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a b s t r a c t

Problem: Utility All-Terrain Vehicles (ATVs) are one major cause of youth injuries and fatalities on farms.
Utility ATVs have heavy weights and fast speeds that require complex maneuvering. Youth’s physical
capabilities may not be sufficient to perform those complex maneuvers correctly. Therefore, it is hypoth-
esized that most youth engage in ATV-related incidents because they ride vehicles unfit for them. There is
a need to assess ATV-youth fit based on youth anthropometry. Method: This study focused on evaluating
potential inconsistencies between the operational requirements of utility ATVs and the anthropometric
measures of youth through virtual simulations. Virtual simulations were performed to assess 11
youth-ATV fit guidelines proposed by several ATV safety advocacy organizations (National 4-H council,
CPSC, IPCH, and FReSH). In total, 17 utility ATVs along with male-and-female-youth of nine ages (8 to
16 years old) and three height percentiles (5th, 50th, and 95th) were evaluated. Results: The results
demonstrated a physical mismatch between ATVs’ operational requirements and youth’s anthropometry.
For example, male-youth aged 16 of the 95th height percentile failed to pass at least 1 out of the 11 fit
guidelines for 35 % of all vehicles evaluated. The results were even more concerning for females. Female
youth 10 years old and younger (from all height percentiles) failed to pass at least one fit guideline for all
ATVs evaluated. Discussion: Youth are not recommended to ride utility ATVs. Practical Applications: This
study provides quantitative and systematic evidence to modify current ATV safety guidelines.
Furthermore, youth occupational health professionals could use the present findings to prevent ATV-
related incidents in agricultural settings.
� 2022 The Authors. Published by the National Safety Council and Elsevier Ltd. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Problem

The use of utility All-Terrain Vehicles (ATVs) as working machi-
nes adds a heavy burden to the American public health system
(Helmkamp, Marsh, & Aitken, 2011). According to data from the
2019 National Electronic Injury Surveillance System, over 95,000
emergency department (ED) visits were due to an ATV-related inci-
dent. Around 36.8 % of those ED visits involved youth younger than
18 years old, and 15.3 % of the incidents happened on farms or
ranches (Wiener, Waters, Harper, Shockey, & Bhandari, 2022).
Indeed, using utility ATVs in the farm setting is extremely danger-
ous for youth; ATVs are one of the most frequently cited causes of
incidents among farm youth (Hendricks & Hard, 2014; Weichelt &
Gorucu, 2018).

ATVs have three or four low-pressure tires, narrow wheelbase,
and high center of gravity (Ayers, Conger, Comer, & Troutt, 2018;

Chou, Khorsandi, Vougioukas, & Fathallah, 2022; House,
Schwebel, Mullins, Sutton, Swearingen, Bai, & Aitken, 2016). Due
to safety concerns, the production of three-wheelers ceased in
the United States in 1987 (Voreacos, 1987). Three-wheelers were
known to be even more prone to rollovers than four-wheeled ATVs
(David, 1998).

Utility ATVs and sport models (which include youth ATV mod-
els) have several design differences. Utility models have higher
ground clearance, stronger torque for hauling and towing, rear
and front racks for carrying loads or mounting equipment, a hitch
to pull implements, and heavyer weights (Khorsandi et al., 2021).
Accordingly, utility ATVs are more suitable and more commonly
used for tasks in agricultural settings. Therefore, in this study, agri-
cultural ATVs are defined as utility ATVs used on farms and
ranches.

Agricultural ATVs have heavy weights and fast speeds that
require complex maneuvering. Youth’s physical capabilities may
not be sufficient to perform those complex maneuvers correctly.
In fact, many studies have shown that youth are more vulnerable
to injuries than adults because of their less developed physical
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capabilities and psychological and behavioral characteristics
(Brison et al., 2006; Hard & Myers, 2006; Hendricks, Myers,
Layne, & Goldcamp, 2005; Marlenga, Pickett, & Berg, 2001;
Pollack-Nelson, Vredenburgh, Zackowitz, Kalsher, & Miller, 2017;
Reed, Ebert-Hamilton, Manary, Klinich, & Schneider, 2005; Serre
et al., 2010; Towner & Mytton, 2009), which likely affect their abil-
ity to safely operate agricultural vehicles (Bernard et al., 2010;
Chang, Fathallah, Pickett, Miller, & Marlenga, 2010; Fathallah,
Chang, Berg, Pickett, & Marlenga, 2008; Fathallah, Chang, Pickett,
& Marlenga, 2009). Furthermore, previous studies have shown that
ATV-rider misfit is another important risk factor (Bernard et al.,
2010; Jennissen, Miller, Tang, & Denning, 2014).

Despite compelling evidence showing that utility ATVs are
unsuitable for youth, the most popular guidelines for ATV-youth
fit disregard the rider’s physical capabilities. Instead, those recom-
mendations are based on the rider’s age (Academy, 2018), vehicle’s
maximum speed (ANSI/SVIA, 2017), vehicle’s engine size (CPSC,
2006), or farm machinery training certificate (Garvey, Murphy,
Yoder, & Hilton, 2008). For instance, youth as young as 14 can oper-
ate utility ATVs while employed on non-family-owned farms if
they receive training through an accredited farm machinery safety
program, such as the National Safe Tractor and Machinery Opera-
tion Program (NSTMOP) (Garvey et al., 2008). The NSTMOP training
includes tractor and ATV education, where students must pass a
written knowledge exam and a functional skills test to receive a
certificate (Murphy, 2020). Nevertheless, programs such as the
NSTMOP lack appropriate coverage of specific ATV-related sub-
jects, such as active riding and physical matches of ATVs and youth.

If the ATV is not fit to the rider, they will likely be unable to
properly operate the ATV’s controls, which increases their chance
of incidents and consequently may lead to injuries and fatalities.
In addition, the traditional guidelines adopted to fit ATVs for youth
are inconsistent in evaluating their preparedness to ride. The sug-
gested fitting criteria are subject to variances in state law and lack
scientifically-based evidence. While some recommendations based
upon the riders’ physical capabilities exist (CPSC, 2006; FReSH,
2012; IPCH, 2018; National 4-H Council, 2005), the adoption of
these recommendations has not gained attention because they
are not comprehensive and lack quantitative and systematic data.

Recommendations based on riders’ physical capabilities appear
to provide a better foundation to determine if the machine is suit-
able for the rider (Bernard et al., 2010). Therefore, there is a need to
evaluate youth-ATV fit based on the riders’ physical capabilities
(e.g., anthropometry, strength, and field of vision).

Since 95 % of all ATV-related fatalities involving youth between
1985 and 2009 included agricultural ATVs (Denning, Harland, &

Jennissen, 2014), the purpose of this study is to evaluate the mis-
matches between the operational requirements of utility ATVs
and the anthropometric characteristics of youth.

It has been hypothesized that youth are mainly involved in ATV
incidents because they ride vehicles unfit for them. This study eval-
uated ergonomic inconsistencies between youth’s anthropometric
measures and utility ATVs’ operational requirements. The ability of
youth to safely operate ATVs was evaluated through computer
simulations that comprised 11 fit criteria and male-and-female
youth of varying ages (8–16 years old) and height percentiles
(5th, 50th, and 95th) operating 17 utility ATV models.

2. Methods

Youth-ATV fit was analyzed through virtual simulations and
was carried out in five steps. First, 11 guidelines were identified
for the fit of youth and ATVs. The second step consisted of identi-
fying a database containing anthropometric measures of youth of
various ages (8–16 years old), genders (males and females), and
height percentiles (5th, 50th, and 95th). The third step consisted
of collecting the dimensions of 17 ATV models to create a three-
dimensional (3-D) representation of them. The fourth step con-
sisted of using SAMMIE CAD (SAMMIE CAD Inc., Leics., UK) and
Matlab (Matlab, v2021a; Mathworks, Natick, MA) to evaluate if
the youth’s anthropometric measures conform to the guidelines
identified in step one. Lastly, the results of the virtual simulations
were validated in field tests with actual riders and ATVs.

2.1. Fit criteria

The fit criteria provide movement-restraint thresholds that
check if the rider can safely reach all controls and perform active
riding, which requires the operator to shift their center of gravity
to maintain the vehicle’s stability, especially when turning or trav-
eling on slopes (Thorbole, Aitken, Graham, Miller, & Mullins, 2012).
Maintaining a correct posture is essential because, otherwise, the
rider’s ability to control the vehicle is compromised, which puts
them and potential bystanders at risk.

The reach criteria considered in this study were selected based
on the recommendations of the following institutions: (a) National
4-H Council (2005), (b) U.S. Consumer Product Safety Commission
(CPSC) (2006), (c) Intermountain Primary Children’s Hospital
(IPCH) (2018), and (d) Farm and Ranch eXtension in Safety and
Health (FReSH) Community of Practice (2012). Disregarding over-
laps, these guidelines consisted of 11 anthropometric measures
of fit, which are presented in Table 1.

Nomenclature

Name Abbreviation
4-Wheel-Drive 4WD
All-terrain vehicle ATV
American Academy of Pediatrics AAP
American National Standards Institute ANSI
ATV Safety Institute ASI
Cohen’s Kappa Coefficient K
Computer-Aided Design CAD
Crush Protection Device CPD
Cubic Capacity cc
Department of Trade Industry DTI
Electric Power Steering EPS
Emergency Department ED
Farm and Ranch eXtension in Safety and Health FReSH
General Accounting Office GAO

Intermountain Primary Children’s Hospital IPCH
Loss of Control Event LCE
National 4-H Council N4-HC
National Children’s Center for Rural and Agricultural Health and

Safety NCCRAHS
National Safe Tractor and Machinery Operation Pro-

gram NSTMOP
Seat Reference Point SRP
Specialty Vehicle Institute of America SVIA
Three-dimensional 3-D
U.S. Consumer Product Safety Commission CPSC
Virtual Reality VR
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2.2. Human mockups

Human mockups were developed in SAMMIE CAD. This com-
puter program allows users to create customized virtual humans
based on eight anthropometric dimensions, as shown in Fig. 1a.
In total, 54 youth mockups were created, a combination of two
genders, nine ages (8–16), and three body size percentiles in height
(5th, 50th, and 95th). The age range was selected because most
youth start operating farm machinery at 8 years old (Marlenga
et al., 2001), and most ATV-related crashes occur with riders
younger than 16 years old (Denning et al., 2014). Two adult mock-
ups (male and female of the 50th body-size percentile) were also
created to establish a baseline for comparisons. The anthropomet-
ric measures used as input to SAMMIE CAD were retrieved from
the database of Snyder et al. (1977), which includes measurements

from 3,900 subjects from 2 to 18 years of age for both genders. The
adopted anthropometric measures were based on the mean values
of groups of subjects with the same age, gender, and height.

