445 830
Institutional 3 40 33 76

Intersection Intersection 22 332 452 806
Non intersection* 610 8828 8232 17,670

*Indicate the base reference.
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(numbers in brackets show the confidence level to reject the null
hypothesis, while numbers in parenthesis indicate the degree of
freedom). The overall results demonstrate the necessity of segmen-
tation based on time periods and vehicle types since only 1 out of
12 tests cannot be rejected at a 95% confidence level.

Additionally, the sum of the log-likelihood values from all sub-
segmentation is less than the log-likelihood values of the model for
the overall dataset (�14,386 vs. �14,414), indicating better fitting
performance with segmentation. A further test is conducted to
examine the market segmentation efficiency based on vehicle
types and time periods. The test statistics also follow the X2 distri-
bution. The degrees of freedom can be obtained as the total num-
ber of parameters from all sub segmentations, minus the number
of parameters from the model for the overall dataset. The equation
obtaining X2 is shown below:

X2 ¼ �2 LL boverallð Þ � LL bs1ð Þ � LL bs2ð Þ � LL bs3ð Þ � LL bs4ð Þ½ � ð6Þ
where LL boverallð Þ denotes the log-likelihood of the best model esti-
mated for the overall dataset, LL bs1ð Þ-LL bs4ð Þ represents the four
identified segmentations in this research (i.e., passenger vehicles
in 2008–2012 and 2013–2017, light trucks in 2008–2012 and
2013–2017). The calculated X2 equals 56.78 with a degree of
freedom being 45. This indicates an acceptable confidence level
(89%) to reject the null hypotheses that the model results are trans-
ferable across all segmentations.

6. Results and discussions

In this section, the model results are discussed. The factors that
are found to be significant at the 95% level in the MNL model are
kept for the analysis of random parameters accounting for poten-
tial heterogeneity in means and variances. To fully capture the
heterogeneity effects, this study retains the factors that are signif-
icant at the 90% level, while exploring potential heterogeneity in
means and variances. Despite models for each sub dataset, an
RPL model accounting for potential heterogeneity in the means
has also been estimated for the overall dataset. The model results
are presented in Appendix Tables A1–A5 and marginal effects are
summarized in Tables 4–8. Heterogeneity in means and variances
is found for passenger vehicle rollover crashes in 2012–2017;
while heterogeneity in the means is found in light truck rollover
crashes in 2012–2017, as well as for the whole dataset. However,
the heterogeneity effect in means is not found in the other two seg-
mentation. The following section analyzes the impacts of each sig-
nificant factor using marginal effects in terms of driver, road, and
environmental attributes. To provide an intuitive comparison
between the RPL model and RPL model with heterogeneity in
means and variances, the RPL model results are also presented,
which can provide detailed information on how the effects of sig-
nificant parameters vary from RPL model to RPL with heterogene-
ity in means and variances.

6.1. Driver attributes

6.1.1. Effect of impaired physical condition
Impaired physical condition has been identified as a significant

contributing factor toward severe injury in all segmentations. For
vehicle types, it can be observed that the magnitudes of the mar-
ginal effects are larger for passenger vehicles compared to light
trucks in 2008–2012. Nevertheless, in 2013–2017, the effects of
this factor on light trucks are greater, indicating instability in the
effect of the factor between different vehicle types and over time.
When examining the temporal instability, impaired physical con-
dition is exerting more effect for light truck rollover crashes in
2013–2017 than it did in 2008–2012. In contrast, this effect is less-
ened for passenger car rollover crashes in 2013–2017. Light truck
drivers may need immediate attention from the policy and
decision-makers in order to mitigate such malignant effects.

In terms of model structure, RPL model with heterogeneity in
means shows that such impact may be exaggerated by the RPL only
model for the passenger car in 2013–2017 (0.0135 in RPL vs.
0.0125 in RPL with heterogeneity in means). In the RPL model with
heterogeneity in means and variances for passenger car rollover
crashes in 2013–2017, the mitigatory effect of this factor on the
minor injury is reduced slightly from 0.0023 to 0.0018 (Fig. 2).

6.1.2. Effect of unhealthy physical condition
Overall, the unhealthy physical condition has a more significant

impact on the minor injury in all sub segmentations except for the
passenger car in 2013–2017, in which unhealthy physical condi-
tion contributes to severe injury instead of minor injury with less
extent. To more extent, the unhealthy physical condition has a
greater impact on light truck rollover crashes compared to passen-
ger car rollover crashes in terms of minor injury. This is reasonable
as light truck drivers practice more heavy driving tasks during
longer driving time, and hence unhealthy physical conditions of
light truck drivers might lead to minor injury with higher chances.

As for the model structure, by accounting for potential hetero-
geneity in means, the magnitude of impact on the minor injury is
significantly higher in the model of light truck rollover crashes in
2013–2017. This implies that one might underestimate the impact
of unhealthy physical conditions by referring to the RPL only
model. Other than that, no other notable difference is identified
between the RPL model with heterogeneity in means and RPL
model with heterogeneity in means and variances (Fig. 3).

6.1.3. Effect of male gender
The factor of the male gender has a negative impact on minor

injury and a positive impact on PDO. Such impacts are most signif-
icant in 2013–2017 light truck rollover crashes. Also, it can be
observed that the effect of the male gender is more obvious in
the light truck rollover crashes compared to passenger car rollover
crashes. Understandably, light trucks attract more male drivers and
therefore this impact is amplified in the light rollover crashes. For

Table 3
v2 value for transferability test.

Parameter

Data PC 2008–2012 PC 2012–2017 LT 2008–2012 LT 2012–2017

PC 2008–2012 (18) – 131.68
[99.99%]

79.61
[99.99%]

191.02
[99.99%]

PC 2012–2017 (17) 102.77
[99.99%]

– 180.02
[99.99%]

194.32
[99.99%]

LT 2008–2012 (18) 153.74 [99.99%] 138.42
[99.99%]

– 233.05
[99.99%]

LT 2012–2017 (20) 84.25
[99.99%]

103.29
[99.99%]

23.16
[64.2%]

–
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Table 6
Marginal effects of significant factors in the model of Passenger Car Rollover Crashes in 2013–2017.

Variable RPL RPL with heterogeneity in
means

RPL with heterogeneity in
means and variances

SI MI PDO SI MI PDO SI MI PDO

Driver Attributes
impaired physical condition (1 if the driver is under the influence

of medication, drugs, or alcohol; 0 otherwise)
0.0135 �0.0022 �0.0113 0.0125 �0.0023 �0.0102 0.0125 �0.0018 �0.0108

male (1 if the gender of the driver is male; 0 otherwise 0.003 �0.0457 0.0427 0.0018 �0.0264 0.0246 0.0014 �0.021 0.0196
unhealthy physical condition (1 illness, fatigue, fell asleep, loss of

consciousness: 0 otherwise)
0.0018 �0.0004 �0.0015 0.0018 �0.0004 �0.0015 0.0019 �0.0003 �0.0016

Road Attributes
undivided Road (1 if the road is undivided; 0 otherwise 0.0017 �0.0269 0.0251 0.0013 �0.0238 0.0225 0.0012 �0.0214 0.0202
road-adverse (1 if the road is wet, watery, icy, snowy, sandy,

muddy, dirty, or graveled; 0 otherwise)
�0.0022 �0.0197 0.0219 �0.0021 �0.0184 0.0206 �0.0021 �0.0167 0.0188

Environment Attributes
cloudy (1 if the weather is cloudy; 0 otherwise) �0.0005 0.0102 �0.0097 �0.0005 0.0102 �0.0097 �0.0005 0.0094 �0.0089
rolling (1 if the terrain is rolling; 0 otherwise) �0.0011 0.0169 �0.0158 �0.0014 0.0247 �0.0233 �0.0012 0.0219 �0.0207
FWP (1 if the development type if farm, woods, or pastures; 0

otherwise)
�0.0052 0.0876 �0.0824 �0.007 0.1133 �0.1063 �0.0038 0.0619 �0.0581

mountain (1 if the terrain is mountain; 0 otherwise) �0.0021 0.0004 0.0016 �0.002 0.0003 0.0017 �0.002 0.0003 0.0017

Table 4
Marginal effects of significant factors in the model of Passenger Car Rollover Crashes in 2008–2012.

Variables RPL Model

SI MI PDO

Driver Attributes
young (1 if the driver is younger than 25; 0 otherwise) �0.0057 0.0033 0.0024
impaired physical condition (1 if the driver is under the influence of medication, drugs or alcohol; 0 otherwise) 0.0198 0.0129 �0.0327
male (1 if the gender of the driver is male; 0 otherwise 0.0034 �0.0658 0.0624
unhealthy physical condition (1 if the driver is under the condition of illness, fatigue, fell asleep, loss of consciousness: 0 otherwise) �0.0001 0.005 �0.0049

Road Attributes
curve level road (1 if the road is curve and level; 0 otherwise) 0.0155 0.0046 �0.0201
road-adverse (1 if the road is wet, watery, icy, snowy, sandy, muddy, dirty, or graveled; 0 otherwise) 0.0035 �0.0136 0.0102
3–4 lanes (1 if the road has 3–4 lanes; 0 otherwise) �0.0003 0.0076 �0.0074
rural collector road (1 if the road is rural collector; 0 otherwise) �0.0008 0.0164 �0.0156
rural local road (1 if the road is rural local; 0 otherwise) �0.0007 0.0142 �0.0135
curve-adverse (1 if road is curve and also hillcrest, grade or bottom) �0.0005 0.0118 �0.0113

Environment Attributes
mountain (1 if the terrain is mountain; 0 otherwise) 0.0005 �0.0124 0.0119

Table 5
Marginal effects of significant factors in the model of Light Truck Rollover Crashes in 2008–2012.

Variables RPL Model

SI MI PDO

Driver Attributes
male (1 if the gender of the driver is male; 0 otherwise �0.0043 �0.0788 0.0831
impaired physical condition (1 if the driver is under the influence of medication, drugs, or alcohol; 0 otherwise) 0.0183 �0.009 �0.0093
unhealthy physical condition (1 if the driver is under the condition of illness, fatigue, fell asleep, loss of consciousness: 0 otherwise) �0.0005 0.0063 �0.0058

Road Attributes
3–4 lanes (1 if the road has 3–4 lanes; 0 otherwise) 0.0034 0.0055 �0.0088
road-adverse (1 if the road is wet, watery, icy, snowy, sandy, muddy, dirty, or graveled; 0 otherwise) �0.0044 �0.0432 0.0477
curve-level (1 if the road is curve and level; 0 otherwise) 0.0088 0.005 �0.0137
curve-adverse (1 if the road is curve with hillcrest, grade, or bottom; 0 otherwise) 0.0025 0.0081 �0.0104
30–50 mph (1 if the speed limit is between 30 mph to 50 mph; 0 otherwise) 0.0006 �0.007 0.0064

Environment Attributes
rain (1 if the weather is raining; 0 otherwise) �0.0001 0.0057 �0.0056
rolling (1 if the terrain is rolling; 0 otherwise) �0.006 0.003 0.003
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temporal instability, in more recent years (2013–2017), such
impact is reduced for the passenger car rollover crashes.

In the RPL model accounting for potential heterogeneity in
means for passenger rollover crashes in 2013–2017, the benign
influence of male gender is decreased by 42% (from �0.0457 to
�0.0264), indicating an overestimate for the influence of the male
gender without accounting for the heterogeneity in means. In the
RPL model with heterogeneity in means and variances, the abso-
lute marginal effect values of male gender on all injury severity
levels are reduced to some degree for passenger car rollover
crashes in 2013–2017 (Fig. 4).

6.1.4. Effect of young drivers and old drivers
Young drivers (age less than 25) are a significant factor for

minor injury on passenger car rollover crashes in 2008–2012. As
for the model estimated from the overall dataset, the impact of
young drivers is not as significant as it is in passenger car rollover

crashes in 2008–2012. This reflects the necessity of segmentation
in this study since the greater impact in passenger car rollover
crashes in 2008–2012 will be ignored without segmentation.

Old drivers (age greater than 50) are likely to sustain severe
injury in passenger car rollover crashes in 2013–2017. The effects
of older drivers do not show significant differences in the RPL
model with heterogeneity in means compared to the RPL-only
model.

6.2. Road Attributes

6.2.1. Effect of curve-level and curve-adverse
Curve-level road and curve-adverse (curve with hillcrest, grade,

and bottom) road can both contribute to the severe injury and
minor injury for light truck rollover crashes. The curve-adverse
road can slightly reduce the probability of the severe injury for
passenger car rollover crashes in 2008–2012, demonstrating the

Table 7
Marginal effects of significant factors in the Model of Light Truck Rollover Crashes in 2013–2017.

Variables RPL RPL in means

SI MI PDO SI MI PDO

Driver Attributes
old (1 if the driver is older than 50; 0 otherwise) 0.0032 �0.0017 �0.0016 0.0032 �0.0017 �0.0015
impaired physical condition (1 if the driver is under the influence of medication, drugs and alcohol;

0 otherwise)
0.0124 0.0189 �0.0314 0.0124 0.0188 �0.0311

male (1 if the gender of the driver is male; 0 otherwise) 0.0085 �0.1007 0.0922 0.0085 �0.101 0.0924
unhealthy physical condition (1 if the driver is under the condition of illness, fatigue, fell asleep, loss

of consciousness: 0 otherwise)
�0.0004 0.0058 �0.0054 �0.0006 0.0085 �0.008

Road Attributes
3–4 lanes (1 if the road has 3–4 lanes; 0 otherwise) 0.0024 �0.0013 �0.0011 0.0024 �0.0013 �0.0011
rural collector road (1 if the road is rural collector; 0 otherwise) 0.0028 0.0087 �0.0115 0.0028 0.0086 �0.0114
road-adverse (1 if the road is wet, watery, icy, snowy, sandy, mudy, dirty, or graveled; 0 otherwise) �0.0042 �0.0385 0.0425 �0.0042 �0.0387 0.0429
undivided Road (1 if the road is undivided; 0 otherwise 0.003 �0.0398 0.0368 0.003 �0.0397 0.0366

Environment Attributes
rolling (1 if the terrain is rolling; 0 otherwise) �0.0003 0.0164 �0.0161 �0.0007 0.0179 �0.0172
mountain (1 if the terrain is mountain; 0 otherwise) �0.0019 �0.0124 0.0142 �0.0019 �0.0122 0.0141
intersection (1 if the crash location is within footprint of intersection; 0 otherwise) �0.0007 �0.0045 0.0052 �0.0007 �0.0046 0.0053

Table 8
Marginal effect of the Estimated Model for the Overall Dataset.

Variables RPL RPL with heterogeneity in
means

SI MI PDO SI MI PDO

Driver Attributes
young (1 if the driver is younger than 25; 0 otherwise) �0.0025 0.0014 0.0011 �0.0026 0.0014 0.0011
old (1 if the driver is older than 50; 0 otherwise) 0.0062 �0.0032 �0.003 0.0055 �0.0029 �0.0025
male (1 if the gender of the driver is male; 0 otherwise 0.0064 �0.0818 0.0754 0.0065 �0.0824 0.0759
impaired physical condition (1 if the driver is under the influence of medication, drugs, or alcohol; 0

otherwise
0.014 0.0139 �0.0278 0.014 0.0138 �0.0278

unhealthy physical condition (1 illness, fatigue, fell asleep, loss of consciousness: 0 otherwise) �0.0003 0.0056 �0.0053 �0.0003 0.0056 �0.0053

Road Attributes
curve level (1 if the road is curve and level; 0 otherwise) 0.0053 0.0051 �0.0104 0.0053 0.0051 �0.0105
rural arterial road (1 if the road is rural arterial; 0 otherwise) 0.0028 �0.0016 �0.0012 0.0028 �0.0016 �0.0012
rural local road (1 if the road is rural local; 0 otherwise) 0.0046 �0.0026 �0.002 �0.0044 �0.0058 0.0049
rural collector road (1 if the road is rural collector; 0 otherwise) 0.003 �0.0017 �0.0013 0.0029 �0.0016 �0.0013
road-adverse (1 if the road is wet, watery, icy, snowy, sandy, mudy, dirty, or graveled; 0 otherwise) �0.0034 �0.0301 0.0335 �0.0036 �0.0301 0.0337
curve-adverse (1 if road is curve with hillcrest, grade or bottom) 0.0014 0.0072 �0.0086 0.0014 0.0072 �0.0086
undivided Road (1 if the road is undivided; 0 otherwise) �0.0084 �0.035 0.0435 �0.0085 �0.035 0.0435
>=50 mph (1 if the speed limit is greater than 50 mph; 0 otherwise) �0.0013 0.0176 �0.0163 �0.0013 0.0175 �0.0162

Environment Attributes
cloudy (1 if the weather is cloudy; 0 otherwise) �0.0003 0.0053 �0.005 �0.0003 0.0053 �0.005
rain (1 if the weather is rainy; 0 otherwise) �0.0001 0.0048 �0.0047 �0.0001 0.0049 �0.0048
other adverse weather (1 if the weather is snow, sleet, hall, freezing rain/drizzle) 0.0001 �0.0027 0.0027 0 �0.0027 0.0027
commercial (1 if the development is commercial; 0 otherwise) 0.0002 �0.0027 0.0025 0.0002 �0.0027 0.0025
mountain (1 if the terrain is mountain; 0 otherwise) �0.0014 �0.0132 0.0146 �0.0013 �0.0133 0.0146
intersection (1 if the road is within the footprint of intersection; 0 otherwise) 0.0002 �0.0032 0.003 0.0002 �0.0032 0.003
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instability in effects of factors between different vehicle types. It
can also be observed that road curvature contributes to the severe
and minor injuries for light truck rollover crashes. This is accept-
able since vehicles may easily fall off the road while they are turn-
ing around on the curve road. Nevertheless, these two factors no
longer present a significant association with driver injuries in
2013–2017. In contrast to intuition, the curve-level can increase

the probability of severe injury to a greater extent compared to
the factor of curve-adverse. This may be because vehicles often
have a relatively lower speed when they are moving on a slope,
at the hillcrest, or at the bottom.

6.2.2. Effect of road-adverse (wet, watery, icy, snowy, sandy, muddy,
dirty, or graveled)

Except for the model of passenger car in 2008–2012, all of the
models of sub-segmentation show that the factor of road-adverse
reduces the risk of the driver suffering from severe injury and
minor injury, as shown in Fig. 5. Although wet, watery snowy,
icy, sandy, or dirty surface can make the road slippery and the
vehicle can be easily out of control, vehicles often move slower
on roads under these conditions after being informed, which may
explain these against-expectation results. Additionally, such
impact was enhanced in 2013–2017 for passenger car rollover
crashes but reduced a bit for light truck rollover crashes in
2013–2017, showing instability in the effect of the factor between
different vehicle types and time periods to some extent.

As for the model structure, although not obvious, the mitigatory
impact on the minor injury is lessened in the RPL model with
heterogeneity in means for passenger car rollover crashes in
2013–2017. To be specific, the reduction in the probability of
resulting minor injury changes from 0.0197 to 0.0184. In the RPL
model with heterogeneity in means and variances, the number
again decreases from 0.0184 to 0.0167. Hence the conclusion can
be made that there may be an overestimation of the effect of this
factor when using the RPL model without accounting for possible
heterogeneity in means and variances.

6.2.3. Effect of 3–4 lanes and rural collector road
The factor of 3–4 lanes has a significant impact towards severe

injury for light truck rollover crashes in 2008–2012 and 2013–
3017. In 2013–2017, such impact is mitigated as the marginal
effect goes down from 0.0034 to 0.0024. The reason why 3–4 lanes
are riskier relative to 1–2 lanes (reference base) may be due to the
higher speed limits that often present in 3–4 lanes.

Rollover crashes on the rural collector road in 2008–2012 are
more likely to incur minor injury. For light trucks in 2013–2017,
this factor is even more dangerous as a significant contribution
toward severe injury is observed. A collector road diverts the local
traffic to the arterial, hence such roads often present higher traffic
volumes relative to the urban local road, which is selected as the
base reference.

Referring to the model structure, the factor of 3–4 lanes and
rural collector are contained in the RPL model with heterogeneity
in means for light trucks rollover crashes in 2013–2017, neverthe-
less, no significant difference in the marginal effect is observed

Fig. 2. Marginal effects of impaired physical condition (PC: Passenger Cars; LT:
Light Trucks).

Fig. 3. The marginal effects of unhealthy physical condition (PC: Passenger Cars; LT:
Light Trucks).

Fig. 4. Marginal effects of male gender (PC: Passenger Cars; LT: Light Trucks).

Fig. 5. Marginal effects of road adverse (PC: Passenger Cars; LT: Light Trucks).
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between the RPL model and RPL model with heterogeneity in
means.

6.2.4. Effect of undivided road
Undivided road (one-way undivided road and two-way undi-

vided road) is a significant contributing factor for rollover crashes
in 2013–2017. Except for a minor increase in the probability of sev-
ere injury, the undivided road is an overall benign factor as it sub-
stantially increases the probability of PDO. In terms of vehicle type,
the factor of the undivided road shows a greater influence on pas-
senger car rollover crashes than light truck rollover crashes.

As for the model structure, overestimate might occur for the
mitigatory effect of the undivided road without considering poten-
tial heterogeneity in means for the passenger car rollover crashes
in 2013–2017 (from 0.0269 to 0.0238) (Fig. 6).

6.2.5. Effect of other significant factors
Except for the factors mentioned above, rural local road and

speed limits of 30–50 mph are also significant factors toward dri-
ver injury severities in rollover crashes. The rural local road
increases the probability of minor injury by 0.0142 in the passen-
ger car rollover crashes in 2008–2012. In the model for the overall
dataset, it also increases the probability of severe injury by 0.0046.
Compare to the base reference, which is the urban local road, the
rural local road may present higher speed due to fewer vehicles
on the road. Hence, it is more likely to result in higher injury sever-
ity levels. In the light truck rollover crashes in 2008–2012, 30–50
mph speed limit is relatively a benign factor as it can reduce the
probability of minor injury (�0.007), while slightly increasing the
probability of the driver suffering a severe injury (0.0006). 30–50
mph is a medium speed limit range, hence it is expected to be ris-
ker more or less. These effects are overall consistent with
expectations.

The rural arterial road and the speed limits greater than 50 mph
are the factors that are only found to be significant in the model
estimated for the overall dataset. The rural arterial road can
increase the probability of the driver suffering severe injury by
0.0028, while reducing the probability of minor injury by
�0.0016. Features like higher speeds in the rural arterial road are
very likely to cause severe injuries once rollover crashes occur.
The speed limit of greater than 50 mph can contribute to the prob-
ability of minor injury by 0.0176, while slightly decrease the prob-
ability of severe injury by 0.0013. A speed limit that is greater than
50 mph is a risky factor since the marginal effect for the minor
injury is much greater than the one for severe injury, which is
understandable as a higher speed limit naturally causes higher
damages in rollover crashes.

6.3. Environment attributes

6.3.1. Effect of mountain terrain
Mountain terrain is potentially a risky terrain for it is featured

with the graded and hilly road, which may increase the challenges
of driving task. Nevertheless, this model shows a positive associa-
tion for no injury and a negative association for severe injury in
2013–2017 for both passenger car and light trucks. As for minor
injury, a significant reduction in the probability of minor injury is
observed for the passenger car in 2008–2012, light truck in
2013–2017, and the overall dataset as well. In terms of temporal
instability, a reverse impact on the severe injury is observed for
passenger car rollover crashes between 2008–2012 and 2013–
2017. As for the model structure, this factor is not sensitive to
the consideration of possible heterogeneity in means and variances
(Fig. 7).

6.3.2. Effect of rolling terrain
The factor of rolling is found to be statistically significant in

light truck rollover crashes for 2008–2012, and both two-vehicle
type rollover crashes in 2013–2017. In terms of temporal instabil-
ity, the effect on minor injury is intensifiedmore than five times for
light truck rollover crashes in 2013–2017 (from 0.003 to 0.0164) in
the RPL-only model. However, the mitigatory impact on severe
injury is also reduced. As for vehicle type, in 2013–2017, the effect
of rolling has a similar influence over light truck rollover crashes
and passenger car rollover crashes. In terms of model structure,
compared to the RPL- only model, a higher marginal effect result
on the minor injury is observed from the RPL model with hetero-
geneity in means. Nevertheless, the RPL model with heterogeneity
in means may have overestimated the effect of rolling according to
the results from the RPL model with heterogeneity in means and
variances (Fig. 8).

6.3.3. Effect of cloudy weather
Similar to the effect of rain, cloudy weather can significantly

contribute to the minor injury of the passenger car rollovers in
2013–2017, with a minor negative impact on the severe injury.
This effect is somewhat reduced in the overall dataset with the
same direction of effects on all injury severity levels. By accounting
for possible heterogeneity in means and variances in passenger car
rollover crashes in 2013–2017, the effect on the minor injury has
decreased (0.0102 in RPL, 0.0094 in RPL with heterogeneity in
means and variances), which indicates an overestimate of effects
in the RPL model without accounting for possible heterogeneity
in means and variances (Fig. 9).

Fig. 6. Marginal effects of undivided road (PC: Passenger Cars; LT: Light Trucks). Fig. 7. Marginal effects of mountain terrain (PC: Passenger Cars; LT: Light Trucks).
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6.3.4. Effect of FWP
FWP denotes the development of farms, woods, and pastures.

These areas may present lower speed limits and few traffic vol-
umes. Nevertheless, a considerable portion of truck volumes can
be expected as many heavy commercial items may exist in the
farms and woods. In the estimatedmodel for passenger car rollover
crashes in 2013–2017, FWP contributes to the minor injury to a
large extent. As for the model structure, the direction of the mar-
ginal effects on each severity level is the same accounting for pos-
sible heterogeneity in means (and variances). Though the RPL
model with heterogeneity in means indicates a higher effect on
the minor injury, the RPL model with heterogeneity in means
and variances shows a lower effect on the minor injury. With that
being said, the RPL model with heterogeneity in means may have
overestimated the contribution of FWP on the minor injury with-
out further considering potential heterogeneity in variances
(Fig. 10).

6.3.5. Effect of other significant factors
Except for the factors mentioned above, rain, other adverse

weather (snow, sleet, hail, freezing rain/drizzle), intersection, and
commercial are the factors that only the model estimated from
the overall dataset contains. Commercial development is featured
with high traffic volumes, mixed vehicle types, and low-speed lim-
its. Commercial factor has a contradictory effect on severe injury
and minor injury (positive marginal effect value on severe injury
and negative marginal effect value on minor injury). Nevertheless,
the marginal effect on the minor injury is much more significant
than the one on the severe injury (0.0027 vs. 0.0002). The low
speed in the commercial areas may be the reason for such a
finding.

Under the weather of rain, the vision capability of drivers will
be compromised, and rollover crashes might thus occur. Neverthe-
less, under the weather of rain, drivers would be advised to drive
slower than normal. With a joint consideration of these two points,
it would be understandable that rain increases the probability of
the minor injury and decreases the probability of severe injury
for light truck rollover crashes in 2008–2012. The effect of rain is
identical in the RPL model and the RPL model with heterogeneity
in means. In the model of the overall dataset, with the same direc-
tion (signs of marginal effect values) of effects, the effect of rain on
the minor injury has decreased a bit. The intersection is featured
with higher traffic volumes, low speeds, and potential turning
movements. The marginal effect of intersection in light truck
2013–2017 shows that the probabilities of severe injury and minor
injury both decrease if crash locations are within an intersection.
As for the factor of other adverse weather, similar to rain and
cloudy, a mitigatory effect is found for the minor injury.

7. Recommendations

This section provides a summary of the factors mentioned
above and attempts to provide relevant recommendations to mit-
igate the effects of risk factors.

For driver attributes, impaired physical condition and
unhealthy physical condition both have malignant effects on the
injury severities of drivers. Such malignant effects of the impaired
physical condition have decreased for passenger cars in more
recent years, which may result from the safety policy implementa-
tions or the improvement of safety awareness of road users. Never-
theless, the malignant effect on truck rollover crashes becomes
more significant in more recent years. The unhealthy physical con-
dition seems to have a more serious impact on light truck rollover
crashes compared to passenger car rollover crashes, which is
understandable as light truck drivers often have more complicated
driving tasks. Indeed, to mitigate the effect of impaired physical
condition and unhealthy physical condition, multiple parties can
be stakeholders on this issue, such as medication provider, public
transportation agents, drivers, and even automobile manufacture
as they can provide notable signs or signals inside the vehicles to
alert drivers of the importance of maintaining proper physical con-
dition. Even further, as technology evolves, aided driving system
could potentially mitigate such injury severities.

Young drivers could contribute to theminor injury in the passen-
ger rollover crashes in 2008–2012, while older drivers tend to suffer
a severe injury in the light truck rollover crashes in 2013–2017,
which are consistentwith pre-expectations. According to this result,

Fig. 8. Marginal effects of rolling (PC: Passenger Cars; LT: Light Trucks).

Fig. 9. Marginal effects of the cloudy (PC: Passenger Cars; LT: Light Trucks).

Fig. 10. Marginal effects of the FWP (PC: Passenger Cars; LT: Light Trucks).
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older drivers may be provided with more protective equipment
when they are driving, especially light trucks.

As for road attributes, both curve level, and curve adversedeserve
the attentionof decision-makers. These two factors are significant in
2008–2012, but no longer significant in the models for 2013–2017.
In terms of vehicle types, passenger car is more vulnerable to severe
injury on the curve-level road, and minor injury on the curve-
adverse road. Road signs can be installed on curve road locations
to warn the drivers to slow down. Due to the relatively stable nega-
tive impacts of curvatures, designs on curved roadways might need
further improvements in the near future.Moreover, road fencesmay
also be provided if funding is available. Road-adverse seems to be
mitigatory factors that do not need immediate attention. For the
passenger car rollover crashes, the mitigatory effect of road adverse
has enhanced in 2013–2017 compared to 2007–2012, which indi-
cates the effectiveness of existing policies. Roads with 3–4 lanes
could contribute to severe injuries in both two time periods. This
contribution is reduced in 2013–2017. Compared to passenger cars,
drivers operating light trucks need to practicemore caution as roads
with 3–4 lanes only increase the probability of minor injury for dri-
vers operating passenger cars. Rollover crashes on rural collectors
are likely to result in minor injury. The undivided road is an overall
mitigatory factor and therefore does not need immediate attention
either. As high-speed limits are identified as a significant contribut-
ing factor toward minor injury in this research, lower speed limits
may be considered tomitigate the effects of 3–4 lanes and rural col-
lector road.

In terms of environmental attributes, the mountain terrain and
rolling terrain are both significant contributing factors to rollover
crashes in 2013–2017. Compared to the mountain terrain, the roll-
ing terrain is a riskier factor as the contribution toward the minor
injury is relatively high. Possible countermeasures could be setting
lower speed limits on such areas to ensure a safer driving environ-
ment, and installing road fences. Rain and cloudy weather are
likely to contribute to minor injury in rollover crashes. The reason
behind this may be the compromised vision capability under such
weather conditions. Lower speed limits will allow drivers more
reaction time to avoid the occurrence of rollover crashes. In addi-
tion, turning on the headlight of vehicles should be encouraged
under such weather to improve the vision conditions. The proba-
bility of experiencing a minor injury in FWP areas (farms, woods,
pastures) is higher than in areas with other land development
types. When a rollover crash occurs, vehicles in these areas may
hit objects such as trees and animals, which may cause minor
injury to the drivers. To mitigate such effects, fences could be
installed along the road if funding is available. The intersection is
relatively a mitigatory factor that decreases the likelihood of sev-
ere and minor injury for drivers in light truck rollover crashes in
2013–2017.

8. Conclusions

The rollover crash is a crash type that tends to cause great eco-
nomic loss to society. Investigation on the contributing factors
towards injury severities of rollover crashes can help planners
and decision-makers to form efficient policies mitigating the dam-
ages of rollover crashes. Nevertheless, the effects of contributing
factors in rollover crashes to the injury severities may present
instability with time periods and vehicle types. This research
attempts to investigate these effects considering different periods
and vehicle types, specifically, passenger cars and light trucks in
2008–2012 and 2013–2018. The rollover crash data were extracted
from HSIS and further segmented into four groups based on the
vehicle types and time periods. The RPL model with heterogeneity
in means and variances was employed to analyze the factors con-

tributing the injury severities of drivers in rollover crashes. Hetero-
geneity in means was found in the passenger car and light truck
rollover crashes in 2013–2017, as well as the overall dataset.
Besides, heterogeneity in means and variances was found in the
passenger car rollover crashes in 2013–2017. The segmentations
in this research were also justified through test statistics. RPL mod-
els with heterogeneity in means and variances were also able to
yield better fitting model performances. This research further dis-
cussed possible solutions to mitigate the undesirable effects of
factors.

It is found that factors may show a different effect on certain
injury severities in the RPL with heterogeneity in means and RPL
with heterogeneity in means and variances, such as FWP,
unhealthy physical condition, rolling terrain, and so forth. Without
accounting for such heterogeneity, one may underestimate or
overestimate the effects of such factors. Additionally, some factors
present vehicle type and temporal instabilities in terms of mar-
ginal effects, such as impaired physical condition, unhealthy phys-
ical condition, road adverse, and so forth.

The findings from this research demonstrate the importance of
segmentation when investigating the injury severities of rollover
crashes. Policy and decision-makers can utilize the findings of this
research as their important references for their strategies in
improving the safety condition of existing transportation infras-
tructures. Since this research has underscored the effects of driver
attributes on the injury severity of rollover crashes, technologies
such as aided driving systems could have huge potential for allevi-
ating injuries of rollover crashes.
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A. Appendix

Table A1
Estimated models for the passenger car rollover crashes in 2008–2012.

Variable RPL model

Parameters estimate t-stat

Constant [SI] �3.578 �12.7
Constant [MI] 0.116 1.32

Driver Attributes
young [SI] (1 if the driver is younger than 25; 0 otherwise) �1.134 �3.38
impaired physical condition [SI] (1 if the driver is under the influence of medication; 0 otherwise 2.682 7.86
impaired physical condition [MI] (1 if the driver is under the influence of medication; 0 otherwise) 0.862 8.33
unhealthy physical condition [MI](1 illness, fatigue, fell asleep, loss of consciousness; 0 otherwise) 0.478 2.84
male [MI] (1 if the gender of the driver is male; 0 otherwise �0.512 �7.38

Road Attributes
curve level [SI] (1 if the road is curve and level; 0 otherwise) �2.557 �1.45
standard deviation 3.672 2.96
curve level [MI] (1 if the road is curve and level; 0 otherwise) 0.194 2.33
curve-adverse [MI] (1 if road is curve with also hillcrest, grade or bottom) 0.206 2.31
3–4 lanes [MI] (1 if the road has 3–4 lanes; 0 otherwise) 0.274 2.27
rural collector [MI] (1 if the road is rural collector; 0 otherwise) 0.213 2.42
rural local [MI] (1 if the road is rural local; 0 otherwise) 0.209 2.28
road-adverse [SI] (1 if the road is wet, watery, icy, snowy, sandy, muddy, dirty, or graveled; 0 otherwise) �5.527 �1.37
road-adverse [MI] (1 if the road is wet, watery, icy, snowy, sandy, muddy, dirty, or graveled; 0 otherwise) �5.527 �1.37
standard deviation 4.087 1.91

Environment Attributes
mountain (1 if the terrain is mountain; 0 otherwise) �0.362 �3.68

Model Statistics
Number of observations 3654
Log-likelihood at convergence �2763.5
McFadden q2 0.31
Akaike information criterion (AIC) 5563
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Table A2
Estimated models for the Light Truck Rollover Crashes in 2008–2012.

Variable RPL model

Parameters estimate t-stat

Constant [SI] �2.345 �12.6
Constant [MI] 0.521 7.57
Driver Attributes
male [SI] (1 if the gender of the driver is male; 0 otherwise �0.419 �2.73
male [MI] (1 if the gender of the driver is male; 0 otherwise �0.548 �8.15
impaired physical condition [MI] (1 if the driver is under the influence of medication, drugs, or alcohol; 0 otherwise) 1.223 8.37
unhealthy physical condition [MI](1 if the driver is illness, fatigue, fell asleep, loss of consciousness; 0 otherwise) 0.749 4.91

Road Attributes
50 mph [MI] (1 if the speed limit is between 30 mph to 50 mph; 0 otherwise) �0.238 �2.76
3–4 lanes [SI] (1 if the road has 3–4 lanes; 0 otherwise) 0.606 3.11
3–4 lanes [MI] (1 if the road has 3–4 lanes; 0 otherwise) 0.210 2.58
curve-level [SI] (1 if the road is curve and level; 0 otherwise) 0.678 4.12
curve-level [MI] (1 if the road is curve and level; 0 otherwise) 0.222 2.65
standard deviation 1.361 2.11
curve-adverse [SI] (1 if the road is curve with hillcrest, grade, or bottom; 0 otherwise) 0.678 4.12
curve-adverse [MI] (1 if the road is curve with hillcrest, grade, or bottom; 0 otherwise) 0.200 2.72
road adverse [SI] (1 if the road is wet, watery, icy, snowy, sandy, muddy, dirty, or graveled; 0 otherwise) �1.660 �6.75
road adverse [MI] (1 if the road is wet, watery, icy, snowy, sandy, muddy, dirty, or graveled; 0 otherwise) �0.720 �9.61

Environment Attributes
rain [MI] (1 if the weather is raining; 0 otherwise) 0.273 2.4
rolling [SI] (1 if the terrain is rolling; 0 otherwise) �0.307 �2.25

Model Statistics
Number of observations 5765
Log-likelihood at convergence �4620.5529
McFadden q2 0.2704582
Akaike information criterion (AIC) 9277.1
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Table A3
Estimated Model for Passenger Car Rollover Crashes in 2013–2017.

Variable RPL Model RPL model with
heterogeneity in the
mean

RPL model with
heterogeneity in the
means and variances

Parameters
estimate

t-stat Parameters
estimate

t-stat Parameters
estimate

t-stat

constant [SI] �2.826 �19.38 �2.834 �19.44 �2.833 �18.43
constant [MI] �0.218 �0.62 �0.981 �2.02 �0.519 �1.21

Driver Attributes
impaired physical condition [SI] (1 if the driver is under the influence of medication,

drugs, or alcohol; 0 otherwise)
1.301 5.70 1.365 5.98 1.369 5.73

male [MI] (1 if the gender of the driver is male; 0 otherwise �1.084 �4.21 �0.640 �1.99 �0.673 �2.06
unhealthy physical condition [SI](1 illness, fatigue, fell asleep, loss of consciousness; 0

otherwise)
0.915 2.15 0.904 2.13 0.922 2.11

Road Attributes
undivided Road [MI] (1 if the road is undivided; 0 otherwise �0.561 �2.43 �0.180 �0.52 �0.048 �0.11
standard deviation 3.643 3.21 5.049 2.78 3.990 2.33
road adverse [SI] (1 if the road is wet, watery, icy, snowy, sand, mud, dirt, and gravel; 0

otherwise)
�0.718 �2.33 �0.717 �2.33 �0.715 �2.24

road adverse [MI] (1 if the road is wet, watery, icy, snowy, sandy, mudy, dirty, or
graveled; 0 otherwise)

�1.068 �3.680 �1.044 �3.25 �1.259 �3.55

Environment Attributes
cloudy (1 if the weather is cloudy; 0 otherwise) 0.820 2.610 0.876 2.500 �1.259 �3.55
mountain (1 if the terrain is mountain; 0 otherwise) �1.217 �2.840 �1.217 �2.840 �1.231 �2.85
rolling (1 if the terrain is rolling; 0 otherwise) 0.701 2.330 1.561 2.760 0.886 2.20
standard deviation 6.156 2.600 �1.118 �1.830 5.793 2.72
FWP (1 if the development type if farm, woods or pastures; 0 otherwise) 1.461 3.450 1.952 3.740 1.514 3.45

Heterogeneity in mean of random parameters
undivided Road: Male (1 if the gender of the driver is male; 0 otherwise) NA NA �1.122 �1.770 �1.700 �1.990
undivided Road: impaired physical condition (1 if the driver is under the influence of

medication, drugs or alcohol; 0 otherwise)
NA NA 1.708 2.670 2.330 2.680

rolling: FWP (1 if the development is farm, woods, or pasture; 0 otherwise) NA NA �1.122 �1.770 NA NA

Heterogeneity in variances of random parameters
Undivided Road: Mountain (1 if the terrain is mountain; 0 otherwise) NA NA NA NA 0.717 2.080

Model Statistics
Number of observations 3426.000
Log-likelihood at convergence �2686.829 �2674.110 �2673.243
McFadden q2 0.286 0.290 0.290
Akaike information criterion (AIC) 5401.700 5382.200 5380.500
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Table A4
Estimated Models for Light Trucks in 2013–2017.

Variable RPL Model RPL model with
heterogeneity in the means

Parameters
estimate

t-stat Parameters
estimate

t-stat

Constant [SI] �2.816 �21.020 �2.813 �21.080
Constant [MI] 0.617 5.470 0.578 5.120
Driver Attributes
Old [SI] (1 if the driver is older than 50; 0 otherwise) 0.427 2.420 0.423 2.650
impaired physical condition [SI] (1 if the driver is under the influence of medication, drugs or alcohol; 0

otherwise
1.725 10.410 1.724 10.400

impaired physical condition [MI] (1 if the driver is under the influence of medication, drugs or alcohol;
0 otherwise)

1.050 10.090 1.029 9.900

male [MI] (1 if the gender of the driver is male; 0 otherwise �0.704 �8.580 �0.681 �8.280
unhealthy physical condition [MI] (1 illness, fatigue, fell asleep, loss of consciousness: 0 otherwise) 0.644 3.960 0.932 4.540

Road Attributes
3–4 lanes [SI] (1 if the road has 3–4 lanes; 0 otherwise) 0.447 2.110 0.443 2.070
rural collector [SI] (1 if the road is rural collector; 0 otherwise) 0.382 2.220 0.379 2.190
rural collector [MI] (1 if the road is rural collector; 0 otherwise) 0.188 2.530 0.180 2.440
intersection [SI] (1 if the road is within footprint of intersection; 0 otherwise) �1.487 �2.500 �1.480 �2.490
road adverse [SI] (1 if the road is wet, watery, icy, snowy, sandy, mudy, dirty, or graveled; 0 otherwise) �1.430 �5.890 �1.428 �5.880
road adverse [MI] (1 if the road is wet, watery, icy, snowy, sandy, mudy, dirty, or graveled; 0 otherwise) �0.684 �8.900 �0.668 �8.690
undivided Road [MI] (1 if the road is undivided; 0 otherwise �0.231 �2.560 �0.222 �2.470

Environment Attributes
mountain [SI] (1 if the terrain is mountain; 0 otherwise) �0.639 �2.760 �0.646 �2.790
mountain [MI] (1 if the terrain is mountain; 0 otherwise) �0.342 �3.760 �0.338 �3.540
rolling [MI] (1 if the terrain is rolling; 0 otherwise) 0.140 1.900 0.172 2.120
standard deviation 0.140 1.900 0.888 2.150

Heterogeneity in Mean
rolling: unhealthy physical condition [MI] (illness, fatigue, fell asleep, loss of consciousness; 0

otherwise)
– – �0.695 �2.340

Model Statistics
Number of observations 5631
Log-likelihood at convergence �4332.175 �4329.560
McFadden q2 0.3 0.3
Akaike information criterion (AIC) 8702.0 8699.0
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Table A5
Estimated Models for the Overall Dataset.