One of the required inputs (seated shoulder height) was not
available in the database used for this study. Therefore, the missing
input was computed using the available data. The seated shoulder
height was calculated by subtracting the head and neck length
from the seated height (Fig. 1b).

2.3. ATV mockups

In total, 17 utility ATV models were evaluated. Selected models
consisted of vehicles of varying engine sizes (200–700 cc) from the
most common ATV manufacturers on U.S. farms (Apollo, Arctic Cat,
CF Moto, Honda, Polaris, and Yamaha). General descriptive vari-

Table 1
ATV-rider fit criteria.

ID Criterion Institution(s) ‘‘Fit success” and reasoning for each criterion

1 Handlebar-knee
distance

National 4-H
Council, CPSC

Handlebar–knee distance > 200 mm. This is necessary to ensure the rider can reach the
handlebar and steer around obstacles.

2 Hand size compared to
ATV handlebar reach

National 4-H
Council, IPCH

With hand placed in the normal operating position and fingers straight out, the first joint from
the tip of the middle finger extends beyond the brake lever. This is important to guarantee that
the rider can activate the brake lever.

3 Brake-foot position National 4-H
Council

Distance from the ‘‘ball” of the foot (at its most rearward position in the ATV’s foot well) to the
brake pedal divided by the length of the foot < 105 %. A disproportional rate indicates a risk for
ineffective foot–brake operation.

4 Standing-seat clearance National 4-H
Council, CPSC,
FReSH

Clearance zone between rider’s crotch and ATV seat > 150 mm. This is important to guarantee
that the rider can rise the torso up from the ATV seat to maintain balance and avoid distracting
longitudinal torso impacts that occur while traversing rough terrains.

5 Elbow angle National 4-H
Council, IPCH

A narrow elbow angle (<90�) indicates excessive arm flexion, while an angle too wide (>135�)
indicates the arms are excessively straight due to the grips being too far apart, which forces
the rider to lean the torso to the outside of the turn to achieve an adequate range of handlebar
turning

6 Upper leg National 4-H
Council

Upper leg within 10� of parallel to the ground. An upper leg too far off from parallel to the
ground can compromise the rider’s ability to activate the foot brake and keep balance.

7 Angle of lean from
vertical

CPSC Angle of lean from vertical < 30�. This is important to guarantee a correct posture while riding
the ATV. Leaning forward significantly over the handlebars to steer when raised off the seat,
can shift the system’s center of gravity, increasing the likelihood of the ATV tipping forward.

8 Control reach CPSC Riders must be able to reach all ATV controls while seated upright.

9 Footrest reach CPSC Riders must keep their feet firmly on the footrests when not activating the foot-brakes. This is
important to ensure the rider can maintain balance and not lose control of the ATV.

10 Knee angle CPSC Knee angle at least 45� while sitting and with the feet flat on the footrest. An angle wider than
45� indicates a risk for ineffective foot-brake operation.

11 Control grip CPSC, FReSH Riders must keep a grip on the handlebar and maintain throttle and brake control when
turning the handlebar from lock to lock position. This is especially important while performing
a sharp turn or a swerve.
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ables such as manufacturer, model, series, engine capacity (cc),
drive terrain (4 W/2W), transmission, and suspension type were
recorded.

ATV mockups were developed based on the spatial coordinates
(X, Y, Z) of selected ATV features (e.g., ATV seat, chassis, handle-
bars, footrests, and controls). An original attempt to record spatial
coordinates of ATV features consisted of using Photogrammetry, a
technique in which several pictures of an object are taken from
various angles and then processed to create a 3-D model. Never-
theless, this technique proved inefficient, as initial trials were
time-consuming, and the results had unsatisfactory accuracy. A
second attempt consisted of using a virtual reality (VR) tracking
system. This alternative proved fast to implement with excellent
accuracy (±1 mm); hence, this technique was selected and pre-
sented in the following section.

2.3.1. Data acquisition
The VR tracking system (Vive – HTC Corporation, China) utilized

in this experiment consisted of two controllers and two infrared
laser emitter units (lighthouses). The system allows the user to
move in 3-D space and use motion-tracked handheld controllers
to interact with the environment. The system uses the lighthouses
to shoot horizontal and vertical infrared laser sweeps that are
detected by photodiodes positioned in the surrounding of the con-
troller’s surface (Niehorster, Li, & Lappe, 2017). The position and
orientation of the controllers are calculated by the difference in
time at which each photodiode is hit by the laser (Kreylos, 2016).
By placing the controller over selected vertices of ATV features, it
was possible to record their spatial coordinates, which allowed
the development of the 3-D ATV mockups.

A custom program was developed to calibrate the system, log,
and manipulate data. This program was initially retrieved from
Kreylos (2016) and then modified to meet the specific needs of
the present study. The software runs in Linux operating systems
and has several functionalities that are useful to the user. Examples
of these functionalities are a 3-D grid, which allows for real-time
visualization of labeled points, and a measuring tool (to verify
the measurement scale).

A probe was custom-manufactured and attached to the con-
trollers to ease the calibration process and data collection. The
probe was made of metal and had a rounded tip, which made it
wear-resistant and prevented it from damaging the ATVs. The
measurements were collected inside a tent covered by a white
rooftop that reduces the interference of solar rays in the communi-
cation between the lighthouses and the photodiodes in the con-

trollers. In total, 38 points were collected per ATV. The points
were selected aiming to get an efficient representation of all
selected ATV controls (hand brake lever, foot brake pedal, steering
handlebar, throttle lever, hand gearshift lever, and foot gearshift
pedal) and additional features that were used to assist the virtual
simulations, such as the seat and the footrests. After data filtering,
the data were processed in SAMMIE CAD for a 3-D representation
of the evaluated vehicle, as shown in Fig. 2.

2.4. Data analysis

ATV-rider fit was evaluated through SAMMIE CAD and Matlab.
Fit criteria 4, 5, 6, 7, 8, 9, and 10 (Table 1) were evaluated in SAM-
MIE CAD because their assessment involved complex interactions
between riders and ATVs, such as measuring the angle of the rider’s
knee while riding. SAMMIE CAD provides a 3-D environment and
full control of human mockups, which makes it possible to evalu-
ate those complex interactions. The simulations performed in
SAMMIECAD consisted of: (1) creating 3-D human mockups; (2)
creating 3-D ATV mockups; and (3) integrating (1) and (2) in the
virtual environment to simulate their interaction. For each simula-
tion, the correct reach posture was achieved by positioning the
human limbs according to the specific task’s requirement. For
example, a seated position was adopted when evaluating fit crite-
rion 10 (knee angle), as shown in Fig. 3a. On the other hand, a
standing straddling posture was selected when evaluating fit crite-
rion 4 (clearance zone between the rider’s crotch and ATV seat), as
shown in Fig. 3b.

Some criteria involve the youth reaching a specific control (e.g.,
criteria 5, 7, 8, and 9). The feature ‘‘Reach” under the ‘‘Human”
menu on SAMMIE CAD was used to evaluate the ability of the
youth mockups to reach the selected controls. The ‘‘Reach” was
set as ‘‘Absolute,” and ‘‘Object Point” was set as ‘‘Control.” When
the selected control could be successfully reached, the software
would display an animation of the human limb reaching the
desired object (the rider was assigned a score of 1 – meaning that
they fulfilled the requirements of that criterion). On the other
hand, if the control was out of reach, SAMMIE CAD would show
an error window and display the required distance for the human
limb to reach the desired control (the rider was assigned a score of
0 – meaning that they failed to pass that specific criterion).

Simulations involving buttons and levers were performed with
the fingertip of the index finger or the thumb, accordingly. Simula-
tions involving levers or the handlebars were performed with
palm-grip-hand postures. All controls on the right side of the

)b()a(

Fig. 1. SAMMIE CAD human creation. (a) Selected input variables (source: SAMMIE CAD Inc.); (b) Interpolation of missing variable (seated shoulder height) - Adapted from
Snyder et al. (1977).
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ATV were simulated with the right hand/foot, and all controls on
the left side of the ATV were simulated with the left hand/foot.
Specific controls that required using both hands, such as the han-
dlebars, were simulated with both hands.

Criteria 1, 2, 3, and 11 were evaluated through Matlab because
their assessment required the computation of simpler calculations,
such as the distance between the rider’s knee and the ATV’s han-
dlebars. Matlab also provided the ability to automate the calcula-
tions for a more efficient data analysis. A code was generated
based on conditional statements to assess whether riders’ anthro-
pometric measures conformed to the constraints imposed by the
ATV design. For instance, when evaluating criterion 1, the distance
between the ATV footrests and the handlebars minus the rider’s
knee height must be greater than 200 mm (Table 1).

For each reach criterion, riders received a binary score (1 if the
rider fulfilled the requirements of that criterion; and 0 otherwise).
Riders with a total score of 11 (adequate reach for all evaluated cri-
teria) were classified as ‘‘capable of riding the ATV.” On the other

hand, riders with a total score below 11 (inadequate reach of at
least one or more criteria) were classified as ‘‘not capable of riding
the ATV.”

2.5. Validation

In order to validate the results of the virtual simulations, an
experiment including three adults (two males and one female)
and one study ATV (model Yamaha Grizzly EPS � 700) was carried
out. Each subject had completed an ATV safety riding course prior
to the experiment and was awarded a certificate from the ATV
Safety Institute (ATV-Safety-Institute, 2009). The capability of the
subjects to fulfill each fit criterion was evaluated and recorded.
For the field tests, a measuring tape graduated in mm was used
to measure distances and a digital angle finder (General Tools &
Instruments LLC., New York, NY, USA) to measure angles. To assist
in some of the angle measurements, a straight edge 4800 ruler
(model J48EM, Johnson level & Tool, Mequon, WI, USA) and a mag-

)b()a(

Fig. 2. 3-D representation of ATV mock-ups. (a) Fully assembled model – for visualization purposes only; (b) Example of a 3-D ATV mock-up used for the virtual simulations
in SAMMIE CAD.

)b()a(

Fig. 3. Different reach postures. (a) Seated posture (9 yr. old � 5th percentile boy); (b) Standing straddling posture (16 yr. old – 95th percentile boy).
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netic level (model 7500 M, Johnson level & Tool, Mequon, WI, USA)
were used.

The anthropometric measures of the subjects were taken with a
body-measuring tape and then used as input in SAMMIE CAD to
create 3-D mockups. The results observed in the experimental set-
ting were then compared to those observed in the virtual simula-
tions through the Cohen’s Kappa coefficient (K) (Landis & Koch,
1977), which is a statistic widely used to measure inter-rater reli-
ability for qualitative (categorical) items (McHugh, 2012). A Z-test
(a = 0.05) was performed to evaluate whether the value of K was
statistically different than zero, which would imply that the virtual
simulations are reasonable.

3. Results

Seventeen ATV models were evaluated from eight different
manufacturers. Engine capacity ranged from 174-686 cc, with
most vehicles in 100–400 cc (35 %). Moreover, 58 % of the ATVs
evaluated included electric power steering (EPS), 4 wheel-drive
(58 %), solid suspension (88 %), and manual transmission (48 %).

Findings of individual reach criteria for the ATV models are pre-
sented in Tables 2 and 3, for males and females, respectively. The
last column of those tables (Total) represents the percent of obser-
vations for which riders scored 11 points (i.e., they fulfilled the
requirements of all 11 fit guidelines). Criterion 1 (Handlebar-
knee distance) seemed difficult for 16-year-old-males of the 95th
body-size percentile. This result may be attributed to the height
of these subjects, which decreases the gap between their knee
and the handlebars (Bernard et al., 2010).

Unlike criterion 1, criterion 2 (hand size compared to ATV han-
dlebar reach) did not present any difficulty for the virtual youth
(Tables 2 and 3). Indeed, virtual subjects of all ages, body-size per-
centiles, and genders succeeded in this criterion for all (100 %)
evaluated vehicles.

Criteria 3, 4, 6, 7, 8, 9, 10, and 11 all presented a similar trend
where young riders do not conform well to these criteria, but older
riders do (Tables 2 and 3). The contrast in success rate among sub-
jects of different ages and height percentiles are likely also attrib-
uted to the variations in height among the subjects. For example,
virtual 8-year-old-female riders of the 95th percentile did not pass
criterion 5 for any of the evaluated ATVs. In contrast, their 16-year-
old-counterpart passed the same criterion for 75 % of the evaluated
ATVs (Table 3), a surprising difference of 75 %.

The results from Tables 2 and 3 indicate that 8-year-old youth
would probably not be able to control utility vehicles when
traversing rough or uneven terrains (Criterion 4 – Standing seat
clearance). This finding likely explains the fact that youth are more
subject to loss of control events (LCEs) than adults (McBain-Rigg,
Franklin, McDonald, & Knight, 2014).

The results of the simulations related to Criterion 7 (Angle of
lean from vertical) indicated that youth 9 years old and younger
are more likely to lean forward over 30� (safety threshold) when
raised off the seat to reach the handlebars of agricultural ATVs.
As a result, the center of gravity of the ATV can shift forward, thus
increasing the chances of a tip over.

Lastly, some results of the simulations related to Criterion 5 (el-
bow angle) were concerning. Males up to 11 years old and females
up to 13 of the 50th percentile passed this criterion for less than
50 % of the evaluated ATVs.

Table 2
Percent of observations (n = 17) for which reach criteria did not limit adult-sized ATV usage by males of various ages and percentiles.

Age Percentile Criteria

1 2 3 4 5 6 7 8 9 10 11 Total

8 5th 94 100 65 25 0 0 42 42 0 0 6 0
50th 94 100 77 33 0 8 50 58 8 8 12 0
95th 94 100 94 67 0 8 83 83 8 8 35 0

9 5th 94 100 77 50 0 0 42 42 0 0 12 0
50th 94 100 94 83 0 8 58 67 8 8 29 0
95th 94 100 94 92 8 50 83 92 50 50 41 8

10 5th 94 100 77 42 0 8 58 67 8 8 12 0
50th 94 100 94 92 8 25 92 100 25 25 35 8
95th 94 100 94 100 8 58 92 100 58 58 65 8

11 5th 94 100 94 92 0 8 92 100 8 8 29 0
50th 94 100 94 100 8 50 92 100 50 50 41 8
95th 94 100 94 100 8 58 92 100 58 58 71 8

12 5th 94 100 94 92 8 42 92 100 42 42 41 8
50th 94 100 94 100 33 58 92 100 58 58 65 29
95th 88 100 94 100 58 92 92 100 92 92 88 47

13 5th 94 100 94 100 8 50 92 100 50 50 35 8
50th 94 100 94 100 42 92 92 100 92 92 71 42
95th 82 100 94 100 67 92 92 100 92 92 88 47

14 5th 94 100 94 100 33 58 92 100 58 58 71 33
50th 94 100 94 100 58 92 92 100 92 92 88 53
95th 82 100 94 100 92 92 92 100 92 92 88 53

15 5th 94 100 94 100 42 58 92 100 58 58 71 41
50th 88 100 94 100 83 92 92 100 92 92 88 59
95th 82 100 94 100 100 100 92 100 100 100 88 65

16 5th 88 100 94 100 67 92 100 100 92 92 88 59
50th 82 100 94 100 92 92 100 100 92 92 88 59
95th 71 100 94 100 92 100 100 100 100 100 88 65

Adult 50th 82 100 94 100 100 92 100 100 92 92 88 65
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The percent of ATVs in which riders passed all criteria is pre-
sented in Fig. 4. The main finding is that certain youth should
not ride most utility ATVs. For instance, the average (50th per-
centile) male operator aged 16 passed all 11 safety criteria for

less than 60 % of the evaluated vehicles. That number decreases
sharply for younger youth or youth of the same age but smaller
height percentile. A similar trend was also observed for female
operators.

Table 3
Percent of observations (n = 17) for which reach criteria did not limit adult-sized ATV usage by females of various ages and percentiles.

Age Percentile Criteria

1 2 3 4 5 6 7 8 9 10 11 Total

8 5th 94 100 53 17 0 0 8 8 0 0 6 0
50th 94 100 77 25 0 0 25 25 0 0 12 0
95th 94 100 94 75 0 8 83 83 8 8 12 0

9 5th 94 100 77 42 0 0 58 58 0 0 12 0
50th 94 100 88 75 0 8 83 83 8 8 12 0
95th 94 100 94 83 0 33 92 92 33 33 41 0

10 5th 94 100 82 58 0 0 67 67 0 0 12 0
50th 94 100 94 75 0 25 92 92 25 25 35 0
95th 94 100 94 100 25 67 100 100 67 67 65 24

11 5th 94 100 88 75 0 8 100 100 8 8 18 0
50th 94 100 94 92 8 42 100 100 42 42 41 8
95th 94 100 94 100 25 75 100 100 75 75 77 25

12 5th 94 100 94 83 0 33 100 100 33 33 29 0
50th 94 100 94 100 17 58 100 100 58 58 65 17
95th 94 100 94 100 67 92 100 100 92 92 88 65

13 5th 94 100 94 92 8 33 100 100 33 33 41 8
50th 94 100 94 100 25 67 100 100 67 67 77 25
95th 88 100 94 100 67 92 100 100 92 92 88 59

14 5th 94 100 94 92 17 33 100 100 33 33 65 17
50th 94 100 94 100 58 83 100 100 83 83 77 53
95th 88 100 94 100 67 92 100 100 92 92 88 59

15 5th 94 100 94 100 33 58 100 100 58 58 71 33
50th 94 100 94 100 67 92 100 100 92 92 88 65
95th 82 100 94 100 75 92 100 100 92 92 88 59

16 5th 94 100 94 100 25 67 100 100 67 67 77 25
50th 94 100 94 100 67 83 100 100 83 83 88 59
95th 82 100 94 100 75 92 100 100 92 92 88 59

Adult 50th 94 100 94 100 67 75 100 100 75 75 77 59

)b()a(

Fig. 4. Percent of observations for which riders passed all 11 fit criteria. (a) Males and (b) Females.

G. De Moura Araujo, F. Khorsandi Kouhanestani and F.A. Fathallah Journal of Safety Research 84 (2023) 353–363

359



3.1. Validation

The results of the validation tests are presented in Table 4 and
summarized in a confusion matrix (Table 5). In the confusion
matrix, the outcome of the test (pass/no pass) is labeled in both
horizontal and vertical axes. The horizontal axis represents the
number of outcomes predicted by the virtual simulations, and
the vertical axis represents the ground truth data (field experi-
ments). The results of the virtual simulations were very close to
those of the field tests, with a total accuracy of 88 %.

The Z-test determined that the Cohen’s Kappa coefficient
(K = 0.45) was significantly greater than zero (p = 0.036), indicating
that the virtual simulations are reasonable. This approach to eval-
uate ergonomic inconsistencies between youth’s anthropometry
and the operational requirements of ATVs proved to be an effective
and accurate technique.

Not all results of the virtual simulations matched those of the
field tests. One unexpected result is related to criterion 6 (upper
leg angle). It was observed that the mean angle between the riders’
upper leg and the horizontal plane (parallel to the ground) was
16.7�, slightly above the recommended threshold (10�). Similarly,
two subjects failed to pass criterion 5 (elbow angle) in the actual
field tests but passed it in the virtual simulation.