Variable RPL Model RPL model with heterogeneity
in means

Parameters
estimate

t-stat Parameters
estimate

t-stat

Constant [SI] �2.826 �18.830 �2.807 �18.970
Constant [MI] 0.491 8.070 0.494 8.120

Driver Attributes
young [SI] (1 if the driver is younger than 25; 0 otherwise) �0.233 �2.470 �0.236 �2.510
impaired physical condition [SI] (1 if the driver is under the influence of medication; 0 otherwise 1.658 17.010 1.642 16.840
impaired physical condition [MI] (1 if the driver is under the influence of medication; 0 otherwise) 0.737 16.090 0.738 16.110
male [MI] (1 if the gender of the driver is male; 0 otherwise �0.539 �16.980 �0.539 �16.980
unhealthy physical condition MI] (1 illness, fatigue, fell asleep, loss of consciousness: 0 otherwise) 0.574 7.430 0.572 7.410
old [SI] (1 if the driver is older than 50; 0 otherwise) �1.567 �1.680 �1.567 �1.680
standard deviation 2.303 3.250 �0.530 �0.660

Road Attributes
curve level [SI] (1 if the road is curve and level; 0 otherwise) 0.547 5.240 0.539 5.250
curve level [MI] (1 if the road is curve and level; 0 otherwise) 0.129 3.430 0.129 3.430
rural arterial [SI] (1 if the road is rural arterial; 0 otherwise) 0.529 3.650 0.514 3.620
rural local [SI] (1 if the road is rural local; 0 otherwise) 0.453 3.430 0.441 3.400
rural collector (1 if the road is rural collector; 0 otherwise) 0.332 2.480 0.320 2.440
road-adverse [SI] (1 if the road is wet, watery, icy, snowy, sandy, muddy, dirty, or graveled; 0

otherwise)
�1.259 �8.680 �1.301 �8.840

road-adverse [MI] (1 if the road is wet, watery, icy, snowy, sandy, muddy, dirty, or graveled; 0
otherwise)

�0.507 �9.540 �0.508 �9.570

curve-adverse [SI] (1 if road is curve and also hillcrest, grade or bottom) 0.321 2.580 0.315 2.580
curve-adverse [SI] (1 if road is curve and also hillcrest, grade or bottom) 0.160 3.860 0.160 3.860
undivided Road [SI] (1 if the road is undivided; 0 otherwise) �0.450 �3.120 �0.442 �3.130
undivided Road [MI] (1 if the road is undivided; 0 otherwise �0.206 �4.510 �0.207 �4.520
>=50 mph [MI] (1 if the speed limits is greater than 50 mph; 0 otherwise) 0.092 2.390 0.092 2.380

Environment Attributes
mountain [SI] (1 if the terrain is mountain; 0 otherwise) �0.558 �4.010 �0.555 �4.070
mountain [MI] (1 if the terrain is mountain; 0 otherwise) �0.374 �8.700 �0.374 �8.700
cloudy [MI] (1 if the weather is cloudy; 0 otherwise) 0.129 2.720 0.128 2.720
rain [MI] (1 if the weather is rainy; 0 otherwise) 0.204 2.880 0.208 2.930
commercial [MI] (1 if the development is commercial; 0 otherwise) �0.252 �3.310 �0.253 �3.320
intersection [MI] (1 if the road is within the footprint of intersection; 0 otherwise) �0.320 �4.250 �0.319 �4.240

Heterogeneity in mean
Old: Male (1 if the driver is male; 0 otherwise) – – �0.465 �1.950
Old: Rain – – 0.879 2.000

Model Statistics
Number of observations 18,476
Log-likelihood at convergence �14417.691 �14414.480
McFadden q2 0.29 0.29
Information criterion (AIC) 28891.4 28,889
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a b s t r a c t

Introduction: Highway-rail at-grade crossings (HRGCs) are critical locations where a railway and a road-
way intersect with one another. Crashes at those locations often result in fatalities and economic and
social damages due to the impacts on both road and rail users. The main purpose of countermeasures
at HRGCs is to permit safe and efficient rail and highway operations. Method: Countermeasures at
highway-rail grade crossings (HRGCs) considered in this study include all traffic control devices and other
warning and barrier devices at or on approaches to crossings. In general, active devices are commonly
accepted as more effective countermeasures than passive devices. However, many of the previous
effectiveness studies are either at the project level or were conducted without considering the before-
improvement condition. This study focuses on the network-level marginal effectiveness of countermea-
sures on crash rate and severity levels during the 29-year study period from 1990 to 2018 by fully
considering before-improvement control levels. A competing risk model (CRM) is able to accommodate
the competing nature of crash severities as multiple outcomes from the same event of interest, which
is crash occurrence in this study. Subsequently, CRM is used in this study as an integrated one-step esti-
mation approach that investigates both crash frequency and severity likelihood over time. Results: The
study findings indicate that adding audible devices to crossings already equipped with gates will result
in a considerable annual decline in crash occurrence likelihood (0.25%). The same device installed at
crossings already controlled by gates and flashing lights results in less reduction in crash occurrence like-
lihood of 0.14%. Moreover, adding a stop sign to the active crossing controls of gates, standard flashing
lights, and audible devices will lead to a decrease in the probability of crash occurrence and severe
crashes (injury and fatal). However, adding stop signs to crossings equipped only with crossbucks will
increase the crash occurrence.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction and literature review

Locations where a roadway and a railway intersect each other at
the same level are recognized as highway-rail grade crossings
(HRGCs). These locations are potential points of conflict between
roadway traffic and trains. At HRGCs, roadway users should always
yield to the train (trains have the right-of-way); and the objective
of countermeasures at crossing locations is to efficiently assist
roadway users in recognizing the need to yield to train traffic
and safely cross over HRGCs. Between 1981 and 2018, U.S. crash
frequency declined by about 76% at HRGCs (FRA, 2018). This reduc-

tion can be attributed to upgrades of passive crossing controls to
active controls (Lenné et al., 2011; Meeker, Fox, & Weber, 1997;
Millegan, Yan, Richards, & Han, 2009). Passive crossing controls
(e.g., crossbucks signs and stop signs) are generally believed to
be less effective warnings to highway users compared with active
controls such as flashing lights, audible devices (bells), and gates.
Although grade crossing collisions, fatalities, and injuries all have
fallen nearly every year since 1981, both fatality and injury rates
per crash at HRGCs have increased by about 5% and 2%, respec-
tively, from 1981 to 2018 (FRA, 2018). Research focusing on coun-
termeasures’ effects on crash occurrence likelihood is important,
however understanding countermeasures’ effects on crash severity
is also greatly needed. Therefore, investigating and quantifying the
countermeasures’ effects on HRGC’s safety performance in terms of
both crash occurrence and crash severity simultaneously is needed.
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Considerable research has focused on HRGC crash frequency
using the crossing inventory database (Guadamuz-Flores &
Aguero-Valverde, 2017; Heydari, Fu, Thakali, & Joseph, 2018; Lu
& Tolliver, 2016; Zheng, Lu, & Pan, 2019). Another group of studies
focused on crash severity analysis. Categorical outcome modeling,
historical police reports, and FRA HRGC crash datasets are often
used in those studies (Fan, Kane, & Haile, 2015; Ghomi, Bagheri,
Fu, & Miranda-Moreno, 2016; Zhao, Iranitalab, & Khattak, 2018;
Zheng, Lu, & Lantz, 2018). All those analyses primarily focused on
improving the models’ prediction performance.

Relatively few studies have focused on quantifying safety fac-
tors’ effects on crash occurrence and severity levels in the same
model and the same database (Abdel-Aty & Nawathe, 2006;
Keramati, Lu, Zhou, & Tolliver, 2020; Ye, Pendyala, Shankar, &
Konduri, 2013; Zalinger, Rogers, & Johri, 1977). It is important for
road and railway safety agencies to predict crash frequency and
the likelihood of crash severity outcomes consistently and simulta-
neously because they need to analyze the impact of common con-
tributors on both crash frequencies and severities based on the
same set of available data. Separate forecasting models are useful
to identify affecting factors for crash occurrence and severity,
respectively, however, several application obstacles exist including
inconsistent contributors, nontransferable probabilities among
severity and occurrence, and unmeasurable variance accounted
in different error terms (Keramati et al., 2020). In this study, the
competing risk model (CRM) is selected because of its ability to
quantify contributors’ effects on crash occurrence and severity
likelihood simultaneously by estimating contributors’ (particularly
countermeasures) marginal effects and instantaneous risk.

Some publications and reports focused on the effect of specific
crossing controls (e.g., crossbucks signs, gates, and stop signs) on
HRGC safety outputs (Carroll, Lee, Haines, & Hellman, 2002;
Eluru, Bagheri, Miranda-Moreno, & Fu, 2012; FHWA, 2009;
Haleem, 2016; Heathington, Fambro, & Richards, 1989; Kim
et al., 2002; Lee, Nam, & Moon, 2004; Lerner, 2002; Liu &
Khattak, 2017; Liu, Khattak, Richards, & Nambisan, 2015; Noyce
& Fambro, 1998; Ogden & Cooper, 2019; Siques, 2002;
Washington & Oh, 2006; Yan, Richards, & Su, 2010; Zhao et al.,
2018). Table 1 lists the most common traffic controls for HRGCs
that are researched as countermeasures in literature, and their
design details are also summarized (FHWA, 2021).

Haleem (2016) used the mixed logit and binary logit models to
investigate the significant traffic causality contributors at private
HRGC. Their study results suggested that the presence of warning
devices at both approaching roads of private crossings result in
fewer injuries and fatalities compared to warning devices installed
only on one side of the road. In addition, their results indicate that
non-presence of advance warning signs increases the probability of
injury and fatal crashes. Liu and Khattak (2017) conducted a spatial
analysis of gated crossing collisions by using a methodology that
combined path analysis modeling and geo-spatial analysis. Their
findings indicate that the probability of a gate violation resulting
in a crossing crash is associated with factors such as the presence
of two or three quadrant gates, higher train speeds, and male dri-
vers. Liu et al. (2015) also used path analysis to investigate indirect
effects of crossing controls on crash severity changes. Their find-
ings indicate that there is not a significant direct association
between crossing controls and crash severity changes. However,
their results showed a significant correlation between crossing
controls and pre-crash behaviors, and also between pre-crash
behavior and crash severity. Eluru et al. (2012) proposed a latent
segmentation-based ordered logit model to assess the contribu-
tors’ effects on crash severity at HRGCs. Their findings indicate that
low-risk crossing segments are defined by higher train traffic,
lower class roadways, pavement marking instead of stop signs,
and the absence of permanent structures such as gates and stop

signs. Washington and Oh (2006) described and applied the for-
malization and application of a methodology to rank 18 counter-
measures (including gates, stop signs, and others) from ‘‘best” to
‘‘worst.” Their results indicated that the top three safest counter-
measures are in-vehicle warning systems, obstacle detection, and
constant warning time. Yan et al. (2010) applied the hierarchical
tree-based regression model as a nonparametric approach to pre-
dict annual crash frequency at passive crossings with crossbucks-
sign-only or stop-sign-only.

All of these findings are useful in understanding the impact of
specific crossing controls on either crash frequency or severity
changes. However, these studies do not account for (a) pre-
improvement condition differences (in other words, the effects of
modifying the crossing controls on crash frequency and severity
changes should be different for crossings with different pre-
improvement control status), and (b) the long-term time effects
of crossing-control improvements (modifications) on these
changes. Moreover, HRGC characteristics, including crossing con-
trols, may change over time, such as before and after a collision
occurrence (Liu & Khattak, 2017). Consequently, quantifying crash
frequency and its severity level changes the need to consider the
long-term time impact and record information changes for all con-
tributors annually. This research will focus on identifying counter-
measures’ effects on crash frequency and severities in one model,
taking into consideration both pre-improvement control condi-
tions and contributors’ value change over a long-term analysis per-
iod (29 years in this study).

Estimating the long-term effect of countermeasures on crash
occurrence and severity likelihoods can increase modeling com-
plexity. To quantify such time effects, the primary focus shifts to
the time until the crash occurred. Such analysis may be compli-
cated because: (a) the algorithm must handle a set of contributors’
associations with both the time of a crash and the crash severity
level in a prediction model, and (b) crossings’ crash records are col-
lected for the limited time of the study period (e.g., 29 years in this
study), so only the crash occurrence time during the study period is
accessible. This situation causes right-censored data because of

Table 1
Summary of highway-rail grade crossing countermeasures.

Traffic Control Device Design details

Passive Crossbucks
sign

Installed on right side of the highway approach to
the crossing. The sign shall be retroreflectorized
white. It requires highway users to yield the right-of-
way to the train.

Passive Stop sign Installed on right side of the highway. The sign
means the same as it does at a highway intersection.
Highway users should stop, look, and listen for the
train. Proceed when it is safe to do so.

Passive Pavement
marking

Highway-rail grade crossing pavement markings
shall be 100 mm solid and retroreflectorized white.
The markings should be placed on the highway 1.8 m
from the nearest rail.

Active Flashing
lights

Flashing lights can be post-mounted or cantilever-
mounted. Two right lights will alternatively flash to
indicate highway users that train is presence. It
requires do no cross when it is flashing even though
the highway users could not see trains within sight
distance.

Active Bells Bells are audible control devices. The bells will
provide sound warning to highway users that train is
presence. Bells are considered primarily a pedestrian
warning device. It requires no crossing when it is
ringing.

Active Gate Gate consists of a drive mechanism and a fully
retroreflectorized gate arm that can extend across
the approaching lanes of highway traffic. When gate
arm is down, it indicates that a train is present and
the road is closed. It is illegal and unsafe to cross.
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event-free crossings during the analysis period. Consequently,
specific algorithms are needed to take these characteristics into
account.

Considering these needs, in this study, the CRM is selected to
investigate the crash occurrence and severity likelihood, and
cause-specific Cox regression (Cox, 1972) is selected as an
approach to competing risk. More detailed information regarding
this method is introduced in the following section. In transporta-
tion safety analysis, the objective of CRM is quantifying crash
occurrence likelihood considering the crash severity levels (PDO,
injury, fatal) as competing risk events. In other words, the CRM
function in HRGC safety output analysis can be defined by estimat-
ing HRGC crash likelihood during a 29-year span considering the
probability of crash occurrence with one of three severity levels.
In addition, censoring techniques in CRM also lead to consolidation
and utilization of all the available data (including crossings with no
crash records), while previous studies only used crossings with
crash records as their analysis input dataset (Eluru et al., 2012;
Liu & Khattak, 2017; Liu et al., 2015). In this study, by utilizing
CRM, the authors investigated: (a) countermeasures’ significance
on both crash severity and crash occurrence of HRGCs in the same
model, and (b) HRGC countermeasures’ instantaneous and long-
term impacts on crossings’ safety performance considering differ-
ent pre-improvement conditions.

2. Methodology

Survival analysis is commonly used to estimate the specific fail-
ure likelihood at a specific time, such as likelihood of death in med-
ical science or a mechanical failure in engineering fields.
Consequently, in survival analysis, modeling the time-to-event
data plays a key role, and such models are designed to censor data.

The CRM is one survival analysis modeling approach and its
main objective is to quantify events of interest considering more
than one incident event. Correspondingly, the CRM’s objective in
crash analysis is estimating the likelihood of crashes as an event
of interest and likelihood of experiencing each severity level as fail-
ure causes. Crash severity levels in this study are defined as prop-
erty damage only, injury, and fatal. Therefore, crash severity levels,
as multiple outcomes, are competing with each other, and as each
crossing’s crash record experienced one of these events, it is not
going to experience the others. Moreover, crossings with crash
records (with any severity levels) are counted as observations with
specific event experience and, correspondingly, crossings with no
crash records during the entire study time span are counted as cen-
sored observations. As a result of this unique survival analysis fea-
ture, all the available data, even characteristics of the crossings
with no crashes, can be utilized in the study analysis (De Wreede
et al., 2010; Keramati et al., 2020).

The instantaneous crash risk experiencing a specific severity
level is defined as a hazard ratio and can be estimated by the
cause-specific hazard function in Eq. (1) (Ishwaran et al., 2014;
Putter, Fiocco, & Geskus, 2007).

aj tjxð Þ ¼ lim
Dt!0

P t � T0 � t þ Dt; d0 ¼ jjT0 � t; x
n o

Dt
ð1Þ

where

� T0 is time of crash occurrence.
� d0 is crash severity level, d0 2 1; � � � ; Jf g; J ¼ 3.
� x is the vector of the contributing variables.

aj tjxð Þ denotes a cause-specific hazard function demonstrating
the instantaneous crash occurrence rate at time t with j level of
severity in the situation of not failing form severity level j by time

t given covariate x. Note, the model is able to estimate the instan-
taneous crash occurrence rate by substituting d0 2 1; � � � ; Jf g with
d0 2 0;1f g, while d0 ¼ 1 indicates the occurrence of a crash regard-
less of the severity level and 0 indicates no crash. Let T0

i indicates
the crash occurrence time for the ith crossing, i = 1, . . . ,n, d0i denotes

its severity level, and C0
i indicates censoring time of crossing i. It can

be indicated that T0
i as actual crash occurrence at the time when

crossing i is unobserved and one is able to observe

Ti ¼ min T0
i ;C

0
i

� �
and the event di ¼ d0i I T0

i � C0
i

� �
. Clearly, if

di ¼ 0, crossing i is defined as censored at time Ti (Ishwaran
et al., 2014).

The Cox proportional hazard regression (Cox, 1972) is selected
as an approach to quantify the cause-specific hazard regression
model. Cox regression can estimate the effects of both quantitative
and categorical contributors on both crash frequency and severity
changes. Eq. (2) indicates the Cox proportional hazard regression
formulation:

aj tjxð Þ ¼ a0;j tð Þ � exp b>
j X

� �
ð2Þ

where

� b>
j is coefficient vector estimation of contributors’ (X) effect on

severity level j.
� a0;j tð Þ is the baseline hazard indicating the hazard value with
the condition of all X are equal to zero for severity level of j.

exp b>
j X

� �
in Eq. (2) are equations to quantify the hazard ratio

(HR). HR estimates conditional instantaneous probability of crash
severity j at time t for the crossing with contributors’ vector X
given that the crossing is crash-free just before time t. When the
HR numerical value is positive, it indicates an interesting measure-
ment of contributors’ effects on crash likelihood. Contributors with
an HR value equal to 1 have no effect on crash/severity likelihood,
and those with HR greater than 1 have a positive effect on hazard.
Finally, contributors with an HR of less than 1 have a negative
impact on hazard; in other words, the competing events are inde-
pendent of each other.

Although estimates resulting from cause-specific hazard func-
tions can shed light on the instantaneous likelihood of crash occur-
rence and crash severity, the model assumptions of independent
censoring lead to separate estimations of the crash occurrence rate
with each crash severity level. However, the probability of event
occurrence in a specific range of time (e.g., [0, t]) is dependent on
the cause-specific hazards of the other events (Gray, 1988). Conse-
quently, to consolidate the estimates of competing event rates
(likelihood of crash severity levels), and to calculate their marginal
probability, the cumulative incident function (CIF) as another
applicable output of CRM is adopted to the crash analysis problem.
The event probability estimated by CIF is interpreted as the likeli-
hood of crash occurrence with j severity by time t. CIF estimation
and its association with cause-specific hazard function are defined
in Eq. (3):

CIFjðtjXÞ ¼ pðT0 � t; d0 ¼ jjxÞ ¼
Z t

0

aj tjXð ÞS tjXð Þdt ð3Þ

In Eq. (3), CIFjðtjXÞ denotes the crash severity j likelihood by
time t and before the occurrence of the crashes with other severity
levels given contributor vector X. In addition, S tjXð Þ indicates the
event-free survival likelihood function given contributor vector X.

Simply, Eq. (4) shows that the cumulative incidence function
(CIF) of crash occurrence is equal to the sum of CIF related to each
crash severity level (K = 3 in this study).
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CIFcðtjXÞ ¼
X3
j¼1

CIFjðtjXÞ ð4Þ

The above equation indicates that the cumulative probability of
crash occurrence at time t is equal to the sum of the CIF of PDF,
injury, and fatal crash.

Although the mathematical part of CRM and its outputs are
complicated, the model’s unique capabilities to account for time
effects, to predict crash severity and occurrence in the same model,
and to calculate interpretable marginal effects justify the complica-
tions. For more details regarding competing risk analysis, please
refer to Kalbfleisch and Prentice (2002) and Putter et al. (2007).

3. Data

This research dataset includes both crossings with no crashes
and crossings with crash records with three potential severity
levels of PDO, injury, and fatal. All variables’ values for 29 years

are summarized in Table 2. Because nearly all variables’ values
changed every year, Table 2 summarized their minimum and max-
imum annual values for the 29-year analysis period.

The data are merged from the following three sources: (a) North
Dakota roadway network, railway network, roadway intersections,
and HRGCs from the ND Department of Transportation (ND GIS
Hub Data Portal), which is utilized to extract crossings’ geometric
features; (b) highway-rail grade crossing accidents/incidents pro-
vided by the Federal Railway Administration (FRA, 2011); and (c)
highway-rail grade crossing inventory from the FRA data sources,
which provide current and historical crossing inventory informa-
tion. The final cleaned and integrated dataset has 3,194 unique
public highway-rail grade crossings in North Dakota from 1990
to 2018. Since operating and physical characteristics of a grade
crossing (e.g., control devices and highway/railway traffic volume)
may change over time, each crossing’s contributors’ records are
recorded for 29 years in the analysis.

4. Results

4.1. Estimated coefficient and hazard ratio interpretation

All significant contributors’ estimated coefficient (Coe) for each
severity level (PDO, injury, and fatal), and crash occurrence (crash)
are summarized in Table 3. The regression coefficient is estimated
based on Eq. (2) (cause-specific hazard model), which shows the
corresponding magnitude change in the cause-specific hazard
function for each one-unit change in the contributor. As indicated
in Table 3, a positive coefficient of 0.55 indicates a significant
increase in hazard ratio associated with crossings with passenger
train service as compared with freight train service. And a negative
coefficient of �2.24 indicates a significant decrease in fatal crash
hazard ratio associated with crossings with stop lines as compared
with a crossing with no pavement markings.

For crash occurrence likelihood, one can see from Table 3 that
pavement markings, freight train service (compared with passen-
ger train service), DC train detection system, unavailable commer-
cial power (compared with available commercial power), unpaved
roadway (compared with paved roadway), all types of crossing
control devices (except crossbucks + stop sign compared with
crossbucks-only), nighttime train traffic, and truck percentage
reduce the crash hazard ratio. CWT, MD train detection system,
daytime train traffic, roadway travel speed, AADT, crossing angle,
and number of lanes have positive impacts on crash hazard. Most
of the control device impact findings met the expectations with
current understanding from literature (Lenné et al., 2011; Meeker
et al., 1997; Millegan et al., 2009; Raub, 2009). The reason for these
impacts is primarily because it is possible that the active controls
are able to better attract a driver’s attention and result in greater
compliance compared with the passive controls. However, several
findings are worthy of additional attention and detailed research.
Crossbucks and stop sign (compared with crossbucks-only) have
a positive impact on crashes, indicating that adding a stop sign
to a crossing already equipped with a crossbucks-only control
might increase crash likelihood. The detailed marginal effect will
be conducted later. Such a finding could be caused by indiscrimi-
nate use of stop signs at passive grade crossings. The FHWA estab-
lished a 10-year crossbucks assemblies requirement (stopsign
+ crossbucks sign) for all passive crossings in 2009 (FHWA, 2009).
One of the potential rationales for indiscriminate use of the stop
sign could be public acceptance and understanding of how to use
stop signs correctly before 2009 and after. Traffic exposures are
normally believed to have an increased impact on crashes. In other
words, higher traffic exposure results in higher crash likelihood.
However, this study found that nighttime train traffic and truck

Table 2
Summary statistics of considered variables in the study.

Variable
Names

Categorical Variable Values Min
Frequency

Max
Frequency

Crash Severity
No Crash 3163 3192
PDO 2 18
Injury 0 11
Fatal Crash 0 6

Type of Train Service
Freight 2718 2807
Intercity Passenger 387 476

Pavement Markings
No Marking 3111 3124
Stop Lines 49 67
RR Xing Symbols 16 25

Train Detection System
None 2398 2402
Constant Warning Time (CWT) 375 378
Motion Detection (MD) 42 43
PTC 1 1
DC 374 376

Commercial Power
Available 2107 2107
Not Available 1087 1087

Roadway Paved Condition
Paved 563 563
Not Paved 2631 2631

Crossing Control Types
Gate 4 22
Gate + Audible 6 92
Crossbucks + Stop Sign 44 78
Gates + StandardFLS + Audible
+ Stop Signs

2 14

Gates + StandardFLS + Audible 27 184
Crossbucks Only 2451 2676
Gates + CantileverFLS + Audible 2 28
CantileverFLS + StandardFLS
+ Audible

2 6

Gates + CantileverFLS
+ StandardFLS

1 9

Gates + CantileverFLS
+ StandardFLS + Audible

2 21

Total Day Time Through Trains 0 35
Total Night Time Through Trains 0 33
Annual Average Daily Traffic 5 25,600
Highway Speed Limit (MPH) 1 70
Percent of Trucks (Percentage) 1 22.67
Distance to the Nearest Intersections (Meter) 0.78 2502
Crossing Angles (Degree) 7.9 90
Number of Traffic Lanes 1 4
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percentage have decreased impacts on crashes in general. The
potential rationales behind these effects need further research.
They may be rooted in operating changes and their interdependent
effects. For example, a higher train volume at night might indicate
reduced train volume at night, which will reduce conflict since
road traffic often drops significantly at night. Few researchers
investigate traffic contributions at different times. However, a
few recent studies also observed the similar nighttime train traffic
effects (Zheng et al., 2019; Zhou, Lu, Zheng, Tolliver, & Keramati,
2020). To truly understand independent marginal effects, one
needs to conduct more detailed comparable studies.

Regarding contributors’ impacts on severity levels, some factors
show significant effects on specific crash severity(s) likelihoods but
not on all three of them, except two crossing control combinations,
gates and standard flashing lights and audible devices, and cross-
bucks and stop signs. The independent censoring assumption can
be the main reason for such under-estimated results. Crossings
with gates, standard flashing lights, and audible devices show sig-
nificant negative impact on all crash severity likelihoods compared
with crossings with crossbucks-only. These results match those
from previous studies. For instance, Liu et al. (2015) indicated that
highway users are more likely to stop at crossings with gates that
also have flashing lights and audible warnings. They also showed
that highway users stopping at gates is associated with lower crash
severity. However, in comparison with crossbucks-only, cross-
bucks and stop signs indicate a significant positive impact on all
PDO, injury, and fatal crashes. The reason might be rooted in the
fact that stop signs are among the traffic controls often used at reg-
ular highway intersections, possibly resulting in confusion among
drivers at HRGCs (Jeng, 2005).

As indicated earlier in Eq. (2), regression coefficient (bk) repre-
sents the corresponding magnitude change in the cause-specific
hazard function associated with a one-unit change in the contrib-
utor. However, hazard ratio (HR) represents the magnitude of the
corresponding change in the crash occurrence and severity likeli-
hood. In other words, HR (exp b>

k X
� �

) shows contributors’ instanta-
neous crash occurrence or severity likelihoods, while the
regression coefficient measures the contributors’ significance in
effects on HR. Table 4 represents HR for all severity levels and crash
occurrence for each crossing control based on Eq. (2). In terms of a
categorical variable, HR estimates the crossing’s relative risk with a
specific contributor’s value-level compared to the reference level.
For a continuous contributor, HR indicates the relative indepen-
dent risk related to a one-unit change in variable (Logan, Zhang,
& Klein, 2006). As indicated earlier, an HR greater than 1 indicates
an increase in hazard risk, and an HR below 1 represents a decline
in hazard risk. The percentage change in risk probability for each
crossing control change compared with the crossbucks-only (refer-
ence level) is calculated as |HR-1| � 100 and can be seen as ‘‘%im-
pact” in Table 4.

In general, Table 4 indicates that all control devices reduce
crash occurrence and fatal crash likelihood compared with
crossbucks-only except crossbucks + stopsigns because all of their
corresponding HR values are less than 1. Regarding PDO crash like-
lihood, gates + cantilevelfls + audible and gates seem to have
higher PDO crash likelihoods compared with crossbucks only
crossings. Regarding injury crash likelihood, gates + audible cross-
ings will have a higher injury likelihood compared with
crossbucks-only crossings. These three findings seem counterintu-
itive. The potential rationale could be related to roadway users’

Table 3
Coefficient estimation.

Variable PDO Injury Fatal Crash

coef Pr(>|z|) coef Pr(>|z|) coef Pr(>|z|) coef Pr(>|z|)

Type of Train Service (Reference: Freight Train)
Intercity Passenger Train 0.55 0.02** �0.08 0.82 0.62 0.14 0.34 0.06*

Pavement Markings (Reference: None)
Stop Lines �0.40 0.41 �0.46 0.48 �2.24 0.10* �0.55 0.16
RR Xing Symbols �0.68 0.28 �0.90 0.27 0.50 0.69 �0.64 0.14

Train Detection (Reference: None)
CWT 1.533 0.00*** 1.63 0.00*** 2.30 0.00*** 1.73 <2.2e�16***

MD 1.58 0.00*** �0.65 0.39 1.38 0.28 1.29 0.0021659***

DC �0.65 0.02** �0.25 0.59 �1.18 0.26 �0.44 0.06*

Is Commercial Power Available? (Reference: Yes)
No �0.15 0.46 �0.53 0.03** 0.26 0.42 �0.19 0.18

Is Roadway/Pathway Paved? (Reference: Yes)
No �0.79 0.00*** �0.25 0.38 �0.74 0.09* �0.65 0.00***

Crossing Control (Reference: Crossbucks-only)
Gates + CantileverFLS + StandardFLS �1.56 0.108 �1.41 0.132 �12.71 <2.e�16*** �1.616 0.0005****

Gates + CantileverFLS + StandardFLS + Audible �13.95 <2.e�16*** �1.76 0.020** �1.07 0.249 �2.749 0.000***

Gates + CantileverFLS + Audible 0.51 0.412 �13.73 <2.e�16*** �18.33 <2.e�16*** �0.594 0.410
Gates + StandardFLS + Audible �2.10 0.000*** �2.04 0.000*** �2.40 0.000*** �2.215 <2.e�16***

Gates + Audible �12.31 <2.e�16*** 0.11 0.908 �17.85 <2.e�16*** �1.202 0.262
Gates + StandardFLS + Audible*StopSigns �1.01 0.176 �12.59 <2.e�16*** �16.27 <2.e�16*** �1.793 0.009***

Crossbucks + StopSigns 0.85 0.007*** 1.36 0.000*** 1.30 0.016** 1.143 0.000***

Gates 0.03 0.948 �12.65 <2.e�16*** �17.98 <2.e�16*** �0.748 0.070*
CantileverFLS + StandardFLS + Audible �1.02 0.222 �13.27 <2.e�16*** �18.79 <2.e�16*** �1.424 0.049**

Total Daylight Thru Trains 0.23 0.00*** 0.15 0.09* �0.12 0.69 0.16 0.00***

Total Night time Thru Trains �0.18 0.00*** �0.17 0.05* 0.17 0.57 �0.14 0.01***

Highway Speed Limit 0.01 0.53 0.02 0.28 0.04 0.10* 0.01 0.15
Annual Average Daily Traffic 0.00 0.07* 0.00 0.99 0.00 0.25 0.00 0.08*
Estimated Percent Trucks �0.16 0.01*** �0.24 0.00*** �0.10 0.26 �0.18 0.00***

Crossing Angle 0.00 0.38 �0.01 0.08* 0.00 0.55 0.00 0.12
Number of Traffic Line 0.38 0.04** 0.20 0.39 0.05 0.88 0.31 0.03**

* Significant at a 90% confidence level.
** Significant at a 95% confidence level.
*** Significant at a 99% confidence level.
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psychological aggressive behavior around crossing gates (Ma, Hao,
Xiang, & Yan, 2018). Note that even though they all have a greater-
than-1 HR value, all of them are near 1 except for the crossbucks
+ stopsign, which means they are indicating a slightly positive
impact. Gates for PDO shows a 3% positive impact, which is very
close to no difference. Gates + audible for injury shows a 12% pos-
itive impact. For crossbucks + stopsign control device, this study
consistently found that adding a stop sign to a crossing that cur-
rently has only crossbucks may increase crash occurrence, PDO,
injury, and fatal crash likelihoods. As indicated earlier, this could
be caused by the fact that the crossbucks assemblies requirement
is relatively new and stop signs were used as a traffic control
device for highway intersections rather than grade crossings in
the community. For highway intersections, highway users encoun-
tering stop signs normally only need to stop and check for
approaching traffic in a limited distance range. However, for grade
crossings, the distance to be checked should be much longer to
ensure safe operation. Moreover, because stop signs are usually
found at regular highway intersections, their presence at HRGCs
may cause confusion for vehicle users (Jeng, 2005). Burnham
(1995) research showed that only 18% of motorists might be
alerted to the stop signs and 82% were confused or semi-
confused about the stop signs’ presence at grade crossings. To truly
and fully understand the marginal effects of such control devices, a
carefully designed before-and-after comparative study is needed.

Although an analysis of both coefficient and HR provides useful
information, such analyses do not yield direct estimations related
to the marginal magnitude of contributors’ long-term impact on
risk. For example, estimated HR represents only the directional rel-
ative crash/severity likelihood changes (percent impact in Table 4).
Crash/severity likelihood changes corresponding to a one-unit
increase in the specific contributor while all other contributors’
impacts are also included. Therefore, the CIF analysis is performed
to calculate contributors’ marginal effects while considering cross-
ing controls’ cumulative long-term time impacts when taking into
consideration the dependency of competing events in this study.

4.2. CIF analysis

Estimation of contributors’ long-term robust effects is one of
the competing risk model advantages. This effect is provided by
estimation of cumulative probability of the crash severity levels
(PDO, injury, and fatal) and crash occurrence as the CIF with Eqs.
(3) and (4), respectively.

In this section, the cumulative probability marginal effect of the
following combinations of active and passive controls are assessed:
(1) gates, (2) gates and audible, (3) gates and standard flashing
lights and audible, (4) gates and standard flashing lights and audi-
ble and stop signs, (5) gates and cantilever flashing lights and audi-
ble, (6) cantilever flashing lights and standard flashing lights and
audible, (7) gates and cantilever flashing lights and standard flash-

ing lights and audible, (8) gates and cantilever flashing lights and
standard flashing lights, (9) crossbucks (only), and (10) crossbucks
and stop signs.

To estimate the cumulative probability marginal effect of each
crossing control, first, the predicted CIFj, and CIFc for all crossings
during the 29-year period are calculated by using Eqs. (3) and
(4), respectively. Second, using Eq. (5), the average annual CIF of
each severity level (j) is estimated for all the CIFs with the same
type of crossing control. Then, the marginal countermeasure differ-
ence can be defined by Eq. (6).

CIFjðtjxpÞ ¼
Pn

i¼1CIFjðtjxpiÞ
n

ð5Þ

where xp is variable of specific crossing control p and CIFj tjxp
� �

is the
average CIF for every crossing control p and severity level j.

Dj;p�qðtÞ ¼ CIFjðtjxpÞ � CIFjðtjxqÞ ð6Þ
where Dj;p�qðtÞ is the marginal effect of changing crossing control
from q to p for severity level j at year t.

Figs. 1 and 2 present the 29-year prediction of cumulative crash
severity and occurrence likelihoods by comparing eight pairs of
crossing controls. The authors compared alternative options by
adding a specific device into a base option except for Fig. 1(a).
The base case for Fig. 1(a) is crossbucks-only and the alternative
case is changing the control device to gate-only.

According to Fig. 1(a), switching from passive control to active
control will likely reduce injury and fatal crash likelihood. How-
ever, this change will increase crash occurrence and PDO likeli-
hoods. These results seem counterintuitive because one normally
expects improved safety performance in crash occurrence and in
all severities if a change is made from passive control to active con-
trol. The results indicate switching the control device to gate from
crossbucks-only has effects on more severe crashes, but this does
not reduce PDO crashes and crash occurrence in general.

Fig. 1, part b indicates that adding gate to crossings equipped
with cantilevered flashing lights, standard flashing lights, and audi-
ble warnings will reduce crash occurrence and PDO likelihoods, but
will increase injury and fatal crash likelihood. In other words,
upgrading crossings already equipped with flashing lights and
audible devices will only reduce crash occurrences and PDO
crashes but will not reduce more severe crashes. Similar findings
are found in the literature. Gates were found to reduce the crash
frequencies as they provide physical barriers leading to a decline
in the chance of vehicle-train collisions (Austin & Carson, 2002;
Elvik, Høye, Vaa, & Sørensen, 2009; Ogden & Cooper, 2019;
Ogden, 2007; Park & Saccomanno, 2005; Raub, 2009). Alterna-
tively, as a result of some drivers’ pre-crash aggressive behavior,
such as going around gates, gate-violations can also result in more
severe crash occurrences. Therefore, some research findings indi-
cated that the gated crossing crashes are associated with a higher

Table 4
Crossing control hazard ratio estimation.

Variable PDO Injury Fatal Crash

Impct HR Impct HR Impct HR Impct HR

Crossing Control (Reference: Crossbucks-only)
Gates + CantileverFLS + Audible 67% 1.67 100% 0.000001 100% 0.00000001 45% 0.55
Gates 3% 1.03 100% 0.000003 100% 0.00000002 53% 0.47
Gates + Audible 100% 0.000005 12% 1.12 100% 0.00000002 70% 0.30
CantileverFLS + StandardFLS + Audible 64% 0.36 100% 0.000002 100% 0.00000001 76% 0.24
Gates + CantileverFLS + StandardFLS 79% 0.21 76% 0.24 100% 0.000003 80% 0.20
Gates + StandardFLS + Audible + StopSigns 64% 0.36 100% 0.0000034 100% 0.0000001 83% 0.17
Gates + StandardFLS + Audible 88% 0.12 87% 0.13 91% 0.09 89% 0.11
Gates + CantileverFLS + StandardFLS + Audible 100% 0.000001 83% 0.17 66% 0.34 94% 0.06
Crossbucks + StopSigns 134% 2.34 288% 3.88 267% 3.67 213% 3.13
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likelihood of more severe crashes (Cooper & Ragland, 2012; Raub,
2009).

Fig. 1, part c indicates that adding stop signs to crossings
equipped with crossbucks will consistently increase the crash
occurrence and severity likelihoods. This finding is consistent with
previous coefficient and hazard ratio analyses. These probabilities
are increased significantly by 284%, 235%, 333%, and 364%, respec-
tively (annually). The potential rationales are discussed in an ear-
lier section. However, according to Fig. 1, part d, one can see that
adding stop signs to actively controlled crossings will reduce crash
occurrence, injury, and fatal crash likelihood. However, PDO, a less
severe crash likelihood, can be increased cumulatively by 47% in
the 29-year period. These results are consistent with previous
studies (Bezkorovainy & Holsinger, 1966; Burnham, 1995; Russell
& Burnham, 1999; Sanders, McGee, & Yoo, 1978). For instance,
according to Lerner (2002), widespread use of stop signs might
have a negative effect on other passive crossing controls function
(i.e., crossbucks or yield signs) as their use can decrease passive
crossing controls’ credibility. But in this research, the authors
found adding stop signs to crossings with crossbucks-only will
have a negative effect on crash occurrence and all severity levels;
but adding a stop sign to an already actively controlled crossing
will have additional positive effects on reducing crash occurrence
and more severe crashes, but it has the negative effect of increasing
the likelihood of less severe crashes such as PDO.

As can be seen from Fig. 2, part a, adding audible devices to
crossings with gates, cantilevered flashing lights, and standard
flashing lights will reduce crash occurrences and PDO crashes by
16% and 100%, respectively, each year. Doing so will also result in
slightly reduced injury crash likelihood between years 4 and 25,
and shows no effect on injury crash probability for the rest of the
study period. These results are expected as the presence of audible
devices warn drivers approaching the crossing (Haleem & Gan,
2015). However, this type of crossing control upgrade could result
in a considerable increase in fatal crash likelihood, which is coun-
terintuitive. To better understand and verify why adding audible
devices to crossings equipped with gate and flashing lights would
increase fatal crash rate, further data and research are needed.

Fig. 2, part b indicates adding an audible device to crossings
with gates will reduce PDO and fatal crashes to nearly zero. In
addition, this type of improvement will reduce crash occurrence
by 24% cumulatively during the 29-year period. However, in this
study, adding bells at crossings with gates and flashing lights will
increase injury crash likelihood. In other literature, totally different
conclusions were drawn. The Federal Railroad Administration
(2011) research indicated that driving around or through the gates
is more likely to happen at crossings with gates and flashing lights
without bells, which suggests intentional trespassing behavior.
However, Liu et al. (2015) suggest there is a higher possibility of
driving around or through the gate at crossings with gates and

Fig. 1. Cumulative probabilities of crash severity and frequency for first crossing control pairs.
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audible warnings compared with those with gates only. Increased
trespassing behavior with bells may be the type of behavior that
tends to result in injury crashes.

Fig. 2, part c, indicates that adding standard flashing lights to
crossings with gates, cantilevered flashing lights, and audible
devices, will result in decreases in PDO crash and crash occurrence
but will result in increases in injury and fatal crashes. Installing
standard flashing lights as supplemental flashing-light signals or
side lights at the crossings with cantilevered flashing lights will
increase the visibility of a crossing, thus making a higher number
of vehicles aware that they are approaching a crossing or that a
train is approaching. Consequently, it can be expected that crash

frequency will decrease (Ogden & Cooper, 2019). With regard to
its negative impact on more severe crashes, one potential reason
could be associated with acute angles. Guided by the traffic control
device installation manual, crossings equipped with additional
pairs of light units need to be directed toward vehicular traffic
approaching the HRGC from highway closely adjacent to and in
parallel with the railroads. Such installations can create an acute
angle between the railway track and the highway at crossings
(Ogden & Cooper, 2019). Previous research (Austin, 2000; A.
Keramati et al., 2020; Liu & Khattak, 2017; Oh, Washington, &
Nam, 2006; Wigglesworth, 2001; Yan et al., 2010; Zhao et al.,
2018) all agreed that acute crossing angles are often associated

Fig. 2. Cumulative probabilities of crash severity and frequency for second crossing control pairs.
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with higher levels of crash severity. Consequently, it is expected
that crossings with standard flashing lights used as additional
warning lights are more likely to have crashes with higher levels
of severity (injury and fatal).