During the field tests, riders were asked to sit comfortably as if
they were just about to start riding the ATV. We argue that it
would be possible for riders to adjust their way of sitting so they
would pass both fit criteria; however, it would not result in the
most ergonomic posture from the rider’s standpoint. On the other
hand, in the virtual simulations, our ultimate goal was to place the
3-D subjects’ mockups to physically conform to the proposed fit
criteria. Thus, it was impossible to predict whether the final
adopted postures in the simulations would match those selected
by the riders in the validation tests. Therefore, we argue that
despite some outcomes of the virtual simulations did not match
those of the field tests, the results of the virtual simulations are still
reasonable. One just has to be cognizant that the outcomes of the
virtual simulations represent a hypothetical scenario where the
rider is able to attain a posture based on their anthropometric mea-
sures relative to the ATV, not on their preferences.

5. Discussion

This study evaluated limitations in youth’s anthropometric
dimensions when riding commonly used ATVs. Using a combina-
tion of actual field measurements and a novel digital simulation
approach, the present study evaluated 11 ATV fit criteria for youth.
The major finding was that youth are not recommended to ride
adult-sized ATV models, which is a common practice in the United
States (Bernard et al., 2010; Office (GAO), 2010; Jennissen et al.,

2014). This finding raises serious concern regarding youth’s ability
to ride ATVs, especially when unsupervised.

5.1. Limitations of youth

The present findings outlined that some youth are too small,
which makes them incapable of properly reaching the vehicle’s
hand/foot brakes, resting their feet on the footrests, or having to
lean forward beyond 30� to reach the handlebars when rising off
the seat. Failing to activate the ATV brakes limits the youth’s ability
to reduce the speed or to stop the vehicle, which likely prevents
them from avoiding unexpected hazards, such as obstacles or
bystanders (Fathallah et al., 2008). In fact, previous research has
shown that a significant number of ATV incidents include hitting
a stationary object (Balthrop et al., 2007; Concannon et al., 2012;
Helmkamp et al., 2011; Jennissen, Wetjen, Hoogerwerf,
O’Donnell, & Denning, 2018; Lower & Herde, 2012).

In addition, the inability to place the feet on the footrests when
not breaking the ATV entails a functional loss of control of the vehi-
cle. ATV LCEs occur frequently and are a significant cause of injury
and death in agriculture (Carman et al., 2010; Clay, Treharne, Hay-
Smith, & Milosavljevic, 2014; Milosavljevic et al., 2011). This find-
ing indicates an opportunity for manufacturers to consider chang-
ing the design of their machines, allowing riders to adjust the ATV’s
seat height, which would likely reduce longitudinal torso impact
while traversing rough and uneven terrains. Furthermore, leaning
beyond 30� can cause the ATV to tip forward, resulting in a roll-
over. Most ATV-related crashes on farms and ranches, especially
those resulting in deaths, involve rollovers (Cavallo, Gorucu, &
Murphy, 2015; Chou et al., 2022; Khorsandi, Ayers, & Fong, 2019;
Lower & Herde, 2012; Lower, Monaghan, & Rolfe, 2016;
McIntosh, Patton, Rechnitzer, & Grzebieta, 2016).

On the other hand, some youth are too tall, which decreases the
clearance zone between their legs and the handlebars. A clearance
zone smaller than 200 mm makes it difficult for the rider to prop-
erly reach and steer the handlebars (CPSC, 2006; National 4-H
Council, 2005). Consequently, riders may lose control of the vehicle
(Clay, Hay-Smith, Treharne, & Milosavljevic, 2015; McIntosh et al.,
2016) or have difficulty keeping it at a safe speed. As mentioned
before, these series of events can lead to injuries and deaths.

Table 4
Validation tests separated by subject and specific fit criterion.

Subject Subject 1 (male) Subject 2 (male) Subject 3 (female)

Criterion Real Virtual Real Virtual Real Virtual

1 1 1 1 1 1 1
2 1 1 1 1 1 1
3 1 1 1 1 1 1
4 0 0 1 1 1 1
5 1 1 0 1 0 1
6 0 1 0 1 0 0
7 1 1 1 1 1 1
8 1 1 1 1 1 1
9 1 1 1 1 1 1
10 1 1 1 1 1 1
11 1 1 1 1 1 1

Table 5
Confusion matrix based on the validation tests.

Actual outcome (field tests) Pass No Pass
Pass 27 0
No pass 4 2

Predicted outcome
(virtual simulations)
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Furthermore, despite some results showing that youth are cap-
able of riding many of the ATVs evaluated in this study, other risk
factors such as experience, psychological, and cognitive develop-
ment cannot be overlooked (FReSH, 2012; NCCRAHS, 2018). Youth
who are high in thrill-seeking are more likely to engage in risky
ATV riding behaviors, regardless of their safety awareness (Jinnah
& Stoneman, 2016). Those cases require external interventions,
such as changes in legislation, improved ATV design, and use of
crush protection devices (Jinnah & Stoneman, 2016).

5.2. Lack of inclusive designs

The results indicated that most utility ATV models are unfit for
youth. As such, there is an increased chance of incidents when
youth ride these vehicles. There is a need to design ATVs that bet-
ter accommodate riders of various sizes.

5.3. Assessment of ATV-youth fit guidelines

The results of this validation experiment showed that some rid-
ers failed criteria 5 and 6 even though they seemed able to operate
the study vehicle comfortably and safely according to our ATV
safety research team. Particularly, subjects 1, 2 and 3 presented
elbow angles of 129�, 170� and 172.5�, respectively. While fit crite-
rion 5 recommends an elbow angle between 90 � and 135�, it is not
uncommon to see motorcycle riders reporting comfortable elbow
angle values up to 168� (Arunachalam, Singh, & Karmakar, 2021).

Moreover, subjects 1, 2, and 3 presented upper leg angles of 14�,
14.7�, and 21.4�, respectively (above the recommended threshold
of 10�). A previous survey regarding motorcycle riders’ perceived
comfortable posture reported optimum upper leg angles as high
as 23� (Arunachalam et al., 2021). It is our understanding that fit
guidelines 5 and 6 are rather conservative, and their proposed
thresholds may rule out riders that are perfectly able to ride utility
ATVs safely and comfortably. As such, we propose some modifica-
tions to those fit guidelines.

First, we recommend that the rider’s elbow angle should be
between 90� and 170� as long as the rider feels comfortable steer-
ing the handlebars and is able to pass fit criteria 8 (control reach)
and 11 (control grip). Moreover, we recommend that the rider’s
upper leg angle should be within 23� of parallel to the ground as
long as the rider is able to pass criteria 3 (brake-foot position), 8
(control reach), and 9 (footrest reach). These new thresholds were
selected based on the empirical results of our validation experi-
ments and the angle values reported in the previously mentioned
survey (Arunachalam et al., 2021).

Lastly, we stress that the fit guidelines are essential to assess
whether the machine is suitable to the rider. We strongly recom-
mend that stakeholders consider the fit criteria when evaluating
youth’s readiness to ride a utility ATV.

5.4. Changes in guidelines and policies for youth operating ATVs

Current guidelines for ATV-youth fit are mainly based on the
rider’s age (Academy, 2018) and vehicle’s engine size (CPSC,
2006) and maximum speed (ANSI/SVIA, 2017). However, these rec-
ommendations are not supported by the present findings, which
clearly showed that some fit criteria favor smaller youth while
some benefit taller youth, regardless of the rider’s age and vehicle’s
engine size or maximum speed. Furthermore, previous studies
have also demonstrated that only rider’s age and ATV characteris-
tics are insufficient to evaluate youth-ATV fit (Bernard et al., 2010;
De Moura Araujo and Khorsandi, 2020; De Moura Araujo,
Khorsandi, Kabakibo, & Kreylos, 2021). As such, we strongly recom-
mend that parents, dealerships, youth occupational health profes-

sionals, and policy makers adopt fit guidelines based on the reach
ability of youth for the assessment of youth-ATV fit.

5.5. Study limitations

There are noteworthy limitations of this study that need to be
considered when interpreting the results. First, one may argue that
the database selected for this study (Snyder et al., 1977) is out-
dated. Nevertheless, to the best of our knowledge, this is the only
available source that includes enough parameters to create youth
mockups on SAMMIE CAD. In addition, there is no clear evidence
of the secular trend in anthropometry over U.S. youth over the past
40 years (Fathallah et al., 2009). For instance, when investigating
other sources (CHILDATA – DTI (1995)), we did not observe any
significant differences (p-value < 0.05) in the mean values of shoul-
der breadth and hand length for youth aged 5 or 10 years old. How-
ever, it is reasonable to assume that there might be differences in
the sizes of the youth population of 2022 and their counterparts of
1977. This potential difference should be considered in the inter-
pretation and generalizability of the present findings.

Second, although we used a systematic approach to identify
common ATVs used in the United States, the sample is subject to
sampling error and may not be necessarily representative of the
models ridden specifically by youth. Moreover, safe and effective
riding of utility ATVs involves consideration of factors other than
the ability of youth to reach its controls or attain a specific posture.
ATVs are rider-active vehicles, which means that riders must be
able to shift their body weight to safely perform maneuvers such
as turning, negotiating hills, and crossing obstacles (Jennissen
et al., 2014; National 4-H Council, 2005). These circumstances war-
rant further investigation.

Third, we had to determine the absolute location of each control
due to feasibility issues. The further-most position was used as the
standard position for all controls with gradual adjustment such as
the hand gearshift, while pedals were set to resting position.

Fourth, all the human mockups were placed at the ATVs’ seat
reference point (SRP). This may not be the ‘‘best-case” scenario
from a reach standpoint since many riders, especially small youth,
tend to sit closer to the handlebars (ahead of the SRP) to allow con-
trol reaching. However, the SRP is a standardized expected seat
position, which allowed for a consistent evaluation approach
among the various conditions. The effect of seating adaption to
reach controls while riding requires further assessment.