Fig. 2, part d, indicates that adding standard flashing lights to
crossings with gates and audible devices will reduce crash occur-
rence and injury likelihoods, but will increase PDO and fatal crash
rates. According to Lenné et al. (2011), mean vehicle speed on
approaches to HRGCs declined more promptly in response to flash-
ing lights in comparison with traffic signals. Therefore, crash occur-
rence is expected to be reduced. Although adding flashing lights to
crossings with gates and audible devices increases the crossings’
fatal and PDO crash likelihoods, the difference is small, both less
than 0.1%. However, the authors believe additional analysis is
needed to better understand the increase

To facilitate the quantifying of such marginal effects and to bet-
ter understand the control devices’ upgrading effects, Table 5 sum-
marizes the estimated marginal effect of each crossing control
change in average annual probability change during the 29-year
period. Table 5 also provides summary information of Figs. 1 and
2 by providing average annual absolute crash likelihood changes.

One can see from Table 5 that upgrading crossing control to
gates from crossbucks-only will likely reduce injury likelihood
0.12% while holding other variables unchanged and reduce fatal
crash likelihood by 0.05%. However, the likelihood of a PDO crash
will increase by 0.83% annually. Adding a gate to a crossing already
controlled by flashing lights and bells will significantly reduce PDO
likelihood by 1.52%, but will increase injury and fatal crash likeli-
hood by 0.45% and 0.28%, respectively. Adding stop signs to cross-
ings with crossbucks signs will increase crash likelihood for all
three levels; and adding stop signs to a crossing already actively
controlled will reduce the overall crash occurrence, but will
increase PDO likelihood by 0.14%. Adding audible devices to a
crossing already actively controlled will reduce overall crash
occurrence but will slightly increase more severe crash likelihood.
Note that adding audible devices to a crossing actively controlled
by gate-only will again, in general, reduce crash occurrence likeli-
hood by 0.25% but increase injury likelihood by 0.78%. Adding stan-
dard flashing lights to crossings that are actively controlled will
reduce crash occurrence likelihood.

5. Concluding remarks

5.1. Summary

The study findings are based on 29-year empirical HRGC safety
performance data in North Dakota. The study extends knowledge
of countermeasures’ effects on HRGC crash frequency and severity
likelihood changes considering various pre-improvement condi-
tion situations. In addition, this study provided understandings
on the long-term time-effects of HRGCs’ countermeasures.

Estimation of countermeasures’ long-term impact on both crash
occurrence and severity likelihoods can increase modeling com-

plexity while considering effects on crash occurrence and severity
simultaneously. Moreover, it is always a challenge to select an
unbiased predicting model to predict minority class with imbal-
anced data set. The competing risk model was selected as a novel
method to address those issues and predict likelihoods of crash
occurrence and severity simultaneously, as this model is able to:
(a) estimate time-to-event outputs, (b) predict crash severity and
occurrence simultaneously, and (c) quantify the effect of crossings
with no crash records during the entire study time span by its abil-
ity in handling right-censored observations.

5.2. Findings and practical implications

The research findings improve the knowledge of control
devices’ long-term marginal effects on HRGC crash occurrence
and severity likelihoods. The main takeaways are summarized
below:

1) In general, adding a control device to a crossing will reduce
crash occurrence likelihood except when adding stop sign to
a crossing already controlled by crossbucks only.

2) Adding a control device to a crossing will reduce crash
occurrence likelihood, but the effects on the three severity
levels can be very different. For example, adding stop signs
to a crossing passively controlled by gate, flash lights, and
audible devices will reduce injury and fatal crash likelihood.
However, doing so will increase PDO crash likelihood even
though the overall crash occurrence likelihood is reduced.
Because of this finding, the authors suggest that weighted
improvement benefits among the three severity levels
should be considered when agencies making safety
improvement decisions

3) The same control device updating will have different mar-
ginal effect if the pre-improvement control level is different.
For example, adding audible device to a crossing already
controlled by gate-only compared to a crossing controlled
by gate and flashing lights are different. The marginal effects
on the reduced crash occurrence likelihood is higher for gate
only (0.25% reduction) than for gate and flashing lights
(0.14% reduction) from Table 5. Marginal effects of a control
device upgrading can only be fully understood if one consid-
ers the different pre-upgrading control levels.

5.3. Study limitations

To understand the countermeasure’s marginal effectiveness,
before-and –after practical implementation is needed, then the
precise practical effectiveness can be quantified and analyzed.
However, those measurements and data have not been available
and this study used ND empirical data to apply countermeasures
effectiveness analysis. Consequently, the uncertainty of this empir-
ical pilot study needs further investigation before using this infor-
mation as HRGC safety decision-making frame work.

Table 5
Average annual crash likelihood change for crossing control change.

Crossing Control Change PDO Injury Fatal Crash

Gate Replace Crossbucks 0.83 �0.12 �0.05 0.66
Add to CantileverFLS + StandardFLS + Audible �1.52 0.45 0.28 �0.79

Stop Signs Add to Crossbucks 0.48 0.39 0.19 1.06
Gate + StandardFLS + Audible 0.14 �0.22 �0.09 �0.16

Audible Add to Gate + CantileverFLS + StandardFLS �0.43 0.002 0.28 �0.14
Gates �1.03 0.78 0.00000001 �0.25

StandardFLS Add to Gate + CantileverFLS + Audible �1.99 0.45 0.28 �1.26
Gate + Audible 0.30 �0.56 0.09 �0.18
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Interaction effects of contributors are not considered and tested
in this study, including interaction factors that might alter the esti-
mated coefficient of crossing controls.

5.4. Recommended directions for future research

The effect of geometric parameters of HRGCs and countermea-
sures (traffic control devices) interaction on their safety perfor-
mance is still under researched. Therefore, future studies on
interaction effect of HRGCs geometric and countermeasures are
recommended to evaluate both crash likelihood and crash severity
changes. Moreover, countermeasures’ effects with more pre-
improvement conditions should be further researched when sup-
porting data become available. In this study, the authors find that
adding stop signs to a crossing equipped with crossbucks will only
increase crash occurrence and all three severity crash likelihoods.
Further, better controlled experiments should be conducted to bet-
ter understand the effects of cross-buck assembly with stop signs.
Moreover, safety improvement decision making cannot be solely
determined by the marginal countermeasures’ effects, life time
total cost analysis including initial cost of construction, operational
cost, and maintenance cost should be conducted in future research
to fully understand each countermeasure’s cost-effectiveness.
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a b s t r a c t

Introduction: The pedestrian hybrid beacon (PHB) is a traffic control device used at pedestrian crossings. A
recent Arizona Department of Transportation research effort investigated changes in crashes for different
severity levels and crash types (e.g., rear-end crashes) due to the PHB presence, as well as for crashes
involving pedestrians and bicycles. Method: Two types of methodologies were used to evaluate the safety
of PHBs: (a) an Empirical Bayes (EB) before-after study, and (b) a long-term cross-sectional observational
study. For the EB before-after evaluation, the research team considered three reference groups: unsignal-
ized intersections, signalized intersections, and both unsignalized and signalized intersections combined.
Results: For the signalized and combined unsignalized and signalized intersection groups, all crash types
considered showed statistically significant reductions in crashes (e.g., total crashes, fatal and injury
crashes, rear-end crashes, fatal and injury rear-end crashes, angle crashes, fatal and injury angle crashes,
pedestrian-related crashes, and fatal and injury pedestrian-related crashes). A cross-sectional study was
conducted with a larger number of PHBs (186) to identify relationships between roadway characteristics
and crashes at PHBs, especially with respect to the distance to an adjacent traffic control signal. The dis-
tance to an adjacent traffic signal was found to be significant only at the a = 0.1 level, and only for rear-
end and fatal and injury rear-end crashes. Conclusions: This analysis represents the largest known study
to date on the safety impacts of PHBs, along with a focus on how crossing and geometric characteristics
affect crash patterns. The study showed the safety benefits of PHBs for both pedestrians and vehicles.
Practical Applications: The findings from this study clearly support the installation of PHBs at midblock
or intersection crossings, as well as at crossings on higher-speed roads.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

The pedestrian hybrid beacon (PHB, also known as a High-
intensity Activated crossWalK [HAWK] beacon) is a traffic control
device used at pedestrian crossings. It was added to the Manual
on Uniform Traffic Control Devices (MUTCD) in 2009 (Federal
Highway Administration, 2009). The PHB’s vehicular display faces
are typically located on mast arms over the major approaches to
an intersection and in some locations on the roadside. See Fig. 1
for an example installation. The face of the PHB consists of two
red indications above a single yellow indication that rests in a dark
mode. When activated by a pedestrian, it first displays a few sec-
onds of flashing yellow followed by a steady yellow change inter-

val, and then displays a WALK indication to pedestrians and a
steady red indication to drivers, which creates a gap for pedestri-
ans to cross the major roadway. During the flashing pedestrian
clearance interval, the PHB displays an alternating flashing red
indication to allow drivers to proceed after stopping if the pedestri-
ans have cleared the drivers’ half of the roadway, thereby reducing
vehicle delays. An official interpretation by the Federal Highway
Administration (FHWA) (Federal Highway Administration, 2011)
allows agencies to provide a brief all-red interval before the onset
of the WALK interval and a brief interval between the onset of the
steady DON’T WALK and the termination of the flashing red signal
for drivers.

The focus of this Arizona Department of Transportation (ADOT)
research effort (Fitzpatrick, Cynecki, Pratt, Park, & Beckley, 2019)
was to investigate changes in crashes for different severity levels
and crash types (e.g., angle or rear-end crashes) due to the PHB
presence and in crashes involving pedestrians and bicycles.

https://doi.org/10.1016/j.jsr.2021.04.001
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The PHB has shown considerable potential for improving driver
yielding (Fitzpatrick, Turner, Brewer, Carlson, Lalani, Ullman, &
Whitacre, 2006; Turner, Fitzpatrick, Brewer, & Park, 2006;
Fitzpatrick, Avelar, Pratt, Brewer, Robertson, Lindheimer, & Miles,
2016; Fitzpatrick & Pratt, 2016) and pedestrian safety (Fitzpatrick
& Park, 2010; Zegeer, C., Srinivasan, R., Lan, B., Carter, D., Smith,
S., Sundstrom, C., Thirsk, N.J., Zegeer, J., Lyon, C., Ferguson, E., and
Van Houten, R., 2017a). Previous studies have proven PHBs’ effec-
tiveness in reducing pedestrian crashes; however, questions on the
effect of PHBs on rear-end crashes or severe crashes could not be
fully addressed because of statistically insignificant results due to
limited sample sizes. One of the main limitations was the relatively
small sample sizes for crash data associated with PHBs. In addition
to the focus on crash severity and type, a request was made to
investigate the relationship between the PHB location and spacing
to nearby signalized intersections.

The objective of this study is to investigate the safety perfor-
mance of the PHB using different reference groups, with a focus
on crash severity and type, especially with respect to pedestrians
and rear-end crashes.

2. Previous studies

In a 2010 FHWA study, researchers conducted a before-and-
after evaluation of the safety performance of the HAWK, now
known as the PHB (Fitzpatrick & Park, 2010). Using an Empirical
Bayes (EB) method, their evaluations compared the observed crash
frequency after installation of the treatment (PHB) to the EB esti-
mate of the expected crash frequency for the same after period
without the treatment. To develop the datasets used in the evalu-
ation, researchers counted the crashes occurring 3 years before and
up to 3 years after installation of the PHB. The crash categories
examined in the study included total, severe injury (fatal, incapac-
itating injury, non-incapacitating injury, and possible injury), and
pedestrian crashes. After considering data for 21 treatment sites
and 102 unsignalized intersections (reference group), the research-
ers found in their evaluation the following changes in crash statis-
tics after installation of the PHBs:

� A 29% reduction in total crashes (statistically significant).
� A 15% reduction in severe crashes (not statistically significant).
� A 69% reduction in pedestrian crashes (statistically significant).

A 2017 National Cooperative Highway Research Program study
(Fitzpatrick & Park, 2010) and paper (Zegeer, C., Srinivasan, R., Lan,
B., Carter, D., Smith, S., Sundstrom, C., Thirsk, N.J., Zegeer, J., Lyon,
C., Ferguson, E., and Van Houten, R., 2017a) investigated the safety

effectiveness of the PHB and developed several crash modification
factors (CMFs). For a PHB with advance yield or stop pavement
markings and signs, the CMF was 0.432 for pedestrian crashes,
0.820 for total crashes, and 0.876 for rear-end or sideswipe crashes.

3. Methodology

For the ADOT safety evaluations, researchers used two
methods:

� EB before-after study
� Cross-sectional observational study.

The EB before-after evaluation method estimated the changes
in crashes after installation of PHBs by comparing the observed
crash frequency after installation of the PHB to the EB estimate
of the expected crash frequency for the same after period without
the PHB (the counterfactual crash frequency). The counterfactual
crash frequency was obtained by combining the observed before-
period crash frequency, prediction from the safety performance
function (SPF) based on reference sites (similar in site characteris-
tics but without a PHB), and an adjustment factor that accounts for
time trends and traffic volume changes between before and after
periods. Details on the EB method are available elsewhere
(Fitzpatrick, Cynecki, Pratt, Park, & Beckley, 2019; Hauer, 1997).

In the cross-sectional observational study, the crashes for a
group of PHB sites were examined to investigate the effects of
other site characteristic variables on crashes at the PHB sites. The
cross-sectional observational analysis included a larger number
of PHB sites because it included PHB sites that were installed for
longer periods of time.

One potential bias that needs to be carefully considered in a
before-after safety evaluation is the fact that PHB sites may be
overrepresented with pedestrian crashes in the before period.
One of the major considerations in the PHB selection and ranking
criteria used by Tucson, Phoenix, and ADOT is the presence of
pedestrian crashes during the prior 3 to 5 years. For example,
ADOT Traffic Engineering Guidelines and Process 640 (entitled
‘‘Pedestrian Hybrid Beacons”) (ADOT Traffic Engineering
Guidelines, 2015) provides a point system for evaluating candidate
locations, and states that ‘‘a minimum score of 35 points merits
Pedestrian Hybrid Beacon consideration.” Five points are added
for each pedestrian or bicyclist crash occurring within the most
recent 5 years of crash data.

Therefore, a potential regression to the mean (RTM) bias may
exist at PHB locations for before-after evaluations based on the
PHB selection criteria used by Arizona agencies. Because crashes
during the before period are unnaturally high, crashes tend to
regress toward the true long-term averages during the after period,
and as a result, those sites might experience a reduction in crashes
even without the PHB. Not accounting for this bias will result in
overestimation of the safety effectiveness of PHBs. The EB before-
after evaluation method properly accounts for the RTM bias that
may exist by combining information from two sources: the
observed crash frequency in the before period at PHB locations,
and the predicted crash frequency (that is expected to be close to
the true long-term mean crash frequency) based on reference sites
with similar traffic and site characteristics as PHB locations.

The research team learned of another potential condition that
can notably affect a before-after crash study. Tucson police stopped
responding to non-injury/property damage only (PDO) crashes in
December 2010. Tucson motorists can still submit PDO reports,
but a majority of motorists do not do so. Two approaches are avail-
able to help account for this change and both were used in this
study. First, the reference sites associated with Tucson PHBs were

Fig. 1. Example PHB Installation.
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located in Tucson so that the change in reporting practices would
affect both the treatment and reference sites. The second approach
is to focus on the non-PDO crash (i.e., the fatal and injury crash)
results over the all-crash results when sample size permits.

3.1. Site identification and geometric data

The research team obtained PHB locations and installation dates
from the state and from several cities and identified 209 known
PHBs in Arizona. Roadway characteristics data were obtained using
aerial photographs for each of these sites, and Google Street View
was used to determine the posted speed limit at the crossing.
Table 1 lists the roadway variables that were considered in the
safety analysis. In some cases, a variable had to be regrouped dur-
ing the analysis; for example, the posted speed limit along the
major street (i.e., the street with the PHB) was regrouped into 35
mph (56.3 kph) and below and 40 mph (64.4 kph) or higher.

3.2. Sites used in analyses

PHBs installed from 2011 to 2015 were considered for the EB
before-after evaluation. Sites were removed from the before-after
study if major roadway improvements occurred during that period
(e.g., if a crossing site had been widened from two lanes to four
lanes, or if a driveway was added at the site). For the before-after
study, 52 PHB sites were available. At three of the 52 before-after
sites, the agency added a short median island within the space pre-
viously provided for a two-way left-turn lane as part of the PHB
improvement. The research team checked to see how the results
would change if those three sites were omitted and found no mate-
rial difference; therefore, the three sites were retained in the
analysis.

The cross-sectional study included more PHB sites because
crash data before the installation of the PHB was not needed;
therefore, more of the older installations (prior to 2011) were con-
sidered. The cross-sectional observational study included 186 PHB
sites and up to 10.75 years of crash data per intersection. Once
again, locations with geometric changes were eliminated from
the analysis.

3.3. Reference groups

Crash evaluations are beneficial when a reference group of sim-
ilar sites without treatment is identified. Three potential reference
groups were identified for before-after evaluation. The research
team selected intersections near the PHB on the major roadway

with the goal of finding intersections with a similar roadway cross
section (e.g., number of lanes or median type), speed limit, ADT,
and number of legs where pedestrians can be expected to cross
the street. Number of legs could not be matched for those PHBs
installed midblock. In general, one signalized and two unsignalized
intersections were identified for use as comparisons for each PHB
site included in the before-after evaluation.

3.4. Vehicle counts

Several sources were used to obtain vehicle counts, including
traffic counts (or historical traffic flow maps) available on the
Web and historical counts from ADOT, the Pima Association of
Governments (PAG), the Maricopa Association of Governments,
and various cities and county agencies. Vehicle counts from exist-
ing sources were identified for most of the major streets at PHB
crossings. For most sites, traffic counts were available for about
every third or fourth year. When a count was not available for a
given year, the count was estimated to be equal to the count from
the most recent year with a known count. This method was used to
estimate traffic volumes for the major streets at the study sites. In
almost all cases, vehicle count data were not available for the side
streets because the side streets were low-volume local residential
streets that are typically not counted.

3.5. Pedestrian counts

The research team contacted the appropriate roadway owners
for any available historical pedestrian count data, which included
City of Phoenix data, PAG pedestrian and bicyclist data, historical
count data from a prior FHWA study (Fitzpatrick & Park, 2010),
and miscellaneous pedestrian and bicyclist data sources. The avail-
able historical data were used to establish typical pedestrian vol-
umes by general level of pedestrian activity, as shown in Table 2.
The pedestrian volume values are primarily based on the data from
the 2010 FHWA study (Fitzpatrick & Park, 2010), with the other
counts being used to judge the reasonableness of the values. High-
way Safety Manual (HSM) (American Association of State Highway
and Transportation Officials (AASHTO), 2010) data are included in
the table as a comparison.

For sites that did not have any historical pedestrian or bicyclist
data, the Arizona-based research team members provided their
judgment on the general level of pedestrian activity at each site
using their local knowledge and a review of the land development
near the site. The general level of pedestrian activity was then
translated to pedestrian volume based upon the traffic control pre-

Table 1
Roadway Variables Considered in Safety Analyses.

Variable Description
C_Lanes Cross: total number of lanes on the cross street (side street) for intersection PHBs
Legs Number of legs at the intersection (2, 3, or 4), 2-legs are midblock crossings
M_Bike_01 Major: is a bike lane present? (1 = bike lane on one or both sides, 0 = none)
M_Lanes Major: number of through lanes
M_LTL Major: is a left-turn lane present on the major street? (0 = neither approach has a left-turn lane, 1 = at least one of the approaches has a left-turn

lane)
M_LTL_A Major: number of approaches with an exclusive left-turn lane (0, 1, or 2)
M_MT Major: median type (raised, two-way left-turn lane [TWLTL], none, flush)
M_MT_R Major: median type (raised = raised [0], all others, e.g., flush, TWLTL, none = not raised [1])
M_PK_01 Major: is a parking lane present? (1 = parking lane on one or both sides, 0 = none)
Ped or

PB_Vol_MC
Daily number of pedestrians at the intersection, sum of the pedestrian volume on the major and on the cross street

PSL Major: posted speed limit (mph)
PSL_group Major: posted speed limit for the main street grouped into either 35 mph (56.3 kph) and below or 40 mph (64.4 kph) and higher
Sig_Dist Major: distance between the PHB and the nearest traffic signal in feet
Veh Major: daily number of vehicles on the major street, also called average daily traffic (ADT)
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sent using the values shown in Table 2. For example, if the general
level of pedestrian activity at a PHB site was judged to be medium,
then 170 pedestrians (daily) were assumed to cross the major
street. Although this approach has limitations, the resources avail-
able, along with the large number of sites, required a different
approach than collecting actual pedestrian crossing volumes at
the sites.

3.6. Crash data

Crash data were supplied by ADOT for the 10.75-year period of
January 1, 2007, to September 30, 2017. The incident records
included latitude and longitude coordinate variables for the crash,
which were used to identify crashes relevant to the study sites.
About 2.8% of the crashes had to be discarded because their coor-
dinate variables were not populated.

A database was developed with the coordinates for every PHB
study and reference site, and crashes were extracted if they
occurred within 250 ft (76.2 m) of the center of the intersection
(or midblock crossing site). A total of 17,400 crashes were identi-
fied at the study sites, 5,383 of which were at PHB sites (the
amount includes periods both before and after PHB installation).
The following crash types were considered in the safety analysis:

� Total crashes
� Fatal and injury (FI) crashes, which consist of the following
severity levels: fatal, incapacitating injury, non-incapacitating
injury, and possible injury

� Rear-end crashes
� Angle crashes
� Pedestrian-related crashes
� FI rear-end crashes
� FI angle crashes
� FI pedestrian-related crashes

The collision manner variable was used to identify rear-end
crashes and angle crashes (defined as front to side crashes, exclud-
ing left turns). Pedestrian-related crashes were identified by merg-
ing the incident records with their corresponding unit records
using the incident ID variable that was common to both files. The
units were identified as vehicles, bicycles, or pedestrians. Any
crash involving one or more pedestrian units was coded as a
pedestrian-related crash. Note that the crash types identified in
the preceding list are not mutually exclusive; for example, a
rear-end crash involving two vehicles and one pedestrian would

be classified as both a rear-end crash and a pedestrian-related
crash.

4. Results

4.1. EB before-after evaluation

The before-after evaluation included 52 intersections as treat-
ment sites for which the PHB were installed during the study per-
iod. Reference Group 1 consisted of 101 unsignalized intersections,
Reference Group 2 consisted of 56 signalized intersections, and
Reference Group 3 consisted of 157 unsignalized or signalized
intersections. The reference groups represent sites similar to the
treatment sites but without the PHB.

The before period at each site was defined as January 1, 2007, to
2 months prior to the PHB installation date. Crashes occurring in
the 2 months prior to the installation date were removed because
they were assumed to have occurred during construction. Crashes
occurring in the 2 months following the PHB installation were also
removed because they were assumed to occur during the acclima-
tion period while drivers were becoming familiar with the treat-
ment. The after period consisted of 2 months following PHB
installation until September 30, 2017.

The number of months in the after period for the 52 PHBs varied
depending on when installation occurred. The average number of
months in the before period was 79 months, with a range of 50–
107 months. For the after period, the average number of months
was 52 months, with a range of 23–81 months. Reference group
sites were assigned the same time period in the before and after
periods as their corresponding PHB site.

Table 3 contains the total number of crashes, the annual crashes
adjusted by period duration, and the percentage for each type of
crash by site type for the before and after study periods. Table 4
contains the summary of site characteristic variables for PHB sites,
unsignalized intersections, and signalized intersections used in
before-after evaluations.

Because the success of an EB evaluation largely depends on reli-
able estimation of SPFs, it is important to identify a reference group
that is similar enough to the treatment group with respect to road-
way characteristics, weather, and traffic volumes. The following
three reference groups were employed to assess the robustness
of results and conclusions from the EB before-after analysis:

� Reference Group 1: Unsignalized Intersections
� Reference Group 2: Signalized Intersections

Table 2
Pedestrian volume by general level of pedestrian activity and traffic control.

General Level of
Pedestrian Activitya

PHBb Ped
Major 24 hr

PHB Ped
Cross24 hr

PHB
Ped All
24 hr

Unsigc Ped
Major
24 hr

Unsig Ped
Cross24 hr

Unsig Ped
All 24 hr

Sigd Ped
Major
24 hr

Sig Ped
Cross 24 hr

Sig Ped All
24 hr

HSMe

Sig
3-Leg

HSM
Sig
4-
Leg

High 950 1,180 2,130 320 290 610 820 700 1,520 1,700 3,200
Medium High 490 480 970 190 180 370 410 530 940 750 1,500
Medium 170 220 390 90 90 180 210 290 500 400 700
Medium Low 90 40 130 40 40 80 110 170 280 120 240
Low 40 20 60 10 20 30 60 60 120 20 50

Notes:
a The team assumed the general level of high pedestrian activity to be the 90th percentile value (rounded to the nearest 10) for the group of sites. The medium high was the
75th percentile, the medium was the 50th percentile, the medium low was the 25th percentile, and the low was the 10th percentile value (rounded to the nearest 10). Other
assumptions include that the PHB is controlling the vehicles on the major street and that the pedestrian count for all is the sum of the pedestrians crossing the major legs and
the pedestrians crossing the cross-street legs (if any).
b PHB values based on 52 PHB (HAWK) intersections.
c Unsig values based on 98 unsignalized intersections.
d Sig values based on 33 signalized intersections.
e HSM values are from the Highway Safety Manual Table 12-15, pp. 12–37.
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� Reference Group 3: Unsignalized Intersections + Signalized
Intersections

The first step in the EB before-after method was to develop and
calibrate SPFs using data from a reference group. Development of
the SPFs involved determining which predictor variables should
be used in the model, how the variables should be grouped, and
what model should be used. The vehicle volume values (i.e., ADT)
are often the key variables in developing SPFs for intersections.
In addition, pedestrian volumes are likely to play an important role
in pedestrian crashes. To account for additional intersection-to-
intersection variability (other than that caused by the differences
in traffic volumes and pedestrian volumes), number of legs (Legs),
number of through lanes (M_Lanes), existence of raised median
(M_MT_R), existence of left-turn lanes (M_LTL), existence of on-
street parking (M_PK_01 with 0 = no on-street parking, 1 = on-
street parking exists), existence of a bike lane (M_Bike_01, with
0 = no bike lanes, 1 = bike lanes exist), and total number of entering
lanes (C_lanes) were also considered in the SPF predictions.

The negative binomial regression models with indicator vari-
ables for time period to control for general trends from before to
after periods along with the aforementioned variables as indepen-
dent variables were employed to develop SPFs based on the refer-
ence group. The estimated coefficients for SPFs along with the
dispersion parameter and the goodness of fit measure (Pearson
chi-square statistic divided by degrees of freedom) for total, FI,
rear-end, angle, pedestrian-related, FI rear-end, FI angle, and FI
pedestrian-related crashes based on the three reference groups
are presented in Table 5. Table 6 shows the results of an EB
before-after evaluation for multiple crash types considered along
with three different reference groups employed.

In general, the results support positive safety effects of PHBs for
crash types considered regardless of reference group. Based on Ref-
erence Group 1 (unsignalized intersections), the effects of PHBs are
statistically significant for total, fatal and injury, rear-end, and
pedestrian-related crashes but not significant for angle, FI angle,
and FI pedestrian-related crashes, although the effects are still pos-
itive. Because the estimated SPF for FI pedestrian-related crashes is
subject to larger uncertainty due to a small sample size, research-
ers also performed a sensitivity analysis by estimating the
expected number of FI pedestrian-related crashes during the
before period in EB implementation using predictions from
pedestrian-related crash SPF (developed based on a larger sample
size and consequently subject to smaller uncertainty) after multi-
plying the ratio of FI pedestrian-related crashes and pedestrian-
related crashes at unsignalized intersections. The estimated crash
reduction for FI pedestrian-related crashes based on pedestrian-
related crash SPF was statistically significant, which is deemed to
be a consequence of more precise SPF estimation based on a larger
sample size.

For Reference Group 2 and Reference Group 3, all crash types
evaluated were statistically significant.

4.2. Cross-sectional observational safety evaluation for PHB
installations

ADOT was also interested in assessing the effects of site charac-
teristic variables on crashes at PHB sites, especially the distance
between an adjacent traffic control signal and a PHB. There were
186 PHB sites (with PHBs installed between 2000 and 2016) avail-
able for this analysis. Table 7 contains the summary of site charac-
teristics variables for PHB sites used in this cross-sectional
observational evaluation. The geometric site characteristics for
these PHB crossings were reviewed to verify that their geometry
had not changed during the study period.Ta

bl
e
3

Cr
as
he

s
du

ri
ng

ea
ch

st
ud

y
pe

ri
od

(b
ef
or
e
vs
.a

ft
er
).

C
ra
sh

Ty
pe

PH
B
B
ef

N
u
m

a
PH

B
B
ef

A
C
C
b

PH
B

B
ef

%
c

PH
B
A
ft

N
u
m

a
PH

B
A
ft

A
C
C
b

PH
B

A
ft

%
c

U
n
si
g
B
ef

N
u
m

a
U
n
si
g
B
ef

A
C
C
b

U
n
si
g

B
ef

%
c

U
n
si
g
A
ft

N
u
m

a
U
n
si
g
A
ft

A
C
C
b

U
n
si
g

A
ft

%
c

Si
g
B
ef

N
u
m

a
Si
g
B
ef

A
C
C
b

Si
g

B
ef

%
c

Si
g
A
ft

N
u
m

a
Si
g
A
ft

A
C
C
b

Si
g

A
ft

%
c

To
ta
l
cr
as
h
es

1,
06

4
3.
14

10
0%

60
0

2.
72

10
0%

1,
44

6
2.
20

10
0%

94
0

2.
24

10
0%

5,
59

4
15

.5
6

10
0%

3,
62

7
14

.9
4

10
0%

FI
cr
as
h
es

40
8

1.
20

38
.4
%

23
0

1.
04

38
.3
%

52
9

0.
81

36
.6
%

33
7

0.
80

35
.9
%

2,
06

3
5.
74

36
.9
%

1,
42

1
5.
86

39
.2
%

R
ea

r-
En

d
cr
as
h
es

46
8

1.
38

44
.0
%

20
6

0.
94

34
.3
%

56
1

0.
89

38
.8
%

30
3

0.
72

32
.2
%

2,
23

0
6.
20

39
.9
%

1,
18

2
4.
87

32
.6
%

A
n
gl
e
cr
as
h
es

19
9

0.
59

18
.7
%

11
2

0.
51

18
.7
%

28
5

0.
43

19
.7
%

18
4

0.
44

19
.6
%

1,
11

4
3.
10

19
.9
%

71
8

2.
96

19
.8
%

Pe
d-
re
la
te
d

cr
as
h
es

70
0.
21

6.
6%

19
0.
09

3.
2%

48
0.
07

3.
3%

19
0.
05

2.
0%

11
4

0.
32

2.
0%

10
1

0.
42

2.
8%

FI
_R

ea
r-
En

d
cr
as
h
es

17
5

0.
52

16
.5
%

78
0.
35

13
.0
%

17
9

0.
27

12
.4
%

11
8

0.
28

12
.6
%

70
1

1.
95

12
.5
%

40
8

1.
68

11
.3
%

FI
_A

n
gl
e

cr
as
h
es

66
0.
19

6.
2%

42
0.
19

7.
0%

11
1

0.
17

7.
7%

66
0.
16

7.
0%

46
4

1.
29

8.
3%

31
4

1.
29

8.
7%

FI
_P

ed
re
la
te
d

cr
as
h
es

62
0.
18

5.
8%

19
0.
09

3.
2%

44
0.
07

3.
0%

18
0.
04

1.
9%

99
0.
28

1.
8%

96
0.
40

2.
7%

N
ot
es
:

B
ef

=
be

fo
re

an
d
A
ft

=
af
te
r

a
N
u
m
be

r
of

cr
as
h
es
.

b
C
ra
sh

es
ad

ju
st
ed

by
pe

ri
od

du
ra
ti
on

,i
.e
.,
ad

ju
st
ed

cr
as
h
co

u
n
t
(A

C
C
)
=
cr
as
h
co

u
n
t/
n
u
m
be

r
of

da
ys

in
ea

ch
pe

ri
od

*3
65

,c
ra
sh

es
/y
ea

r.
c
Pe

rc
en

t
cr
as
h
es

=
n
u
m
be

r
of

cr
as
h
es

of
ea

ch
ty
pe

/n
u
m
be

r
of

to
ta
l
cr
as
h
es
.

#
of

si
te
s:

52
fo
r
PH

B
,1

01
fo
r
u
n
si
gn

al
iz
ed

,a
n
d
56

fo
r
si
gn

al
iz
ed

.
#

of
da

ys
in

ea
ch

pe
ri
od

(s
u
m
m
ed

ov
er

si
te
s)
:
12

3,
67

7
fo
r
PH

B
be

fo
re
;
80

,4
23

fo
r
PH

B
af
te
r;

23
9,
54

3
fo
r
u
n
si
gn

al
iz
ed

be
fo
re
;
15

2,
95

7
fo
r
u
n
si
gn

al
iz
ed

af
te
r;

13
1,
21

0
fo
r
si
gn

al
iz
ed

be
fo
re
;
an

d
88

,5
90

fo
r
si
gn

al
iz
ed

af
te
r.

K. Fitzpatrick, Eun Sug Park, M.J. Cynecki et al. Journal of Safety Research 78 (2021) 59–68

63



Crash prediction models based on crash data from PHB sites
after installation of PHBs were developed using generalized linear
models. The goal of this analysis was to identify relationships
between roadway characteristics and crashes by crash type. Vari-

ables were removed from the model if the variable was not signif-
icant and the sign of the estimated coefficient was
counterintuitive. In some cases, variables that were not statistically
significant were retained in the models (as long as the signs of

Table 4
Descriptive statistics for PHB sites used in EB before-after evaluations.

Variablea PHB (52 sites) Unsignalized intersections
(101 sites)

Signalized intersections
(56 sites)

Min Max Avg Min Max Avg Min Max Avg

Legs 2 4 3.3 2 4 3.6 3 4 3.9
M_Lanes 2 7 5.0 2 9 5.3 2 10 5.5
M_LTL 0 2 0.9 0 2 1.5 0 2 1.9
M_PK_01 0 1 0.1 0 1 0.1 0 1 0.1
M_Bike_01 0 1 0.6 0 1 0.6 0 1 0.6
C_Lanes 0 3 1.3 0 6 1.6 2 12 6.0
Veh (ADT) 5,400 47,627 23,959 4,937 47,627 24,377 5,400 48,512 24,421
PB_Vol_MC (Ped) 10 1,670 297 10 480 99 30 1,520 308
M_MT_R,

Value (# of sites)
Not Raised (33), Raised (19) Not Raised (69), Raised (32) Not Raised (35), Raised (21)

Note:
a See Table 1 for description of roadway variables.

Table 5
Estimates of coefficientsa for SPFs developed.

RGb Parameter Total FI Rear � End Angle FI Rear � End FI Angle Ped_rel FI Ped_rel

1 b0B �11.9403 �11.5226 �15.7498 �12.378 �15.7896 �12.1244 �15.4578 �15.9687
1 b0A �12.0754 �11.6312 �16.0486 �12.478 �15.8129 �12.2466 �16.0408 �16.5126
1 bLegs 0.1009 0.0596 0c 0.2010 0c 0.2454 0.1656 0.2603
1 bM_Lanes 0.1478 0.1821 0.0561 0.2362 0.1299 0.2097 0.0988 0.0873
1 bM_MT_R 0.3926 0.4216 0.3285 0.4808 0.3397 0.6767 0c 0c

1 bM_LTL �0.1509 �0.0977 �0.2209 �0.1071 �0.1902 �0.0817 0c 0c

1 bM_PK_01 0.3809 0.2857 0.6189 0.3198 0.4417 0.2968 0c 0c

1 bM_Bike_01 �0.7960 �0.5834 �0.8038 �0.7240 �0.6199 �0.6689 �1.2943 �1.3360
1 bC_Lanes 0.2059 0.1528 0.2600 0.2874 0.1915 0.1656 0.0787 0.0877
1 bn(Veh)

d 0.5514 0.3470 0.9454 0.2988 0.7101 0.1673 0.3713 0.4483
1 bLn(Ped)

d 0.0324 0.1433 �0.0211 0.0778 0.1703 0.0960 0.5696 0.4292
1 Dispersion 0.4573 0.4431 0.5481 0.7814 0.4770 0.8854 0.7133 0.7122
1 Person Chi-Square/DF e 1.2012 1.2260 1.0526 1.1970 1.0774 1.1832 1.0007 0.9980
2 b0B �11.421 �13.334 �13.225 �12.8435 �15.1351 �15.522 �21.434 �22.1790
2 b0A �11.658 �13.508 �13.578 �13.1207 �15.4234 �15.761 �21.509 �22.1791
2 bLegs 0.9119 0.8809 0.8945 1.4091 0.6067 1.8794 1.9768 1.7445
2 b_Lanes 0.1157 0.1356 0.0534 0.1975 0.0295 0.1825 0.0926 0.0939
2 bM_MT_R 0.4685 0.4399 0.3674 0.5880 0.4159 0.4601 0.3341 0.4363
2 bM_LTL �0.4095 �0.3507 �0.3751 �0.4328 �0.2963 �0.3904 0c 0c

2 bM_PK_01 0.1590 0.0769 0.1518 0.1149 0.0955 0.0472 0c 0c

2 bM_Bike_01 �0.2717 �0.1457 �0.2635 �0.1358 �0.1241 �0.1009 �0.3783 �0.3167
2 bC_Lanes 0.1980 0.1618 0.2428 0.1145 0.2178 0.0629 0.1761 0.1693
2 bLn(Veh)

d 0.2531 0.3307 0.3835 0c 0.5560 0.0334 0.2716 0.3955
2 bLn(Ped)

d 0.1480 0.1902 0.0862 0.2170 0.1271 0.2227 0.4077 0.4455
2 Dispersion 0.3306 0.3116 0.3758 0.3531 0.3188 0.3388 0.1936 0.3014
2 Person Chi-Square/DF e 1.1711 1.0862 1.2010 1.0820 1.2562 1.0722 1.0562 1.0050
3 b0B �12.208 �12.450 �14.6901 �13.091 �15.0960 �13.732 �15.558 �16.7892
3 b0A �12.357 �12.580 �14.9795 �13.232 �15.2513 �13.872 �15.861 �17.0110
3 bLegs 0.2848 0.2699 0.1861 0.5763 0.1246 0.7313 0.3507 0.4063
3 bM_Lanes 0.0823 0.1008 0.0078 0.1455 0.0240 0.0862 0.0658 0.0662
3 bM_MT_R 0.4186 0.3653 0.3841 0.5271 0.3529 0.4530 0.1466 0.1841
3 bM_LTL �0.2440 �0.2138 �0.2805 �0.2236 �0.2574 �0.2163 0c 0c

3 bM_PK_01 0.3835 0.2202 0.5423 0.2731 0.3434 0.1351 0c 0c

3 bM_Bike_01 �0.5514 �0.3950 �0.5235 �0.3937 �0.3570 �0.3425 �0.7398 �0.7446
3 bC_Lanes 0.3435 0.3194 0.3776 0.2942 0.3379 0.2836 0.2145 0.2093
3 bLn(Veh)

d 0.5035 0.3901 0.7516 0.2563 0.6646 0.1919 0.2897 0.3813
3 bLn(Ped)

d 0.1079 0.1826 0.0496 0.1739 0.1225 0.2165 0.5350 0.5280
3 Dispersion 0.5008 0.4867 0.5614 0.6844 0.4758 0.7036 0.3381 0.4583
3 Person Chi-Square/DF e 1.2621 1.2147 1.0683 1.2873 1.0616 1.2942 0.9709 0.9378

Notes:
a negative coefficient indicates that the number of crashes decreases with an increase in the value of the variable, while a positive coefficient indicates that the number of
crashes increases with an increase in the value of the variable. For example, the coefficient for number of legs (unsig reference group) is positive for total crashes (i.e., 0.1009),
which indicates that more crashes are associated with 4-leg intersections than 3-leg intersections.
b RG = reference group, where 1 = unsignalized intersections, 2 = signalized intersections, and 3 = both unsignalized and signalized intersections.
c The coefficient ‘‘0” denotes that the corresponding variable was excluded from the model.
d Ln = natural log.
e DF = degree of freedom. A value of Pearson chi-square/DF close to 1 indicates a good model fit.
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coefficients were not counterintuitive) to examine trends. Table 8
contains the estimated regression coefficients, dispersion parame-
ter, and the Pearson chi-square statistic divided by degrees of free-
dom for each crash type, along with the p-value for the variable.

The negative binomial regression models, with variables in
Table 8 as independent variables, were employed to develop pre-
diction equations for crashes at PHB sites. The basic prediction
equation being considered for the different crash type was:

l ¼ exp b0 þ bLegs � Legsþ bMLanes �MLanesþ bMMTR

�

� I MMTR ¼ NotRaised½ �
þ bPSLgroup � I PSLgroup ¼ 35 or less

� �þ bMLTL �MLTLþ bMPK01

�MPK01þ bMBike01 �MBike01þ bCLanes � CLanesþ bLnVeh

� LnðVehÞ þ bLnPed � LnðPedÞþbSigDist � SigDist
�

where:

l = predicted daily crashes
I = indicator function taking a value 1 if the condition in [ ] is
satisfied, and 0 otherwise
Ln = natural log
C_Lanes = number of through lanes on the cross street
Legs = number of legs at the intersection

M_Bike_01 = 1 if a bicycle lane is present on either side of major
street and 0 otherwise
M_Lanes = number of through lanes on the major street
M_LTL = number of approaches on the major street with a left-
turn lane
M_MT_R = median type, raised (0) or not raised (1)
M_PK_01 = 1 if a parking lane is present on either side of major
street and 0 otherwise
Ped = major and cross-street daily pedestrian volume
PSL_group = posted speed limit group, 35 mph (56.3 kph) and
less or 40 mph (64.4 kph) and more
Sig_Dist = distance between the PHB and the nearest signal in
feet; if Sig_Dist > 1500, then Sig_Dist = 1500
Veh = major road ADT

For total crashes, the roadway geometry variables that have sig-
nificant effects on crashes for PHBs include the number of lanes on
the major roadway, median treatment, bike lane presence, and
number of lanes on the cross street. These relationships are as
expected, with more lanes on either the major or cross street being
associated with more crashes and the presence of a raised median
or pedestrian refuge island being associated with fewer crashes.
The presence of a bike lane at the PHB being associated with fewer
total crashes is a positive finding.

Table 6
Results of EB Before-After Safety Evaluations.