Finally, the reach simulations were performed with static mock-
ups (i.e., we did not evaluate any trunk or hip movement). In real
riding situations, riders may shift their hips forward and/or bend
their trunks to reach an otherwise unreachable control and per-
form active riding. However, while active riding can increase the
ATV’s stability by 10–30 % (Shortland, 2013), there is no clear evi-
dence that active riding and rider separation reduces the risk of
rollover for agricultural ATVs specifically (Grzebieta, Rechnitzer,
& McIntosh, 2015).This warrants further investigation.

6. Summary

This study evaluated the potential mismatches between youth’s
anthropometric measures and operational requirements of 17 ATV
models. The study’s main findings/receommendations were: (1)
Most riders failed to pass at least 1 out of the 11 fit criteria for
the evaluated vehicles; (2) Youth are not recommended to ride
utility ATVs; and (3) Only engine size, maximum speed, and rider’s
age are insufficient indicators of youth-ATV fit.

The present findings, along with the results of a recent study
regarding the forces required for effective ATV operation (De
Moura Araujo & Khorsandi, 2020), raise serious questions about
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the ability of youth to safely operate utility ATVs in common use on
U.S. farms and about the validity of current youth-ATV fit guide-
lines. Therefore, we recommend that the readiness of youth to ride
ATVs, especially for occupational purposes, should be carefully
evaluated by their parents/guardians. Moreover, we argue that cur-
rent youth-ATV fit guidelines should be reviewed and updated
based on quantitative and systematic data comparing the physical
ability of youth and the operational requirements of ATVs.

7. Practical applications

The present study provides such quantitative and systematic
data comparing the physical ability of youth and the operational
requirements of ATVs. These data support manufacturers in con-
sidering design changes or manufacturing new machines and pro-
vides critical evidence contributing to the scientific basis for
modifying regulatory/advisory guidelines for youth operating util-
ity ATVs.
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a b s t r a c t

Introduction: Automated vehicle (AV) technology is a promising technology for improving the efficiency
of traffic operations and reducing emissions. This technology has the potential to eliminate human error
and significantly improve highway safety. However, little is known about AV safety issues due to limited
crash data and relatively fewer AVs on the roadways. This study provides a comparative analysis between
AVs and conventional vehicles on the factors leading to different types of collisions. Method: A Bayesian
Network (BN) fitted using the Markov Chain Monte Carlo (MCMC) was used to achieve the study objec-
tive. Four years (2017–2020) of AV and conventional vehicle crash data on California roads were used.
The AV crash dataset was acquired from the California Department of Motor Vehicles, while conventional
vehicle crashes were obtained from the Transportation Injury Mapping System database. A buffer of 50
feet was used to associate each AV crash and conventional vehicle crash; a total of 127 AV crashes and
865 conventional vehicle crashes were used for analysis. Results: Our comparative analysis of the associ-
ated features suggests that AVs are 43% more likely to be involved in rear-end crashes. Further, AVs are
16% and 27% less likely to be involved in sideswipe/broadside and other types of collisions (head-on, hit-
ting an object, etc.), respectively, when compared to conventional vehicles. The variables associated with
the increased likelihood of rear-end collisions for AVs include signalized intersections and lanes with less
than 45 mph speed limit. Conclusions: Although AVs are found to improve safety on the road in most
types of collisions by limiting human error leading to vehicle crashes, the current state of the technology
shows that safety aspects still need improvement.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Background

Vehicular crashes occur due to various causes, but most of these
causes are human errors (Singh, 2015). Examples of human errors
contributing to road crashes include distracted driving, driving
under the influence of alcohol and/or drugs, or mere fatigued driv-
ing (Goetz & Haleem, 2021; Khan & Habib, 2021; Monyo et al.,
2021). Automated vehicle (AV) technology is anticipated to address
these human errors by reducing human involvement in controlling
the vehicle and therefore improving safety (Favarò et al., 2017).
Currently, little is known about AV safety due to limited crash data
and relatively fewer AVs on the road. However, strategic efforts are

in place to ensure AV safety aspects are evaluated and tested
before fully manifesting this technology.

One proposed way is to assess safety by testing AVs in a mixed
traffic environment and observing their performance (Kalra &
Paddock, 2016). The authors show that AVs would have to be dri-
ven hundreds of millions of miles to demonstrate their safety and
reliability. This is due to limited miles-driven data and the capacity
to test enough AVs on the road. That being the case, manufacturers,
transportation officials, and researchers ought to principally come
up with more ways of studying the safety extent of AVs, such as the
use of statistical comparisons of AVs to human driver performance.
Most current AV safety studies use simulations or survey question-
naires (Bansal & Kockelman, 2017; Combs et al., 2019; Arvin et al.,
2020; Rahman, Abdel-Aty, & Wu, 2021). Tibljaš et al. (2018) used
safety simulation analysis with a surrogate safety simulation
model (SSAM) to assess AVs’ safety levels at roundabouts. The
study found that rear-end crashes are typical in AVs. Similarly,
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Papadoulis et al. (2019) developed a decision-making algorithm in
VISSIM software and used the SSAM for safety analysis. It was
found that traffic conflicts were minimized with increased market
penetration rates, although rear-end crashes were typical. Further-
more, Arvin et al. (2020) evaluated AVs’ safety in a mixed traffic
setting at intersections in a simulation framework. The study
assessed the volatility of conflicts and crashes at different market
penetration rates. It was concluded that the lower the market pen-
etration rates, the minimal the conflicts, and the ideal road safety
could be achieved with an optimal market penetration rate of
40%. Although in this study, Arvin et al. (2020) signify the safety
importance of AVs over conventional vehicles in a simulation
study, validation with actual field data was not incorporated in
the analysis.

Few studies have been conducted on AV crashes using field
data. Recent application of the publicly available California AV
dataset has included researchers conducting mainly exploratory
data analysis of the limited crash samples (Favaro et al., 2017;
Favaro, Eurich, & Nader, 2018; Boggs, Arvin, & Khattak, 2020;
Petrovic, Mijailović, & Pešić, 2020). This is partly due to limited
market penetration; therefore, few crash data involving AVs are
available. Favaro, Eurich, and Rizvi (2019) utilized the data pub-
lished by the California Bureau of Motor Vehicles (CA BMV) from
2014 to 2018 to study AV Advanced Driver Assistance Systems
potential risks in case of technology failures. This study found that
AVs are susceptible to rear-end crashes and observed that most
crashes occur at 10 miles per hour (mph). Furthermore, due to
the integration of the two-vehicle types, if the penetration rate of
AVs rises, the overall number of crashes may also rise.

Despite the difference not being statistically significant, Teoh
and Kidd (2017) found that the crash rates of AVs were lower than
conventional vehicles. Even though there is no confirmation in the
police reports, the authors suspect that because Google cars are
regularly impacted from behind, the technology may force the
vehicles to brake abruptly. Additionally, Chen et al. (2021)
explored the occurrence of AV crashes using machine learning
algorithms on the CA DMV crash data. The study found that AVs
are more prone to rear-end crashes. It was also established that
factors such as vehicle damage, weather conditions, accident loca-
tion, and driving mode are some of the most critical factors associ-
ated with AV crashes. A study by Boggs, Wali, and Khattak (2020)
employed text analytics on the AV crash reports and a hierarchical
Bayesian regression to examine AV crashes. The authors also found
that rear-ended crashes are the most frequent type of collision
(61.1%), while injury-resulting crashes are about 13.3%. This study
also suggests that the likelihood of rear-end crashes is higher when
the AV is engaged than when the AV is disengaged (human-
driven). The study also indicated that the AVs have a higher crash
propensity in areas of mixed land use settings compared to other
land uses, with lower chances observed in public areas and school
zones. Kutela, Das, and Dadashova (2022) evaluated non-motorists
direct and indirect involvement in AV crashes in California. The
study found that bicyclists and scooterists are likely to be directly
involved, while pedestrians are likely to be indirectly involved in
AV crashes. Even more, Kutela, Avelar, and Bansal (2022) jointly
analyzed the associated factors of three interrelated outcome vari-
ables vehicle at fault, collision type, and injury outcome in AV-
involved crashes. They showed that irrespective of the collision
type, when the AV is at fault, the chance of the physical injury in
a crash increases significantly. Nonetheless, the above-mentioned
studies did not assess injuries and other contributing factors such
as intersection signalization and, above all, did not draw out a com-
parative analysis of conventional vehicles type of collision.

Although studies have attempted to evaluate the safety aspects
of AVs using crash data, the pattern of collision type has not been a
topic of interest for most researchers. In fact, no study has com-

pared characteristics of AV and conventional vehicle crashes that
occurred in the same vicinity and explained the safety benefits of
AVs. Furthermore, some road users appear concerned about AV
system failure, system breaching/hacking, and safety issues
(Bansal, Kockelman, & Singh, 2016). One study found that even
though AVs can potentially minimize chances of crash occurrence,
be environmentally friendly, timesaving, and increase mobility
(Payre, Cestac, & Delhomme, 2014), users ‘‘do not feel safe if the
car is driving itself,’’ and most parents would not let their kids ride
alone in a car with full driving automation (König & Neumayr,
2017). It will be several years before all vehicles on the roadways
transition to AV; AVs and conventional vehicles may have different
responses in different conditions (e.g., hard braking, deceleration).
Nonetheless, limited published research tried to address the con-
cern: What is the safety advantage of AVs when compared to con-
ventional vehicles? What type of collisions are AVs most likely to
be involved in? What strategies are needed to improve AVs safety?
The current study seeks to answer the question of how well AVs
that are currently on the road perform in comparison to conven-
tional vehicles in terms of safety (manner of collision). For compa-
rability purposes, only crashes involving conventional vehicles in a
50 ft buffer zone to crashes involving AVs were considered in the
current study, assuming they share common characteristics such
as road geometry and surface conditions.

Bayesian Networks (BNs) approach is used to investigate the
prominent factors and compare various crash types associated
with AVs and conventional vehicles. Furthermore, the study
explored whether the predicted probabilities for AVs and conven-
tional vehicles on the manner of collisions are statistically differ-
ent. This comparison was made using the predicted posterior
distributions. The graphical representation of BNs and how it
accounts for interdependency between variables makes BNs supe-
rior to the classical regression models (Kidando et al., 2019). The
study utilizes the AV crash data from California as reported by
CA DMV (California DMV, 2021) and conventional vehicle crash
data (TIMS, 2021).