RGa Crash Type Observed EB (p̂) ĥ (SE) 95% CI for h 90% CI for h %CRb

1 Total 600 679.1 0.883 (0.046) (0.792, 0.973) (0.807, 0.958) 11.7**
1 Fatal & Injury 230 283.8 0.808 (0.067) (0.678, 0.939) (0.699, 0.918) 19.2**
1 Angle 112 128.1 0.870 (0.103) (0.668, 1.071) (0.701, 1.039) 13.0
1 FI Angle 42 41.9 0.991 (0.185) (0.628, 1.353) (0.687, 1.294) 0.9
1 Rear-End 206 234.2 0.878 (0.074) (0.733, 1.022) (0.756, 0.999) 12.2*
1 FI Rear-End 78 121.5 0.639 (0.084) (0.474, 0.805) (0.501, 0.778) 36.1**
1 Ped-related 19 33.1 0.567 (0.143) (0.288, 0.847) (0.333, 0.801) 43.3**
1 FI Ped-related 19 24.9 0.755 (0.191) (0.381, 1.128) (0.442, 1.067) 24.5
1 FI Ped-relatedc 19 29.0 0.648 (0.164) (0.326, 0.969) (0.379, 0.916) 35.2**
2 Total 600 724.0 0.828 (0.043) (0.743, 0.913) (0.757, 0.899) 17.2**
2 Fatal & Injury 230 334.7 0.685 (0.056) (0.575, 0.796) (0.593, 0.777) 31.5**
2 Angle 112 157.8 0.706 (0.081) (0.547, 0.866) (0.573, 0.840) 29.4**
2 FI Angle 42 75.5 0.552 (0.099) (0.359, 0.745) (0.390, 0.713) 44.8**
2 Rear-End 206 264.1 0.778 (0.065) (0.651, 0.906) (0.671, 0.885) 22.2**
2 FI Rear-End 78 115.6 0.672 (0.087) (0.501, 0.843) (0.529, 0.815) 32.8**
2 Ped-related 19 29.9 0.630 (0.153) (0.329, 0.930) (0.378, 0.881) 37.0**
2 FI Ped-related 19 31.8 0.591 (0.147) (0.303, 0.879) (0.350, 0.832) 40.9**
3 Total 600 732.2 0.818 (0.043) (0.734, 0.903) (0.748, 0.889) 18.2**
3 Fatal & Injury 230 306.6 0.748 (0.062) (0.626, 0.870) (0.646, 0.850) 25.2**
3 Angle 112 143.9 0.774 (0.092) (0.595, 0.954) (0.624, 0.925) 22.6**
3 FI Angle 42 55.0 0.755 (0.141) (0.479, 1.031) (0.524, 0.986) 24.5*
3 Rear-End 206 258.5 0.795 (0.067) (0.664, 0.927) (0.685, 0.905) 20.5**
3 FI Rear-End 78 108.7 0.714 (0.094) (0.529, 0.899) (0.559, 0.869) 28.6**
3 Ped-related 19 34.7 0.543 (0.133) (0.282, 0.804) (0.324, 0.761) 45.7**
3 FI Ped-related 19 34.2 0.550 (0.137) (0.281, 0.819) (0.325, 0.775) 45.0**

Notes:
a Abbreviations used in column headings:

� RG = reference group, where 1 = unsignalized intersections, 2 = signalized intersections, and 3 = both unsignalized and signalized intersections.

� Observed = observed crashes in the after period.

� EB (p̂) = EB estimate representing the predicted number of crashes in the after period had PHBs not been installed.

� ĥ = estimated index of effectiveness. Note that the index of effectiveness is equivalent to the CMF.

� SE = standard error.

� CI = confidence interval.

� %CR = percent crash reduction = 100ð1� ĥÞ.
b Statistical level indications:
*Statistically significant results with 90% confidence level (also known as 10% significant level).
**Statistically significant results with 95% confidence level (also known as 5% significant level).
c Indicates the results from the sensitivity analysis using the prediction based on Ped-related crash SPF for prediction after adjusted by the ratio of FI Ped-related crashes and
Ped-related crashes at unsignalized intersections.
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Both pedestrian-related crashes and FI pedestrian-related
crashes had stronger findings with respect to the number of lanes
on the major street and the presence of a raised median. Both of
these variables were significant at the 0.05 level for pedestrian-
related crashes compared to them only being significant at the
0.1 level for total crashes. Several studies have documented the
benefit of a raised median/refuge island for pedestrians (Zegeer,
2017b), and the findings from this ADOT study also identified ben-
efits to pedestrians for a raised median/refuge island.

The variable that was always significant for each crash type was
vehicle volume, which was expected. Pedestrian volume was sig-
nificant for most of the crash types. Angle crashes are the only
crash type where having the pedestrian volume in the model

was of questionable value. Posted speed limits were grouped into
35 mph (56.3 kph) and below or 40 mph (64.4 kph) and higher.
That variable was only statistically significant for rear-end crashes.
More rear-end crashes are predicted for roads posted at 40 mph
(64.4 kph) and higher than for roads posted at 35 mph (56.3
kph) and below.

The distance to the nearest traffic signal variable only remained
significant in the rear-end and FI rear-end crash type models,
where it was significant at the 0.1 level. More of these crash types
are associated with shorter distances between a traffic control sig-
nal and a PHB; however, the impact of the distance to traffic signal
variable on predicting rear-end or FI rear-end crashes is less influ-
ential than or similar to the impact of higher (compared to lower)

Table 7
Descriptive statistics for PHB sites used in observational analysis.

Variable PHB (186 sites)

Minimum Maximum Average

Legs 2 4 3.4
M_Lanes 2 9 4.5
M_LTL 0 2 0.8
M_PK_01 0 1 0.1
M_Bike_01 0 1 0.6
C_Lanes 0 6 1.4
Veh (ADT) 1,385 50,510 23,500
PB_Vol_MC (Ped) 40 2,130 475
Sig_Dist 277 13,249a 1,548
M_MT_R Value (# of sites) Not Raised (119), Raised (67)
PSL_group Value (# of sites) 35 or less (97), 40 or more (89)

Note:
aIf Sig_Dist was greater than 1,500 ft (457.2 m), the value was set to 1,500 ft (457.2 m). At a certain distance, a traffic control signal will probably not affect the operations or
safety of a neighboring intersection. This distance was assumed to be 1,500 ft (457.2 m) based on engineering judgment.

Table 8
Estimated regression coefficients of SPFs developed for crashes at PHB sites.

Parameter Total FI Rear-End FI Rear-End Angle FI Angle Ped_rel FI Ped_rel

b0 �13.5812
(<0.0001)

�15.948
(<0.0001)

�18.225
(<0.0001)

�23.4423
(<0.0001)

�12.940
(<0.0001)

�15.395
(<0.0001)

�21.029
(<0.0001)

�20.9389
(<0.0001)

bLegs 0.0849 (0.4947) 0.0801
(0.4931)

0.1570
(0.1331)

0.0443 (0.6682) 0.2366
(0.1910)

0.1491
(0.4617)

0.2282
(0.3358)

0.3231 (0.2142)

bM_Lanes 0.1234 (0.0557) 0.0496
(0.4600)

0.1365
(0.0657)

0 0.1541
(0.0904)

0 0.3856
(0.0073)

0.3787 (0.0159)

bM_MT_R 0.2730 (0.0621) 0.2221
(0.1055)

0.3316
(0.0502)

0.3713 (0.0112) 0.2664
(0.2479)

0.1610
(0.4254)

0.9286
(0.0028)

0.8014 (0.0419)

bPSL_group �0.1407
(0.2427)

�0.1512
(0.2070)

�0.2826
(0.0328)

�0.2668
(0.0530)

0 0 0 0

bM_LTL �0.0376
(0.6418)

0 �0.1061
(0.2522)

0 �0.1076
(0.3659)

0 0 �0.1091
(0.5913)

bM_PK_01 0 0 0.1246
(0.6083)

0.2633 (0.3430) 0.1065
(0.7460)

0 0 0

bM_Bike_01 �0.2107
(0.0701)

�0.1073
(0.3747)

�0.1163
(0.3547)

�0.0764
(0.5782)

�0.3113
(0.0648)

�0.2440
(0.2165)

0.3677
(0.1642)

0.2737 (0.3140)

bC_Lanes 0.1802 (0.0466) 0.2052
(0.0166)

0 0 0.3706
(0.0026)

0.4765
(0.0004)

0.1342
(0.4439)

0.0966 (0.6033)

bLnVeh 0.6733
(<0.0001)

0.8434
(<0.0001)

1.0465
(<0.0001)

1.5901
(<0.0001)

0.3715
(0.0369)

0.5557
(0.0009)

0.5968
(0.0315)

0.5939 (0.0464)

bLnPed 0.1131 (0.0642) 0.1140
(0.0750)

0.1799
(0.0074)

0.1172 (0.1121) 0.0714
(0.4152)

0.1678
(0.1146)

0.4706
(0.0008)

0.4478 (0.0020)

bSig_Dist 0 0 �0.0004
(0.0595)

�0.0004
(0.0608)

0 0 0 0

Dispersion 0.4284 0.3446 0.3867 0.2551 0.6336 0.6552 0.2817 0.3211
Person Chi-

Square/DF
1.1578 1.0822 1.4349 1.0739 1.2587 1.2004 0.9252 1.9216

Notes:
1. The coefficient ‘‘0” denotes that the corresponding variable was excluded from the model.
2. P-values are provided in parentheses.
3. Cells are highlight in light gray when the p-value is between 0.05 and 0.1.
4. Cells are highlighted in dark gray with white text when the p-value is less than 0.05.
5. DF stands for degrees of freedom.
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speeds or the impact of not having a raised median (compared to
having a raised median). No significant difference existed in any
crash type for midblock PHBs compared to PHBs installed at
intersections.

5. Summary

A total of 343 sites were included in the safety studies, consist-
ing of 186 PHBs, 56 signalized intersections, and 101 unsignalized
intersections. PHB installation dates were obtained from the vari-
ous government agencies, and 52 PHBs installed between 2011
and 2015 were identified for use in the EB before-after analysis.
Reference groups consisting of signalized and unsignalized inter-
sections were chosen from intersections in close proximity to the
52 before-after PHB sites and were used in the EB before-after
analysis.

Along with this ADOT study, previous PHB research studies
have found safety benefits in installing a PHB. When considering
the reference group consisting of unsignalized intersections, crash
reductions were found for the following crash types: total crashes,
FI crashes, FI rear-end crashes, and pedestrian-related crashes.
Crash reductions were also found for all other crash types studied
when using the unsignalized intersection reference group; how-
ever, the reductions were not statistically significant.

The safety performance of PHBs can be compared to unsignal-
ized intersections, signalized intersections, or both unsignalized
and signalized intersections. In most cases, a PHB is installed at a
pedestrian crossing that previously was unsignalized; however,
in a few cases, the PHB replaced a traffic control signal. The level
of pedestrian activity for a PHB intersection is more similar to sig-
nalized rather than unsignalized intersections; therefore, compar-
ing PHBs to signalized intersections may be more valid.

Each reference group has potential limitations; therefore, the
research team considered three different reference groups:
unsignalized intersections, signalized intersections, and both
unsignalized and signalized intersections combined. For the signal-
ized and combined unsignalized and signalized intersection
groups, all crash types considered showed statistically significant
reductions in crashes (e.g., total crashes, FI crashes, rear-end
crashes, FI rear-end crashes, angle crashes, FI angle crashes,
pedestrian-related crashes, and FI pedestrian-related crashes).

For the 52 PHB sites included in the before-after study regard-
less of the reference group being considered, a reduction in
pedestrian-related crashes was observed, as expected. Reductions
were also observed for FI crashes and for rear-end crashes, two
crash types where concern existed that the installation of the
PHB may increase those types of crashes.

A cross-sectional study was conducted with a larger number
(186) of PHBs to identify relationships between roadway charac-
teristics and crashes at PHB sites, especially with respect to the dis-
tance between a traffic control signal and a PHB. The cross-
sectional study was able to include more PHB sites because crash
data before the installation of the PHB were not needed; therefore,
more of the older installations (prior to 2011) could be considered.

For total crashes, the roadway variables with relationship to
crashes at PHBs include the number of lanes on the major roadway,
median treatment, bike lane presence, and number of lanes on the
cross street. These relationships are as expected, with more lanes
on either the major or cross street being associated with more
crashes and with the presence of a raised median or pedestrian
refuge island being associated with fewer crashes. The presence
of a bike lane at the PHB being associated with fewer total crashes
is a positive finding. Several studies, including this ADOT study,
have documented the benefit of a raised median/refuge island for
pedestrians. The distance to the signal variable only remained sig-

nificant in the rear-end and FI rear-end crash type models, where it
was significant at the 0.1 level (90% confidence). More rear-end
crashes are associated with the shorter distances between a traffic
control signal and a PHB. No significant difference existed in any
crash type for midblock PHBs compared to PHBs installed at
intersections.

This ADOT study permitted the inclusion of a larger number of
sites and a larger number of months of before and after data than
other recent studies, which aided in the ability to find statistically
significant results. Crash reductions were found to be significant at
the 0.05 significance level for total crashes, FI crashes, FI rear-end
crashes, and pedestrian-related crashes. Other crash types are also
associated with significant reductions depending upon the refer-
ence group being used and statistical significance level being
accepted.

6. Conclusions

Key findings from this project include the following

� Previous studies and this ADOT study have found a safety ben-
efit in the installation of a PHB. The EB before-after evaluation
found statistically significant reductions at the 5% significance
level for several crash types, including:
o A 25% reduction in severe (FI) total crashes (CMF of 0.75).
o A 45% reduction in FI pedestrian-related crashes (CMF of

0.54).
o A 29% reduction in FI rear-end crashes (CMF of 0.71).

� Midblock (two legs) versus intersection (three or four legs) does
not make a difference with respect to safety at PHBs since no
statistical difference in crashes between midblock locations
and those PHBs at three- or four-leg intersections was found
in the cross-sectional evaluation.

� The cross-sectional evaluation showed no statistically signifi-
cant difference between the lower-speed and higher-speed
PHB sites (posted speeds at 35 mph [56.3 kph] or below versus
40 mph [64.4 kph] or higher) for all crash types except rear-end
crashes. For rear-end crashes, fewer rear-end crashes are pre-
sent when the posted speed limit is 35 mph (56.3 kph) or below.

7. Discussion/practical applications

The findings from this study should encourage greater consider-
ation for the PHB to accommodate pedestrian crossings. Inclusion
of the PHB in the 2009 MUTCD has allowed more communities
to use the treatment and realize the safety benefits of the device.
Several previous research studies, along with this project, have
clearly demonstrated that overall, the PHB is associated with fewer
pedestrian and non-pedestrian vehicle crashes.

For some communities, the PHB is not considered when the
roadway has a greater than 40 mph (64.4 kph) speed limit or at
an intersection or driveway with stop controls on the side road.

The reasons given for limiting the PHB on higher-speed roads
are the concerns that drivers are not expecting such a device on
the high-speed road or that insufficient data or research findings
exist to support the use of the treatment on this type of roadway.
The cross-sectional evaluation finding of no statistically significant
difference between the lower-speed and higher-speed PHB sites
directly addresses the concern of limited data and provides the
desired support for installing PHBs on higher-speed roads.

The development of the proposed language for the PHB section
of the MUTCD involved a number of volunteers. When the 2009
MUTCD was published, it contained the following guidance state-
ment that was added just prior to publication as a result of a com-
ment made during the review process: ‘‘The pedestrian hybrid

K. Fitzpatrick, Eun Sug Park, M.J. Cynecki et al. Journal of Safety Research 78 (2021) 59–68

67



beacon should be installed at least 100 feet from side streets or
driveways that are controlled by STOP or YIELD signs;” however,
if followed, the PHB could not be used at intersections or many
driveways. This statement thus limited the use of a very effective
safety device at locations most in need of a pedestrian crossing
treatment. Of particular concern was that the guidance statement
was not based on research. Actually, the safety research from the
pre-2009 MUTCD period (Fitzpatrick & Park, 2010) only included
PHB installations at intersections and driveways. In other words,
the available safety research did not support the inclusion of the
aforementioned guidance statement in the 2009 MUTCD. Conse-
quently, the National Committee on Uniform Traffic Control
Devices, the volunteer organization that provides recommenda-
tions on changes to the MUTCD, approved a recommendation in
2011 to remove the guidance statement (https://ncutcd.org/wp-c
ontent/uploads/meetings/2011B/Attach-No.-4-Signals-Design-of-P
edestrian-Hybrid-Beacons-Section-4F.02.pdf, 2020). FHWA will
consider that recommendation when developing the next edition
of the MUTCD; however, it is not yet known if the recommendation
to remove the guidance statement will occur. This ADOT study
found that the number of legs—that is, two legs (midblock) versus
three or four legs (intersection)—does not make a difference with
respect to safety at PHBs. This finding provides additional support
for the installation of PHBs at intersections or driveway approaches
where pedestrian crossings are most likely to occur and for remov-
ing the guidance statement from the MUTCD.
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a b s t r a c t

Introduction: Vehicular accidents at horizontal curves are over-represented compared to accidents that
occur at tangent sections. Investigations have been conducted aimed at identifying the major causes that
result in higher accident risk, both in terms of severity and rate, at curved road sections. Excessive or
abrupt changes in speeding and improper vertical position are cited as major factors of lane departure,
whereas other factors (either human or environmental) have also been documented. However, most
research involves 4-wheel vehicles rather than other modes of transport that behave differently. More
specifically, while motorcyclist fatalities occur more frequently than passenger vehicles, when account-
ing for vehicle distance traveled only a limited number of research studies address their behavior at
curved road sections. Method: This paper presents the findings of field operational tests carried out by
motorcyclists along two-lane rural roads with a wide range of horizontal curves using an instrumented
motorcycle. Key objectives of the research included the conditions under which the motorcyclists differ-
entiate their trajectory in regards to the direction of the horizontal curves, the correlation between the
trajectory and the geometry of the road, and the impact of the lighting conditions on riders’ behavior.
Results: The research showed that motorcyclists tend to ride closer to the centerline of the road, neglect
the hazards associated with dim lighting conditions, and maintain constant speed in the left hand and the
right-hand horizontal curves.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Driving a vehicle is a complex activity in which multiple factors
are engaged, for example, user’s psychology, vehicle’s characteris-
tics, presence of other road users, and road geometry (Bella, 2005).
In particular, the negotiation of horizontal curves by motorcycle
riders requires enhanced riding skills compared to tangent sec-
tions, especially along rural roads where single motorcycle crashes
frequently occur. Inappropriate lateral position, speeding, high
entry speed, and inattention are considered crucial parameters
for motorcyclists’ safety. However, the construction and mainte-
nance of a safe road environment from the motorcyclist point of
view do not always result in fewer motorcycle crashes because
motorcycle riders tend to adopt hazardous attitudes when they
feel safe (homeostasis; e.g. travel with excessive speed). Therefore,
they compensate for any benefits originally gained and hence there
are indications that the increase of risk awareness might be an
effective measure against motorcycle accidents (Wang et al., 2018).

As discussed in a study that evaluated the safety adjacent to
horizontal curves, the curved road sections are of particular impor-
tance because they are overrepresented in crashes. Indeed, in the
United States, there are as many as three times the number of more
severe crashes along horizontal curves compared to crashes at tan-
gent sections (Khan, 2012). Smaiah et al. reports that more than
50% of the powered two-wheeler crashes occur in bends due to loss
of control. They also mention that in France almost a third of the
total powered two-wheeler crashes in curves are fatal (Smaiah,
2018). It is noteworthy that vulnerable road users, which also
includes powered-two-wheeler riders, account for half of all fatal-
ities in the EU (Morris et al., 2018).

The higher likelihood of accidents on curves is also mentioned
in another study that investigates single-vehicle motorcycle
crashes on horizontal curves in Florida. It is reported that 57% of
the total fatal single motorcycle crashes occur on curves, although
they represent only about 6% of the total road network (Wang
et al., 2018; Xin et al., 2017a). The importance of single-vehicle
accidents was also revealed in another study which found that this
type of accident is notably widespread among motorcyclists and
usually results in death and seriously injured casualties (Morris
et al., 2018). Especially at road curves, the behavior of the motor-
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cyclist is crucial in preventing or causing an accident (Wang et al.,
2018).

The investigation of motorcyclists’ trajectories is vital to pro-
vide comprehensive insights into steering corrections due to rider’s
failure to perceive the geometry of a curve or due to inappropriate
speed in the road environment. Moreover, riders must be capable
of sufficiently coping with hazardous situations that other road
users create. This study aims to investigate motorcyclists’ behavior,
focusing on their speed and trajectory along two-lane rural using
an instrumented motorcycle. The primary goals of the experiments
and the post-process of the raw data were to investigate the con-
ditions under which the motorcyclists differentiate their trajectory
in regards to the direction of the horizontal curves, the correlation
between the trajectory and the geometry of the road, and the
impact of the lighting conditions on riders’ behavior. The findings
revealed that travel speed does not depend on the lighting condi-
tions of the road environment or the direction of the horizontal
curve, whereas the analysis of the trajectories showed that the rid-
ers travel closer to the centerline of the road instead of its right
boundary.

2. Literature review

Taking into account the accident statistics, the efforts to imple-
ment measures to mitigate motorcycle accidents is disproportional
low. For instance, in the United States a motorcyclist is 28–35
times more likely to experience a fatal accident compared to a pas-
senger car driver when accounting for the traveled vehicle dis-
tance, whereas in 2016 51% more motorcyclists were killed
compared to 2015 (Casanova-Powell, 2018; NHTSA, 2007). The
interaction between geometric design and the road users’ trajec-
tory has been researched extensively since the 1970s (Spacek,
2005). The operation of a motorcycle is a much more challenging
and complex activity compared to a passenger car but, neverthe-
less, the knowledge behind the interaction between road geometry
and riding behavior is not clear-cut. For instance, a powered-two-
wheeler rider has to perform a series of actions, some of them
counterintuitive, in strict order sequential to effectively negotiate
a curve, a lot more than a passenger car driver. The manipulation
of the brakes and the steering between motorcycles and cars is dif-
ferent and, as a result, falls or running wide on a curve due to over-
braking among motorcyclists is quite common (Wang et al., 2018).

Among the various factors that influence the frequency and
severity of motorcycle accidents on rural curves, two are the most
dominant: speeding and lateral position of the vehicles. These two
factors are not independent of each other since the interactions
between them determine the behavior of the drivers as they tra-
verse a curve and therefore, taking also into account the different
track that each rider follows, the forces applied on the motorcycle
may vary considerably (Spacek, 2005; Wang et al., 2018). More-
over, as discussed by Xu et al, the curvature, velocity, and lateral
position at the entry of a curve determine the shape of the vehicle’s
track, which also depends on the type of the vehicle. Consequently,
not all of the vehicles will identically negotiate a curve even if they
travel under the same traffic conditions (Xu, Luo, & Shao, 2018).

The effect of the curve type on rural two-lane motorcycle acci-
dents was the subject of a recent study that concluded that as the
sharpness of the curve increases, the likelihood of motorcycle
crashes decreases as shown in Fig. 1 (Wang et al., 2018).

2.1. Speed as a contributing factor to road accidents

Speed behavior is highly correlated with the driving behavior
throughout the horizontal curve sections of the roads and hence
the speed profiles of the road users are of paramount importance

to the design of the road alignment (Spacek, 2005) while, con-
versely, driving behavior depends on the road geometry (Said,
Abd El Halim, & Yasser, 2010). Safety and comfort are both associ-
ated with drivers’ speed throughout curves since speed determines
the amount of lateral acceleration that will be applied to the driver
(Lauffenburger, Basset, & Gissinger, 2005). Eustace and Indupuru
analyzed the factors that contribute to motorcyclists’ fatal injuries
and concluded that excessive speeding increases the risk of motor-
cycling fatal crash occurrence (Eustace & Indupuru, 2011).

Wang et al quantified the impact of speeding on the occurrence
of single motorcycle crashes, which constitute the majority of fatal
motorcyclist accidents in the United States (Casanova-Powell,
2018) and found an increase of 10.84% when speeding is involved
in motorcycle accidents (Wang, Lee, & Lin, 2013). Several studies
cited in a study that investigates the correlation between injury
severity and horizontal curve design show that speeding is the pri-
mary contributory factor to the severity of injuries in motorcycle
crashes. Various researchers also quantified the impact of speeding
on injury severity and reported that an increase in powered-two-
wheeler accidents ranging from 16.78% to 24.11% must be
expected when speeding is present (Wang et al., 2018; Xin et al.,
2017a). Savolainen and Mannering concluded with a much higher
percentage, stating that the likelihood of single motorcycle acci-
dents is increased by 212% due to speeding (Savolainen &
Mannering, 2006). Consequently, the implementation of speed
control measures is an efficient action to counteract single motor-
cycle crashes (Xin et al., 2019).

The travel speed of the drivers depends on various parameters
(e.g., road geometry, pavement, vehicle’s characteristics, physiol-
ogy), and is usually different from the design speed, whereas it
does not have a fixed value through a curve (Xu, Lin, & Shao,
2017). In the EU about one out of four motorcycle accidents occur
because the riders traveled with disproportional excessive speed
for the prevailing conditions (Morris et al., 2018). Wang et al also
concluded that excessive speed is the most important factor for
fatal and seriously injured riders involved in single motorcycle
accidents on rural curves (Wang et al., 2018). In particular, the
speed at the entry of the curve is critical as its magnitude determi-
nes to a great extent whether the rider will encroach the centerline
or the shoulder of the road (Xu et al., 2018). Therefore, by reducing
the entry speed the track of the vehicles is consistent with the
expectations of the driver, and hence the possibility of accidents
decreases (Xu et al., 2018).

Fig. 1. Correlation of curvature and crash modification factors for motorcycle
crashes.
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2.2. Evaluation of track behavior at curved road segments

Although speeding is the most crucial factor leading to crashes,
there is evidence that the appropriate lateral position of the vehi-
cles is an efficient countermeasure against single-vehicle accidents
that represent a big proportion of total crashes. Indeed, as men-
tioned in a study that evaluated the trajectory variability, the loss
of control type of accidents is observed in 40% of fatal crashes in
France (Rosey & Auberlet, 2012). Jacob and Violette found that
the real trajectory of a vehicle is the outcome of the interaction
‘‘driver–vehicle–road” system and can be used effectively to
improve road safety (Jacob & Violette, 2012). Rosey and Auber-
let also concluded that the trajectory variability is a tool that can
be used to identify road sections where improvements might be
deemed necessary to reduce the likelihood of accidents (Rosey &
Auberlet, 2012).

It is amply documented that only a small proportion of the dri-
vers precisely follow the middle of the travel lane (Das Vivek,
Jayashree, & Rahul, 2016; Xu et al., 2018). Instead, the majority
of them either cut-the-curve or perform steering corrections due
to false judgments to bring their vehicle back to the desired trajec-
tory. If these steering corrections require sharp maneuvers and/or
the pavement is wet and/or the driver simultaneously applies their
brakes then the vehicle becomes particularly unstable and it is
quite possible to depart the travel lane due to the increased
demands in lateral friction. Indeed, the centrifugal acceleration in
specific sections of a curve could be particularly higher than the
one expected according to the design standards (Spacek, 2005).

As discussed in a recently published study, single motorcycle
crashes frequency decreases by 0.74% for an increase in curve
radius by 1% (Xin et al., 2019). Negotiating small radii curves
requires special riding skills since the available space is limited
and, hence, in such curves the likelihood of single motorcycle acci-
dents is increased (Wang et al., 2018). Besides, sharp curves tend to
attract sensation seeker riders who perform risky activities result-
ing in higher crash risk (Xin et al., 2017a; Xu et al., 2018). In fact, 5%
of motorcycle accidents in the EU involve risky riders (Morris et al.,
2018). In general, smoother curves are safer compared to tight ones
for motorcyclists (Wang et al., 2018); (Xin et al., 2017b) and the
more the curve radius the less the likelihood of a motorcyclist acci-
dent due to less speed variation and increase of sight distance
(Wang et al., 2018).

All of the trajectories that deviate from the center of the traffic
lane are considered incorrect and increase the likelihood of
crashes. Therefore the less the variability of the lateral position
the more uniform and safe is the trajectory of the vehicles (Das
Vivek et al., 2016), and hence lateral position variability can be
used as an indicator of design consistency evaluation (Rosey &
Auberlet, 2012). Lin et al found that longer spiral transition curves
are associated with less lateral deviation and vice versa, and they
suggested that the length of the transition curve should be equal
to a certain percentage of the curve radius (Lin, Yang, & Pan,
2011). The steering length of the driver who precisely follows the
geometry of the curve is about half of the steering length of the dri-
ver who cut-the-curve and consequently the latter begins to steer
their vehicle long before the TC point (Shu, Shao, & Xu, 2016). Nev-
ertheless, curves with short lengths or small radius increase the
likelihood of motorcycle crashes (Xin et al., February 2019). How-
ever, the finding of Wang et al suggests the opposite conclusion
and, more specifically, they found that an increase in curve length
is linked to more motorcycle crashes (Wang et al., 2018).

Four research studies presented specific track patterns based on
experimental data (Shu et al., 2016; Spacek, 2005; Xu et al., 2017).
All of them concluded that the proportion of drivers who follow the
center of the traffic lane is negligible (varying from 0% to 8%) and,
therefore, the value of the curve radius that is used to calculate a

series of geometric features does not reflect the real driving curva-
ture; hence, the trajectory radius should be used instead. Lastly,
the findings of other studies also confirm that curves increase
the likelihood of fatal motorcycle accidents, especially during
nighttime travel (Eustace & Indupuru, 2011; Xin et al., 2017a).

2.3. Literature review conclusions

A research study that investigated the tracking behavior in
curved areas cites various papers suggesting that the link between
road geometry and accidents, in terms solely of speed, is deemed to
fail and makes a reference to a dissertation conducted by Friedin-
ger who concluded that the corrections to the traveling direction
(not speeding) is the primary cause of curve accidents (Spacek,
2005). Spacek also agrees that the root cause of single-vehicle acci-
dents due to loss of control that often occur along horizontal curves
cannot be attributed solely to the inappropriate high speed
(Spacek, 2005), whereas Yuen et al. found that riders’ behavior is
strongly affected by the riding experience and the annual distance
traveled (Yuen, Karim, & Saifizul, 2014). Another conclusion is that
the correlation between horizontal curves and motorcycle injury
severity is not well documented yet since the relevant studies do
not determine how the injury severity is influenced by the charac-
teristics of the curves (Xin et al., 2017a).

3. Data collection

An in-depth analysis of motorcycle riders’ behavior, who prob-
ably constitute the most vulnerable road users, contributes to the
improvement of riders’ safety and traffic management in general
(Barmpounakis, Vlahogianni, & Golias, 2015). Therefore, a cost-
effective methodology to record and process reliable and accurate
behavioral data, such as speed and lateral placement of the vehi-
cles, is the key to this direction. Aiming at this goal and for the
needs of this paper, 18 recruited riders registered to the motorcy-
cle club of Volos City in Greece traveled along a two-lane rural road
under natural riding conditions on a motorcycle properly instru-
mented with a camera and a GPS receiver of high position accuracy
during daytime and nighttime.

The principal benefit of this experiment over other methods
aimed at obtaining riding performance data is that it allows the
recording of data under real riding conditions without the limita-
tions of riding simulators or the subjective approach of question-
naires. In addition, instrumented motorcycles record detailed
data of a limited number of riders, and consequently for a limited
number of trajectories (Jacob & Violette, 2012). By choosing long
enough experimental routes, the total database allows the
researchers to draw firm conclusions. In line with this, the mea-
surements took place along a road section of approximately
10.38 km consisting of 21 horizontal curves, which is depicted in
Fig. 2.

The riders were not aware of the goals of the measurements and
were instructed to travel as naturally as possible. One-half of them
were employed during the daytime measurements and the other
half during the nighttime measurements. Their mean age was
40.39 years (SD = 9.90 years) and they were all experienced riders
with a mean valid riding license of 19.53 years (SD = 11.90 years).
They were all owners of at least one registered motorcycle while
their riding hours ranged from 1 to 8 per day (Mean = 2.83 h,
SD = 1.99 h).

All of them traveled in both directions of a rural road segment,
starting from the point 39�18008.200N 22�54047.600E (point A in
Fig. 2) and making a U-turn at the point 39�17001.800N
22�50015.900E (point B in figure B) and driving back to the starting
point. For practical reasons all riders started from point A and com-
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pleted their measurement in point A after performing a U-turn in
point B. It has to be noted that the literature review regarding
the planning and execution of naturalistic driving studies did not
reveal any order effects concerns that should be taken under con-
sideration. Consequently, a dataset of 756 traverses through the
curves recorded and processed, which is considered adequate
enough. Only a few lighting poles were installed along the testing
route, most of which were out of order and, hence, the artificial
light during the nighttime measurements emanated from the
instrumented vehicle’s headlamps.

The measurements were carried out with the use of a medium-
capacity motorcycle namely a DL V-Strom 650 cc Suzuki, particu-
larly popular on the Greek rural roads. The day and time of the
measurements were selected in such a way that the traffic volume
from other road users was very limited. Thus, the behavior of the
riders was unaffected by the presence and the behavior of other
vehicles, and hence the recorded data reflect the unobstructed tra-
vel speed and trajectory of the participants.

As already implied, the research study focused on the behavior
of the riders expressed by their travel speed and trajectory at hor-
izontal curves, with main geometrical characteristics presented in
Table 1. The first row of the Table concerns the code name of the
curves, whereas the second, third, and fourth row the Radius,
Length, and Direction (either Left-hand or Right-hand) of each
curve, respectively.

After the execution of the measurements, the raw data was con-
verted to csv and dxf files for further analysis using more wide-
spread software. In this way, the trajectory and speed profile of
each measurement were accurately known since the equipment
that was installed on the bike recorded the position and speed of
the rider with a frequency of 5 Hz. The investigation, among other
goals, attempted to identify any rider tendencies to travel closer to
the centerline of the road or not. For that purpose, the centerline of
the travel lane was drawn based on which deviation area (either to
the right or to the left) was calculated. Fig. 3 illustrates a random
example of this step of the process. The upper part of the Fig-
ure presents the boundaries of a curve, whereas the lower part pre-

sents a detail of the start/end of the curve in which the various
symbols (i.e., the travel direction, the road axis, the centerline of
the traffic lanes, two random trajectories (one for each travel direc-
tion)) and the area of deviation (either to the right or to the left of
the centerline of the traffic lane) are explained.

Figs. 4–7 present the mean velocities and the total deviation
from the centerline of the traffic lane of the riders per curve and
lighting conditions (daylight–nighttime) of the road sections Volos
– Anchialos and vice versa, respectively. It must be noted that the
deviation from the centerline is expressed as the area between the
centerline of the travel lane and each trajectory corresponds to the
total area of deviation regardless of how many times the two lines
intersect.

The data behind these figures were then copied to the Statistical
Package for the Social Sciences (SPSS) for further analysis. Normal-
ity tests (both Shapiro-Wilk and Kolmogorov-Smirnov tests) were
conducted before processing the data, which showed that they
do not significantly deviate from a normal distribution. The inves-
tigation oriented toward the speed differential with relation to the
prevailing environmental conditions (e.g., lighting conditions, the
direction of the horizontal curve, deviation from the centerline of
the travel lane).

4. Data process

4.1. Route Volos – Anchialos

The null hypothesis is that there is no statistically significant
difference between the mean speed of riders who travel under dif-
ferent lighting conditions along horizontal curves. Therefore, the
independent variable is the lighting conditions (two groups: day-
time and nighttime), while the dependent variable is the traveled
mean speed. The null hypothesis was tested by conducting a paired
two-tailed t-test to determine if there is a difference in the mean
scores of the two groups. The results of the test revealed that there
is no statistically significant difference between the mean speed
along horizontal curves of daytime riders (n = 21, M = 99.63,

Fig. 2. Map, detail and geometric characteristics of the horizontal curves of the experimental route.

Table 1
Geometric characteristics of the horizontal curves of the experimental route.

Curve K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17 K18 K19 K20 K21

R curve (m) 900 250 330 200 900 800 200 195 225 380 270 220 200 600 370 400 300 300 220 220 250
L curve (m) 217 261 257 275 269 236 406 380 144 236 257 200 241 176 330 389 212 132 139 166 177
Direction Left Left Right Right Left Right Left Right Left Right Left Right Left Right Right Left Right Left Right Left Left
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SD = 6.28) and nighttime riders (n = 21, M = 101.41, SD = 5.03), t(20)
= �1.69, p = .11.

Another aim of the research is to investigate whether the direc-
tion of the curves (left-hand or right-hand) affects the magnitude
of the travel speed regardless of the prevailing light conditions.
Therefore, the null hypothesis, in this case, is that the travel speed
does not differentiate between left-hand and right-hand horizontal
curves. By implementing a similar approach, an independent two-
taileded t-test was conducted that revealed that there is no signif-
icant difference between the mean speed of the riders traveling
along left-hand (n = 22, M = 100.42, SD = 6.10) and right-hand
curves (n = 20, M = 100.63, SD = 5.36), t(40) = �0.12, p = .0.90.

Evidence suggests that the vehicles tend to travel closer to the
centerline compared to the edge of the road (Taragin, 1945). This
finding is also confirmed in the framework of the present research
study. More specifically the deviation to the left side (n = 42,
M = 269.03 m2, SD = 168.50) as opposed to the right side (n = 42,
M = 34.01 m2, SD = 36.20) of the travel lane was predominant,
meaning that the riders tend to ride closer to the axis of the road
during both the nighttime or the daylight measurements (t(41)
= 8.01, p < .001).

Moreover, to investigate whether there is a substantial differ-
ence regarding the magnitude of the left deviation against the
lighting conditions (daylight or nighttime) and the direction of

Fig. 3. Right/Left deviation from the centerline of the travel lane.
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the horizontal curves (either left-hand or right-hand) a paired two-
taileded and an independent t-test were conducted, respectively.
The null hypotheses were that the trajectory of the riders toward
the centerline of the road is independent of the status of the ambi-
ent light and the direction of the horizontal curves. The results

showed that there is no significant difference in the scores for
the nighttime measurements (n = 21, M = 277.96, SD = 189.75) and
daylight measurements (n = 21, M = 260.09, SD = 148.42), t(20)
= �1.08, p = 0.293 along the horizontal curves of the direction Volos
– Anchialos. However, statistical significant difference was identi-
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Fig. 5. Average speed and deviation from the travel lane’s centerline per curve: Nighttime Volos – Anchialos.
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fied between the left-hand (n = 22, M = 359.51, SD = 170.50) and the
right-hand (n = 20, M = 169.49, SD = 96.04), t(34) = 4.50, p < .001
horizontal curves.

4.2. Route Anchialos – Volos

A similar approach was implemented in the opposite direction
as well by performing independent or paired two-taileded t-tests
accordingly. Some of the results were also confirmed based on
the measurements of this direction, while others did not. More
specifically:

� No statistically significant difference between the mean speeds
in horizontal curves of daytime riders (n = 21, M = 101.89,
SD = 7.61) and nighttime riders (n = 21, M = 101.27, SD = 7.12), t
(20) = 0.43, p = .0.67 was established.

� The implementation of an independent two-tailed t-test did not
reveal a statistically significant difference between the mean
speed of the riders traveling along left-hand (n = 20,
M = 101.61, SD = 6.66) and right-hand curves (n = 22,
M = 101.46, SD = 7.98), t(40) = 0.07, p = .94.

� The deviation to the left side (n = 42, M = 206.84 m2, SD = 110.01)
rather than to the right side (n = 42, M = 142.12 m2, SD = 97.70), t
(41) = 5.29, p < .001 of the travel lane was also predominant for
both the nighttime and daylight measurements.

� Contrary to the opposite direction, a statistically significant dif-
ference was found in regards to the impact of the ambient light-
ing on the magnitude of the left deviation. Particularly, the
results showed that the difference between the nighttime mea-
surements (n = 21, M = 246.15, SD = 129.42) and daylight mea-
surements (n = 21, M = 167.53, SD = 69.36), t(20) = �4.35,
p < .001 is indeed statistically significant.

� Lastly, the impact of the direction of the horizontal curves to the
tendency of the riders to drive closer to the centerline of the tra-
vel lane is also statistically significant since the p-value for the
deviation of the left-hand (n = 20, M = 281.65, SD = 88.73) and
the right-hand (n = 22, M = 138.82, SD = 79.54) horizontal curves
is less than 0.05 (t(38) = 5.47, p < .001).

5. Conclusions

Each driver accepts a certain risk level proportional to their
driving abilities, attempting to minimize the travel time. If the per-
ceived risk is less than the acceptable one then the driver increases
the travel speed and changes their vertical position striving to
maximize the cost-benefit ratio (Bella, 2005). Safe riders adapt
their speed and lateral position to the prevailing driving
conditions.

Although the reaction time and, consequently, the critical stop-
ping distance is much increased during the night, the riders do not
reduce their traveling speed when the light conditions are
dimmed. That poses a threat to their safety since nighttime
single-vehicle accidents are over-represented in rural horizontal
curves (Green, 2003) and hence it should be further investigated.
In addition, the lack of overhead artificial lighting reduces the
visual perception ability of the riders to such an extent that they
might not be able to stop within the illuminated distance created
by their headlamps.

Therefore, either the riders are not aware of the hazards that are
associated with nighttime riding in regards to the extended critical
stopping distance, or other benefits exist that eliminate this threat.
Indeed, during nighttime trips, the riders might more efficiently
perceive oncoming traffic and adjust their trajectory and travel
speed accordingly. However, oncoming traffic is just one of the rea-
sons causing emergency braking, while other hazards (e.g., stray

animals crossing the road, obstacles on the pavement, potholes)
are probably neglected by the riders.

On the left-hand horizontal curves, the riders have the opportu-
nity to traverse a trajectory of less curvature and, consequently,
increase their comfort and travel speed by exploiting a greater por-
tion of the pavement width. Moreover, as discussed in a study by
Lemonakis et al., drivers differentiate their trajectory based on
the direction and the curvature of the horizontal curves
(Lemonakis, 2014). However, according to the results of the analy-
sis, the riders do not alter their travel speed between right-hand
and left-hand horizontal curves regardless of their curvature.

The investigation in both directions of either daylight or night-
time measurements revealed that riders’ trajectory in horizontal
curves is closer to the centerline of the road to a great extent. This
observation is probably justified by the fact that riders feel more
comfortable when they keep a safe clearance from the shoulder
where they assume that greater hazards might exist compared to
the oncoming traffic (e.g., pedestrians, stationary vehicles, debris).
Further investigation is recommended on this topic since oncom-
ing traffic of heavy or overtaking vehicles increases the driving
workload and the manipulation skills of the riders.

6. Recommendations for future research

Single motorcycle accidents on a wet road surface, with poor
pavement conditions on non-access controlled-curves, are less
likely to occur (Wang et al., 2018; Xin et al., 2017a). This surprising
finding implies that single motorcycle accidents can be prevented
to a great extent if the riders have a timely warning about the
imminent hazards. Since the root cause of the vast majority of traf-
fic accidents is human error, as discussed in a recent study
(Raipuria, 2017), more light must be shed on the way that riders
perceive the traffic conditions and how they adjust their speed
and lateral position afterward. This would be the first step to pro-
pose countermeasures against motorcyclist accidents, whereas the
second step would be the proper education and training of the rid-
ers (Xin et al., 2019), both considered currently insufficient
(Casanova-Powell, 2018; Smaiah, 2018). As Wang et al concluded,
on the one hand motorcyclists take all the precaution measures
against the hazards that they are made aware of in a timely and
proper fashion, while on the other hand they are not properly
trained about the complexity and special skills required while rid-
ing (Wang et al., 2018).

7. Availability of data and materials
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corresponding author.
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a b s t r a c t

Introduction:Young drivers are themost vulnerable road users andmost likely to use a smartphone illegally
while driving. Although when comparedwith drink-driving, attitudes to illegal smartphone risk are nearly
identical, smartphone use among young drivers continues to increase.Method: Four in-depth focus groups
were conductedwith 13 young (18–25 years) drivers to gain insight into their perceptions of the risks asso-
ciated with the behavior. Our aim was to determine how drivers navigate that risk and if their behavior
shapes and informs perceptions of norms. Results: Three key themes emerged: (a) participants perceived
illegal smartphone use as commonplace, easy, and benign; (b) self-regulatory behaviors that compensate
for risk are pervasive among illegal smartphone users; and (c) risk-compensation strategies rationalize
risks and perceived norms, reducing the seriousness of transgression when compared with drink-driving.
Young drivers rationalized their own use by comparing their selfregulatory smartphone and driving skills
with those of ‘‘bad drivers,” not law abiders. Practical Applications: These findings suggest that smartphone
behaviors shape attitudes to risk, highlighting the importance for any countermeasure aimed at reducing
illegal use to acknowledge how a young person’s continued engagement in illegal smartphone use is justi-
fied by the dynamic composition of use, risk assessment and the perceived norms.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Young (18–25) newly-licensed drivers are most at risk of
crashing (Regev et al., 2018), making road crashes the leading
cause of death for 15–29 year olds across the globe (World
Health Organization, 2018). Their inexperience (Scott-Parker
et al., 2012), poor risk analysis (Simons-Morton et al., 2014;
White et al., 2011), and inclination to take greater risks on the road
all contribute to an increased likelihood of crashing. These factors
also contribute to young drivers being more susceptible to
distraction-related crashes (Buckley et al., 2014). Although they
are the age group least likely to drive at least weekly in Victoria,
Australia (where this study is conducted) (Transport Accident
Commission, 2019), they are most likely to use a smartphone for
longer periods of time per day (Kaviani, Robards, et al., 2020),
including while driving (Kaviani, Young, et al., 2020).

Their reasons for use are varied, with many using their devices
beyond merely call and text functionality; navigation, music, and
social media applications such as Snapchat have emerged as popu-
lar smartphone behaviors young drivers are engaging with illegally
while driving (George et al., 2018; Truelove et al., 2019).

In an effort to reduce distraction caused injuries or deaths,
licensing jurisdictions around the world have introduced Gradu-
ated Licensing System (GDL) laws that gradually lift licensing
restrictions (e.g., peer passenger restrictions, zero BAC) as the
experience of the novice driver increases1. For example, in Victoria,
Australia, all learner and probationary drivers are forbidden from
using a mobile phone for any function (including hands-free and
smart-assist functions such as Apple Carplay) while driving (includ-
ing while stationary but not parked). Victorian full license holders
can use a phone to make or receive a call and use the audio/music
functions or GPS if the device is secured in a commercial cradle or

https://doi.org/10.1016/j.jsr.2021.06.010
0022-4375/� 2021 National Safety Council and Elsevier Ltd. All rights reserved.
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can be operated hands-free and is not touching the driver’s body
(VicRoads, 2019).

Despite these laws, self-reported use remains high. In 2019,
37.1% of all Victorian drivers admitted to using a smartphone ille-
gally while driving in the past month (Kaviani, Young, et al.,
2020a), with 66.4% of 18–25 year-olds admitting to illegal use.
Although the behavior is not declining in frequency, perceptions
of risks associated with smartphone use while driving are decreas-
ing when compared to previous reports (Transport Accident
Commission, 2018). Although still high, young drivers rate the dan-
gers of smartphone use slightly lower than those associated with
driving over the legal blood alcohol limit (9.1/10 and 9.5/10,
respectively; Transport Accident Commission, 2018).

To effectively counter illegal use it is necessary to understand
why young drivers continue to engage with smartphones, while
acknowledging the behavior is almost as risky as drink-driving,
and why those perceptions of risks are declining. In this paper
we report on focus group findings on three key themes: (1) how
illegal smartphone use is perceived as benign; (2) the ways smart-
phone behaviors are linked to confidence, risk perception, road
conditions, and task demand; and (3) how the risk-compensation
strategies drivers describe are linked to perceptions of norms and
the seriousness of illegal smartphone use while driving.

1.1. Norms and risk

Human behavior is guided by social norms (Deutsch & Gerard,
1955), and those norms—a collection of informal or formal
rules—are believed to govern acceptable risks (Bicchieri et al.,
2018). Several studies have attempted to evaluate the impact
norms have on the decision to engage with a smartphones while
driving (Atchley et al., 2011; Carter et al., 2014; Merrikhpour &
Donmez, 2017; Nelson et al., 2009; Nemme & White, 2010).
Atchley et al. (2012) suggested that while younger drivers recog-
nize the risks associated with distracted driving, they perceive it
to be a normative behavior. Indeed, studies have shown most
young drivers engaging in distracted driving believed their peers
and parents—their most important social referents for driving
behaviors (Merrikhpour & Donmez, 2017)—participated in dis-
tracted driving more frequently than themselves, directly shaping
their own understandings of norms around distracted driving
(Carter et al., 2014). To demonstrate the impact of this attitude
on perceptions of smartphone risk, Atchley et al. (2012) employed
attitudes to drink-driving as a baseline comparison. In the
research, younger drivers were asked to rate the responsibility of
drivers across different crash scenarios and, although participants
assigned the same level of culpability to drink-drivers as with tex-
ting drivers, they were more likely to fine drink-drivers and give
them longer jail sentences (Atchley et al., 2012). Additionally, dri-
vers on a hand-held phone call, despite receiving a higher level of
culpability than the drunk driver, escaped punishment altogether,
commensurate with a sober driver. These findings suggest that
younger adults perceive the risks associated with smartphones as
a natural and acceptable component of driving, showing a differ-
ence of norms compared with drink-driving being unacceptable
after a shift from decades of anti-drink-driving countermeasures
and increased enforcement such as randomized breath testing
(Davey & Freeman, 2011). Current attitudes toward smartphone
use reflect those regarding drink-driving extant in the 1970s, lead-
ing Atchley et al. (2012, p. 283) to conclude that, ‘‘distracted driv-
ing is not a problem of lack of perceived risk, but rather a
disconnection between the norms underlying the behavior and
knowledge of risks.”

It is important to note, however, there has been a general
decline in drinking behaviors among younger people in Australia
(Australian Institute of Health and Welfare, 2020), including drink

driving, while smartphone use and use while driving has increased
(Australian Transport Council, 2011). Although the years of nega-
tive imagery, public information campaigns, and policy shifts
young people have lived through may be driving the decline in
drinking for those under 30, recent research suggests this may be
unlikely (Foxcroft & Tsertsvadze, 2012). Indeed, shifting cultural
trends, especially around social media, may be having a greater
impact on attitudes to drinking, with alcohol no longer central to
facilitating connection and communication between young people
(Livingston & Pennay, 2021). The prevalence of the device have
shaped norms supporting use as predominantly social and benefi-
cial, yet recent research demonstrates that the more one engages
with their device, the more likely they are to engage in anti-
social and risky smartphone behavior such as prohibited, danger-
ous, or dependent use (Kaviani, Robards, et al., 2020).

The risks associated with smartphone use and driving, however,
are dynamic, influencing perceptions around associated norms.
Research demonstrates that drivers using their phones engage in
a continuous process of self-regulation and risk compensation
(Oviedo-Trespalacios et al., 2019; Zhou et al., 2016). By self-
regulating their driving and/or smartphone behaviors, drivers
believe they can compensate for risks (Zhou et al., 2016) and
reduce the likelihood of detection by police (Oviedo-Trespalacios,
King, et al., 2017; Oviedo-Trespalacios et al., 2018). Studies have
shown the decision to engage in smartphone tasks, and choice of
self-regulatory strategy, is conditional and adapted to three fac-
tors: driver characteristics, road traffic conditions, and task
demands (Hancox et al., 2013; Oviedo-Trespalacios et al., 2018,
2019; Tivesten & Dozza, 2015; Young & Lenné, 2010). Driver char-
acteristics such as crash risk perception (the appetite and interpre-
tation of risk; Oviedo-Trespalacios, King, et al., 2017) and
confidence in multi-tasking or driving (Hancox et al., 2013) can
determine engagement and choice of behavioral adjustments.
Smartphone use is also conditional and adaptive to traffic density,
road type, and conditions (Christoph et al., 2019; Tivesten & Dozza,
2015). For instance, drivers may slow down while using a smart-
phone to reduce the likelihood of crash or severe injury (Oviedo-
Trespalacios, Haque, et al., 2017a). Similarly, drivers may choose
to only engage with phone tasks while driving on quiet, simple,
or familiar roads, or at traffic lights (Oviedo-Trespalacios, Haque,
et al., 2017b). Depending on the demands of the driving and smart-
phone task, a driver may engage or adjust their method of commu-
nication (i.e., choose between a text or call; Oviedo-Trespalacios,
King, et al., 2017; Tractinsky et al., 2013).

These risk-compensatory strategies undoubtedly shape how
young drivers interpret, navigate, and interact with risk, and stud-
ies that focus on norms must consider how such behavior can sim-
ilarly shape attitudes to risk (Atchley et al., 2011). By examining
the correlative relationship between self-regulatory behaviors
and perceptions of risk and norms, this current research considers
these issues. We seek to understand the relationship between
socially constructed norms (i.e., perceptions of what other people
do, such as friends and family) and individual smartphone use
and driving practices, which include a range of risk-
compensatory strategies that we explore here.

1.2. The current study

In this study, current attitudes to illegal smartphone use while
driving were canvassed, as well as the extent to which drivers
reported engaging in self-regulatory behaviors. As with Atchley
et al.’s (2012) use of drink-driving norms as a baseline to compare
attitudes with smartphone use, our study similarly posited
questions comparing the two behaviors to illustrate how current
self-regulatory behavior might frame risk and shape attitudes to
illegal phone use while driving. We expect the norms that illegal

F. Kaviani, K.L. Young, B. Robards et al. Journal of Safety Research 78 (2021) 292–302

293



smartphone users perceive in their environment will frame the
belief that risk-compensatory strategies such as self-regulating
driving behaviors and illegal use are safe and acceptable, amelio-
rating the seriousness of transgressing smartphone laws.

Knowing how self-regulatory behaviors inform perceptions of
danger and attitudes to illegal smartphone use will allow for the
development of countermeasures that consider and challenge
norms around ‘‘acceptable” or ‘‘mitigated” risk. Focusing cam-
paigns and interventions on norms without considering the active
strategies young drivers employ to use a phone while driving in
their perceived ‘‘safe way” isolates those drivers most at risk. As
we later demonstrate, it is important to acknowledge their adap-
tive processes in order to speak directly to their lived experience.
Addressing this gap in the literature will equip policy makers with
a unique vantage point to reduce distraction-related deaths and
injuries.

2. Method

2.1. Participants

This study involved four in-depth focus groups with 13 young
drivers (18–25 years old) from Victoria, Australia, conducted
between May and June 2020. Due to the specific focus on norms
around illegal smartphone behavior while driving, anticipating
participant responses occurred early during the data collection
process. Additionally, stratifying factors such as age, income, and
gender were not included in the analysis, therefore the kinds of
views did not provide a wide range of features that further focus
groups would necessarily capture. Another contributing factor to
terminating further data collection was the overwhelming amount
of relevant data, something research (Reid & Reid, 2005) suggests is
common in the use of online methods. As such, data collection was
terminated after the fourth focus group. Smaller group sizes were
deemed appropriate as research suggests (Morgan, 1998) that they
are more conducive to encouraging personal accounts of an illegal,
controversial behavior. This also informed the decision to conduct
focus groups, not one-on-one interviews; research suggests smart-
phone use while driving has become so habitual that drivers are
often unaware they are doing it (Hansma et al., 2020; Oulasvirta
et al., 2012), therefore, it was hoped the group dynamic would eli-
cit self-reflection and motivate discussion about what is often an
unconscious, private behavior.

The focus groups were designed to explore specific quantitative
results that emerged from 2,774 responses to a Smartphone Use
and Driving Survey (SUDS) the authors conducted between June
and August 2019 (Kaviani, Young, et al., 2020b). The 13 young dri-
vers were recruited for focus groups through the initial survey
(SUDS). Volunteers were required to have: (a) held a valid Victo-
rian driver license; (b) driven at least once a week in the prior
months; (c) have used their smartphones over three hours a day
on average; and (d) used a smartphone illegally while driving in
the past 31 days of taking the original survey. A $35 gift card was
offered to possible focus group volunteers to incentivize
participation.

It is important to note how the sample selection criteria may
skew the data and affect future reproducibility. Our sample repre-
sent high use smartphone owners, which has been shown to
increase the likelihood of risk-taking while driving (Kaviani,
Young, et al., 2020b). Additionally, nearly all participants are pro-
gressing through the Graduated Licensing Program, meaning their
inexperience may produce cavalier attitudes (White et al., 2011).
These particularities may significantly render the tone of
discussion.

2.2. Procedure and materials

Prior to each focus group, prospective participants were
emailed an explanatory statement that outlined confidentiality,
storage of data, and complaint procedures; a consent form (signed
and returned); and a short demographic and smartphone use sur-
vey (to confirm they still used their smartphones illegally). There
were four focus groups of varying sizes (Table 1), taking approxi-
mately one hour each. Due to COVID-19 restrictions in Victoria at
the time, focus groups were conducted over Zoom (a video plat-
form) and were moderated by the first author. The discussion
was guided by structured questions (included in Appendix A, Sup-
plementary material). The questions explored smartphone use and
driving behaviors, legal and non-legal deterrents for illegal use
while driving, and justifications and potential countermeasures
for illegal use.

2.3. Data analysis

The first author transcribed the data verbatim. Participants
were de-identified and prescribed aliases. Constant comparison
analysis (Onwuegbuzie et al., 2009) was employed using NVIVO,
whereby the data were coded, then those codes were grouped into
emergent and a priori categories. From those categories emerged
the themes reported on here (Braun & Clarke, 2006).

3. Results and discussion

3.1. Theme A: Participants perceive illegal smartphone use as
commonplace, easy, and benign

‘‘They think it’s normal, so it is normal.”
Grace [P22]

Participants believed that all road users are engaging with
smartphones illegally. Additionally, the behavior is perceived as
benign and easy to do. The comments below illustrate a view of
smartphones as natural, common, and unremarkable fixtures of
contemporary life that provide perpetual availability and function-
ality—even after entering a vehicle:

Stuart [P1]: We have these devices by our sides virtually the whole
day, it doesn’t seem as if we’re doing anything different or explicitly
out of the ordinary from our everyday life to be using it while we’re
driving. It’s just the same as what we’re doing throughout the rest
of our life.
Krista [P2]: The more we’re able to do with our phones, the more
we never want to put them down. Like, when do we ever go any-
where without our phones nowadays? It’s just something con-
stantly attached to us and the more we can do within them then
the more we want to use them.

Stuart and Krista’s use of ‘we’ and ‘us’ demonstrate the univer-
sality of their beliefs, which informs norms and provides justifica-
tion for their own use. Similarly contributing to norms, one’s
immediate social environment (usually peers and family members)
determines the acceptability of certain driving behaviors (Allen
et al., 2017). All participants perceived that parents and peers
engaged in smartphone use while driving, with several individuals
who indicated they had been caught by police.

Derek [F]: It’s quite socially acceptable to do it.
Grace [P2]: I’ve had people send me videos while they’re driving. So,
I feel like it’s just like, they think it’s normal, so it is normal.
Liam [P2]: When I was learning to drive, and before that, my par-

2 Participant license type.
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ents would use their phones as well. So that was the role model.
Lula [F]: It’s also amongst my peer group, everyone does it. So, I
guess it’s kind of the norm in a sense, and that I don’t know any dif-
ferent. . . Even my mum, she’s usually the one that I am calling
when I’m driving

There is a strong desire among young people to adopt similar
attitudes to their peers and comply with their expectations and
behaviors (Mattern & Neighbors, 2004). Similarly, a parent’s strong
social ties, authority, and ability to withhold privileges motivate
young people to comply with road rules (Allen et al., 2017). Yet,
participants in this study believed all road users engage in illegal
use and regularly witnessed peers and family members use a
smartphone while driving. The combination of these beliefs and
observations contribute to the notion that illegal smartphone use
is a normal, benign, and unordinary component of driving. This
belief was regularly evoked to justify use, contributing to a misper-
ception regarding the acceptability of the behavior.

Indeed, participants routinely thought of their smartphone use
as habitual (Oulasvirta et al., 2012), not once alluding to smart-
phone addiction or dependency as contributing to illegal use. Of
course, ‘habitual’ may tactically lack the stigma or deviance associ-
ated with ‘addiction;’ however, their observations are concurrent
with previous research that found merely spending more time on
a smartphone per day, even in lieu of psychological dependency,
statistically significantly predicts the likelihood of illegal use
(Kaviani, Young, et al., 2020b). This is important to consider when
shifting norms: any injunctive messaging should be supported by
encouraging positive smartphone habits (Pinder et al., 2018), both
in and outside of the vehicle. This reacquaints the driver with a
sense of agency and control over their phone use (Hansma et al.,
2020) while combating loss aversion (Delgado et al., 2018) so dri-
vers feel they are gaining—not sacrificing—from their changed
behavior.

A successful countermeasure must shift risk perceptions and
encourage illegal users to measure the acceptability of their habit
against drivers that abstain from use all together. Focusing on
how uncommon a behavior is could reduce use among illegal
users; however, our participants noted that even if the behavior
were uncommon, their illegal use would continue. Additionally,
research reveals between 43% (Transport Accident Commission,
2019) to 66.4% (Kaviani, Young, et al., 2020b) of young drivers
are engaging in illegal use, meaning the behavior is actually com-
mon. Therefore, campaigns employing descriptive messaging
aimed at shifting norms must also incorporate a strong injunctive
message challenging the acceptability of smartphone use (Atchley
et al., 2012).

Highlighting the role that smartphone manufacturers have in
aiding and normalizing use (Galitz, 2018), participants repeatedly

alluded to the devices’ ease of use and access. Technological fea-
tures such as facial recognition to unlock the phone provide quick
hands-free access, while familiarity with the phone’s application
grid and keyboard layout allow for easy engagement. Advance-
ments in mobile technology and accessibility may ameliorate cog-
nitive demand and facilitate surreptitious use; however, research
shows that even with eyes on the driving environment cognitive
demand from secondary tasks can result in impaired driving per-
formance and increased crash risk (Strayer et al. (2017)). Yet, as
demonstrated by Lula’s comment, ease of use can facilitate danger-
ous use by giving the impression that merely having one’s eyes on
the road is sufficient to driving safely:

Lula [F]: I’ve gotten to the point where half the time I don’t even
have to look at my phone because I just have it and I’ll know with-
out even looking at it. . . I know exactly in what place all my apps
are, where the buttons are, where everything is. . . like, my brain is
off the road, but my eyes are not.

Even while rationalizing use because of its ease, Lula concedes
her ‘brain is off the road.’ The simplicity with which participants
can engage with their smartphones, its perpetual presence, and
increasingly diverse functionality, facilitate what many partici-
pants defined as ‘habitual’ use. Our interpretation of their defini-
tion aligns with the understanding of habitual to mean use as
every day, typical, and without much thought (Hansma et al.,
2020). The belief that habits are hard to break was ubiquitously
expressed; however, it became evident that ease of use and access
and functionality were observations loosely employed to justify
use and deflect, or completely abdicate, personal responsibility.

The common remark among learner and P1 and P2 license hold-
ers was the device is an essential and harmless tool. The main
types of illegal use among these participants were GPS for naviga-
tion and Spotify via Bluetooth for music, although several used
their phones for calling, texting, or browsing the internet (Table 1).
Regarding their reasons for illegal use, all participants provided
varied responses. These included wanting to make practical use
of time while driving long distances or while stationary or slow-
moving in heavy traffic, to listen to one’s own music or podcasts
rather than the radio, answer calls or respond to texts, or avoid
the anxiety of not knowing directions to a particular location (nav-
igation and music were not a reason for illegal use among Full
License holders due to the legal status of such use).

The desire to stop illegal smartphone use was palpably absent.
Contrary to the impact of descriptive norms, some participants
admitted that even if the behavior were uncommon their usage
would continue—albeit more surreptitiously—because the
behavior was benign. For young people, norms that create external
obligations (suchaspeer social pressure) can strongly impactbehav-

Table 1
Participant license type and phone use.

FG Name (alias) License Type Hours on phone per day Freq of illegal use Types of use

1 Stuart P1** 4–5 Always Texting (HH); calls (hands-free); music; navigation
Derek F 4–5 Half the time Texting (HH, HF); calls (HF); email; music; internet; navigation; video; other
Lola P2 6–7 Always Texting (HH); calls (HH, HF); social media; email; music; navigation
Joanne P1 5–6 ST Navigation

2 Jody F 6–7 Half the time Texting (HH, HF); calls (HF); social media; music; navigation
Krista P2 4–5 Always Navigation; music
Blake P1 9+ Always Texting (HH); calls (HF); social media; music; dating; internet; navigation; other

3 Lula F 5–6 Always Calls (HH); social media; internet; navigation
Judith P2 4–5 ST Calls (HF); music

4 Liam P2 3–4 Always Texting (HH, HF); calls (HF); social media; music
Lexie P2 4–5 Half the time Calls (HF); music
Grace P2 4–5 Most of the time Calls (HF); music; navigation
Simsala L 5–6 Most of the time Texting (HF); calls (HF); music; navigation

Note: ST = Sometimes; HH = Hand-held; HF = Hands-free; **L = Learner permit; P1 = Probationary P1 license; P2 = Probationary P2 license, F = Full license.
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ior, even among individuals for whom attitudes to compliance are
not aligned with personal attitudes or beliefs. Therefore, parents,
peers, and other role models should establish and communicate
desired norms to promote and motivate safer use (Buckley et al.,
2014). As our research highlights, however, illegal smartphone use
is usually committed in the absence of a passenger; therefore, moti-
vating an individual to see the validity of the norm (i.e., abiding by
the law) itself would be more effective (Legros & Cislaghi, 2020).
On the surface, the lax attitude toward smartphone use while driv-
ing and the casual nature with which our participants engage the
devicemay appearwanton at best and reckless atworst. Throughout
our discussions, however, it became evident their responses and
beliefs were predicated on the assumption that risk had been com-
pensated for before choosing to engage. Importantly, for a driver
to internalize obligations, the efficacy and acceptability of self-
regulatory strategies must be challenged in order to speak to their
lived experience of engaging with risk-compensatory behaviors.

3.2. Theme B: Self-regulatory behaviors are pervasive among illegal
smartphone users

‘‘You draw your own boundaries and make your own rules”
—Lexie [P2]

This study provides further evidence that, by adjusting behavior
accordingly, drivers felt they could compensate for, or ameliorate,
negative effects of smartphone impairment on safety (Zhou et al.,
2016) and reduce the likelihood of police detection (Oviedo-
Trespalacios et al., 2018). As illegal users perceive the behavior
as normative, drivers use inaccurate social comparison (Mattern
& Neighbors, 2004) information to justify the risks associated with
self-regulated engagement (i.e., they believe their behavior is safe
and conscientious, especially when compared to drivers that did
not effectively regulate their smartphone use and driving). These
strategies were presented as a personal set of rules for which trans-
gressing would be irresponsible, selfish, and dangerous. In their
opinion, drivers that failed to compensate for risk were the prob-
lem—not smartphone use. Instead of comparing their behavior
with law abiders, this misperception informs a certain level of
risk-taking as socially acceptable, the prevalence of which has led
to the normalization of risks associated with self-regulatory behav-
iors. This may explain why perceptions of risk associated with
smartphone use—although almost as high as drink-driving—are
declining (Transport Accident Commission, 2018).

All three conditional factors mentioned in the introduction—
driver characteristics (confidence and risk perception), road traffic
conditions, and secondary task demands—were pertinent through-
out the focus groups and are discussed below.

3.2.1. Driver characteristics (risk perception)
All participants were aware of distraction risks involving smart-

phone use; however, as the following exchange demonstrates, they
attributed the problem to driver incompetence, not smartphone
use:

Blake [P1]: I think there are bad drivers everywhere. And I would
worry just as much about a really bad driver, not on their phone,
just driving. It’s more driving quality than phone use that worries
me.
Jody [F]: Yeah. If someone’s using their phone but they’re managing
to stay within their lines and not swerving, they’re keeping a
straight line, or they’re turning whenever they need to, but they’re
still maintaining as if they weren’t on their phone, that’s okay.
Cause I’m kinda like ‘look, they’re much less likely to cause any-
thing compared to the ones that are swerving everywhere, they
make me uncomfortable’. People that managed to like, you can’t

tell that they’re using their phone, I’m like, ‘look, they’ve got it fig-
ured out’.
Blake [P1]: Yeah. You gotta more judge the driving than you do
what’s caused the driving.

Although aware smartphones can be distracting, their own use
is unlikely to change while successfully complying with their own
self-regulatory/risk-compensatory rules. Their comments may
reflect an optimism bias (White et al., 2011), in addition to an
unwillingness to admit their risky driving could also be harmful.
Further, it illustrates a high opinion of one’s own driving. This is
consistent with research that demonstrates most drivers consider
themselves more skillful and less risky than other road users
(Svenson, 1981). A telling quote from Blake neatly illustrates this
point: ‘‘just because other people can’t use it right, doesn’t mean I
can’t use it right.” The problem, then, becomes other road users. This
distinction is further borne out when participants discussed being
a passenger of an offending driver. Lula and Krista, both having
admitted to ‘‘always” using their smartphones illegally while driv-
ing, had no difficulty perceiving the risks associated with another
driver’s illegal use:

Lula [F]: But yeah, if I watch someone do it and I’m in the car I’m
like, ‘what are you doing? Put it down, you’re not watching the
road, you’re not paying attention, you’re being distracted’.
Krista [P2]: I personally am not comfortable when I see somebody
who is on their phone because I think, ‘you might be all right for
this second, what if you hit an animal? I feel like that’s very contra-
dictory considering what I’ve said about my own phone use.

Thus, their own use is not a problem of perceived risk but,
rather, a disconnection between norms and risk (Atchley et al.,
2012). Or, as we argue, a connection between misperceived norms
and the normalization of risk. Shifting perceptions of norms
requires challenging risk-compensatory strategies. If young, inex-
perienced drivers are adapting their smartphone and driving to
mitigate risk, then the dangers associated with those strategies
need to be demonstrated. Throughout the Victorian Graduated
Licensing System, license holders could be regularly exposed to
the laws, risks, and consequences of smartphone use through reg-
ular communications. License tests could include hazard questions
or simulated smartphone use in hazards training (Chan et al.,
2010). In addition to top-down dissemination of information,
young drivers should be encouraged and rewarded when sharing
educational resources with peers and family through social media,
a process that can become attractive or fashionable if a celebrity is
marketed as a compliant role model (Lapinski & Rimal, 2005).

3.2.2. Driver characteristics (confidence)
Participants frequently qualified smartphone engagement by

their level of confidence inmultitasking, driving safely, and avoiding
apprehension. Whether they could accomplish the task safely, and
without being caught, determined the type and likelihood of
engagement.

Simsala, a learner driver that uses her phone for GPS and music,
noted she limits her texting and calls to hands-free (which is still
illegal for learner drivers in Victoria); however, it is confidence—
not the law—that circumscribes the behavior:

Simsala [L]: I’ll be like, okay, definitely I cannot use my phone on
the road because I am not confident in driving because I’m an L
and I’m still under supervision.

Confidence also mediated the more advanced license holder’s
engagement. Joanne, a P1 license holder, reported she limits use
to GPS voice function; however, other more confident participants
in her focus group (a P1, P2, and full license holder respectively)
frequently engaged with a variety of smartphone applications.
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While all uses are illegal under Victorian law for the probationary
license holders, there was clearly a hierarchy of risk-taking in how
these participants understood their practices, modulated by a
sense of self-confidence. Confidence, however, can give the impres-
sion of competence (Lesch & Hancock, 2004), which can result in
dangerous scenarios, as Derek explains:

Derek [F]: I definitely feel like I’m a confident driver, but there’s cer-
tainly times where I, you know, sort of get a bit of a shock when I
sort of swerve into a different lane or something.

Throughout discussions participants noted that dangerous
experiences of smartphone distraction can affect their confidence;
however, their ability to regain confidence was commonly alluded
to.

Lula [F]: I think if I had something to shake my confidence, like an
experience or a near miss or something like that, it’d be enough to
definitely shake my confidence. And then, you know, probably for
however long it took me to move on from that I’d like to think that
I wouldn’t go anywhere near my phone whilst I’m driving. But once
I learned to deal with that and my confidence built back up, then I’d
probably fall back into the same old habit.

Confidence in avoiding apprehension was similarly checked
when confronted with a ‘‘close call” or actual police apprehension,
the effects of which are also ephemeral:

Liam [P2]: When it happens [getting caught by police], you’ll stop
doing it. ‘Cause like I’ve lost my license from speeding, so I didn’t
speed after that for a while. And then it kind of just builds up again
and then I think you’d get a bit more confident and start doing it
again.

Lula [F]: If I’ve just been on [my smartphone] doing something I
know I shouldn’t be, and I come over the top of the hill and I’m like,
‘ugh, that’s a police officer’, you know my heart will race and I’ll get
this pit in my stomach being like, ‘Oh God, if I had been two seconds
too late I would have got caught.’ But then five minutes later I’ll do
it again.

The participants went further to admit that even after a near
crash or close call with police—or after actual apprehension—their
confidence will return. To counter recidivism, drivers could be
reminded of past transgressions via electronic or paper communi-
cation. These could include a compulsory test or interactive infor-
mation session to remind drivers of smartphone law, the dangers
associated with all forms of use, and practical personal interven-
tions for breaking habits and reducing use.

Their level of engagement was also predicated upon their con-
fidence in multitasking. As Lola revealed earlier and elucidates
upon below, smartphones are increasingly thought of as easy to
use in the context of driving; confidence with the device can
reduce the sense of cognitive demand and increase engagement
with the device:

Lola [P2]: I mean, if I don’t feel confident I won’t, but I have texted
while driving. . .but I’m also familiar with like the layout on my
phone, so I don’t always rely on vision, I just kind of go by feel
and autocorrect.

The cognitive and physical demands are such that engagement
is unlikely if they feel incapable. Additionally, drivers may allocate
different smartphone tasks for specific driving conditions such as
when stopped at an intersection (as discussed in sections 3.2.3
and 3.2.4). However, it is important to understand that smartphone
use and driving compete for the driver’s visual, physical, and cog-
nitive attention (Oviedo-Trespalacios et al., 2016). This means that
when resources are allocated to one task, the resources required
for the other tasks are not available and therefore results in

impaired performance (Strayer & Johnston, 2001). Our research
suggests a driver’s confidence in their multi-tasking and avoiding
police apprehension moderates the likelihood they will engage in
risk compensatory behaviors. Unfortunately, the longer a driver
gets away with breaking the law (Stafford & Warr, 1993) and
avoids crashing the more confident they will be in continuing their
phone use while driving (Oviedo-Trespalacios, 2018). Therefore,
messaging targeting the perceived acceptability and efficacy of
multitasking may have an impact (Sherman et al., 1997).

For optimal efficacy, any message-based approach should be
supported by increasing deterrent mechanisms, such as enforce-
ment or fines, or regular and on-going educational programs
defined by a multi-action and interactive approach. For instance,
advertising could show mourners engaging with their smart-
phones during a somber eulogy, the memorial photo then opening
to a scene where the victim uses a smartphone before crashing, the
takeaway being, ‘‘respect the road if you respect your life.” Similarly,
strategies to end illegal self-regulatory smartphone use must shift
perceptions among illegal users that ‘‘out of sight” use, including
Bluetooth or hands-free, reduces the seriousness of the offense or
certainty of apprehension.

3.2.3. Road traffic conditions
Aligning with previous research, participants noted they were

more likely to engage in smartphone use in familiar environments,
on quiet roads, or while stopped at traffic lights (Tivesten & Dozza,
2015). These scenarios were considered less dangerous or likely for
apprehension:

Blake [P1]: You know, if you’re alone on the road and there’s no one
near you, no one’s going to see you. It’s pretty low risk in your
mind. That’s one scenario which you wouldn’t even think about it.
Facilitator: So, managing the risk?
Blake [P1]: Yeah. Not only the safety risk but the risk of getting
caught.

Indeed, waiting at an intersection was viewed as an innocuous
and acceptable moment to engage with smartphones. Alterna-
tively, participants reported avoiding use in situations that
required greater concentration such as near schools, at high
speeds, in the city, or on windy roads (Oviedo-Trespalacios,
Haque, et al., 2017a; Young & Lenné, 2010). The following
exchange between Stuart and Lola, both heavy users while driving,
demonstrate this:

Stuart [P1]: There are times when it seems as if you’re more safe to
use your phone when you’re driving. Like if you were stopped at a
traffic light for instance, I would say that it’s not controversial that
there’s far less risk in doing that and using a phone there than if
you are driving along a country road at faster speeds—that’s a very
different circumstance.
Lola [P2]: Yeah. Cause if you’re already stopped, you’d think that
there’d be less risk. You might just piss someone off behind you
cause you’re not going at the green light. But if you’re moving
and you’re distracted, I think there’s a much higher risk of you com-
ing into oncoming traffic or something.

Additionally, a frequent consensus among all participants was
the decision not to use a smartphone when driving with passen-
gers. This highlighted an interesting and previously researched
point where one’s appetite for risk was almost effaced in consider-
ation of their passenger’s safety (Huemer et al., 2018). A passenger
renders the fear of hurting others salient (Kaviani, Young, et al.,
2020a); however, participants mitigated concern for the safety of
other road users by compensating for risk:

Blake [P1]: I don’t do it if I’m driving my friends or family. That’s
not an embarrassment thing. I think that’s more of like a safety

F. Kaviani, K.L. Young, B. Robards et al. Journal of Safety Research 78 (2021) 292–302

297



thing. Like you’re more accountable for other people when you’re
driving people.

Lula [F]: I kind of, it sounds horrible, I justify it in the sense that if
I’m the only one in my car, that’s one less person that I’m putting at
risk. I know that everyone else on the road that I’m passing at the
same time, I’m putting them in just as much risk. But. . . if someone
else is in my car, then I won’t even look at it, won’t even touch it
because I’m responsible for those people.

Lula’s social connection and physical proximity to her passen-
gers increases the sense of responsibility for their safety, whereas
the risks to road users beyond her vehicle are de-personalized
and less salient. Having a passenger may also reduce the desire
for using a phone to facilitate social connection, while navigation,
music, or other phone tasks can be fulfilled by the passenger allow-
ing the driver to concentrate on the road.

The need for constant connection and maintaining a sense of
belonging means young people are increasingly unable to sit with
their own company without turning to their smartphones. Merely
applying fines and demerit points to admonish illegal use fails to
address the psychosocial attraction and impact smartphones have
on behavior, especially with regard to habitual and dangerous use
(Kaviani, Robards, et al., 2020). Treating illegal smartphone use as a
health issue and not just road safety concern addresses research
that shows more time spent on smartphones per day greatly
increases problematic dangerous, prohibited, and dependent use
(Kaviani, Robards, et al., 2020).

3.2.4. Secondary (smartphone) task demand
As previous research highlights, young drivers are using their

smartphones for various tasks while driving (George et al., 2018).
Our findings reveal how certain tasks are dictated, and dictate,
types of driving behaviors; participants employed specific com-
pensatory strategies to mitigate cognitive demand and risk of
apprehension. Allowing only a brief glance at the phone’s interface
was a typical refrain from participants, showing they understand
the safety risks associated with long periods of eyes off the road
(Simons-Morton et al., 2014), while techniques such as using
hands-free, restricting the types of applications they engage with
or the amount of time they engage visually, helped to give a sense
of concealment (Gauld et al., 2014).

Jody [F]: Usually I try and avoid using it outside of maps and music
or phone calls. So, when I do, I’ll be like extra vigilant, looking all
around me and just sort of got the adrenaline going with it.

Lola [P2]: I might just look away from the road to unlock my phone
or something and then just kind of skip a song or something. I don’t
feel like I’m looking away from the road for that long. And so my
judgment’s not that impaired. Like it’s wrong, but it’s not that
wrong.

Derek [F]: You kind of pick your moment to use your phone when
you don’t think there’s police around or, you know, when you think
there’s less danger.

Participants incorrectly believed (Oviedo-Trespalacios et al.,
2018) using applications such as GPS or music to be low risk and
therefore justified, comparing the behavior to just ‘‘touching parts
of your car.”

Interventions could address norms (to promote a message that
most drivers do not use a phone while driving), as well as provide
psychological insight into the ineffectiveness of multitasking and
other deleterious effects of smartphones on cognition and well-
being.

3.3. Theme C: Risk-compensation strategies rationalize risks and
perceived norms, reducing the seriousness of transgressions when
compared with drink-driving

‘‘I don’t know if it’s real, but it feels like the risk [when drink-
driving] is a lot more real”

—Lola [P2]

Research into distinguishing between the influence of norms
and risks associated with distracted driving has highlighted the
usefulness of comparing the behavior with another road safety
issue that young drivers find generally unacceptable (i.e., drunk
driving; Atchley et al., 2012). Atchley et al.’s (2012) study revealed
that while drivers recognized the risks of smartphone use as equal
to drunk driving, their perceptions of the behavior as normative
reduced the seriousness of transgressions. In an attempt to under-
stand the factors influencing that perception, our study initiated a
discussion comparing attitudes toward drink-driving and smart-
phone use.

The young participants emphatically agreed that drink-driving
is unacceptable, yet the comparison with smartphone use had an
extraordinary impact as participants attempted to articulate justi-
fications for engaging in illegal phone use while simultaneously
acknowledging the risks of both behaviors. At times, participants
struggled to rationalize why smartphone use was more acceptable,
the palpable cognitive dissonance highlighting the impact norms
have on acceptable levels of risk. For instance, after participants
acknowledged the similarity of risks but down-played smartphone
severity due to its prevalence, the facilitator asked how justifiable
drink-driving would be if it too were prevalent:

Krista [P2]: You’ve completely ‘‘dad moved us” here [a colloquial
term for reductio ad absurdum].

Jody [F]: Because it [drink-driving] does seem like a much more
serious thing than phone usage and because the phone usage also
has the varying degrees [regulation] and all that, I still feel like
it’s very different.

Here, the availability of self-regulatory risk-compensation
strategies reduced the seriousness of transgressions and normal-
ized the prevalence of use when compared with drink-driving.
Indeed, it became apparent that each aspect informing why
drink-driving was socially unacceptable was related to the driver’s
inability to self-regulate their inebriation. By having access to risk-
compensatory strategies the perceived severity and negative con-
sequences of the behavior were reduced and normalized:

Krista [P2]: There’s stuff that you can’t mitigate [when driving
drunk], it’s risk you can’t mitigate. You cannot have a blood alcohol
test and be like, okay, I’m at this whatever reading and that means
that these things are what’s inhibited now—I can control that now.
Whereas you can be like, I need to put the phone down, I need to
stop, and you can continue on driving perfectly normal. You can’t
do that with drinking. You’re inebriated, you’re affected, doesn’t
matter whether you want to or not, if you sit behind that wheel
and you’ve had a drink, then that’s it. Game over essentially, there’s
nothing else you can do apart from not drive and eliminate the risk
completely.

For participants, the inability to regulate drink-driving meant
the risks and performance decrements ‘‘felt” more real to them
when comparing the behavior to smartphone use. Being affected
the ‘‘entire trip,” as opposed to ‘‘just some points,” rendered the
dangers, risks, and consequences more immediate and impactful,
and therefore the decision to drink-drive loftier. Also shaping atti-
tudes to smartphone use was the belief that, when compared with
drink-driving, it is a victimless crime:
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Blake [P1]: Like, there’s no headline that’s going to be ’phone user
killed someone in a crash.’ Cause you can’t verify that, and that’s
probably a reason that the reporting is so different.
Jody [F]: It’s not as serious, like a lot of the consequences aren’t nec-
essarily as serious as the drink-driving ones. . . in my mind it pretty
much seems like the consequence of driving and using your phone
is you get caught and you get fined demerit points.

Supporting the notion that drink-driving is more unacceptable
than smartphone use was the severity of punishment. It was
widely known that if caught drink-driving the punishment
requires attendance at a behavior change program and the install-
ment of an alcohol interlock device, which, for Liam, sounded like a
‘‘really big hassle.”

As such, punishment could include a compulsory Behavioral
Change Program (Buckley et al., 2014) such as current programs—
which Liam noted as a ‘‘really big hassle” worth avoiding—aimed at
reducing re-offending among drink-drivers (VicRoads, 2020).
These programs could incorporate learnings around phone depen-
dency (Kaviani, Young, et al., 2020b) and offer solutions for manag-
ing risk (Oviedo-Trespalacios et al., 2020).

All participants agreed media campaigns have raised awareness
of the risks and humanized the consequences of drink-driving, but
they felt the public safety message around smartphone use—be-
sides being sparse and tepid in comparison to drink-driving—did
not consider their successful risk-compensation strategies.

Krista [P2]: I feel like there is an ad at the moment. I don’t know if
you guys have seen it, it’s like ’a glance at your phone is like this
and there’s someone sitting in the backseat covering the driver’s
eyes’. I feel like that’s not serious enough though, do you know
what I mean?
Jody [F]: Yeah. . .there was one ages ago that they had where every
time they looked at their phone everything would just go black, for
however long it was. And then the child going across the school
crossing something.
Krista [P2]: It doesn’t sound as graphic as like drink-driving.
Jody [F]: Yeah. It’s nowhere near as graphic. And the other thing, if I
was going anywhere near a school crossing and all that it wouldn’t
be an area that I would use my phone because that’s high risk, so it
still doesn’t really relate to me in any way.
Blake [P1]: To be honest, and this is even more morbid, I don’t think
there’s anything that would change the way that I use my phone.
Jody [F]: Yeah look me neither.
Blake [P1]: I couldn’t think of anything that would, you know,
change the way I do it, because the way I do it now is the way that
I’ve consciously thought mitigates the most risk. And even though I
know it is dangerous and you shouldn’t do, I still think I would.