The contribution of this study is twofold. First, this study pro-
vides a comparative assessment of limitations on road safety issues
due to human driving (conventional vehicles) as opposed to AVs.
Second, the inferences from the model will help transportation
officials, manufacturers, and researchers, especially in the mixed
traffic era, quantify the safety expectations of AVs as the technol-
ogy is being developed and improved. The potential benefit of
using BN over other traditional analytical approaches is its capacity
to condition several explanatory variables. Moreover, the BNmodel
provides an outstanding interpretation, explicitly presenting the
probability relationships among variables in the model. The rest
of the manuscript is structured as follows. The next section
describes the study data followed by the approach used to geo-
graphically merge data from AV and conventional vehicles. Then
the descriptive statistics of the merged data are presented, fol-
lowed by the methodology used to develop BNs, results, and dis-
cussion, and finally, the conclusion and recommendation section.

2. Data

This study obtained crash data from CA DMV and the Trans-
portation Injury Mapping System (TIMS). The CA DMV is an open
repository, and it was initiated in 2014 to collect all the AVs crash
data from manufacturers in California (California DMV, 2021). The
AV manufacturers that have reported their vehicle crashes in this
database include Google, General Motors, Delphi, Nissan, and
Cruise Automation, to mention a few (Boggs et al., 2020;
California DMV, 2021). The published data in the CA DMV reposi-
tory contains a detailed report of each AV crash, including the

N. Novat, E. Kidando, B. Kutela et al. Journal of Safety Research 84 (2023) 251–260

252



geolocation of the crashes, type of collision, weather, road surface
condition, and date and time of the collision. After auditing the
published AVs’ crash reports and screening erroneous and incon-
sistent data reporting, AV crashes that occurred between 2017
and 2020 were found to have consistent reporting and complete
data to be used for accurate analysis. The data auditing process
involved screening AV crash records that were not in fully autono-
mous mode; that is, the AV was disengaged, and the driver was in
control of the vehicle. This data screening step was vital for the
study in order to establish an effective comparison between con-
ventional vehicles and AVs (when not under the influence of a
human driver). A total of 127 reported AV crashes were then used
for analysis in the selected study period. On the other hand, the
TIMS database provides conventional vehicle crash data. This data-
base is hosted and maintained by the Center for Safe Transporta-
tion Research and Education at the University of California
Berkeley (TIMS, 2021). A total of 865 crash observations were used
in this study. This count was obtained by the procedure explained
in the merging section discussed in the following section.

2.1. Data merging

The AVs and conventional vehicle crashes were mapped in the
geographic information system (GIS) application using geolocation
(latitudes and longitudes) of the crashes. Only crashes in close
vicinity were compared to perform a fair comparison between
AVs and conventional vehicles. It is assumed that the closer the
AV and conventional vehicle crashes, the higher the likelihood that
the two crashes share similar physical attributes. Thus, a buffer of
50 feet (ft) radius around each AV crash was used to extract all
associated conventional vehicle crashes. A similar geo-filtering
approach to vehicle crashes has been used by the previous studies
to identify traffic volume (i.e., annual average daily traffic (AADT),
data within a proximity of 50 ft, as well as using to narrow down to
crashes within 50 ft of an intersection; Mammadrahimli, 2015;
Estep, Kim, & Nixon, 2016). This procedure revealed a total of
865 conventional vehicle (2017–2020) crashes to be within the
vicinity of the 50 feet buffer zone of AV crashes. Fig. 1 presents a
GIS map that shows the geo-filtered locations of the conventional
vehicle crashes (green) and AV crashes (red) that occurred within
the same area.

Based on the literature review, the study explored the following
explanatory variables: type of collision, road classification, seg-
ment type, crash whether occurred near signalized, unsignalized
intersection or segment, number of lanes, land use characteristics,
and posted speed limit. These variables were obtained from the
Google map.

2.2. Descriptive statistics of the data

Table 1 presents the descriptive statistics of the gathered data.
The type of collision is divided into three categories: rear-end
crashes, sideswipe/broadside crashes, and other types of crashes,
composed of crashes that were infrequent to AV collisions (i.e.,
head-on, overturned, hit an object, pedestrian, etc.). The distribu-
tion for rear-end, sideswipe/broadside, and other crashes are 67%,
28%, and 6%, respectively, for AVs and 20%, 43%, and 37%, respec-
tively, for conventional vehicles.

Table 1 also shows a distribution between AV and conventional
vehicle crashes under different highway functional classifications.
Many crashes occurred on local and collector roads, followed by
arterial and fewer crashes on freeways/expressways for both con-
ventional vehicles and AVs. Given the number of lanes on the cor-
ridor, crash occurrence appears to be increasing with an increase in
the number of lanes for AVs (i.e., one lane, 29%; and two or more
lanes, 71%), and conventional vehicles (i.e., one lane, 19%; and
two or more lanes, 81%).

3. Methodology

This study developed a BN to establish a comparative analysis
between AVs and conventional vehicles on the manner of colli-
sions. The BN is one of the hybrid artificial intelligence (data + hu-
man knowledge) models, which expresses a probabilistic
relationship between variables (Mittal & Kassim, 2007; Sheehan
et al., 2019). The nodes are connected by links known as edges or
sometimes referred to as arcs. The edge direction originates from
the parent node to a child node, and the relationship between
the two nodes is defined by conditional probability (Kidando
et al., 2019; Kutela & Teng, 2019). The best network structure of
the BNs in this study was established from learning the dataset
using a scoring search algorithm and expert’s knowledge to eluci-
date meaningful node connections of the BN. The search algorithm
adopted is based on greedy hill climbing with Akaike Information
Criterion (AIC) as a scoring function. This search algorithm involves
an iteration process of adding and reversing the nodes and edges
until the best network is obtained. The AIC scoring function used
to establish the optimal network structure is presented in Equation
(1).

AIC ¼ 2 � Lþ 2 � n ð1Þ
where, L is the maximized log-likelihood; n is the number of param-
eters in a Bayesian Network.

3.1. Probabilistic reasoning and comparison

Once the optimal network structure was established, the pre-
dictive inference was conducted to evaluate the cause-effect rela-
tionship between the target (child) and parent variables. The
predictive inference can also be referred to as the sensitivity anal-
ysis and is conducted by assigning evidence in the network struc-
ture and evaluating the impact on the target variable (e.g., collision
type). Since the focus of this study is to compare the AV and CV on
the manner of collisions, the probabilistic inference was computed
following the two approaches. The first approach was to investi-
gate individual evidence of AV and conventional vehicles on theFig. 1. Map of AVs and conventional vehicle crashes in California.
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outcome. This was conducted by setting certainty on a particular
vehicle category (conventional vehicle or AV) in the BNs and
observing the impact on the manner of collision. Equation 5
describes how the inference on the first approach was made in
the analysis. In this equation, i is the probability of a certain type
of crash and x represents the evidence of a hypothesis variable x.

Pðtype of collision ¼ ijEv idencex ¼ 1Þ ð2Þ
On the second approach, the inference was made by evaluating

the combined impact of conventional vehicles or AV with other
hypothesis variables in predicting the manner of collisions. The
combined evidence inference involves setting multiple pieces of
evidence and predicting the probability of a target variable. This
type of analysis can be used to reveal how, for example, the AV
and segment type is associated with the likelihood of rear-end
crashes. Herein, the hypothesis variable is referred to as the parent
node, which has a direct connection with the target variable in the
optimal network. The analysis was done using Equation (3)
whereby the en is the evidence of a hypothesis variable n, and
hvn is the observed evidence category, v of hypothesis variable n.
As with the individual evidence analysis, for the combined evi-
dence, each observed evidence was assigned a certainty value of 1.

Pðtype of collison ¼ ije1 ¼ hv1; e ¼ hv2 � � � :en ¼ hvnÞ ð3Þ
Generally, the BN parameters, which are also referred to as con-

ditional probabilities, are estimated using the maximum likelihood
approach. While the BN gives us the estimated parameters, it does
not account for the uncertainty, and it is difficult to estimate the
confidence interval of the estimates. This study used a Bayesian
framework based on the Markov Chain Monte Carlo (MCMC) sim-
ulations to address these limitations. The simulations were fitted
using an open-source Python package called NumPyro version
0.7.2, developed by Uber AI Labs (Bingham et al., 2019; Phan,
Pradhan, & Jankowiak, 2019). As with Bayesian inference, the dis-
tributions of the inferences were assumed to follow a non-
informative prior. For variables with two groups, a Beta distribu-
tion was used to calibrate the probabilities, while with more than
two groups, the Dirichlet distribution was adopted in the analysis.
During sampling, the No-U-Turn Sampler (NUTS) with three chains
was applied to calibrate the parameters of all variables in the net-
work. The initial burn-in phases were set to 2,000 iterations, and
subsequently, 2,000 iterations were used for inference. The model
convergence was evaluated using the Gelman-Rubin diagnostic
statistic. For a model to achieve convergence, the difference
between chain variances, which is the Gelman-Rubin diagnostic

statistic, must be equal to 1 (Makowski et al., 2019). Moreover,
visual diagnostics based on the autocorrelation plot, density, and
trace plot of each inference were also produced for visual
interpretation.

4. Results and discussion

Fig. 2 shows the optimized Bayesian network structure. From
this network, four variables had a direct dependence on the colli-
sion type: the number of lanes, segment type, speed limit, and vehicle
type. These variables are also referred to as hypothesis variables.
Other variables, including road classification and land use vari-
ables, were observed to influence collision type through the
hypothesis variables. Sensitivity analysis and comparison of AVs
and conventional vehicles were conducted using the optimal BN
shown in Fig. 2.