The candid manner in which Blake and Jody confess their
unyielding illegal phone use illustrates the impact self-regulating
risk has on their perceptions of the behavior and internal moral
compass. The scenario presenting an individual unsuccessfully
compensating for risk (driving near a school) becomes the baseline
for comparison, illustrating the relationship between misperceived
norms and the normalization of risk.

When compared with smartphone use, young drivers perceived
the risks, dangers, and victims associated with drink-driving as
more ‘‘real” and ‘‘serious” because the behavior could not be regu-
lated. As such, because they were regulating their smartphone use
while driving and compensating for perceived risks, participants
did not believe they were engaging in a dangerous activity. Shifting
norms around smartphone use requires addressing these misper-
ceptions. In doing so, stigma around smartphone use may increase,
shifting attitudes toward the behavior. Smartphone use and driv-
ing campaigns may benefit from adopting explicit messaging
around dangers of use and victims of the crime by associating ille-

gal use with anti-social outcomes such as social ostracization due
to injuring or killing others, imprisonment, or shame. This may
increase the seriousness of the offense. A focus on juxtaposing
identical crash scenarios where one is caused by self-regulatory
smartphone use and the other by drink-driving could address the
paradox of ‘‘acceptable risk” while challenging the belief that a dri-
ver need only be sober to be safe and ‘‘celebrated.”

Although recent evidence evaluating the impact of a fear-based
approach found positively framed films decreased self-reported
risky-driving significantly greater than films appealing to fear
(Cutello et al., n.d.), this study demonstrates young drivers have
not been exposed to any narratives convincing them that their
smartphone use could result in serious consequences. Although a
fear-based approach may not instantly change behavior, fear
within the context of narrative persuasion has been shown to
increase stigma around texting while driving (Tamul et al., 2021).
Providing more media coverage of smartphone caused fatalities
can increase social pressure and decrease the likelihood a driver
will continue to illegally engage with their smartphones.

Conversely, likely a testament to the inculcating effect decades
of anti-drink-driving messaging has had on shaping public and
personal sentiment, there exists a strong moral code against
drink-driving. This has increased stigma and reduced any expected
utility to getting into a vehicle intoxicated.

Jody [F]: Drink-driving is something that people will feel very
strongly on. Whereas using your phone not necessarily.

Lola [P2]: I think drink-driving has a much bigger stigma. Like, not
just in public but amongst my friends as well. . . It’s celebrated if
you’re the designated driver, but it’s not if you’re abstaining from
phone use.

Lola’s comment, besides highlighting how being a designated
driver is considered a venerable designation, also demonstrates
how drink-driving is perceived as a choice. Participants viewed
the behavior as pre-meditated, while smartphone use was more
a response or impulse; as Blake extenuates, a drunk driver enters
their vehicle knowing they are about to drink-drive, whereas, ‘‘no
one says I’m going to drive and then go on my phone.” Framing smart-
phone use this way has the effect of rendering the driver passive to
their device and likely less culpable if breaking the law.

The attitudes and opinions of participants corroborate the
impact of decades of anti-drink-driving messaging on social norms
(Atchley et al., 2012). Advertising and media campaigns, alongside
other multifaceted countermeasures such as proper enforcement,
community based programs and education programs, have manu-
factured moral outrage at the behavior, making it synonymous
with idiocy in the form of the pithy slogan, ‘‘if you drink, then drive,
you’re a bloody idiot” (Transport Accident Commission, 2020). The
slogan has become a catchphrase admonishing and reminding dri-
vers of the unacceptability and stigma associated with drink-
driving.

As with any media messaging, it is important to investigate the
target population’s response; however, leveraging upon the suc-
cess of TAC’s drink-driving messaging could expedite attitudes
and norms around smartphone use. While we acknowledge the
parallels between drink-driving and smartphone use while driving
are not exact, and are shaped differently by cultural factors, we can
learn from the campaigns against drink-driving. For instance, the
ease and candor with which our participants evoked justifications
for illegal phone use highlight an absence of stigma associated with
admitting to engaging in self-regulatory risk-compensatory tech-
niques. Messaging must challenge the acceptability of ‘‘mitigated”
risk within the parameters of an illegal behavior, yet participants
admitted nothing would impact their use because they can do it
safely—save ‘‘pissing someone off” at traffic lights. Additionally, they
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routinely extolled their aptitude in risk-compensation strategies,
shifted the accountability of negative consequences onto inept dri-
vers, admitted their confidence can easily rejuvenate, and prefer-
ence their own set of rules over the law. A message needs to
isolate this behavior as both wrong and anomalous. For instance,
‘‘if you drive for your phone, you’re bloody selfish,” or ‘‘if your phone
drives you, you’re bloody selfish,” capture how self-regulatory
behavior centers the phone over the safety of all road users, sug-
gesting the behavior is anti-social and unacceptable. Imbuing the
behavior with negative social value could increase guilt or shame,
which, aside from being an effective form of messaging to change
behavior (Duhachek et al., 2012), has been shown to predict the
likelihood of engaging in illegal use (Kaviani, Young, et al.,
2020a). An educational campaign that highlights and elucidates
on the risks of these self-regulatory behaviors by emphasizing
the need to drive for the road, not phone, can directly address those
most at risk of perceiving the behavior as normal. Additionally,
communication could be presented at hot spots such as traffic
lights or on highway boards during rush hour while traffic is slow,
as long as it is tested to ensure additional driver distraction is not
created. It is important to note that PR messaging is one element of
what should be a multifaceted approach to reducing illegal use.

Finally, highlighting that smartphone use is a choice as much as
drink-driving may place the onus of responsibility back on drivers.
Supplementary behaviors or alternatives need to be presented in a
manner that acknowledges smartphone use can be a habit and that
drivers are engaging in self-regulatory strategies they believe com-
pensates for risk. Avoiding all forms of illegal use should be pre-
sented as the most effective way to compensate for risks to
oneself and others. For example, as Simsala [L] noted:

I always make sure that I’ve queued up enough [music] so it’ll go
for the ride. . . and I’ll text the person, ’I’m just leaving my house
now should be 30 minutes depending on traffic’. . . then I don’t have
to send that quick message in traffic if I’m running late.

By planning ahead Simsala was able to engage in lawful risk-
compensatory behaviors.

4. Limitations and further research

As with any research, this study’s limitations should be noted.
Focus groups present both advantages and challenges in the collec-
tion of data. Focus groups occurred via online videoconferencing
platform Zoom, which may have predisposed some to either tem-
per their views or inflate their experiences to match the group
dynamic or present a more extreme, individualistic perspective,
although this can also be a limitation in face-to-face focus groups
(Boateng, 2012). From the facilitator’s point of view, however, par-
ticipants were extremely candid and at ease during discussions, as
the data likely demonstrates.

As mentioned in the introduction, this study overlooked strati-
fying factors in the exploration of norms, a limitation that if
addressed in future research may offer a more nuanced perspec-
tive. In terms of peer-pressure and risk-taking around smartphone
use while driving, it would be valuable to better understand the
gendered dimensions of these processes, and to interrogate poten-
tial links between masculinity and risk-taking, if such dynamics do
indeed contribute to the behavior. Additionally, at risk of oversim-
plifying norms around smartphone use, external factors that may
impact the likelihood one would engage with their device were
deliberately omitted. For instance, the pressure to respond and
remain perpetually available to peers via smartphones has been
shown to influence use while driving (Seiler, 2015; Seiler &
Kidwell, 2016; Seiler & Kirby, 2017), however, this study was
primarily focused on norms around risk-taking, not norms govern-
ing communication and social connection.

Further research may benefit from evaluating the perceptions of
illegal smartphone use among young drivers that abide by the law.
Particularly, it would be interesting to explore the reasons and
techniques for avoiding illegal use, and if they can be leveraged
to dissuade all drivers from engaging in the behavior.
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Introduction: Safety outcomes in the workplace require individual employees to perform (behave) safely
in everyday duties. While the literature suggests that emotional management capabilities or traits can be
positively related to individual performance in certain conditions, it is not clear how they can influence
safety-related performance in high-risk work contexts. Drawing upon trait activation theory, this paper
aims to examine when emotional intelligence (EI) benefits employees’ safety performance. We propose
that when employees receive inadequate safety training, EI is more likely to trigger their situational
awareness and consequently promote their safety performance. Method: We collected time-lagged data
from 133 full-time airplane pilots working in commercial aviation industry. Hierarchical moderated
regression analysis was conducted to test the moderating effect of safety training inadequacy on the
EI–situational awareness relationship. The moderated mediation model, which involves conditional indi-
rect effects of EI on safety performance via situational awareness across different levels of safety training
inadequacy, was tested using the PROCESS-based bootstrap confidence interval. Results: Safety training
inadequacy negatively moderated the relationship between EI and situational awareness, such that EI
was significantly related to situational awareness only when safety training inadequacy was more salient.
The more inadequate safety training was, the greater the indirect effect of EI on safety performance via
situational awareness was. Conclusions: Inadequate safety training, as a negative situational cue, can acti-
vate individuals’ EI to drive their safety-related cognitions (e.g., situational awareness) and behaviors.
Effective safety training may be able to complement employees’ low EI in shaping their situational aware-
ness and safety behaviors. Practical Applications: Aviation managers should monitor the adequacy and
effectiveness of safety training; this could make pilots’ situational awareness and safety performance
depend less on personal attributes (e.g., EI), which organizations are less able to control. When training
capacity is temporarily limited, priority might be given to those with low EI.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

Emotional Intelligence (EI) has attracted substantial scholarly
attention due to its significant implications on workplace out-
comes, including safety-related results (Karimi, Leggat, Bartram,
& Rada, 2020; O’Boyle, Humphrey, Pollack, Hawver, & Story,
2011; Sunindijo & Zou, 2013). A large number of empirical studies
have demonstrated that EI has a positive impact on individuals’
work performance (Karimi et al., 2020; Law, Wong, & Song,
2004). For example, some researchers found that EI-specific attri-
butes, including one’s understanding of his/her own and others’
emotions, and regulation and utilization of emotions, collectively
enhance task and contextual performance (Bozionelos & Singh,

2017; O’Boyle et al., 2011). However, other studies have found that
EI has only a marginal or non-significant effect on employee per-
formance (Tu, Guo, Hatcher, & Kaufman, 2018). The inconsistent
results suggest that the relationship between EI and work-related
performance might be subject to certain conditions. For example,
while the effect of EI on important work outcomes such as perfor-
mance has been emphasized, both theoretically and empirically,
some EI researchers argue that the study of EI is better situated
in a specific context, particularly where emotions are likely to
cause undesirable feelings or psychological states (Miao,
Humphrey, & Qian, 2017).

In line with this contention, scholars (e.g., Sunindijo & Zou,
2013) have attempted to investigate the influence of EI in typical
safety–critical work contexts (e.g., the construction setting), show-
ing that EI facilitates workers in implementing safety management
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tasks. Safety–critical situations are prone to raising emotional reac-
tions (Leung, Chan, & Yuen, 2010); thus, the traits or abilities that
enable better control over and regulation of undesirable emotional
experiences should help individuals keep safe (Wang, Zou, & Li,
2016). Despite being theoretically meaningful, as we will discuss
shortly, empirical research regarding the relationship between EI
and safety performance is underdeveloped in multiple ways. To
advance our knowledge in this regard, the current paper tests a
situation-incurred, conditionally-mediated process underlying
the EI–safety performance linkage.

While prior research has assisted with our understanding or
forecast of the role of EI in predicting various types of work perfor-
mance (e.g., safety performance), some areas warrant further
investigation. For example, increasing numbers of voices in the lit-
erature argue that the influence of EI on performance is more indi-
rect than direct (Ingram, Peake, Stewart, & Watson, 2019; Rode
et al., 2007). Within these voices, researchers have argued for the
potentiality that the insignificant EI–performance relationship
observed in past research (e.g., Tu et al., 2018) could have been
due to the ambiguity of EI’s ability in explaining more proximate
enablers of work performance. This indicates the need to place a
focus on the core, proximate indicators of individual performance
to explore their variations that are attributed to EI or similar emo-
tional traits or abilities. In the safety-related domain, Endsley
(1988) claims that situational awareness is the most important
and proximal indicator of individuals’ safety performance, espe-
cially in industries such as aviation, gas and mining, and construc-
tion. This claim is supported by the perspective that situational
awareness denotes safety-oriented cognitions or abilities
(Endsley, 2000). Based on Endsley, situational awareness is charac-
terized by being aware of what is happening around the workplace,
and this involves the capability of appraising critical environmen-
tal cues, processing vital safety information, forecasting near-
future occurrences, and finding solutions to manage emerging
risks. That is, safety performance is largely embedded in individu-
als’ situational awareness (Caponecchia, Zheng, & Regan, 2018;
Endsley & Robertson, 2000). As such, we first focus on situational
awareness, which is argued to be a direct manifestation of safety
performance, and its relationship with EI.

As stated above, prior research suggests inconsistent findings
regarding the EI–performance relationship, indicating the roles of
boundary conditions. While situational awareness is not a type of
performance itself, it denotes a critical, immediate indicator of
safety performance (Sneddon, Mearns, & Flin, 2013); thus, we
expect that the relationship between EI and situational awareness
may also be subject to certain boundary conditions. In this paper,
we consider training-related conditions that may intervene with
EI to affect employees’ psychological and behavioral reactions. This
consideration is based on the view that external cues are important
to drive how people use personal resources to guide their under-
standing of relevant contexts (Tett & Burnett, 2003), and that this
importance becomes more salient when external situations
become more challenging (Farh, Seo, & Tesluk, 2012). Specifically,

for this study, EI is a personal resource that people might rely on
more under more challenging circumstances to shape their under-
standing of the associated environment (e.g., situational aware-
ness) and thus to direct subsequent behaviors (e.g., safety
behaviors). The literature has highlighted safety training inade-
quacy as a significant concern in safety–critical industries and
organizations (Chan, Wong, Hon, Javed, & Lyu, 2017), as evidenced
in research suggesting that ineffective or insufficient safety train-
ing represents significant challenges that produce heightened anx-
iety and stress (Huber, Hill, & Merritt, 2015). Therefore, we
examine safety training inadequacy as a moderator (i.e., boundary
condition) for the effect of EI.

Integrating these ideas, this paper develops and tests a model
(Fig. 1), which proposes that safety training inadequacy will inter-
act with EI to influence situational awareness, which in turn influ-
ences safety performance. We draw on trait activation theory (TAT)
(Tett & Burnett, 2003) to conceptualize the moderating effect of
training inadequacy on the EI–situational awareness relationship.
According to TAT, trait-relevant external cues (e.g., task, social,
and organizational demands or stressors) are likely to strengthen
or weaken the relationship between traits and individuals’ cogni-
tive and behavioral outcomes, for traits can be activated by these
cues to guide individuals’ thoughts and actions. TAT and related
research highlights that these traits are broadly defined as personal
attributes that may not change rapidly in time (Farh et al., 2012). In
the present study, EI is such an attribute; it denotes an individual’s
‘‘emotions-related behavioral dispositions and self-perceived abil-
ities” (Sanchez-Ruiz, Mavroveli, & Poullis, 2013, p. 658). Following
Farh et al.’s (2012) application of TAT in EI research, as we will the-
orize later, this paper argues that EI will be activated by challeng-
ing external cues (e.g., safety training inadequacy) to affect
situational awareness. Since situational awareness is an immediate
enabler of safety performance (Endsley, 2000), we also expect that
when activated by training inadequacy, the role of EI will extend to
impact safety performance through situational awareness.

This paper contributes to the literature in different ways. First,
it sheds light on an indirect approach to exploring the EI–perfor-
mance link, for which prior research has generated inconclusive
results. Specifically, by extending this link to the safety context,
we emphasize the importance of focusing on a core, proximal indi-
cator of safety performance (i.e., situational awareness) to appreci-
ate the role played by EI. Second and relatedly, our research
advances the EI–performance literature by identifying safety train-
ing inadequacy as a boundary condition that triggers emotional
competence to function in building employees’ situational aware-
ness. Extending TAT (Tett & Burnett, 2003) into the safety perfor-
mance setting to explain the effect of EI, we verify that EI, a self-
perceived ability operationalized through a trait approach (i.e.,
self-rated EI; Wong & Law, 2002), when activated by the inade-
quacy of training (an opposing work demand), contributes to shap-
ing situational awareness. Third, it enriches the EI and work
performance theories by verifying the moderating mediation
model of EI–safety performance involving situational awareness

Fig. 1. Research model.
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as a mediator and safety training inadequacy as a boundary condi-
tion, thereby providing a new explanation of when and how EI
might matter in employee performance.

1. Literature review and hypothesis development

According to Mayer and Geher (1996), EI refers to individuals’
ability to regulate and use emotional competence to guide thinking
and improve performance. In the daily workplace, which Khalili
(2012) calls an emotion-eliciting environment, there would be a
variety of emotional distractions from intrapersonal factors (e.g.,
personal health and family issues), interpersonal factors (e.g., the
relationship with colleagues and supervisors), and other factors
(e.g., stressful company or environment). These distractions can
perturb people’s moods and cause unpleasant feelings, and the
planned work scheme may thus be interrupted when individuals
are less able to control these emotional experiences (Cardenas,
Major, & Bernas, 2004). It is important to cast aside the distractions
and focus on the most urgent/important tasks to avoid unneces-
sary consumption of mental energy if one is to be effective at work.

The literature suggests the relevance of EI-related attributes in
one’s awareness of or attention to one’s affiliated situation. For
example, Brackett, Rivers, and Salovey (2011) have summarized
that employees with high emotional regulation skills tend to be
more vigilant to emerging information from colleagues and the
work environment, be more proficient in distinguishing various
types of information, and shift attention from less significant tasks
to focus on the more critical. In the course of performing work, sit-
uational awareness plays a crucial role during the decision-making
process (Endsley & Robertson, 2000). According to Endsley (1988,
p. 97), situational awareness refers to ‘‘the perception of elements
of the environment, the comprehension of their meaning, and the
projection of their future status.” The process of accomplishing a
specific task involves effective information analysis, planning,
decision-making and action. As Durso, Hackworth, Truitt,
Crutchfield, and Nikolic (1999) emphasized, situational awareness
establishes the foundation of decision-making that requires signif-
icant attention to contextual cues.

Research indicates that it is important to maintain a comfort-
able stable mood in the workplace without the interference of neg-
ative emotions (Muchinsky, 2000). This requires a person to
possess effective emotional management abilities or traits (e.g.,
EI). Emotions bias people’s thinking and behaviors (Miner &
Glomb, 2010). For instance, individuals are likely to overestimate
their capabilities and neglect the distal details when in a good
mood. In contrast, people tend to underestimate their abilities
and lack confidence when in a bad mood. Either way, intense emo-
tions could alter people’s way of thinking, interfere with their
attention, and lead them to make decisions that violate their orig-
inal purpose (Beal, Weiss, Barros, & MacDermid, 2005). These argu-
ments assert that EI may be positively related to situational
awareness because EI involves one using emotions to reason about
situational information and to help undertake rational behaviors.
However, as discussed earlier, in safety contexts, this potential
relationship between EI and situational awareness might be sub-
ject to the level of safety training inadequacy. Below, we theorize
how safety training inadequacy might alter the strength of this
relationship.

2. The moderating role of safety training inadequacy

This paper draws upon the trait-activation perspective to dis-
cuss the role of training inadequacy. Previous research has proved
that many personal traits are stable dispositions that can predict
job performance (Barrick, Mount, & Judge, 2001; Mount, Barrick,

& Stewart, 1998) and verified that whether and to what extent they
can influence one’s behaviors and performance is subject to situa-
tional cues (Kell, Rittmayer, Crook, & Motowidlo, 2010). Based on a
personality–job fit perspective combined with a traits–situation
interaction perspective, Tett and Burnett (2003) introduced TAT
to explain how traits or stable individual attributes can drive one’s
psychological and behavioral reactions by considering contextual
interferences.

TAT presents a person–situation interactionist perspective sug-
gesting that trait-relevant situations (or situational cues) can acti-
vate an individual’s way of expressing their traits, therefore
influencing job performance (Tett & Burnett, 2003). In the work-
place, employees prefer to seek jobs that can easily express their
instinctive traits or use their attributes to pursue satisfaction and
achieve success (Farh et al., 2012). For example, an introverted per-
son will not look for a sales or customer service job because he/she
knows the challenges will put him/her in an unfavorable situation.
In contrast, an extraverted person may easily use their strengths to
gain satisfaction in the above jobs (Barrick, Stewart, & Piotrowski,
2002). This is consistent with Johns’ (2006) perspective that work
contexts can be situational opportunities or constraints to enlarge
or suppress the influence of traits on work performance, depending
on whether the situation or associated cues are relevant/important
to the traits.

In the present study, EI is a trait-like attribute that reflects one’s
self-perceived capability (Wong & Law, 2002). Applying TAT to this
case, certain situational or context cues might activate EI to man-
ifest its function on employee outcomes. TAT states that traits
are activated by task, social, or organizational cues to affect perfor-
mance (Tett & Burnett, 2003), partly because activated traits or
relatively-stable attributes (e.g., trait-like abilities) elicit cognitions
or psychological states before changing behaviors or performance
(Blickle, Schütte, & Genau, 2018). Situational awareness, as noted
earlier, reflects such psychological cognitions relevant to one’s
environment, and it is a precursor of job performance (e.g., safety
performance) (Irwin, Caruso, & Tone, 2019). In line with TAT, we
propose that the EI and situational awareness relationship will
be stronger when safety training inadequacy becomes more
salient.

Training equips individuals with essential skills and relevant
capabilities to perform their tasks and duties in an effective man-
ner (Bartel, 1995). In a safety–critical work context, inadequate
safety training may result in consequences harmful to the individ-
ual (e.g., stress, errors, and mistakes) and the organization (e.g.,
turnover, low productivity, and jeopardized safety patterns)
(Dysvik & Kuvaas, 2008; Elnaga & Imran, 2013; Zhao, Hwang, &
Gao, 2016). Importantly, when employees are aware that the com-
pany offers insufficient training, which hinders them from gaining
relevant resources that are needed to navigate or explore the
safety–critical environment (Givehchi, Hemmativaghef, &
Hoveidi, 2017), they tend to seek from inside (i.e., within the indi-
vidual) and use related personal abilities/resources to deal with the
situation (Rhee, Hur, & Kim, 2017).

A lack of safety training may represent risky situational con-
straints (Zhao, Wu, & Wang, 2018), which to some extent signal
the cue that employees may not immediately gain resources from
the organization before the situation is improved. Research indi-
cates that inadequate training impairs employees’ confidence,
raises concerns, and incurs negative emotions (e.g., fear, depres-
sion, and anxiety, Huber et al., 2015). These negative psychological
and emotional experiences would need individuals to access and
utilize effective emotional management abilities or attributes to
maintain their cognitive, attitudinal, or behavioral engagement at
work (Rothbard & Wilk, 2011).

This line of reasoning suggests that when safety training is not
adequate, it sends out the contextual cue that the lack of knowl-
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edge/information to evaluate or forecast the safety–critical situa-
tion will lead to emotionally challenging circumstances. In this
case, EI, which can assist to manage these challenging circum-
stances, is likely to be activated to help deal with associated
unpleasant emotions (e.g., frustration, fear, confusion, or anxiety)
so as to maintain situational awareness, which is a key to ensuring
safety (Endsley, 2000). Therefore, when there is a lack of training,
EI will play a stronger role in promoting and maintaining situa-
tional awareness. Conversely, when training is abundant, the role
of EI might be less prominent. Thus, we propose:

Hypothesis 1: Safety training inadequacy will strengthen the rela-
tionship between EI and situational awareness.

3. The moderated mediation effect on safety performance

In addition to the above direct implications for situational
awareness, we also propose that EI and safety training adequacy
have downstream implications for safety performance. In fact, as
mentioned earlier, past research has verified that situational
awareness is an important antecedent of safety performance
(Endsley, 1999; Fernandes & Braarud, 2015). In the case of the
complex work environment, a lack of situational awareness can
cause severe consequences that incur risks and unsafe behaviors
(Nazir, Colombo, & Manca, 2012). Some researchers hold that situ-
ational awareness reflects cognitive motivations for information
processing (van Winsen, Henriqson, Schuler, & Dekker, 2015),
which is needed to direct safety actions. Based on the workplace
safety research literature, these motivational characteristics asso-
ciated with situational awareness can directly enable employees
to perform tasks safely (Christian, Bradley, Wallace, & Burke,
2009). Integrating these arguments with the aforementioned dis-
cussions of the interactive effect of EI and safety training inade-
quacy on situational awareness, we propose that safety training
adequacy will moderate the mediated effect of situational aware-
ness on the relationship between EI and safety performance.
Specifically, under high levels of safety training inadequacy, indi-
viduals will rely more on EI to maintain situational awareness,
and in turn achieve better safety performance. In contrast, when
safety training is abundant (i.e., low levels of training inadequacy),
individuals become more confident in using gained safety-related
knowledge and skills through training to conduct their tasks; thus,
their EI tends to have less of an impact on situational awareness
and in turn on safety performance. Therefore, we posit the follow-
ing moderated mediation effects:

Hypothesis 2: Safety training inadequacy moderates the mediated
relationship between EI and safety performance through situa-
tional awareness, such that the mediated relationship will be stron-
ger when safety training is more inadequate.

4. Methods

4.1. Sample and procedure

We collected a convenience sample of full-time pilots working
in the commercial aviation industry in China. With the assistance
of a fleet manager, paper and online questionnaires were adminis-
tered among frontline pilots in four airlines in mainland China. To
reduce common method bias that is associated with self-reported
data (Podsakoff, MacKenzie, & Podsakoff, 2012), participants were
asked to complete a two-wave survey at two separate time points.
In the first questionnaire (Time 1), pilots provided demographic
information and answered questions regarding EI and safety train-
ing inadequacy. Approximately one month later (Time 2), they

were asked to respond to the second questionnaire, which included
questions regarding situational awareness and safety performance.

In Time 1, a total of 211 participants (response rate = 79.3%)
returned useable responses. Out of these participants, 161 returned
valid questionnaires (response rate = 76.3%) in Time 2. For each
individual, his or her two questionnaires were matched using a
self-created, unique code that mixed numbers and letters. Finally,
questionnaires were successfully matched for 133 pilots. In this
sample, 97.7% of the respondents were male. The average age
was 28.66 years (SD = 4.11), and all of them had completed tertiary
education. The average job tenure was 38.86 months (SD = 41.27).

4.2. Measures

Measurement items were originally written in English and then
translated into Chinese following a back-translation procedure
(Brislin, 1980). Participants rated all these items using a Likert-
type scale (1 = strongly disagree; 5 = strongly agree).

EI. The 16-item scale developed by Wong and Law (2002) mea-
sured emotional intelligence. These items collectively capture
individuals’ abilities in understanding their own and others’
feelings, regulating emotions, and using emotions for motiva-
tion purposes. Example items are ‘‘I am sensitive to the feelings
and emotions of others” and ‘‘I am able to control my temper
and handle difficulties rationally.” The Cronbach’s a for emo-
tional intelligence was 0.89.
Safety training inadequacy. Four items developed by Evans,
Glendon, and Creed (2007) were employed to measure the
inadequacy of safety training in the organization. An example
item is ‘‘Company training provided adequate skills and experi-
ence to carry out normal operations safely” (reverse coded). The
Cronbach’s a for safety training inadequacy was 0.85.
Situational awareness. The 13-item scale created by Sætrevik
(2013) was adopted to measure pilots’ situational awareness.
Example items are ‘‘I plan ahead in order to handle various
and adverse incident that may arise” and ‘‘I usually know
what’s going to happen next with regard to safety.” The Cron-
bach’s a for situational awareness was 0.62.
Safety performance. The seven-item instrument developed by
Griffin and Neal (2000) was employed to measure pilots’ safety
performance. This instrument captures individuals’ compliance
and participation in safety procedures and behaviors in the
workplace setting. Example items are ‘‘I carry out work in a safe
manner” and ‘‘I help my co-workers when they are working
under risky or hazardous conditions.” The Cronbach’s a for
safety performance was 0.93.
Control variables. As prior research indicated that age, gender,
and job tenure could potentially impact employees’ safety per-
formance (DeJoy, Schaffer, Wilson, Vandenberg, & Butts, 2004;
Siu, Phillips, & Leung, 2003), as in other studies (e.g., Griffin &
Hu, 2013), these variables were controlled in the data analyses.
Because safety performance was self-reported, the supplemen-
tary analyses controlled for social desirability, which, as some
researchers have argued, could potentially lead participants to
offer slightly, if not to a large extent, more favorable perfor-
mance ratings (e.g., Xie, Roy, & Chen, 2006). If the results
remain similar regardless of controlling for social desirability,
or the expected relationship becomes more prominent, or the
social desirability is not significantly related to performance/
behaviors, it is less likely that the results are distorted by self-
rated measures of performance or behaviors (e.g., Cheng, Yen,
& Chen, 2012; Crant, 1995). Social desirability was measured
by five items developed by Hays, Hayashi, and Stewart (1989).
An example item is ‘‘I am always courteous even to people
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who are disagreeable.” The Cronbach’s a for social desirability
was 0.63.

4.3. Data analysis

Missing values were dealt with by multiple imputation
(Bernaards & Sijtsma, 2000). Specifically, if a participant had miss-
ing data on several, but not all, items on the scale for a variable, we
followed Wanberg, Zhu, and Van Hooft (2010) in applying the full
information maximum likelihood (FIML) to replace these missing
values. Those participants that had all items missing on a scale
were excluded from subsequent analyses, for there was no infor-
mation/data on this scale that could be used for imputation
(Bernaards & Sijtsma, 2000). Three cases had missing values for
age and/or job tenure and were excluded from the main analyses.
This process resulted in a sample of 130 for confirmatory factor
analysis (CFA), and the listwise deletion resulted in a sample of
126 for correlational and regression analyses.

Before the hypotheses were tested, CFA was conducted to
examine the discriminant validity of the four focal study variables
(i.e., EI, safety training inadequacy, situational awareness, and
safety performance) measured by multiple items. Considering the
relatively small sample size and the large number of measurement
items, we followed the recommendation of Little, Cunningham,
Shahar, and Widaman (2002) in creating item parcels to reduce
the inflation errors. EI and situational awareness were each repre-
sented by four parcels and safety performance by two parcels. The
moderation hypothesis (Hypothesis 1) was examined using hierar-
chical regression analysis. The moderated mediation hypothesis
(Hypothesis 2) was tested using the PROCESS code for SPSS
(Hayes, 2013).

5. Results

5.1. Confirmatory factor analysis (CFA)

To check if the key variables featured in the research model
(Fig. 1) could be distinguished from one another, we conducted
CFA to test the measurement model. The hypothesized baseline
model was a four-factor model, in which EI, safety training inade-
quacy, situational awareness, and safety performance were loaded
on four separate factors. We compared this model with six three-
factor models, three two-factor models, and a one-factor model.
The results of CFA are shown in Table 1.

Following prior researchers (e.g., Franco-Santos, Nalick, Rivera-
Torres, & Gomez-Mejia, 2017; Millner et al., 2020), we used three

commonly used fit indexes to assess model fit: the root mean
square error of approximation (RMSEA), the standardized root
means square residual (SRMR), and comparative fit index (CFI). If
a model’s fit indexes meet the cut-off criteria (RMSEA <0.08, SRMR
<0.08, and CFI >0.90), this model is regarded to fit the data well (Hu
& Bentler, 1999). As shown in Table 1, the four-factor measurement
model met all these criteria, while the other models did not. In
addition, the chi-square difference (Dv2) test further supported
that the four-factor measurement model achieved a fit better than
those of all other alternative models. This result suggested that EI,
safety training inadequacy, situational awareness, and safety per-
formance were empirically distinct constructs in the current
research, sufficiently justifying the treatment of them as separate
variables in the following analyses.

5.2. Descriptive statistics

The means, standard deviations, and correlations of the demo-
graphic controls and the four main variables are shown in Table 2.
EI was significantly related to safety performance but not situa-
tional awareness. Consistent with several scholars’ (Farh et al.,
2012) view that the influence of EI on employee states or outcomes
to some extent depends on boundary conditions, this result offered
initial insights on the necessity of testing moderators of EI regard-
ing its relationship with situational awareness. Detailed results
regarding the moderation follow.

5.3. Results of hypothesis testing

Hypothesis 1, the moderation hypothesis, predicted that safety
training inadequacy would strengthen the relationship between EI
and situational awareness. It required a test of the interaction
effect of EI and safety training inadequacy on situational aware-
ness. We followed the well-established and most widely used pro-
cedure for moderation testing (Hayes, Montoya, & Rockwood,
2017), hierarchical regression analysis, in examining this hypothe-
sis. The results are reported in Table 3.

As can be seen from Table 3, we followed our predecessors (e.g.,
Oliver, Hausdorf, Lievens, & Conlon, 2016) in performing a three-
step hierarchical regression. In Step 1, control variables including
gender, age, and job tenure were entered. In Step 2, the main effect
step, the independent (i.e., EI) and moderating (i.e., safety training
inadequacy) variables were entered. In Step 3 was entered the
interaction term, which was equal to the product of IE and safety
training inadequacy. In accordance with the advice of Aiken,
West, and Reno (1991), both EI and safety training inadequacy

Table 1
CFA results.

Models v2 df Dv2 Ddf v2/df SRMR RMSEA CFI

4-factor model 99.32* 71 — — 1.40 0.07 0.06 0.96
3-factor model A 173.91*** 74 74.60*** 3 2.35 0.10 0.10 0.84
3-factor model B 169.83*** 74 70.51*** 3 2.29 0.10 0.10 0.85
3-factor model C 197.74*** 74 98.42*** 3 2.67 0.11 0.11 0.81
3-factor model D 258.40*** 74 159.09*** 3 3.49 0.11 0.14 0.71
3-factor model E 243.46*** 74 144.14*** 3 3.29 0.10 0.13 0.73
3-factor model F 181.26*** 74 81.94*** 3 2.45 0.11 0.11 0.83
2-factor model A 267.06*** 76 167.74*** 5 3.51 0.13 0.14 0.70
2-factor model B 329.79*** 76 230.47*** 5 4.34 0.13 0.16 0.60
2-factor model C 322.66*** 76 223.35*** 5 4.25 0.13 0.16 0.61
1-factor model 423.29*** 77 323.97*** 6 5.50 0.16 0.19 0.46

Note. N = 130. Three cases were excluded because of missing values. 4-factor model: each variable was treated as a single factor; 3-factor model A: EI and situational
awareness were combined; 3-factor model B: situational awareness and safety performance were combined; 3-factor model C: EI and training inadequacy were combined; 3-
factor model D: Training inadequacy and safety performance were combined; 3-factor model E: EI and safety performance were combined; 3-factor model F: training
inadequacy and situational awareness were combined; 2-factor model A: EI and training inadequacy were combined; situational awareness and safety performance were
combined; 2-factor model B: EI and situational awareness were combined; training inadequacy and safety performance were combined; 2-factor model C: EI and safety
performance were combined; situational awareness and training inadequacy were combined; 1-factor: all variables were combined.
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were mean-centered before the interaction term was calculated to
reduce multicollinearity. According to Baron and Kenny (1986),
testing a moderating effect does not require the main effects of
the independent and moderating variables to be statistically signif-
icant. When the interaction term is significant in predicting the
dependent variable (i.e., situational awareness for this particular
moderation analysis), it reveals the existence of a moderation.

As Table 3 presents, the interaction between EI and safety train-
ing inadequacy was significant in predicting situational awareness
(b = 0.21, p < .05), providing initial support for the moderating role
of safety training inadequacy. To verify if the moderation was in
the expected direction, we followed Dawson (2014) in creating a
graphic presentation of the interaction effect. Specifically, we plot-
ted the simple slope of the effect of EI on situational awareness one
standard deviation above and below the mean of safety training
inadequacy (see Fig. 2). Results of simple slope analysis showed
that EI had a significant, positive effect on situational awareness
only when safety training inadequacy was high (simple
slope = 0.28, t = 2.76, p < .01), and there was not a significant effect
when safety training inadequacy was low (simple slope = �0.02,
t = �0.255, p > .10). Therefore, the relationship between EI and sit-
uational awareness was stronger when there was a higher level of
safety training inadequacy, supporting Hypothesis 1.

Hypothesis 2 predicted that training inadequacy would sup-
press the indirect relationship between EI and safety performance
through situational awareness. This hypothesis represented a first-
stage moderated mediation. According to Hayes (2013), the test of
a first-stage moderated mediation requires (1) testing the moder-
ation of the first stage of the mediation and (2) testing the condi-
tional indirect effects. Specifically, for the current research,
Hypothesis 1 has supported that safety training inadequacy mod-
erated the first stage of the mediation (i.e., the link between EI
and situational awareness). The conditional indirect effects were
examined with Hayes’ (2013) PROCESS code for SPSS with 5000
bootstrap samples. Following Belogolovsky, Bamberger, and
Bacharach (2012), we used a 90% bias-corrected confidence inter-

val to test the significance of conditional indirect effects in our
main analyses. A confidence interval not including zero indicates
that an indirect effect is statistically significant (Hayes, 2013).

Table 4 presents the conditional indirect effects across low and
high levels of training inadequacy. Results showed that the condi-
tional indirect effect of EI on safety performance through situa-
tional awareness was significant under high-level training
inadequacy (B = 0.10, Boot SE = 0.06, 90%CI = [0.02, 0.21]) but non-
significant under low-level training inadequacy (B = �0.01, Boot
SE = 0.04, 90%CI = [�0.09, 0.06]). The index of moderated mediation
was significant (index = 0.08, Boot SE = 0.06, 90%CI = [0.01, 0.21]),
suggesting that these two conditional indirect effects were signifi-
cantly different from each other. These results demonstrated that
only under high levels of safety training inadequacy could situa-
tional awareness mediate the relationship between EI and safety
performance. Therefore, the mediated relationship was stronger
when safety training inadequacy was high rather than low, and
Hypothesis 2 was supported.

5.4. Supplementary analysis

As noted earlier, since some researchers argue that self-rated
performance may be inflated by the respondents because of the
socially desirable orientation (Schriesheim, 1980), we conducted
additional analyses to test the proposed hypotheses by controlling
for social desirability. Specifically, in these supplementary analy-
ses, social desirability was added to the group of control variables
in the hierarchical regression analysis for the moderation (for
Hypothesis 1) and to the group of covariates controlled for both sit-
uational awareness and safety performance in the PROCESS analy-
sis (for Hypothesis 2).

Results showed that the hypotheses remained supported. Simi-
lar to the main analyses reported above, the interaction term of EI
and safety training inadequacy in predicting situational awareness
was positive and significant (b = 0.21, p < .05). PROCESS results,
with social desirability controlled for and based on 5000 bootstrap
samples, demonstrated that the conditional indirect effect of EI on
safety performance through situational awareness was stronger
when safety training inadequacy was high (B = 0.10, Boot
SE = 0.06, 95%CI = [0.01, 0.27]) rather than low (B = �0.02, Boot
SE = 0.04, 95%CI = [�0.12, 0.06]). The index of moderated mediation
was significant (Index = 0.09, Boot SE = 0.07, 95%CI = [0.001, 0.26]).
Altogether, these results further consolidated the support of the
proposed hypotheses.

6. Discussion

Researchers have begun investigating the role of EI in safety
contexts (Sunindijo & Zou, 2013). However, our knowledge of
how and when EI matters in promoting employees’ safety perfor-
mance is still limited. Inconsistent findings in the literature regard-

Table 2
Means, standard deviations, and correlations.

Variables Mean SD 1 2 3 4 5 6

1. Gender 0.98 0.15
2. Age 28.75 4.12 0.00
3. Job tenure (months) 39.31 41.90 0.00 0.66**

4. Emotional intelligence 3.89 0.50 �0.02 �0.17 �0.17
5. Training inadequacy 1.65 0.66 �0.04 0.17 0.12 �0.29**

6. Situational awareness 3.61 0.37 0.010 0.16 0.12 0.13 �0.09
7. Safety performance 4.32 0.72 0.03 �0.06 �0.03 0.26** �0.26** 0.21*

Note. N = 126. Listwise deletion was applied. Gender was dummy coded (male = 1 and female = 0).
* p < .05.
** p < .01.

Table 3
Results of moderated regression analyses (Hypothesis 1).

Situational awareness

Step 1 Step 2 Step 3

Gender 0.10 0.09 0.10
Age 0.14 0.17 0.20
Job tenure (months) 0.02 0.04 0.04
Emotional intelligence (EI) 0.14 0.17+

Training inadequacy �0.08 �0.09
EI � training inadequacy 0.21*
R2 0.03 0.07 0.11*
DR2 0.03 a 0.04*,b

Note. N = 126. Listwise deletion was applied. Standardized estimates are reported.
+ p < 0.10
* p < 0.05.
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ing the EI–performance linkage have led researchers to see the
value of focusing on the indirect effect of EI on performance and
the associated boundary conditions (i.e., moderators) to explore
how EI influences performance (Rode et al., 2007). To this end,
we investigated the relationship between EI and safety perfor-
mance through the mechanism of situational awareness, a proxi-
mal enabler of safety performance, and the moderating role of
safety training inadequacy, which is an important but underesti-
mated boundary condition in the effects of EI. Our findings sug-
gested that safety training inadequacy strengthened the link
between EI and situational awareness, meaning that for those indi-
viduals receiving inadequate safety training, EI was more likely to
contribute positively to their situational awareness, as compared
to those receiving adequate training. In addition, we found that
the moderating effect of safety training inadequacy could extend
to moderate the indirect effect of EI on safety performance through
situational awareness. In the following sections, we discuss the
theoretical and practical implications of these findings, as well as
the limitations of this study and suggestions for future research.

6.1. Theoretical implications

Drawing on the trait-activation perspective (Tett & Burnett,
2003), we proposed and found that EI would interact with safety
training inadequacy to affect situational awareness, and in turn
influence safety performance. Our study has important theoretical
implications. First, we empirically contribute to the theoretical
indication that the EI–performance relationship is more indirect
through extending the focus to a proximal antecedent of safety
performance (i.e., situational awareness) and probing the boundary

condition underlying its relationship with EI. According to our
results, the influence of EI on situational awareness is conditional
on safety training inadequacy. Specifically, this influence tends to
be consolidated when training is more inadequate. Therefore,
training inadequacy, as a contextual factor, can trigger the role of
EI in promoting situational awareness. This finding is consistent
with TAT (Tett & Burnett, 2003), which emphasizes that personal
attributes of a relatively stable nature can be activated by certain
contexts to exert influences on one’s cognitions, psychological
states, and behaviors (Farh et al., 2012; Judge & Zapata, 2015). In
our case, when safety training is less adequate, EI is activated to
play a role. For example, when a company cannot provide suffi-
cient safety training, from which employees may benefit little, if
any, to improve their situational awareness at work where safety
needs particular attention. In this case, as per our findings, employ-
ees with high-level EI may be better able to conquer the challenges
associated with lack of training to maintain a certain level of situ-
ational awareness needed in safety contexts.