4.1. Individual evidence prediction inference

This analysis was conducted to determine the probability of a
specific crash type given a particular vehicle type (i.e., crashes
involving AVs and those involving conventional vehicles). The
probabilities were estimated by querying the optimal BN and set-
ting the evidence probability to 1 on the vehicle type. Fig. 3 shows
the optimal BN with the predicted average probabilities for differ-
ent types of collisions involving AVs and conventional vehicles. The
figure also shows the 95% highest density interval (HDI) and stan-
dard deviation (SD) of the predicted probabilities. The HDI and SD
summarize the uncertainty of an estimate by indicating the range
of most probable values. It is worth understanding that this study
only compared different crash types involving AVs and conven-
tional vehicles. It is also possible to conduct a sensitivity analysis
and comparison of any node in the network and evaluate the prob-
ability change on the target variable.

The results in Fig. 3 show that AV-involved rear-end crashes are
more prevalent than rear-end crashes involving conventional vehi-
cles and other road users. Specifically, given that a collision
involves an AV, the probability of that crash being a rear end is
0.64 (95% HDI [0.56, 0.71]). On the other hand, the probability of
a collision involving a conventional vehicle being a rear end was
0.20 (95% HDI [0.18, 0.23]). Previous studies also reported a similar
finding (Boggs, Wali, & Khattak, 2020; Wang et al., 2020; Kutela,
Das, & Dadashova, 2022). Sideswipes and other crashes involving

Table 1
Descriptive analysis of variables.

Variable Category Conventional Vehicles AVs

Count % Count %

Collision type Rear end 171 20 85 67
Sideswipe 376 43 35 28
Others 318 37 7 6

Road classification Collector and local 603 70 82 65
Arterial 189 22 29 23
Freeway/Expressway 73 8 16 13

Segment type Non-intersection 22 3 13 7
Unsignalized intersection 74 9 38 20
Signalized intersection 769 89 141 73

Number of lanes One lane 166 19 56 29
Two or more lanes 699 81 136 71

Land use Residential 154 18 36 28
Commercial 448 52 50 39
Mixed land use 263 30 41 32

Speed limit Less than 45 mph 708 82 99 78
45 mph or higher 157 18 28 22
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Fig. 2. Optimized BN structure.

Fig. 3. Sensitivity analysis results for vehicle type, Note: COV refers to as conventional vehicles and AV is automated vehicles.
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conventional vehicles were more prevalent than AV-involved side-
swipes and other crashes.

Taking advantage of rich information produced by the Bayesian
framework, the study further investigated whether the predicted
probabilities for AVs and conventional vehicles on the manner of
collisions are statistically different. This comparison was made
using the predicted posterior distributions. In particular, the poste-
rior indices were established by computing the posterior difference
between the conventional vehicles’ and AVs’ probabilities of the
same collision type. The null hypothesis for comparison was
framed as the difference between the two fitted probabilities is
the same. In contrast, the alternative hypothesis was that the prob-
abilities between AVs and conventional vehicles are credibly differ-
ent. Several previous studies have adopted this type of analysis to
conduct the Bayesian hypothesis test or group comparison
(Kruschke, 2011, 2013; Kidando, Moses, & Sando, 2019). Unlike
the conventional maximum likelihood hypothesis testing, which
relies on the p-value, Bayesian hypothesis testing describes the
estimates in probability terms, accounts for uncertainty, and is
not significantly affected by the data variations (Kruschke, 2011,
2013; Kidando, Moses, & Sando, 2019).

Fig. 4 shows the indices’ posterior distribution (differences) for
each collision type along with the mean difference and the 95% HDI
represented by the horizontal line near the x-axis. The mean differ-
ence and 95% HDI are summary statistics, which facilitate conclud-
ing the null and alternative hypothesis. The mean credible values
represent the best guess of the actual difference, and the 95%
HDI represents the range where the actual difference has 95% cred-

ibility. When the difference in the posterior distributions is strictly
positive or negative in the 95% HDI, the difference is considered
credible at 95% HDI (Kruschke, 2013; Kidando, Moses, & Sando,
2019). This indicates that the limits of the 95% HDI, which are
2.5% and 97.5%, do not include zero as one of the credible values.
Therefore, we reject the null hypothesis that the predicted proba-
bilities are the same in favor of the alternative hypothesis. On
the other hand, if the estimated HDI line in Fig. 4 crosses zero,
the difference of zero is one of the credible values, and we fail to
reject the null hypothesis that the conventional vehicles and AVs
probabilities are statistically the same.

As shown in Fig. 4, the average probability difference between
conventional vehicles and AVs is �0.43, with 95% HDI limits of
�0.52 and �0.36 for rear-end crashes. The mean difference in
probabilities for sideswipe is 0.16 with 95% HDI of 0.08 and 0.23.
For other group types of collision, the estimated mean difference
is estimated to be 0.27 with HDI limits of 0.22 and 0.33. The fitted
95% HDI limits for the differences are all positive (sideswipe and
others) or negative (rear-end collisions) for all types of collision.
Therefore, zero is not one of the credible values in the calculated
posterior distributions. These results indicate that the estimated
differences in probabilities between conventional vehicles and
AVs among collision types are significant at 95% HDI.

4.2. Combined evidence prediction inference

In addition to assessing the influence of vehicle type alone on
the predicted probabilities of collision type, the impact of concur-

Fig. 4. Comparison of predicted probabilities for AVs and conventional vehicles on the manner of collision, Note: COVs refers to as conventional vehicles and AVs is
automated vehicles.
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rent evidence was assessed. The combined evidence analysis was
conducted by setting evidence of concurrent variables, which are
vehicle type and each hypothesis variable. The results of this anal-
ysis are presented in Table 2.

The segment type was grouped into three categories: non-
intersection (segment), unsignalized, and signalized intersections.
As indicated in Table 2, AV-involved-rear-end crashes were more
prevalent in a segment than crashes involving conventional vehi-
cles. A similar pattern was observed on the predicted probabilities
for signalized and unsignalized intersections. The probabilities
change between conventional vehicles and AVs for a rear-end col-
lision are �0.42 (95% HDI [�0.61, �0.24]) and �0.44 (95% HDI
[�0.54, �0.36]) for unsignalized and signalized intersection,
respectively. These findings suggest that the large probability dif-
ference is at intersections compared to a segment for rear-end
crashes. In fact, the probability difference for the segment was
found insignificant at a 95% credible interval because the HDI
crosses zero, which implies that zero is one of the credible values.

A comparison of predicted probabilities on each vehicle type
reveals that rear-end collisions are more common at an intersec-
tion than a segment for AVs. This finding is similar to previous
studies (Wang & Abdel-Aty, 2006; Pande, Abdel-Aty, & Das,
2010). Moreover, at signalized intersection level, AVs are expected
to be more alert and respond to red-light stopping signal status, as
opposed to human drivers who could delay stopping or sometimes
deliberately run the red lights. Hence, this results in a higher like-
lihood for rear-end collision for AVs at signalized intersections as
opposed to unsignalized intersections. On the other hand, the con-
ventional vehicles estimated probabilities reveal a contradicting
finding on the comparison of different segment types. The highest
probability is recorded on the segment (mean = 0.27), followed by
signalized intersection (mean = 0.21), and the last is unsignalized
intersection (mean = 0.15).

The comparison of sideswipe type of a collision presented in
Table 2 shows that the AV’s probability is lower by 0.15 (95%
HDI [�0.12, 0.40]) compared to conventional vehicles at a segment.
For unsignalized intersections, the likelihood for a sideswipe colli-
sion is lower by 0.14 (95% HDI [�0.05, 0.33]) for AVs compared to

conventional vehicles. The difference between AVs’ and conven-
tional vehicles’ predicted probabilities are insignificant at 95%
HDI, suggesting that the estimated probabilities are statistically
the same. On the other hand, for signalized intersection the esti-
mated difference is statistically different (mean = 0.16, 95% HDI
[�0.07, 0.24]). Notably, the difference in likelihoods for AVs over
conventional vehicles sideswipe type of collision is not that signif-
icant at the segment, unsignalized, or signalized intersection. The
observed low likelihood for AVs in sideswipe crashes is due to
advanced object detection features surrounding the vehicles, as
well as advanced lane changing mechanisms (Liu et al., 2019;
Rahman et al., 2019).

Moreover, the predicted probabilities on each vehicle type
across different segment types indicate that sideswipe collisions
are more common at an intersection than a segment for both con-
ventional vehicles and AVs. Studies by Polders et al. (2015) and
Alarifi, Abdel-Aty, and Lee (2018) also presented similar findings
for the high likelihood for crashes on the side of the vehicle to be
more apparent at intersections level than segment level due to fre-
quent turning movements that lead to more conflicts.

The group of others (i.e., head-on, hitting an object) shows the
predicted probability is lower by 0.02 (95% HDI [�0.24, 0.26]) for
AVs in comparison to conventional vehicles at the segment level.
For unsignalized intersections, the likelihood is lower by 0.29
(95% HDI [0.13, 0.44]) for AVs compared to conventional vehicles,
while at signalized intersections, the likelihood is lower by 0.28
(95% HDI [0.22, 0.34]) for AVs compared to conventional vehicles.
It is seen that, compared to conventional vehicles, AVs are less
likely to be involved in a collision from the front of the vehicle,
such as hitting an object at segment level than at intersection level
(both unsignalized and signalized). One reason is due to unim-
peded object detection at the segment level compared to the
required multiple object detection at the intersection level
(Aycard et al., 2011).

The number of lanes variable was grouped into highways with
one lane and more than one lane. For collisions in one lane corri-
dor, it was observed that AVs were 0.48 (95% HDI [�0.58,
�0.36]) more likely to be involved in rear-end collisions than con-

Table 2
Probability of type of collision for AVs and conventional vehicle crashes BN MCMC inferences.