This observation regarding employees whose EI is activated is
also in accordance with previous studies that show that, when fac-
ing a disadvantaged or challenging situation, individuals with
higher levels of EI are more likely to take proactive actions than
to be passive (Kim, Cable, Kim, & Wang, 2009). For example,
high-EI individuals usually actively seek advice from experienced
colleagues or supervisors, or they search for useful material online
to increase their safety knowledge and boost safety-related situa-
tional awareness. In the workplace, individuals with high levels
of EI will be more vigilant, such as becoming more cautious about
the emerging information, paying attention to the details, and dis-
creetly forecasting the changes (Brackett et al., 2011). These ten-

Fig. 2. The moderating effect of training inadequacy on the relationship between emotional intelligence and situational awareness.

Table 4
Conditional indirect effects of emotional intelligence on safety performance via situational awareness (Hypothesis 2).

B Boot SE Boot LLCI Boot ULCI

Conditional Indirect Effects
Low-level training inadequacy �0.01 0.04 �0.09 0.06
High-level training inadequacy 0.10 0.06 0.02 0.21

Index of Moderated Mediation 0.08 0.06 0.01 0.21

Note. LLCI = lower limit confidence interval (CI). ULCI = upper limit CI. 90%CI based on 5000 bootstrap samples. Low-level and high-level training inadequacy equals one
standard deviation below and above the mean of training inadequacy.
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dencies characterize one’s mindfulness or heedfulness toward his
or her associated environments, and thus they are an explicit sym-
bolization of situational awareness (Brackett et al., 2011). In con-
trast, instead of being active in looking for solutions to tackle the
challenges (e.g., inadequate training), low-level EI employees
may respond passively and negatively by complaining, losing con-
fidence, and misinterpreting contextual information, which can
lead to or be the embodiments of poor situational awareness (Jor-
dan et al., 2002).

Second, we extended the moderation model to test a moderated
mediation that represents a more complex process explaining the
EI–safety performance relationship. Specifically, we have verified
the downstream implications of situational awareness, the level
of which varies with the interaction of EI and safety training inad-
equacy, on safety performance. By doing so, we broaden the impact
of EI on performance through an expanded application to safety
performance at work, an underexplored area in both EI and safety
domains, as well as supplement the emerging but limited studies
(e.g., Sunindijo & Zou, 2013) on the EI–safety performance linkage,
which have neglected the boundary conditions of how EI matters
in boosting safety behaviors. The findings of the present study indi-
cate that only when safety training is inadequate can situational
awareness serve as a mediation mechanism to transmit the effect
of EI to safety performance. When employees receive adequate
training, the mediating effect of situational awareness disappears.

These findings provide evidence for Rode et al.’s (2007) con-
tention that EI’s influence on employees’ attitudes and behaviors
may not be overt or direct and that it depends on work contexts
and conditions. In this research, safety training inadequacy, serving
as an adverse condition, boosts a greater effect of EI to facilitate the
development of situational awareness, which enables superior per-
formance in a safety–critical environment. What is implied is that
while negative conditions may strike individuals’ mindsets and
mental/cognitive models and lead to lower performance, personal
attributes like EI are likely to help alleviate this strike and thus
maintain the situational awareness-based process underlying the
EI–safety performance relationship. This implication accords with
the TAT theory, which indicates that organization-level constraints
can activate less-changeable personal traits or abilities to initiate a
process that improves performance (Tett & Burnett, 2003). In the
present study, we have highlighted that when employees are
aware that the company offers insufficient training that is needed
for safety effectiveness, they tend to turn to the self and utilize
related abilities or traits to guide their cognitions so as to achieve
the desired safety performance. From a broader perspective, this is
supportive of the view that the conflict between the demands of
performing well and the lack of training make it important for indi-
viduals to rely on personal resources (e.g., EI) to master the situa-
tion and achieve better performance (Brackett, Rivers, Shiffman,
Lerner, & Salovey, 2006; Rhee et al., 2017).

6.2. Practical implications

Our study has important implications for managerial practice.
For example, our findings provide organizations and managers,
particularly those in safety–critical industries, with the knowledge
that employees’ EI does matter in persuading them to comply with
safety procedures and participate in building a safe workplace cli-
mate. However, to what extent managers can expect to rely on or
improve employees’ EI to ensure desirable safety performance
depends on specific situations, some of which are under the orga-
nization’s or the manager’s control. Our results indicate that
whether employees receive enough safety-related training can
help guide managers’ emphasis on employees’ EI.

From the safety management perspective, it is ideal that organi-
zations can provide comprehensive, quality safety training to

employees. However, it is often the case that the organization lacks
resources or has unintentionally neglected certain aspects, damag-
ing the quality of training development or delivery (Analoui, 2000);
alternatively, due to individual differences, the content may not be
well received and/or digested by trainees even when quality devel-
opment/delivery is assured from the organization side (Brown,
2001). Our results suggest that if the organization does not provide,
or employees do not perceive, enough safety training, those with
higher levels of EI may be better able to keep on track with safety
performance, for their EI is more likely to help them maintain situ-
ational awareness, which is key to ensuring safe behaviors. There-
fore, when managers are aware of problems with safety training,
they might pay more attention to employees who are less emotion-
ally intelligent, especially when these training problems may not
be fixed in a rapid and/or effective manner. In this case, work unit
managers may consider implementing strategies to improve
employees’ EI through, for example, coaching, mentoring, and peer
support (Mattingly & Kraiger, 2019). It might also be useful if
employees’ EI is first assessed by professional experts (e.g.,
researchers and/or management consults) using one or more
appropriate methods (e.g., surveys, test banks, and interviews).
The information generated from such assessments could help man-
agers make effective decisions regarding who should be prioritized
(i.e., those with lower levels of EI) when EI-enhancing strategies
are to be implemented.

When training ineffectiveness is an existing shortcoming, our
findings also have implications on the recruitment and selection
process. As mentioned earlier, we found that inadequate training
makes the role of EI more salient in improving situational aware-
ness and thus safety performance. Based on this finding, managers,
aware of the organization’s weakness in training, may consider
incorporating EI assessments in the recruitment and selection of
new staff for safety–critical positions. For example, it could be
practical that an appropriate threshold is predetermined for the
results of an EI assessment to exclude applicants with low levels
of EI.

7. Limitations and future research

This study has a few limitations that future research could
address. First, we focused specifically on the training (in)adequacy
when exploring the boundary conditions of the effects of EI on sit-
uational awareness, and subsequently on safety performance.
However, training (in)adequacy may only be considered a subcom-
ponent of training (in)effectiveness, which may also contain ele-
ments such as uselessness/usefulness of training (Bell,
Tannenbaum, Ford, NOE, & Kraiger, 2017). As such, it is uncertain
whether the overall quality of safety training could moderate the
influence of EI. Future research should consider the role of overall
safety training effectiveness, which can more comprehensively
capture the training-related situation, when testing the relation-
ship between EI, situational awareness, and safety performance.

Second, related to the boundary condition, we exclusively con-
centrated on the interaction effect of the training-related context
and EI, having neglected other possible contextual features. Indeed,
the literature suggests that contextual variables at the job and
organization levels might also serve as triggers to promote the
functions of EI in employee outcomes. For example, a lack of job
autonomy may require employees to handle barriers to satisfying
important, basic psychological needs (e.g., need for autonomy)
and thus may activate their EI to regulate negative feelings caused
by relevant barriers (Kim et al., 2009). At the organization level, the
clarity of safety policy may intervene in the effects of EI. When
safety policy is more ambiguous, EI should be more likely to be
activated because employees with higher levels of EI may be moti-
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vated to proactively seek meaning out of the ambiguous situation
and cognitively pursue safety control (Huang, Chen, Krauss, &
Rogers, 2004). Future research may consider additional modera-
tors, both task- and organization-focused, to identify the condi-
tions that promote or hinder EI from influencing safety-related
outcomes.

Third, we did not control for some variables that may have con-
founded our proposed relationships. For example, existing research
suggests that safety-specific orientations such as safety motivation
(i.e., one’s willingness to commit to safety behaviors; Neal &
Griffin, 2006) and risk-taking orientation (Westaby & Lowe,
2005) affect safety performance. It has also been reported that
characteristics such as trait mindfulness can influence situational
awareness (Zhang, Ding, Li, & Wu, 2013). Future research should
consider controlling for some of these confounders to explore
whether EI or similar constructs can incrementally explain the
variation of situational awareness and safety performance. To do
this, it might be worth exploring available longitudinal panel data,
which may have provided opportunities to explore and rule out
potential confounders (Cheng, Guo, Hayward, Smyth, & Wang,
2020).

Fourth, we focused on situational awareness as a single condi-
tional, mediation mechanism of the EI–safety performance linkage.
Although this focus has verified the view that the link between EI
and safety performance tends to be indirect, situational awareness
might not be the only path through which EI can influence perfor-
mance. The literature suggests that EI may promote positive and
alleviate negative psychological states that are related to employ-
ees’ wellbeing and thereby affect their performance (Mattingly &
Kraiger, 2019; Sánchez-Álvarez, Extremera, & Fernández-Berrocal,
2016). It might be worthwhile for future research to examine
wellbeing-related constructs such as burnout, engagement, and
thriving at work as mediation mechanisms, as well as explore
the associated boundary conditions.

Fifth, although our participants were commercial pilots from
four different airlines in mainland China, the relatively small sam-
ple size may still have limited the generalizability of our findings
considering that there are approximately 60,000 pilots in Chinese
commercial aviation industry (‘‘Statistics Bulletin on Civil,” 2020).
Future research may gather a larger sample from more airlines to
further validate our findings. To generalize our findings to the
broader population, future researchers may consider retesting
our model in other safety–critical fields (e.g., mining, oil explo-
ration, and manufacturing) with a greater sample size.

Finally, our sample was gender biased. Female pilots accounted
for only 2.30% of our respondents, and thus our results might be
more applicable for male pilots and not be generalized to females
specifically. However, the gender bias was within the expectation,
for female commercial pilots only account for 1.28% of the total
pilot population in China (Brenda, 2018). Given that our sample
size was relatively small and had a greater proportion of females
than the national average, we conclude that the sample is repre-
sentative in terms of gender. Considering that this female popula-
tion is very small, future research may consider qualitative
approaches to investigating the phenomena related to EI and safety
if the experience of Chinese female commercial pilots is to be
explored.

8. Conclusion

Drawing on data collected from pilots in commercial airlines,
this study examined the influence of EI on safety performance
through the mediating mechanism of situational awareness, with
a focus on safety training inadequacy as a boundary condition.
Our empirical findings suggest that EI is critical for employees to

maintain a reasonable level of situational awareness that is needed
to perform safety tasks, and this role of EI is more prominent when
there is a lack of safety training. Our study contributes to the work-
place safety literature by introducing trait activation theory to
advance our understanding of how EI can be triggered in adverse
work contexts (e.g., lack of safety training) to enhance situational
awareness and safety performance. From a practitioner perspec-
tive, our findings suggest that, in addition to ensuring the effective-
ness of safety training, companies may include EI tests when
recruiting suitable employees for safety–critical positions, for
high-EI individuals are more capable to conquer adverse situations.
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Introduction: Compared to other types of occupational training, safety training suffers from several
unique challenges that potentially impair the engagement of learners and their subsequent application
or ‘‘transfer” of knowledge and skills upon returning to the job. However, existing research on safety
training tends to focus on specific factors in isolation, such as design features and social support. The
aim of this research is to develop an overarching theoretical framework that integrates factors contribut-
ing to training engagement and transfer. Method: We conducted a comprehensive qualitative review of
safety training research that was published between 2010 and 2020. We searched Web of Science,
Scopus, and Google Scholar, yielding 147 articles, and 38 were included. We content analyzed article
summaries to arrive at core themes and combined them with contemporary models of general occupa-
tional training to develop a rich model of safety training engagement and transfer. Results: We propose
that training engagement is a combination of pre-training factors such as individual, organizational,
and contextual factors, that interact with design and delivery factors. Safety training engagement is con-
ceptualized as a three-component psychological state: affective, cognitive, and behavioral. Organizations
should prioritize pre-training readiness modules to address existing attitudes and beliefs, optimize the
safety training transfer climate, and critically reflect on their strategy to design and deliver safety training
so that engagement is maximized. Conclusions: There are practical factors that organizations can use
before training (e.g., tailoring training to employees’ characteristics), during training (e.g., ensuring trai-
ner credibility and use of adult learning principles), and after training (e.g., integrating learned concepts
into systems). Practical Applications: For safety training to ‘stick,’ workers should be affectively, cogni-
tively, and behaviorally engaged in learning, which will result in new knowledge and skills, improve-
ments in attitudes, and new safety behaviors in the workplace. To enable engagement, practitioners
must apply adult learning principles, make the training relevant, and tailor the training to the job and
individual needs. After training, ensure concepts are embedded and aligned with existing systems and
routines to promote transfer.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Safety training is a core component of modern safety manage-
ment. The goal of safety training is to provide workers with safety
knowledge and motivation, encourage them to perform safety-
relevant behaviors more often and more effectively, and ultimately
contribute to a reduced risk of injury through safety behaviors
(Burke et al., 2006; Griffin & Neal, 2000). From a contemporary
safety science perspective, safety training also helps to improve

organizational resilience (i.e., the ability of a system to succeed
under varying conditions; Hollnagel, 2011) by equipping workers
with improved capabilities to anticipate, respond, learn, and mon-
itor. For instance, Malakis, Kontogiannis, and Kirwan (2010) inves-
tigated the role of safety training in air traffic control and showed
that equipping operators with cognitive strategies contributes to
overall system resilience. However, when safety training is poorly
designed and executed, the consequences can go beyond the loss of
financial and human resource investment; lives can be lost, errors
made, and productivity reduced when safety training fails to trans-
fer from the learning environment back to the workplace (Burke
et al., 2006).
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According to Krauss, Casey, and Chen (2014), safety training
possesses unique challenges that are different from other types
of occupational training. First, safety behaviors tend to be highly
routinized and regulated, thus highly resistant to change. Safety
training programs are often mandated by regulators and clients/-
customers, meaning that there is a reduced sense of choice and
self-determinism for the organization as well as the attendees.
The motivation to engage with the safety training and its subse-
quent transfer might be further hindered by the bureaucratization
of safety training (Dekker, 2019; Smith, 2018), where multiple and
sometimes redundant or irrelevant training programs are man-
dated to employees. Finally, some of the knowledge and skills
taught during safety training may only be used in emergency set-
tings, increasing decay over time as there are limited opportunities
to apply the knowledge. Transfer of emergency training is critical
to safeguard life and minimize damage to infrastructure and assets.
It has recently been studied in the context of immersive virtual
reality technologies, which appear to increase learning of new
skills and stimulate behavioral change and transfer (Feng et al.,
2018; Wang et al., 2014).

Nevertheless, empirical evidence also indicates that when pre-
training factors, features of training design and delivery, contextual
factors, and post-training factors are considered, safety training
can successfully reduce injuries and incidents at work, as well as
promote better safety performance (Brahm & Singer, 2013;
Robson et al., 2012). However, prior studies tend to focus on a nar-
row set of factors, such as social support (Freitas et al., 2017, 2019),
personality, andmotivation (Lingappa et al., 2020). Currently, there
is no model that integrates multiple contributing factors and their
impact on the safety training process, and that would help to
develop a holistic and nuanced understanding of how training
engagement and transfer could be facilitated (Krauss et al.,
2014). Although the wider occupational training literature has gen-
erated integrative models (e.g., Ford, Baldwin, & Prasad, 2018;
Sitzmann & Weinhardt, 2018), given the unique characteristics of
safety training, the direct application of these models to safety
might be inappropriate (Krauss, 2005; Krauss et al., 2014). For
instance, in a safety training context, learners may hold attitudes
toward safety or possess a safety ‘‘locus of control,” there may be
limited opportunity to apply learnings (e.g., for emergency scenar-
ios), or safety training can be either mandated or voluntary, which
might affect learner engagement.

In this paper, we synthesize these two separate lines of research
to develop an integrative model for safety scientists and practition-
ers, present key theoretical insights, and identify practical opportu-
nities to improve safety training engagement and transfer. We
focus on onsite safety training that is delivered as standalone ses-
sions, rather than a sub-section within broader occupational train-
ing. Our model draws on two key concepts that are relevant for
training effectiveness—training engagement and training trans-
fer—which describe the trainee’s engagement with the training
during its delivery and the subsequent application and generaliza-
tion of skills and knowledge in their work setting, respectively. We
draw on the latest training models from the occupational training
literature, which highlight the importance of understanding train-
ing from a chronological and multilevel perspective and focus on
both training design and delivery factors that create learner
engagement, and, importantly, are within organizations’ and train-
ers’ reach to influence. With this theoretical backbone, we then
enrich our model by incorporating empirical research in safety
training from the past decade. In doing so, we respond to recent
calls for more ‘‘consumer-centric” research that enables practition-
ers to design, deliver, and measure more effective training activi-
ties (Baldwin, Ford & Blume, 2017).

We start by providing a high-level overview of our proposed
model and then discuss each of its components in detail. In the dis-

cussion, we focus on recommendations to improve safety training
effectiveness through pre-training communication, using more
engaging and impactful learning strategies, and integrating safety
training into organizational systems and processes to provide
insights to learners about when and how to apply their safety
training.

2. Model development

To develop an integrative model (see Fig. 1), we first identified
two key concepts that produce overall training effectiveness: train-
ing engagement and training transfer. Training engagement is a
relatively understudied construct and either not explicitly defined
by scholars (e.g., Sitzmann & Weinhardt, 2018) or defined implic-
itly through measurement proxies, such as number of levels or
content accessed as part of a training program (Harvey, Balzer, &
Kotwicki, 2020). Consequently, we conceptualize safety training
engagement as the combination of optimal cognitive, emotional,
and behavioral activity that drives motivation to learn and other
training-approach behaviors. Drawing from the educational psy-
chology literature, we concur that learner engagement has a mul-
tidimensional nature, with cognitive engagement considered as
the mental effort invested in the training to think about and attend
to the materials, behavioral engagement as actively participating in
the training program, and affective or emotional engagement as a
positive mental state in relation to the learning task at hand
(Ben-Eliyahu et al., 2018). Using training engagement in a safety
context fills a void in the research, which tends to model pre-
training motivation, learning, and post-training motivation as the
primary variables of interest. Safety training engagement as a
within-training construct allows measurement and evaluation to
venture into the learning process itself and enables diagnosis of
in-situ effects of training design and delivery factors.

Training transfer is the focal outcome of training events and
refers to the generalization and maintenance of learned knowledge
and skills (Ford et al., 2018). Theoretically, training engagement is
a proximal antecedent of learning that also affects training trans-
fer. Without the experience of engaging with the training, training
transfer cannot occur. Given that learning is affected by task
engagement (Kanfer & Ackerman, 1989) and is malleable through
the design and delivery features of training (Kanfer, 1990), engage-
ment should be included within an enriched model of safety train-
ing transfer.

Adapting the seminal model outlined by Baldwin and Ford
(1988) and recently consolidated by Ford et al. (2018), we propose
three major categories that impact training transfer via training
engagement: trainee factors that are specific to the individual
(e.g., personality, beliefs, pre-training motivation), training factors
that relate to how the training is designed and delivered (e.g., the
level of engagement, use of adult learning principles), and contex-
tual factors that arise from the team or organization (e.g., safety cli-
mate, safety training transfer climate). Outside safety training,
meta-analytic studies have demonstrated that these categories of
factors are most strongly related to training transfer (e.g., Blume
et al., 2010). Within the context of safety training, design and deliv-
ery factors have been shown to be important in predicting transfer
(Burke et al., 2006), and there is some evidence for contextual fac-
tors like safety training transfer climate (Krauss, 2005). Regarding
personal characteristics, trainees’ motivation (even after account-
ing for bias introduced by same-source and same-measurement
contexts) has, among others, the highest correlation with learning
and transfer (Blume et al., 2010). Consequently, pre- and post-
training motivation is one of the most important variables that
training designers and deliverers can target.
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3. Review method

To develop a safety-contextualized understanding of each cate-
gory, we scanned the safety training literature from 2010 onwards,
focusing on specific and separate safety training delivered onsite or
in occupational contexts rather than in classroom environments.
Narrow search phrases including ‘‘safety training engagement,”
and ‘‘safety training transfer” were used across Scopus and Web
of Science databases. An additional scan of Google Scholar search
results (using the same search terms) was undertaken, and any
unique articles not included in the first scan considered as part
of the review. In total, 147 articles were sourced through these
search activities. After removing duplicates and irrelevant articles
by scanning the abstracts (i.e., published in a language other than
English, non-peer reviewed), 57 articles were identified and
reviewed in depth. A total of 38 articles had information that
was relevant to the scope of this paper, as identified by the first
author and a research assistant. Each of the 57 initial papers was
evaluated as being relevant, irrelevant, or undecided by reviewing
them in detail independently. Disagreements were then discussed
and resolved. Articles were included if they (a) provided unique
information not captured or repeated by other articles and (b)
focused specifically on employee safety rather than other forms
of safety (e.g., food safety). In the next section, we summarize this
body of research across the categories formed by the safety train-
ing engagement and transfer model.

3.1. Safety training engagement

To transfer safety training successfully, trainees must learn and
retain information. Safety training engagement is defined as a
three-component psychological construct involving affective, cog-
nitive, and behavioral elements in combination to optimize the
energy and motivation directed towards the learning task. Such
motivation to learn during safety training results in greater reten-
tion of knowledge, greater uptake of attitudinal change, and higher
intention to engage in learned behaviors. Thereafter, training
engagement promotes transfer through learning, and also via
post-training motivation to apply/transfer (Naquin & Holton,
2002).

Some emerging findings from the safety training literature sug-
gest that emotions play a central role in highlighting the salience of
hazards and their corresponding risk levels. Cuing emotions such
as fear or dread during safety training may deepen the learning
process and encourage training transfer post-training (Burke
et al., 2011). Cognitively, learners must be sufficiently motivated
during the training process, as evidenced by attentional regulation
(Kraiger et al., 1993). Behaviorally, learners experience engage-
ment in safety training through active participation and involve-
ment in learning activities (Casey et al., 2018). In safety training,
engagement is likely to enhance learning because it can overcome
suboptimal pre-training factors like negative safety attitudes or a
weak safety climate.

Fig. 1. Model of safety training engagement and transfer.
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3.2. Safety training transfer

Typically, safety training transfer is defined as the application of
learned skills, generalization to work scenarios, and maintenance
over time (Baldwin & Ford, 1988; Ford & Weissbein, 1997). Other
aspects of training transfer may be important for safety training
evaluation. Quantifying or qualifying the degree of transfer on
the spectrum ranging from negative to positive would provide a
useful success metric because it would highlight any intended
interactions or variations in trained behavior that could actually
decrease safety performance. Also, understanding whether the
safety training only transfers to very similar contexts or also to
very discrepant and diverse contexts may offer insights into why
safety training can fail to produce the desired results, for example,
during emergency events where conditions may be unique or
short-lived.

As discussed previously, safety training transfer tends to be
measured directly by attendance figures and evaluation forms
and indirectly via injury and incident statistics. Safety training
transfer should instead be measured using more nuanced metrics
that could be staged to represent a growing embedding and explo-
ration of additional skills and practices. For instance, initial transfer
intention should be measured by utility reactions and motivation
to apply learning. Short-term transfer can be measured by near-
transfer evaluation—in other words, did trainees apply the learning
in similar environments to what was trained? Mid-term evaluation
should concentrate on far-transfer and long-term retention of key
skills and concepts. Long-term evaluation can identify whether the
training overall produced positive, zero, or neutral effects and also
measure the factors that either supported or hindered the training
being applied. Formative and summative evaluations can also be
used together to identify improvements and lessons learned for
future safety training designs.

3.3. Pre-training factors

Pre-training factors include trainee factors, contextual factors,
and organizational factors. Trainee factors include personality
traits, attitudes, and beliefs. Contextual factors specific to safety
training (Krauss et al., 2014) include the mandatory or voluntary
nature of the training (with mandatory training potentially reduc-
ing pre-training motivation to learn) and the perceived relevance
of the safety training (particularly in the case of safety training
content that is mandated by regulators or other government bod-
ies). Finally, an organization creates a context in which safety
training occurs. For instance, safety climate conveys the value
and importance of safety behavior, which could dramatically affect
pre-training characteristics such as safety attitudes and training
motivation, affecting the level of training engagement (Krauss
et al., 2014). Such factors can also be relevant after training by
directly impacting post-training motivation to learn and subse-
quent training transfer. After training, the safety training transfer
climate sends a strong signal to employees about whether the
organization values the application and/or practice of what was
learned during safety training (Krauss, 2005), again impacting
training transfer.

3.3.1. Individual factors
3.3.1.1. Safety beliefs. Beliefs are internal schema or models around
meaning and knowledge or, more practically, ‘‘how the world
works” (Fishbein & Raven, 1962). A safety-related belief can there-
fore be a conviction about any aspect of how safety should be man-
aged in an organization, such as implicit accident causation models
(i.e., what causes an accident), what constitutes a hazard, and core
self-beliefs regarding safety-specific locus of control. For instance,
Krauss (2005), in an unpublished doctoral thesis, explored the

interactive effects of work locus of control on safety training trans-
fer. Although the findings were non-significant, they trended in the
predicted direction and it was proposed that a safety-specific locus
of control construct may have been more appropriate.

Nevertheless, in a training context, deep-seated beliefs are vir-
tually impossible to shift and can act as a handbrake on any learn-
ing or desired change, reducing training engagement (Murphy &
Mason, 2006). Understanding beliefs prior to safety training could
enable a more nuanced and tailored approach to safety training
whereby different ‘streams’ of learning are identified to target or
amplify certain pre-existing beliefs.

3.3.1.2. Safety attitudes. Attitudes are evaluations toward people
and objects in their environment (Ajzen, 2005). Safety attitudes
can be a positive or negative assessment of a safety-specific object,
person, or action (Lingard & Rowlinson, 2005), such as engaging in
a particular safety practice, using a safety tool or process, or a judg-
ment of safety personnel. Safety attitudes are relevant to safety
training because they may affect not only behavior intention to
engage fully with and participate in the training but also individu-
als’ intentions to apply what was learned (Krauss, 2005). Safety
attitudes can also change over the course of a training event, mean-
ing that an initially unfavorable or resistant attitude could evolve
into a more conducive one by the conclusion of the event. This
has implications for the design of training; an initial ‘‘safety train-
ing readiness” module or specific structuring of the training may
have a positive relationship with subsequent engagement during
training (Casey, Krauss, & Turner, 2018).

3.3.1.3. Personality. Safety training is delivered in strong regula-
tory/compliance framework with a moral overtone. As such, it is
reasonable to expect that conscientiousness may be the most rele-
vant predictor. In the general training transfer literature, Huang
and Bramble (2016) found that trait, state, and task-contingent
conscientiousness affected learning and training transfer, detail-
oriented and duty-bound employees may feel an obligation to
pay attention and engage with safety training exercises, and also
feel a stronger need to apply safety training afterwards. Only lim-
ited work has been done in this space. One study by Lingappa,
Kiran, and Mathew (2020) explores the role of Big 5 personality
traits in predicting safety training motivation to learn, motivation
to transfer, and self-reported training transfer among employees
from an Indian chemicals company. The authors found that consci-
entiousness and locus of control positively affected safety training
transfer, whereas risk-taking propensity was negatively associated
with transfer. In addition, Hogan and Foster (2013) conceptualized
a facet-level personality construct called ‘Trainable,’ which
referred to a person’s tendency to accurately estimate their safety
competence, openness to feedback, and engagement in learning.
An association was found between this construct and supervisor
safety performance ratings, but the study did not explore the rela-
tionships with safety training engagement or outcomes.

3.3.2. Contextual factors
3.3.2.1. Mandatory/voluntary safety training. A lot of safety training
is typically mandated by government bodies, such as health and
safety regulators, or required by client/principal contractor organi-
zations in industries like construction (Krauss et al., 2014). The
general transfer training literature suggests mandatory/voluntary
training conditions might interact with personality traits (i.e.,
learning goal orientation) to influence learning outcomes
(Gegenfurtner et al., 2016). Following the same logic, we propose
that existing safety attitudes and beliefs may interact with volun-
tary/mandatory status to influence training engagement and train-
ing transfer. When safety attitudes and beliefs are favorable,
mandatory status may matter less than if they are negative. Given
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the prevalence of mandatory safety training, further research is
needed to explore these relationships.

3.3.2.2. Perceived relevance. Many safety training programs suffer
from a lack of domain specificity; for instance, many programs
are designed as a one-size-fits-all solution where the audience
needs and job characteristics are not taken into account (Casey,
Krauss, & Turner, 2018). An example is when corporate areas from
high-risk organizations participate in safety training that is primar-
ily designed for their blue-collar operational colleagues. In these
situations, the relevance of safety training is likely to result in audi-
ence disengagement and reduced uptake of learning. At the least,
relevance will likely interact with training design factors to pro-
duce higher or lower attendee engagement in learning.

3.3.3. Organizational factors
3.3.3.1. Organizational culture. Fundamental beliefs and assump-
tions (Schein, 2010) relating to safety, such as what constitutes a
hazard, what levels of risk are tolerable, and the nature of human
relationships, are likely to affect training engagement, application
and transfer. Studies in general training transfer have suggested
that fundamental assumptions affect the attention and encoding
of new information—contradictory or controversial ideas may even
be ignored (Bunch, 2007). In relation to safety, training content
that is misaligned with the dominant safety culture (i.e., assump-
tions surrounding such matters as hazards, risks, and interpersonal
relationships, such as speaking up and stopping an unsafe act
among coworkers) may be dismissed or ignored, leading to lower
learning engagement. Given that the definition of safety is subjec-
tive (Dekker, 2019) and influenced by both individual- and group-
level beliefs, the dominant culture operating within the trainee’s
local context could act as an information filter, highlighting or
emphasizing some information and dismissing or downplaying
other information that is misaligned or in conflict with the norms,
values, and beliefs endorsed by the group. Culture is likely to also
play a role in subsequent transfer because dominant norms may
decrease intention to apply behaviors if they are not established
or embedded in the team. Potentially, safety training should be
conducted with intact teams to ensure social norms change.

3.3.3.2. Safety climate. Safety climate refers to the perceived value
and importance of safety in an organization, as inferred through
perceptions of policies, procedures, and practices (Zohar, 2010).
Safety climate may affect the transfer of safety training by provid-
ing a broader social context that infers the priority of such training
and the overall importance of safety. Indeed, Burke, Chan-Serafin,
Salvador, Smith, and Sarpy’s (2008) investigations across 68 orga-
nizations revealed that safety climate moderated the safety train-
ing–incidents relationships, with more positive safety climates
amplifying reduction of incidents. Safety climate is a powerful con-
textual factor because it can influence pre-training factors like
safety attitudes and motivation, within-training factors like moti-
vation to learn (impacting engagement), and also post-training fac-
tors like motivation to apply (Griffin & Curcuruto, 2016).

3.3.3.3. Safety training transfer climate. In the general training liter-
ature, training transfer climate refers to the overarching priority of
training, based on workers’ perceptions of how valued and impor-
tant it is to apply what is learned, with a focus on social support to
apply (Baldwin & Ford, 1988; Rouillier & Goldstein, 1993; Tracey,
Tannenbaum, & Kavanagh, 1995). It is distinct from safety climate
because the former is a narrow perception of the importance and
value of safety training, whereas safety climate refers to the higher
order value of safety in general. Safety training may have a differ-
ent priority compared to regular training. It may be considered less
important or potentially wasting experienced employees’ time.

Thus, the social transfer environment in which safety training
occurs is crucial. In an unpublished thesis, Krauss (2005) developed
a measure of safety training transfer climate, finding that factors
such as supervisor recognition for applying safety training, man-
agement encouragement of safety training, and opportunities to
apply safety training indeed created a shared social context that
influenced the transfer of safety knowledge.

3.4. Safety training design factors

Referring to the nature of how the training is created, training
design factors are a prime target to improve safety training trans-
fer. An interesting development in transfer research and practice is
the use of technology in safety training to increase the level of fide-
lity, potentially triggering strong emotional and cognitive
responses to embed learning (e.g., Bhandari & Hallowell, 2017).
The alignment between ‘‘work as trained” and ‘‘work as done” is
also likely to influence learner engagement and transfer. Involving
workers in the design and development of safety training is likely
to create greater ownership and enhance the learners’ engagement.
Finally, much safety training is delivered to diverse groups in terms
of literacy and cultural background (e.g., Arcury et al., 2014).
Ensuring the training design reflects these important differences
will ensure that learners are suitably engaged.

3.4.1. Training fidelity and error training
Technology holds much promise when it comes to improving

safety training engagement via fidelity. Much of safety is practical
and hands-on, involving the development of skills such as hazard
recognition, implementation of control measures, and safe work
practices. Technology that simulates real-world conditions and
gives a more nuanced and lifelike representation of safety scenar-
ios is not only more engaging but also associated with better learn-
ing outcome in comparison to traditional classroom didactical
training. In safety training, emerging evidence suggests that
immersive injury simulations can induce strong emotions, which
in turn increases interest in training content and contributes to
risk-averse behavioral transfer Bhandari, Hallowell, & Correll
(2019). Subsequent research with virtual reality in construction
settings by Bhandari and colleagues (2020) found that emotions
induced by simulated environments predicted higher risk percep-
tion and more effective safety decision-making.

Mixed-reality is an example of such technological advance-
ment. In Hasanzadeh, de la Garza, and Geller’s (2020) recent study,
workers installed shingles onto a sloped roof (physical task) while
at a simulated height of two meters (virtual environment). The
experimenters manipulated various hazards and measured physio-
logical markers to evaluate ‘‘presence” or mindful attention to the
task. Others have investigated the use of building information
modeling (BIM) in construction safety training contexts and found
that compared to lectures, BIM-supported training resulted in
greater knowledge transfer (Ahn, Kim, Park, & Kim, 2020). Finally,
Chittaro, Corbett, McLean, and Zangrando (2018) explored the use
of virtual reality to improve aircraft safety procedures. Virtual-
reality-trained participants exhibited significantly faster life-vest
donning and fewer errors than traditionally-briefed ones. Virtual
reality (VR) technologies seem to have special relevance and utility
in the context of emergency training, a form of safety training that
concentrates on evacuation and other drills in response to inci-
dents. In a systematic review published in the information sciences
literature, Feng and colleagues (2018) put forward a model to
inform the design and evaluation of virtual technologies in this set-
ting. The study conceptualizes this use of VR equipment as a ‘seri-
ous game’ whereby deep learner engagement (as represented by
our model through emotional, cognitive, and behavioral compo-
nents) results in deeper learning and higher rates of post-training
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application. From a neuroscience perspective, inducing emotions
through immersive virtual environments may facilitate stronger
neuronal connections and associations between stimulus–re-
sponse via the amygdala. Further, deeper learning of motor move-
ments and physical skills required (e.g., operating a fire
extinguisher) may be stimulated in the cerebellum through the
immersive and feedback-rich environment of VR (as shown in
healthcare and rehabilitation settings; e.g., Kim, Schweighofer, &
Finley, 2019; Mao et al., 2014).

Gamification can also boost training engagement by enabling
more detailed performance feedback to occur. Highlighting the
use of technology to drive personalized training feedback, Jeelani,
Han, and Albert (2018) evaluated the use of eye-tracking technol-
ogy in construction, with hazard detection likelihood scores being
used to improve safety performance among workers. Liang, Zhou,
and Gao (2019) explored gamification in the mining industry and
found that an immersive gaming environment using off-the-shelf
equipment (i.e., HTC Vive and Unity 3D engine) improved miners’
safety awareness and risk-aversion. Similarly, in one systematic
review conducted in the construction industry, the authors found
that gamified training as well as other computer aided technolo-
gies (simulations, augmented reality, virtual reality, mixed-
reality) improved trainee engagement (Gao, Gonzalez, & Yiu,
2019).

Online safety training is gaining increasing traction, especially
for mandatory site inductions in the high-risk domains such as
construction and manufacturing, and represents a vehicle for
greater individualization of safety training by allocating courses
based on training needs analysis (Trout, 2016). Limited research
has been done on online safety training, but one study has shown
differences between older and younger workers (Wallen & Mulloy,
2006), which may be due to differing levels of computer self-
efficacy or anxiety (Chen, 2017), innovativeness (Jokisch et al.,
2020), and human–computer interaction factors like ease of use
(Tsai et al., 2017)—all of which have been associated with age
(older age adversely affects these variables). Early research has
shown that less information-dense and visualized online safety
training (e.g., videos, graphics, audio files) performed the best at
stimulating learning across age groups (Wallen & Mulloy, 2006).
Others have promoted the utility of blended learning for safety,
which combines online modules with face-to-face activities.
Specifically, Stuart (2014) found that for furniture manufacturing
trainees, the anxiety and intimidation of the workplace setting,
and practical exercises could be reduced through giving trainees
access to prior online safety modules. Overall, more research is
needed to understand how to design and deliver effective online
safety training; however, general user experience principles
founded on aesthetics, usability, and usefulness as per mainstream
technology acceptance and computer anxiety models are good
starting points for practitioners.

Indeed, blended learning is widely considered to be the most
popular and effective mode of corporate training due to its flexibil-
ity, efficiency, and stimulation of continuous learning among stu-
dents (Rasheed, Kamsin & Abdullah, 2020). Yet, and of relevance
to safety training considering pre-training factors like existing
safety beliefs and attitudes, blended learning has four key chal-
lenges: incorporating flexibility, stimulating student interaction,
facilitating deep learning, and fostering an effective learning cli-
mate (Boelens, De Wever & Voet, 2017). As no systematic review
of online or blended safety training research yet exists, research
is required to clarify how the design of online safety training can
be optimized. Cross-disciplinary collaboration among safety scien-
tists, educators, and human–computer interaction specialists will
be required.

Burke and colleagues (2011) conducted a meta-analysis on
existing safety training studies and found that when the hazard

(s) to be trained against were deemed higher risk, safety training
was seen as more engaging. This effect occurs because the salience
of hazards induces ‘‘dread” and elevates subjective perceptions of
risk, resulting in higher learning engagement. These meta-
analytic results are supported by several subsequent studies
involving technology. For instance, Namian, Albert, Zuluaga, and
Behm’s (2016) study in construction found that engaging training
combined with salient depictions of hazards resulted in more
effective transfer. Gummesson (2016) discovered the utility of QR
(quick response) codes in safety training for students, allowing
them to view more detailed and vivid imagery of hazards.
Loosemore and Malouf (2019) recommended that construction
safety training should use more engaging and salient depictions
of risk—ideally using technology.

Much has been written about the benefits of training through
error exploration—it enables people to create deeper and more
robust knowledge schema and develop more accurate mental
models of how underlying processes or work systems operate
(Keith & Frese, 2008). In such general error training, the protocol
is to allow trainees to actively explore target activities or processes,
encourage them to make errors and recover performance, and pro-
vide constructive and positive feedback. In high-risk settings, chal-
lenges such as automation create intractable systems that can
escape employees’ capacities to comprehend and develop an accu-
rate situational awareness (Hollnagel, Wears, & Braithwaite, 2015).
Using error-based learning may counter this issue and allow oper-
ators to learn how complex systems work and, importantly, how
they fail.

Developing skills ‘‘at the edge” and even over the boundary of
safety has been identified as a key strategy to make further
improvements in safety performance in today’s complex and
dynamic work environment (Rasmussen, 1997). In health care,
Browne et al. (2019) found that error training combined with
bias-reduction strategies were effective at improving health-care
providers’ critical-thinking skills and subsequent error-
management and safety performance. Finally, Choi, Ahn, and Seo
(2020) used virtual reality to give forklift drivers the opportunity
to make and learn from errors during driving, which boosted their
situational awareness and safety performance. More work is
needed to determine the impact of error-based learning on safety
training engagement, particularly in the context of complex
systems.

3.4.2. Training/workplace alignment
In many countries, employers are required by law to consult

with workers about hazards and to inform the development of
events like safety training (e.g., the Work, Health & Safety Act,
2011 in Australia). The purpose of this consultation is to ensure
that the expertise of workers, who do the job on a daily basis, is
incorporated into safety decisions made by management and ulti-
mately results in more effective safety interventions (Safe Work
Australia, 2018). When it comes to safety training, involving work-
ers in its design and development may increase their engagement.
One study in the agriculture industry found reduced training
impact due to inadequate consideration of farmers’ daily tasks,
work context, and learning needs (Holte & Follo, 2018). The train-
ing was described as abstract, theoretical, and out of touch with
farmers’ needs and language. Others have found similar results,
possibly due to a lack of consultation and involvement of the audi-
ence in the program design (Casey et al., 2018). In a recent study,
Vigoros, Caffaro, and Cavallo (2020) tested a user-centered design
model to develop visual safety tools for migrant farming workers.
A significant difference in training satisfaction was found between
the user-centered design group and the control group, highlighting
the importance of involving workers in the development of safety
training if learner engagement is to be maximized.
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3.4.3. Contextual sensitivity
With an increasingly global workforce in safety–critical settings

(Clarke, 2003), differences in national culture or ethnic background
are likely to influence the effectiveness of safety training. National
culture may affect learner engagement. Differences in language
ability and interpretation of training materials are likely issues to
explore. In a study investigating the design of multicultural safety
training, Kovacic and Cunningham (2019) found that engaging
delivery, combined with purposeful efforts to instill cultural
respect into the training environment, and hands-on practical skill
development and assessment activities tended to produce the best
learning outcomes for multicultural workforces. Digging deeper
into cultural beliefs, Yorio, Edwards, and Hoeneveld (2019) put for-
ward several safety-specific propositions around Hofstede’s (1980)
cultural dimensions. Of relevance to safety training transfer,
dimensions such as uncertainty avoidance (i.e., extent to which
groups rely on norms and rules; Hofstede, 1980) may affect the
transfer of certain types of training. For cultures with high uncer-
tainty avoidance, safety training that focuses on legislation, stan-
dards, and rules may be more accepted and, hence, more likely
to be transferred and applied. Burke et al. (2008) found that uncer-
tainty avoidance was negatively related to safety training transfer
in a meta-analytic study, but the type of training was not explored.

3.5. Training delivery factors

When corporate training uses principles such as adult learning
(Knowles, 1996), transfer is improved (Burke & Hutchins, 2007).
Adult learning includes strategies such as involving workers in
the training program, scaffolding or building on existing knowl-
edge, and encouraging adults to set their own learning tactics. In
safety settings, particularly construction, safety training is often
described as mundane, standardized, and infrequently incorpo-
rates adult learning principles (Bhandari et al., 2019). A meta-
analysis conducted by Burke and colleagues (2006) found that
more engaging and dynamic safety training results in better
engagement and transfer. More recently, a study in the construc-
tion industry found that more engaging safety training methods
resulted in attendees identifying more hazards and perceiving
higher risk than those who attended less engaging training
(Namian, Albert, Zuluaga, & Jaselskis, 2016). Again, in construction,
Eggerth, Keller, Cunningham, and Flynn (2018) found that safety
training that included narratives and discussion questions pro-
duced better learning than those without engaging methods.

Several individual studies in high-risk settings have replicated
these results, showing that engaging in safety training results in
higher risk salience, greater learning, and boosted application of
learning on return to the workplace (e.g., Eggerth et al., 2018;
Namian, Albert, Zuluaga, & Jaselskis, 2016). Trainers may carry dif-
ferent levels of credibility in the eyes of attendees, depending on
whether they have an operational background or a safety science
background. Indeed, operational safety professionals and trainers
may more readily build trust and rapport with workers and deliver
more enriched examples of targeted behaviors. Finally, integration
of organizational processes and systems with safety training could
impact not only the learning process but also the post-training
motivation to learn through reinforcement and boosting of learned
concepts and skills.

3.5.1. Learning environment
Active participation during safety training has long been estab-

lished as a predictor of transfer. Through their seminal meta-
analysis, Burke and colleagues (2006) found that safety training
designed with adult learning principles and encouraged a high
degree of involvement and participation tended to be more suc-
cessful. Participating in safety training is likely to enhance its effec-

tiveness because much of it is skill-based and so requires some
behavioral investment (Krauss et al., 2014). By actively participat-
ing in safety training, attendees are more likely to develop behav-
ioral routines and refine their performance, ideally in some sort of
constructive feedback environment.

In a qualitative case study exploring corporate trainers’ strate-
gies to engage attendees, Arghode and Wang (2016) discovered
that trainers use several different strategies. These strategies
include being trainee-centered (e.g., providing interesting and rel-
evant examples), using entertaining and interesting instruction
techniques (e.g., humor), using a diverse range of instructional
types (e.g., kinesthetic, didactic), encouraging trainees to partici-
pate in the session (e.g., role-play), and building rapport early in
the session to maintain trust (e.g., an introductory ice-breaker
activity). Further research is needed to explore the specific skills
and strategies employed by safety trainers to create a positive
learning environment that boosts engagement.

3.5.2. Trainer characteristics
Little research has been done on the characteristics of trainers

themselves and their impact on safety training engagement.
Burke and Hutchins’ (2008) qualitative study in the general train-
ing literature found that trainers’ subject matter knowledge, pro-
fessional experience, and knowledge of learning principles were
important factors. For safety training, trainer credibility may be
particularly important. For many workers, safety training is seen
as abstract or detached from the lived reality of their jobs (Holte
& Follo, 2018). When a trainer is seen as an outsider or non-
credible in the eyes of attendees, their willingness to engage in
learning may be reduced. This may be related to the development
of trust and rapport between trainer and trainee, similar to the
concept of therapeutic alliance in counseling psychology (Elvins
& Green, 2008). An element of trust is perceived competence or
ability (Mayer, Davis & Schoorman 1995). Butler, Reed, and Le
Grice (2007) found that vocational training in small business set-
tings was important for knowledge transfer and improved
performance.

3.5.3. Organizational integration
Integrating safety training concepts and practices within an

existing safety management framework is likely to not only create
additional opportunities to transfer, but also send signals regarding
the priority and importance of such training, contributing posi-
tively to the safety training transfer climate. In the training transfer
literature, the presence of an evaluation framework encourages
transfer post-training (Hutchins, Burke, & Berthelsen, 2010). Mea-
suring safety training using a combination of ‘‘lead and lag” indica-
tors that go beyond training attendance and injuries/accidents is
crucial to learn more about what promotes engagement and trans-
fer. Training ‘booster’ interventions have thus far shown inconsis-
tent effects on long-term transfer in the general training literature.
In the general training literature, a strategy borrowed from clinical
psychology called ‘‘relapse prevention” has been evaluated several
times with inconsistent results (Hutchins & Burke, 2006). In safety
settings, the results are also mixed. Casey and colleagues (2018)
experimented with a training transfer relapse prevention module
within the fishing industry. The module consisted of a structured
checklist and the opportunity for attendees to brainstorm how
they will overcome barriers to transfer. Because the overall train-
ing failed to show an effect on outcomes, the impact of the relapse
prevention was not discernible. More work is needed to elucidate
the impact of relapse prevention in safety training. Regarding
booster training, the results are more positive. Kovacic and
Cunningham (2019) and Ruttenberg and Rice (2019) explored the
effectiveness of refresher training and found that participants
apply concepts more often if refresher training is used. Boosters
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may prevent knowledge decline in safety training given reduced
opportunities to apply learnings.

3.6. Opportunity to apply

Having the opportunity to apply training is one of the most
important predictors of training transfer (Burke & Hutchins,
2007). Opportunities to apply can either be passive or active. Pas-
sive opportunities are when supervisors or managers create time
for employees to practice learned skills, such as freeing up work
commitments. Active opportunities to apply are when either trans-
fer is directed/encouraged (e.g., practicing safety conversations
during a Toolbox Talk) or is required on the job (e.g., an emergency
event happens). The opportunity to apply is particularly important
for safety training because some types of safety education cannot
be directly practiced in the workplace, such as specific emergency
events (Krauss et al., 2014). Implementing virtual reality technolo-
gies and simulations could be a promising way to provide opportu-
nities to apply safety training in the future, and specifically for
emergency training to provide simulated opportunities to use
learned skills, maintain knowledge, and increase awareness and
vigilance under times of stress (Feng et al., 2018). VR-based train-
ing could even be used to give employees opportunities to practice
multiple roles during emergency events, providing cross-training
and redundancy in the event a person in a critical role (e.g., fire
wardens and first-aiders) becomes incapacitated or is unavailable.

4. Discussion

In this paper, we have outlined an enriched safety training
transfer model. We reviewed the past decade of safety training lit-
erature to inform the development of this model, with a focus on
contemporary topics like the use of technology in the safety learn-
ing space. This review takes stock of the current safety training
landscape with a view to encouraging further research and more
effective practice in the design and delivery of safety training, with
a view to optimizing learner engagement and subsequent transfer.
Several proposed factors specific to safety training have been pro-
posed and warrant further research: trainer credibility, training
fidelity, safety management system integration, and others.

4.1. Theoretical implications

This paper highlights a distinction between learner engagement
and transfer. In the general training transfer and also safety-
specific domain, there is a focus on transfer as an outcome of the
‘black box’ of intra-training factors. Separating learner engagement
from this process and considering the roles of training design and
delivery, as well as pre-training factors, may stimulate more
nuanced and practical research. Although we know a lot about
what predicts safety training transfer, less is known so far about
how engagement can be increased, and specifically, which ele-
ments of engagement (emotional, cognitive, and behavioral) are
most important within the context of different types of safety
training.

Safety training warrants a particular focus when it comes to
optimizing training transfer. Applying an individually-focused
model like the theory of reasoned action or planned behavior
(Fishbein & Azjen, 1975) suggests that safety attitudes, norms,
and behavioral control will influence intention to use safety train-
ing. From an organizational perspective, group-level phenomena
like safety culture and climate have been shown to affect training
transfer, which points to the importance of thinking globally
around training implementation.

Recent work done on the individualization of safety training
suggests that there is a complex interaction between personal
characteristics (e.g., personality and beliefs), training design and
delivery factors, and contextual factors (e.g., safety training trans-
fer climate). Just as the general safety climate literature has started
to examine the complex interplay between individual, group, and
organizational factors (e.g., Beus, Bergman, & Payne, 2016), safety
training transfer research could also benefit from this approach.
For example, Beus et al. (2010) found that organizational tenure
attenuated safety climate strength in a non-linear fashion—em-
ployees with less tenure or who are less open to experience may
be less affected by the social context, and so alternative strategies
will need to be deployed.

In our model, safety training type is positioned as an important
moderating or contextual variable. ‘‘Straightforward” safety train-
ing that concentrates on declarative knowledge for low-risk haz-
ards is likely best done using didactic and traditional lecture-
based methods (Burke et al., 2006). For problem-solving training,
weaving in high-fidelity technologies and error-based learning will
likely improve transfer outcomes. Further research is needed to
examine the configurations of transfer factors required to optimize
different types of safety training.

4.2. Practical implications

Several practical implications are apparent following this
review. These implications have been arranged into actions that
organizations can undertake either prior to, during, or following
safety training implementation.

4.2.1. Before training
Before training, it would be advantageous to measure trainees’

pre-existing safety characteristics (e.g., attitudes, beliefs) and use
this information to stream attendees into different levels or types
of training interventions. For instance, if safety attitudes are nega-
tive or neutral, an additional high impact and energy module might
be effective at creating increased readiness to change and overall
engagement in the learning.

We recommend that organizations measure and improve their
safety training transfer climate before training is implemented to
ensure the conditions for transfer are optimized. Measurement
could be done by drawing on a published scale of training transfer,
and adapting to the safety context, or using the safety-specific
scale developed by Krauss (2005). Improvements to the safety
training transfer climate could be achieved through the following
interventions: (a) supervisor training that concentrates on pre-
and post-training conversations around the value and importance
of safety training, (b) targeted communications from senior man-
agement referring to the specific safety training and its benefits/
importance, (c) developing post-training verification of compe-
tence and supportive conversations programs, (d) aligning safety
training application with performance recognition programs, and
(e) ensuring workers are given time at work to prepare for and
practice safety training.

Preparatory communication should be delivered to ensure trai-
nees are familiar with the reasons why the training is being deliv-
ered and consider using strategies to induce a learning goal
orientation (e.g., framing the messages as a chance for self-
betterment or improvement rather than achieving a grade or com-
petency above others). Such work would lay a foundation for pos-
itive learner engagement.

Another strategy that organizations could adopt to improve
safety training engagement is to develop a pre-training readiness
module, which could include: messages of support and encourage-
ment from senior leaders (e.g., video message), activities designed
to measure training readiness, such as training anxiety, attitudes
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toward safety training, and include targeted ‘‘mini-interventions,”
a detailed overview of the training (including its purpose, benefits,
and objectives), and, finally, targeted pre-work such as condensed
readings of the topic or 1–2 key questions for trainees to consider
prior to arriving at the training (e.g., asking attendees to take a
photo of what makes them feel safe in their work environment).

Consultation is important to the design of effective and relevant
safety training. Specifically, designers should involve workers in
the design and development of training content and delivery meth-
ods. Resources such as health and safety representatives can be
leveraged to keep the consultation manageable and targeted. Such
consultation will help to increase the alignment between what is
taught during safety training with what practices actually occur
on the job (aligning work as imagined with work as done). Higher
engagement in the learning is likely to result.

From a broader perspective, the organization should consider
coupling safety climate improvement initiatives to major safety
training events because the broader team and organizational social
context will influence engagement and transfer. There are likely to
be positive synergies between safety climate discovery and safety
training, particularly if there is alignment between the opportunity
areas identified by a climate survey and the areas targeted by
training. Finally, organizations should look for ways to ‘‘declutter”
safety training by removing redundant or irrelevant sections or
parts that add little/no value to workers and reduce engage-
ment—this can be achieved systematically by conducting forma-
tive training evaluations with a pilot group.

4.2.2. During training
The correct design of safety training can significantly enhance

engagement. To optimize learning, designers should consider the
type of safety training to be delivered and what combination of
transfer factors are more important to optimize transfer perfor-
mance and maintain cost/benefit efficiencies. For fundamental
knowledge and skills, traditional techniques like lectures or
group-based learning, the use of narratives or story-telling tech-
niques, and discussion/application questions will be helpful. For
hazard recognition, organizations should try to apply technology
such as virtual reality and augmented reality. For problem-
solving and decision-making, organizations could use error man-
agement and simulation training activities. And, finally, for
empowerment, we recommend that organizations draw on engag-
ing techniques like role-playing and expert demonstrations, pro-
viding examples of effective/ineffective performance, and
providing detailed feedback on training performance. Research
on this topic is in its infancy, but it may help to use immersive vir-
tual, augmented, or mixed-reality technologies when the objective
of the training is to improve hazard recognition, appraisal, and/or
appreciation of risk where high-fidelity creates engagement and
emotional arousal in response to target stimuli.

Biofeedback technologies could be used to improve learner
engagement and transfer. For instance, eye-tracking can help
inform what people need to learn about in the area of hazard
recognition training, and heart rate variability monitoring can be
used to provide ongoing feedback about the application of stress
and distraction management techniques. Further, designers can
use high-fidelity imagery and other media to induce strong emo-
tional responses to high-risk hazards; however, attendees may
need to be psychologically prepared if the imagery is graphic or
potentially upsetting.

4.2.3. After training
Combining safety training concepts with existing routines and

processes embedded within management systems is likely to cue
learned content and boost transfer. In other words, organizations
could identify ways that safety training can be integrated within

existing SMS and safety processes; for example, embedding train-
ing language or concepts into risk assessment forms or modifying
incident investigation processes to include appreciative inquiry
skills learned during safety training may be beneficial.

An area that requires additional research but nonetheless seems
important for transfer is refresher training. One recommendation is
to time refresher training to ensure learning is retained and
embedded. To date, only a few studies have been conducted on
the design and timing of refresher training—one study by Kluge
and Burkolter (2012) found that physical practice of a process con-
trol task resulted in better learning retention and transfer than a
‘‘symbolic rehearsal” or written refresher task. These refreshers
took place 2–3 weeks after the initial training. In our view, ensur-
ing a safety training refresher booster approximately one month
after the initial training event is probably optimal for long-term
retention. However, further work is needed to identify more speci-
fic guidance around refresher timing.

Importantly, organizations should identify how the training
transfer will be measured and use a range of metrics that go
beyond names and numbers of attendees, incident reductions,
and evaluative ‘‘smile sheets.” Organizations should consider
whether it is possible to measure safety training transfer using
behavioral observations, diarized feedback, pulse surveys, and/or
competency evaluations. Additional training metrics could include
motivation and confidence to transfer/apply learning, actual train-
ing application, type of transfer achieved (near/far), and impact of
training on safety performance (positive, negative, neutral). Finally,
organizations should monitor the transfer of training through sur-
veys and/or observations of training application—identifying and
ameliorating barriers or challenges to transfer.

Numerous training transfer studies have shown that social sup-
port is critical (e.g., Burke & Hutchins, 2007, 2008). For organiza-
tions delivering safety training, target direct leaders and
supervisors to ensure there is a strategy to provide social support
for safety training transfer; at a minimum, supervisors should be
holding post-training conversations with workers about how to
apply learning, what they learned, and how ongoing safety devel-
opment can occur.

4.3. Future research directions

An interesting direction of future research concerns the
dynamic modeling of safety transfer over time. Too often, training
transfer is operationalized as a binary phenomenon (i.e., either it
happens, or it does not) and as a product or outcome of the training
delivery factors combined with attendee and contextual factors
(Bell & Kozlowski, 2010). Instead, transfer should be thought of
as a process in itself (Foxon, 1997), one that unfolds and fluctuates
over time with the ebb and flow of various predictors such as
supervisor support (Olenick, Blume, & Ford, 2020). With respect
to safety training transfer, modeling the organizational or even
team safety climate as a dynamic variable that affects training
application could be a powerful way to advance the field. Given
that safety climate is a dynamic variable that is both a leading indi-
cator ahead of incidents and a lagging indicator in response to inci-
dents (Payne, Bergman, Beus, Rodríguez, & Henning, 2009), taking
multiple measurements in parallel to transfer behaviors could help
to explain why some safety training fails to be applied in practice.

5. Conclusion

Although safety training is a mainstay of many organizations’
safety management systems, not all safety training is effective.
Drawing from the general training transfer literature and consider-
ing the application of these findings to safety training in light of its
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specific features and challenges, there is clearly no one-size-fits-all
solution. Safety training transfer requires a multi-pronged
approach that considers the trainee, training, and contextual fac-
tors, their interactions, and how individual characteristics should
be used to inform the organization’s training transfer strategy. As
more research is done on this topic, organizations will learn about
how safety training can be optimized to produce the best financial
returns and the most effective improvement in safety performance.
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a b s t r a c t

Background: Tailgating is a common aggressive driving behavior that has been identified as one of the
leading causes of rear-end crashes. Previous studies have explored the behavior of tailgating drivers
and have reported effective solutions to decrease the amount or prevalence of tailgating. This paper tries
to fill the research gap by focusing on understanding highway tailgating scenarios and examining the
leading vehicles’ reaction using existing naturalistic driving data. Method: A total of 1,255 tailgating
events were identified by using the one-second time headway threshold criterion. Four types of reactions
from the leading vehicles were identified, including changing lanes, slowing down, speeding up, and
making no response. A Random Forests algorithm was employed in this study to predict the leading vehi-
cle’s reaction based on corresponding factors including driver, vehicle, and environmental variables.
Results: The analysis of the tailgating scenarios and associated factors showed that male drivers were
more frequently involved in tailgating events than female drivers and that tailgating was more prevalent
under sunny weather and in daytime conditions. Changing lanes was the most prevalent reaction from
the leading vehicle during tailgating, which accounted for more than half of the total events. The results
of Random Forests showed that mean time headway, duration of tailgating, and minimum time headway
were three main factors, which had the greatest impact on the leading vehicle drivers’ reaction. It was
found that in 95% of the events, leading vehicles would change lanes when being tailgated for two min-
utes or longer. Practical Applications: Results of this study can help to better understand the behavior and
decision making of drivers. This understanding can be used in designing countermeasures or assistance
systems to reduce tailgating behavior and related negative safety consequences.

� 2021 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Tailgating is defined as driving dangerously close behind
another vehicle leaving insufficient distance to respond to poten-
tial emergency situations (Wang & Song, 2011). It is a common
aggressive driving behavior and one of the most frequent forms
of road rage. Road rage can refer to any display of aggression by
a driver and has proven to have a consistently positive association
with increased risk of serious motor vehicle accidents (Galovski
et al., 2006). One study reported that about 62% of the investigated
drivers claimed they often tailgate in an aggressive way as a result
of road rage (Joint, 1995). In addition, tailgating has been identified

as one of the leading causes of rear-end crashes (Lee et al., 2002).
According to the National Highway Traffic Safety Administration
(2015), rear-end collisions were the most common crash type in
2015, which accounted for about one third of the total crashes
resulting in 2,203 fatalities and about 556,000 injuries. Two
human-related factors were reported to be primarily associated
with rear-end crashes, inattention and tailgating (Dingus et al.,
1997), with tailgating indicated as a major cause of severe conse-
quences (Carter et al., 1995). Studies also showed that tailgating
during highway driving can be more dangerous than during non-
highway driving due to the high driving speed (Carter et al.,
1995; Evans & Wasielewski, 1982).

Time headway is the term used to describe the time needed for
the following vehicle to cover the between-vehicle gap and reach
the leading vehicle. Different time headway thresholds have been
used in previous studies to define tailgating behavior (Evans &
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Wasielewski, 1982; Michael et al., 2000; Monteiro et al., 2015). For
example, Evans and Wasielewski (1982) used the one-second time
headway threshold to define tailgating behavior and found that
drivers with frequent tailgating behavior were more likely to have
a higher number of traffic violations and crashes than those who
tended to follow with longer time headways. Some studies also
recommended longer time headway thresholds in defining tailgat-
ing, including the ‘‘Two-Second Rule” proposed by Michael and his
colleagues (2000). In their study, it was suggested to drivers to
keep a time headway of at least two seconds between their vehicle
and the leading vehicle. In their study, following with time head-
ways of less than two seconds was considered as tailgating.
Another study recommended that drivers should keep the distance
of one car length for each 10 miles per hour of speed, similar to a
three-second rule (Monteiro et al., 2015). A general conclusion
from those studies is that following a leading vehicle with time
headway of one second or less shall be considered as tailgating.

Contributing factors associated with tailgating behavior have
been previously investigated, including driver individual differ-
ences, risk perception and situational factors. Rajalin et al. (1997)
researched driving behavior on two-lane highways for 157 close-
following drivers and 178 conservative drivers and found that
young males were more likely to be aggressive drivers and tail-
gated more often than other drivers. Through a questionnaire sur-
vey study, Wang and Song (2011) concluded that the top three self-
reported causes for tailgating were ‘‘heavy traffic,” ‘‘slow car ahead
of my vehicle,” and ‘‘I am in a hurry.” Tlhabano et al. (2013) con-
ducted a study in Botswana and stated tailgating behavior was
attributable to a lack of driver awareness or an inability to deter-
mine safe following distances. Duan et al. (2013) proposed a model
of risk perception when following another vehicle and observed
drivers’ tendencies to keep longer time headways behind trucks
and SUVs than behind sedans.

The literature includes several studies of tailgating mitigation
strategies. Michael et al. (2000) explored two tailgate intervention
methods: presenting drivers with one hand-held sign stating
‘‘Please Don’t Tailgate,” or with the other sign stating ‘‘Help Prevent
Crashes – Please Don’t Tailgate.” The latter message sign had a sig-
nificant effect on reducing tailgating by increasing the average
time headway from 2.11 seconds to 2.29 seconds, an average
increase of 9%. Rama and Kulmala (2000) investigated whether
providing time headway information would reduce tailgating and
found that providing recommended minimum time headway
through roadside traffic signs can effectively reduce tailgating
behavior (defined as following with time headway of 1.5 seconds
or shorter). Lertworawanich (2006, 2009)) conducted multiple
studies to estimate safe car-following distances for different speed
limits and developed the ‘‘dot” treatment pavement markings that
were distance markings drawn on the road to remind drivers of the
appropriate distance from leading vehicles. It was found that the
average time headway increased after the implementation of
marking at the study site. State-led tailgating mitigation programs
have been conducted in Pennsylvania, Minnesota, and Maryland
(Roadway Safety Foundation, 2001; Minnesota DOT, 2006; Song
& Wang, 2010). Among all of these programs, the Pennsylvania
Department of Transportation (PennDOT) program was considered
to be very successful (Roadway Safety Foundation, 2001); their
reflective dots and markings on the roadway led to a 60% drop of
observed tailgating behavior. Their results suggest that pavement
markings and signs can help drivers gauge their following distance.
An in-depth investigation by Hutchinson (2008) also concluded
that countermeasures such as advisory signs, pavement markings,
and enforcement by the police could decrease tailgating and
reduce rear-end crashes.

Many previous studies of tailgating behavior and corresponding
countermeasures focused on the behavior of the following vehicle

and infrastructure-based solutions. There is still a need to examine
the reactions and decision-making processes of the leading vehicle
drivers and explore additional countermeasures, as different reac-
tions will cause different safety consequences (e.g., road rage). This
study aims to fill the research gap by examining the leading vehicle
drivers’ reactions when being tailgated using naturalistic driving
data. The objectives of this work are twofold: (1) to evaluate typi-
cal tailgating scenarios and associated factors, and (2) to model
how vehicles respond to the situations when being tailgated. The
types of reactions and associated characteristics from leading vehi-
cles were identified and examined. A Random Forests based model
was then applied to predict responses from the leading vehicle.

2. Method

2.1. Data extraction

This study used the light-vehicle fleet data from the Integrated
Vehicle Based Safety System (IVBSS) program (Sayer et al., 2010).
The IVBSS program deployed and tested an integrated in-vehicle
crash warning system for both heavy trucks and light vehicles
(LeBlanc et al., 2013). Each instrumented vehicle captured informa-
tion regarding the driving environment, driver activity, system
behavior, and vehicle kinematics. The data collection frequency
was from 10 to 50 Hz (Wang et al., 2017). Driving data from a
gender-balanced sample of 108 participants from three age groups
(younger, between 20 and 30 years old; middle-aged, between 40
and 50 years old; and older, between 60 and 70 years old) were
collected. The average age of the three groups were 25.1, 46.1,
and 64.4 years old, respectively. All participants were recruited
through several channels, such as using the University of Michi-
gan’s existing study volunteer pool and posting advertisements
on Craigslist and local newspaper. All drivers participated in the
study for a six-week period and received compensation for their
participation in the study. Each participant used the instrumented
research vehicle for their personal trip purposes during this six-
week period and they were instructed to drive as naturally as they
would normally do with their personal vehicle. More study details
were described in the previous studies (Bao et al., 2020; Sayer
et al., 2010; Wang et al., 2017).

To examine leading drivers’ reactions while being tailgated, tail-
gating episodes were identified and corresponding data were then
extracted from the IVBSS database. In this study, a tailgating epi-
sode was defined using the one-second time headway threshold,
as illustrated in Fig. 1 and defined previously by Evans and
Wasielewski (1982). Time headway (in seconds) was calculated
by dividing the distance between the leading and following vehi-
cles by the current speed of the following vehicle. The detailed cri-
teria for tailgating event data extraction were:

Fig. 1. Definition of tailgating between two vehicles.
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� The time headway between the two vehicles was less than or
equal to one second for at least a one-second duration (i.e., for
ten consecutive data points).

� The tailgating event occurred during free-flowing traffic on
highways (i.e., not during traffic jams) by using a speed thresh-
old of 20 meters/second (i.e., 45 miles/hour) or higher.

� Driving data collected on ramps were excluded.
� Events where the following vehicle was attempting to change
lanes were excluded.

� The time interval between two consecutive tailgating episodes
was one second or longer.

Corresponding time-series and other related data of each epi-
sode were extracted directly from in-vehicle sensor data for traffic
density, following distance and speed. Additionally, video coding
provided data on number of traffic lanes and weather conditions.
The calculation of vehicle kinematic features including following
distances and event durations were all achieved based on in-
vehicle sensor (e.g., radar) or vehicle controller area network
(CAN) bus data.

2.2. Variables

More than half of the observed tailgating events ended with
lane change maneuvers by the leading vehicle. To understand
why drivers choose to make a lane change or not when being tail-
gated, the output variable of the analysis was set to be binary,
whether the leading vehicle made a lane change or not (Yes/No). Nine
input variables were used in this study including: minimum time
headway (MinTH), mean time headway (MeanTH), duration time
(DT), minimum speed (MinS), number of lanes (NL), lane type
(LT), road line type (RLT), traffic density, day, and weather.

MinTH andMeanTH were the minimum andmean value of time
headway between the two vehicles during each tailgating event.
Duration time is the total recorded time of each tailgating event
(i.e., a continuous following duration with time headway of one
second or less). The type of vehicle traveling lane was video coded
and divided into two types, fast lane or slow lane. For four-lane
roads, the left two lanes were coded as fast lanes while the right
two lanes were classified as slow lanes. For three-lane roads, the
left and middle lanes were fast lanes while the right one was slow
lane. The lane on the left was the fast lane and the one on the right
was the slow lane for two-lane roads. Roadway type was classified

as curvy or straight. Traffic density was divided into three groups:
scarce traffic with one surrounding vehicle in the front of the lead-
ing vehicle, moderate traffic with two or three surrounding vehi-
cles in the front, and dense traffic with four surrounding vehicles
or more in the front. Weather condition was also video coded as
adverse or normal condition.

2.3. Driver reaction prediction: Random Forests algorithm

Machine learning is a popular technique for pattern recognition
and behavior modeling due to its effectiveness and efficiency with
big data sets. Past applications include analysis of transportation
safety and human driving behavior, such as, crash data analysis
(Mohamed Radzi et al., 2017), driver distraction (Yao et al.,
2018), and drowsy driving (Ngxande et al., 2017). Compared to
the traditional generalized linear models, machine learning meth-
ods do not require presuppositions or predefined underlying rela-
tionships between dependent and independent variables. Such
presuppositions and predefined relationships, if inappropriate
within the context of the model, may affect the accuracy and reli-
ability of the results. This study used the Random Forests (RF) algo-
rithm to model leading vehicles’ reactions when being tailgated.
This machine learning method is an algorithm developed by
Breiman (2001) based on a combination of a set of decision trees.
It consists of non-parametric statistical approaches for conducting
regression and classification analyses by recursive partitioning. RF
is highly efficient in selecting large numbers of variables and han-
dling overfitting problems in cases where a single classification
tree yields inadequate results. Compared to other machine learn-
ing methods such as Artificial Neural Network (ANN) and Support
Vector Machines (SVM), RF has the advantage of evaluating vari-
able importance based on an out-of-bag (OOB) test of the decision
trees in a forest (Breiman, 2001; Ma & Cheng, 2016).

Classification trees are one of the typical grouping algorithms
for RF. A classification tree is built through a binary recursive par-
titioning approach, which requires an iterative process of splitting
the data into partitions before further dividing on each of the
branches (Harb et al., 2009). As shown in Fig. 2, the initial dataset
in this study is created using all the input variables. Then, the algo-
rithm systematically assigns each record to one of two subsets by
using certain logic. For example, the algorithm can identify if the
event occurs during daytime or nighttime and separate the entire
dataset into two subsets. The objective of this step is to attain a

Initial Data 

Subset 1 Subset 2 

Daytime Night 

Subset A1 Subset A2 

Weather, duration 

time, lane type 

Subset A1 Subset A2 

Lane Change No reaction Lane Change No reaction 

Fig. 2. Flow chart of classification trees in RF algorithm (adapted from Loh, 2011).
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homogeneous set of labels in each partition. This process is then
applied to each of the factors (weather, lane type, duration time,
and so on) and continues until no more useful splits can be found.
To choose the best splitting factor at a node, the algorithm tries
every possible split to find the split associated with the largest
decrease in diversity of the reaction type within each partition.
The process continues at subsequent nodes until a full tree is gen-
erated. In the RF algorithm, a large number of classification trees
are generated and each tree is built by selecting a random set of
observations from the training dataset. The selected observations
are called bootstrap samples and the left-out observations are
called OOB samples. On average, each tree is grown using about
1 = e-1�2/3 of the training database as bootstrap samples, leaving
e-1�1/3 as OOB samples (Lunetta et al., 2004).

At each node of the tree, rather than choosing the best split
among all variables, the algorithm randomly selects several vari-
ables and chooses the best split among these variables. Different
variables are used at each split in different trees. The result of
the RF algorithm is obtained by averaging all the results of the indi-
vidual classification trees. There is limited generalization error
since a large number of trees are produced, to minimize overfitting
concerns. In addition, The OOB samples are used to evaluate the
accuracy and variable importance of RF, as well as to eliminate
the need for a test set or cross-validation. This study used equation
(1), where Xi are the inputs (e.g., weather, day, minTH, duration
time) of ith OOB data and Yi is the actual reaction type of ith
OOB data. The ensemble prediction YOOB(Xi) is the reaction type cal-
culated by RF algorithm (Bureau et al., 2005). The error rate (ER) of
the prediction is calculated by:

ER ¼ n�1
Xn

i¼1

IðYOOBðXiÞ–YiÞ ð1Þ

where I(*) is the indicator function; n means the number of trees in
the RF.

To evaluate the importance of a specific variable, the values of
each input variable are randomly permuted for the OOB samples.
Next, modified OOB samples are applied to the tree to determine
new reaction types. The difference between the misclassification
rate for the modified and original OOB data is a measure of the
importance of the variable. In this analysis, R software (R Core

Team, 2014) was used to develop the RF algorithm and calculate
the OBB error.

3. Results

A total of 1,255 valid tailgating episodes were identified from
the IVBSS database by using the defined tailgating criteria. The tail-
gating data of the following vehicles were collected from 50 drivers
(31 male, 19 female) from all three age groups (18 younger, 22
middle-aged, and 10 older drivers). The characteristics of all the
tailgating events are shown in Fig. 3. Of the 1,255 tailgating events,
84.7% were from male drivers. Middle-aged drivers tailgated more
frequently than the other cohorts (59.6% vs. 31.9%, 8.5% for
younger and older drivers, respectively). In the IVBSS database,
approximately 78% of all driving took place during daytime, in
terms of both traveling time and traveling distance, while more
than 97% of the tailgating events occurred during daytime
(Fig. 3). Drivers were also found to have more tailgating events
during normal weather driving, when compared to under adverse
weather driving conditions (92.1% and 7.9%, respectively). In the
database, normal weather represented about 93% of all the driving
(Sayer et al., 2010). In addition, tailgating events occurred more
often when drivers were using the fast lane (83.8%) than the slow
lane (16.2%). Tailgating was more prevalent on two-lane roads
(57.8%) than on roads with multiple available lanes (42.2%). More
than half of the tailgating events (62.8%) occurred when there
was moderate traffic density on the roads.

In this study, four different reaction types were identified from
the leading vehicles during tailgating: changing lanes, slowing
down, speeding up, or no response (Fig. 4). Drivers chose to change
lanes while being tailgated during more than half of the cases
(55.2%). Lead vehicle drivers increased their speed during about
13.8% of the cases. Leading drivers made no response 30.7% of
the time. Only five events (0.004%) involved leading vehicles
reducing their speed.

Since, the main interest of this study is to investigate leading
vehicles’ lane-changing response, the reaction types were further
grouped into changing lanes or not and used in the RF analysis.
The RF analysis used all the input variables described in the meth-
ods section.

Fig. 3. Characteristics of tailgating events.
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3.1. Random forest analysis

Two parameters in the RF analysis: the number of variables in
each tree, mtry, and the number of trees, ntree, were tuned to
obtain optimal performance. The parameter ntree usually provides
stable OOB errors and the parameter mtry is used to pick the value
with best performance between 2-1*N and 21*N, where N repre-
sents one third of the total number of variables in regression prob-
lems. In this analysis, 10 variables were identified as inputs and
four sets of mtry (2, 3, 4, and 5) were applied separately to build
the RF.

After applying these parameters, the forest reached the lowest
and most stable OOB error when ntree = 300 and mtry = 4. There-
fore, these two values were used to establish the RF trees. The data-
set was split randomly into two parts, with 70% of the dataset
designated as training data while the remaining 30% was used as
testing data. The confusion matrix of training and testing data
was calculated and listed in Table 1.

The OOB errors for the two response types (i.e., Lane Change or
No Lane Change) were 29.5% and 22.5% in the training data analy-

sis, while in the testing data, the accuracy of the prediction was
calculated as the percentage of correct prediction (total number
of correct predictions divided by the total number of events). The
accuracies of the prediction were similar, 74.3% and 74.7% for
training data and testing data separately, suggesting that the
model is valid with no over-fitting. In general, the model accuracy
is reasonably high and thus can be used to describe the influence of
various variables on the reaction of leading vehicle.

The importance of each variable in the final model was deter-
mined using the index of mean decrease accuracy (MDA) as an
indication of its contribution in predicting the responses. MDA is
the decrease of the model accuracy when an input variable is
removed from the prediction model. For example, the RF model
prediction accuracy, as shown in in Fig. 5, will be decreased by
37% when the variable of MeanTH is taken out. MeanTH, DT and
MinTH are the three most important variables in the final model
as these three variables resulted in the largest decreases in model
accuracy values if they were omitted. The following sections will
address the characteristics of these three key variables and how
they relate to the leading vehicle’s reaction when being tailgated.

Table 1
Confusion Matrix of Training and Testing Data.

Training Data Testing Data

Predict Actual No Lane Change Lane Change OOB Error Predict Actual No Lane Change Lane Change OOB Error

No Lane Change 284 119 29.5% No Lane Change 111 45 28.8%
Lane Change 109 375 22.5% Lane Change 48 164 22.6%

Fig. 4. Four reaction types of leading vehicles when being tailgated.

Fig. 5. Mean decrease accuracy of random forests for each input variable.
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3.2. Mean time headway (MeanTH)

The MeanTH distribution for tailgating events differs with the
lane change response (yes or no). Situations where the leading
vehicle changed lanes were associated with shorter Mean TH,
while situations where the driver did not change lanes were asso-
ciated with longer Mean TH, as shown in Fig. 6. The most frequent
MeanTH for the no lane change responses was between 0.7 s and
1.0 s. When the lane change response occurred, the MeanTH was
between 0.5 s and 0.9 s. In general, drivers are more likely to
change lanes when the MeanTH is comparatively smaller. When
the following vehicles were tailgating with a MeanTH of less than
0.8 s, the leading vehicles chose to change lanes and yield the right
of way to the tailgating vehicle. Lead vehicles were more likely to
stay in the same lane when there was an average following gap of
0.8 s or larger. The results indicate that leading vehicle drivers may
feel more intimidated with a close following vehicle and are more
likely to change lanes to remove themselves from the situation.

3.3. Minimum time headway (MinTH)

The MinTH values from all the tailgating records were divided
equally into 10 categories from 0 s to 1 s. The numbers of tailgating
records of different responses were counted and shown in the
Heatmap of Fig. 7. Similar results were observed as the results of
MeanTH analysis. The majority of tailgating events with no lane
change responses had larger values of MinTH (typically greater

than 0.6 s) than tailgating events with lane change responses.
The MinTH of most tailgating events with lane change responses
was between 0.3 and 0.7 s.

3.4. Duration time (DT)

A histogram of all tailgating episodes’ duration for each of the
two reaction types is shown in Fig. 8. The results showed that
about 80% of the tailgating events were less than 15 s long, with
about 8.2% of the events having much longer durations (i.e., 2 min-
utes or longer). Long tailgating events can result in higher crash
risks than short ones. Further, tailgating events with durations of
2 minutes or longer were more likely to result in lane change
responses.

4. Conclusions and discussions

The investigation of tailgating behavior is an important human
factors research topic in driving safety. Previous studies have iden-
tified the contributing factors of tailgating behavior and potential
methods to reduce tailgating frequency from the perspective of a
following vehicle, while the behavior and responses from the lead-
ing vehicle have been ignored. This study is designed to examine
the tailgating problem from the leading vehicle drivers’ perspective
by investigating conditions associated with different reactions and
developing algorithms to model drivers’ responses when being
tailgated.

Naturalistic driving data from the IVBSS program were used in
this study. A total of 1,255 valid tailgating records were identified
for analysis. Of all the valid records, 84.7% of the tailgating events
were from male drivers, suggesting that male drivers are more
likely to tailgate than female drivers. The data also show that
middle-aged drivers were overrepresented in the tailgating events,
accounting for 59.6% of all the tailgating records.

Four leading vehicle reaction types were identified in this
study: changing lanes, slowing down, speeding up, and making
no response. The results showed that most leading vehicle drivers
responded to the tailgating events in a relative ‘‘polite” way by
changing lanes during more than half of the events (55.22%) or
speeding up during about 13.8% of the cases. The RF algorithm
was then applied to the data to model leading vehicles’ responses
(change lanes or maintain lane) when being tailgated and to exam-
ine related contributing factors. All of the tailgating data were
divided into two parts (training part and testing part) for modeling
purposes. In the final model, the accuracy of training and testing
datasets were reasonably high, 74.3% and 74.7%, respectively.
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Fig. 8. Percentage of duration time for different leading vehicle reactions.
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Results showed that MeanTH, DT, and MinTH are the three most
important variables contributing to the model accuracy. Further
analysis on the characteristics of these variables showed that dri-
vers tend to make lane changes if followed by another vehicle very
closely (i.e., short time headway) or if for long durations. Specifi-
cally, the most frequent MeanTH range for tailgating events with
a lane change response was less than 0.8 s, while for the events
with no-lane change reaction, the MeanTHvalue was greater than
0.7 ss. These results can help with setting the parameters in coun-
termeasure designs.

In this study, 81.8% of the tailgating events lasted less than one
minute, suggesting that most drivers (either the driver of the lead-
ing vehicle or the driver of the following vehicle) will have some
kind of reaction within the first minute of the tailgating event.
The comparison of the duration of tailgating events between the
two types of reactions (lane change or without lane change) indi-
cated that both reaction types were frequently observed during a
short period of tailgating events. However, if the duration time
lasts for more than two minutes, most leading vehicles will make
a lane change to end the tailgating.

The conclusions of this study were analyzed and compared with
some previous studies conducted by other researchers. The conclu-
sion of this study is consistent with the majority of the existing
studies on gender differences in driving behaviors that show male
drivers tend to be more aggressive (Tavris et al., 2001; Turner &
McClure, 2003). However, the result of this study differs from the
conclusions made by some researchers that young men have the
highest risk of aggressive driving (Begg & Langley, 2001; Mast
et al., 2008). The potential reasons could be that middle-aged dri-
vers was over represented in the highway driving data in the IVBSS
data set, that about 42.8% of the highway driving data were con-
tributed by middle-aged drivers, while the percentage of highway
driving data for younger and older groups were 30.3% and 26.9%,
respectively (Sayer et al., 2010). Moreover, middle-aged drivers
tend to have increased prevalence on highways during peak hours
for commuting, than younger and older drivers. This hypothesis
was shared by another study, which reported that that tailgating
was more common during commuting peak hours (Tlhabano
et al., 2013). In the present study, drivers were more likely to tail-
gate during sunny weather, in daytime conditions, and while driv-
ing in the fast lane.

The accuracy of random forests used in this article were reason-
ably high compared to other studies. Similar model accuracy was
identified in other relevant studies (McDonald et al., 2014; Li
et al., 2017). These two studies adopted the RF approach to detect
drowsiness-related lane departures by using wheel angles and
explore the relationship between driving styles and relevant vari-
ables in highway traffic, separately. Both models had accuracy
around 75%. The results of the current study have provided evi-
dence that the RF algorithm is an efficient and promising method
to explain the influence of various variables in predicting driver
behavior, such as leading vehicle reactions while being tailgated.

Three key factors including MeanTH, MinTH, and DT have the
most influence on leading vehicles’ reaction. Small time headways
generate dangerous situations (Vogel, 2003). Time headway and
the variation of time headway have a major impact on crash poten-
tial (Smith et al., 2002). Therefore, leading vehicles’ drivers may feel
unsafe when being tailgated with a relatively small time headway
and change lanes to bring themselves into a safer situation. In addi-
tion, the leading vehicle driversweremore likely to identify the tail-
gating behavior with the increase of duration time, since drivers are
taught to check the rearview mirrors every five to eight seconds in
defensive driving (Lund & Williams, 1985). Therefore, these factors
can help with setting parameters in countermeasure designs.

There are some limitations of this study. The characteristics of
the leading vehicle drivers could not be obtained, as all the data

were collected through the sensors located in the following vehi-
cles. We were unable to explore the influence of the leading vehicle
driver characteristics on the reaction types (e.g., age, gender, num-
ber of years of driving experience). Another limitation is that the
impact of risky driving characteristics (e.g., previous driving viola-
tion records) were not included in this analysis, as this study was
designed to focus on examining the types of tailgating behavior
and corresponding responses. The study of how different driving
styles (i.e., risky or conservative) can impact on drivers’ responses
to tailgating behavior should be addressed in future studies, as this
is critical in the design of future advanced driving assistant sys-
tems. In addition, we only focused on tailgating behavior under
free flowing traffic with relatively high traveling speeds. The influ-
ence of traffic flow in this study is not significant, which may be a
results of the free traffic flow selection criterion. The effect of traf-
fic flow can be further evaluated in future studies.

In conclusion, this study provides a unique dataset and method
to study tailgating behavior from the leading vehicle perspective
by utilizing multiple sensor datasets. The results of this study
can improve understanding of the behavior of both the leading
and following vehicles involved in the tailgating behavior. This
may help to design corresponding in-vehicle based countermea-
sures or assisting systems to mitigate crash risks that are initiated
by following vehicles. In addition, it can also inform the research
and design of automated vehicles, which will undoubtedly be tail-
gated by some other vehicles.
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