AVs Conventional Vehicles Difference in
Probabilities

Hypothesis Variable Target Variable (Collision type) Mean SD HDI Mean SD HDI Mean HDI

2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

Segment type
Non intersection

Rear end 0.43 0.11 0.21 0.64 0.27 0.07 0.14 0.42 �0.16 �0.43 0.09
Sideswipe 0.26 0.11 0.08 0.47 0.41 0.08 0.25 0.57 0.15 �0.12 0.40
Others 0.31 0.11 0.12 0.52 0.32 0.08 0.18 0.48 0.02 �0.24 0.26

Unsignalized intersection Rear end 0.58 0.09 0.41 0.75 0.15 0.04 0.08 0.23 �0.42 �0.61 �0.24
Sideswipe 0.30 0.08 0.16 0.47 0.44 0.05 0.34 0.55 0.14 �0.05 0.33
Others 0.12 0.06 0.02 0.22 0.40 0.05 0.31 0.51 0.29 0.13 0.44

Signalized intersection Rear end 0.65 0.04 0.56 0.73 0.21 0.02 0.17 0.24 �0.44 �0.54 �0.36
Sideswipe 0.27 0.04 0.19 0.35 0.43 0.02 0.40 0.47 0.16 0.07 0.24
Others 0.08 0.03 0.03 0.13 0.36 0.02 0.33 0.40 0.28 0.22 0.34

Number of Lanes Rear end 0.62 0.06 0.51 0.72 0.14 0.02 0.11 0.18 �0.48 �0.58 �0.36
One lane Sideswipe 0.27 0.05 0.16 0.36 0.42 0.03 0.37 0.46 0.14 0.03 0.25

Others 0.10 0.04 0.04 0.17 0.44 0.03 0.39 0.49 0.33 0.25 0.42
Two or more lanes Rear end 0.65 0.05 0.54 0.74 0.25 0.02 0.21 0.29 �0.40 �0.50 �0.27

Sideswipe 0.27 0.05 0.18 0.37 0.44 0.02 0.39 0.48 0.17 0.06 0.27
Others 0.08 0.03 0.02 0.14 0.31 0.02 0.27 0.35 0.23 0.15 0.30

Speed limit Rear end 0.67 0.05 0.59 0.76 0.21 0.02 0.28 0.23 �0.47 �0.56 �0.37
Less than 45 mph Sideswipe 0.23 0.04 0.16 0.32 0.42 0.02 �0.29 0.46 0.19 0.10 0.27

Others 0.09 0.03 0.04 0.15 0.37 0.02 0.04 0.41 0.28 0.21 0.34
Rear end 0.48 0.08 0.34 0.64 0.19 0.03 0.25 0.25 �0.29 �0.46 �0.14

45 mph or higher Sideswipe 0.43 0.08 0.27 0.58 0.47 0.04 0.39 0.54 0.04 �0.12 0.21
Others 0.09 0.04 0.02 0.16 0.34 0.04 0.27 0.41 0.25 0.14 0.35

Note: The differences between conventional vehicles and AVs were computed as P xi= Conventional vehicles - P xi= AV; HDI = 95% high-density interval; the numbers in bold
represent the differences that are statistically significant/credible at 95% HDI.
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ventional vehicles. While, for sideswipe collisions, AVs are 0.14
(95% HDI [0.03, 0.25]) less likely in comparison to conventional
vehicles. For other types of collisions, AVs are 0.33 (95% HDI
[0.25, 0.42]) less likely compared to conventional vehicles. Side-
swipe collisions are less likely to occur due to limited vehicle pass-
ing and lane-changing movement (Bakhit, Osman, & Ishak, 2017;
Rista et al., 2017; Wang et al., 2020).

Additionally, for collisions occurring on two or more lanes cor-
ridors, AVs were 0.40 (95% HDI [�0.50, �0.27]) more likely to be
involved in rear-end collisions than conventional vehicles. While,
for sideswipe collisions, AVs are 0.17 (95% HDI [0.06, 0.27]) less
likely when compared to conventional vehicles. For other types
of collisions, AVs are 0.23 (95% HDI [0.15, 0.30]) less likely com-
pared to conventional vehicles. The propensity for rear-end crashes
on a single-lane road (0.48) is higher than for two-lane roads
(0.40). Similarly, Rista et al. (2017) also found that rear-end crash
frequencies tend to decrease with increased lane width and the
number of lanes. This is due to improved room for lane changing
and maneuverability to avoid a rear-end crash.

The speed limit variable had two categories: corridors with a
speed limit of 45 mph and higher and corridors with a speed limit
lower than 45 mph. The likelihood for a rear-end collision is higher
by 0.47 (95% HDI [�0.56, �0.37]) for AVs compared to conven-
tional vehicles on corridors with a speed limit lower than 45
mph. For corridors with a speed limit of 45 mph and higher, the
likelihood for a rear-end collision is higher by 0.29 (95% HDI
[�0.46, �0.14]) for AVs compared to conventional vehicles. This
can be explained by the fact that when AVs travel at a slower speed
than the speed limit, they are more prone to suffer rear-end colli-
sions by conventional vehicles. This is contrary to the findings by
Wang and Abdel-Aty (2006) whereby they observed a high number
of rear-end collisions at areas with high-speed limits, although the
study was based on conventional drivers only. Also, Dowling et al.
(2016) argue that traveling under the speed limit creates queuing
conditions and presents significant safety concerns, particularly
with the increased potential for rear-end collisions.

On the contrary, the likelihood of sideswipe collision is lower by
0.19 (95% HDI [0.10, 0.27]) for AVs compared to conventional vehi-
cles when the speed limit is lower than 45 mph. In contrast, the
likelihood of sideswipe collision is lower by 0.04 (95% HDI
[�0.12, 0.21]) for AVs compared to conventional vehicles when
the speed limit is 45 mph or higher. The likelihood of a sideswipe
collision when traveling on corridors with a speed limit of 45 mph
and higher is higher compared to corridors with a speed limit of
less than 45 mph due to loss of traction, reduced lateral control,
and higher propensity to slip sideways (Duncan, Khattak, &
Council, 1998). In addition to that, the likelihood for another type
of collision is lower by 0.28 (95% HDI [0.21, 0.34]) for AVs com-
pared to conventional vehicles when the speed limit is less than
45 mph. Moreover, the other type of collision is lower by 0.25
(95% HDI [0.14, 0.35]) when the speed limit is 45 mph or higher
for AVs compared to conventional vehicles.

5. Conclusions and recommendations

Automated vehicle (AVs) technology has the potential to miti-
gate crashes associated with human behavior. Such behavior
includes careless driving, over speeding, or driving under the influ-
ence of alcohol and/or drugs and distractions. Several studies have
been conducted to understand the safety implications of AVs.
Although there has been observed safety improvement associated
with the introduction of AVs, less is known on the pattern changes
in the manner of collision. This is especially important at a time
with mixed conventional vehicles and AVs on the road. Under-
standing the changes in the pattern and manner of collisions would

further improve the safety aspects of AVs by improving operations
and mitigating the factors associated with the identified collision
type.

This study presented a comparative analysis of the manner of
vehicle collisions between AVs and conventional vehicles using
CA BMV data. The study used AV and conventional vehicle crashes
that occurred within the same vicinity of the 50ft buffer zone. The
Bayesian Networks (BN) model was adopted to investigate promi-
nent factors associated with different manners of collision for both
AVs and conventional vehicles. The inferences were drawn from
the trained optimal network structure. The results indicate that
the patterns of the manner of collision for AVs and conventional
vehicles differ significantly. That is, from the predicted probabili-
ties, compared to conventional vehicles, AVs are 43% more likely
to be involved in rear-end crashes while being 16% and 27% less
likely to be involved in sideswipe/broadside and other types of col-
lisions. Furthermore, the study explored whether the predicted
probabilities for AVs and conventional vehicles on the manner of
collisions are statistically different. This comparison was made
using the predicted posterior distributions. The results also indi-
cated that AV-involved rear-end crashes are more prevalent than
rear-end crashes involving conventional vehicles and other road
users.

Further, among other findings, the number of lanes, intersection
signalization, speed limit, and vehicle type variables are influential
factors for a certain type of collision. Rear-end collisions are more
common at an intersection than a segment for AVs. The compar-
ison of the sideswipe type of a collision shows that for AVs the
mean credible value of probability is lower by 0.15 compared to
conventional vehicles at a segment. For unsignalized intersections,
the mean credible values likelihood of a sideswipe collision is
lower by 0.14. The group of others (i.e., head-on, hitting an object)
shows the predicted mean credible values probability is lower by
0.02 for AVs compared to conventional vehicles at the segment
level. For unsignalized intersections, the mean credible values like-
lihood is lower by 0.29 for AVs compared to conventional vehicles,
while for signalized intersections, the mean credible values likeli-
hood is lower by 0.28 for AVs compared to conventional vehicles.
Compared to conventional vehicles, AVs are less likely to be
involved in a collision from the front of the vehicle, such as hitting
an object at the segment level, than at the intersection level.

The study findings suggest that although AVs are expected to
improve safety on the road by limiting human error leading to
vehicle crashes, rear-end collisions are expected to increase with
the current state of the technology. This is because AVs and con-
ventional vehicles differ significantly in terms of operations. AVs
are designed to react to any unfamiliar/unconventional outside
environment (e.g., pedestrians waiting to cross a roadway at the
crosswalk). On the other hand, conventional vehicle operations
depend on the driver’s judgments. Thus, the AV acceleration and
deceleration behaviors do not cope with those of conventional
vehicles. As human drivers are naturally not accustomed to a
mixed traffic operation with AVs, this study calls for awareness
creation programs by manufacturers, transportation officers, and
planners. Such programs will hasten the adaptation of a harmo-
nious mixed traffic environment and minimize the observed high
risk for rear-end crash susceptibility of AVs.

Even so, this research suggests that the current state of AV tech-
nology in improving road safety can be maximized by modifying
AVs’ heavy braking intervention before a crash occurs. The manner
of collisions that proved difficult for the AV technology can be han-
dled by having controller area network (CAN) information readily
available to the AV. Such CAN information includes steering wheel
angle, real-time object detection, maneuverability, and so forth, so
that object driver intent can be detected and interpreted sooner
before a crash occurs. Moreover, improving availability of accurate
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real-world geo-positioning information to the AV by incorporating
accurate satellite positioning data will allow the technology to be
more versatile for rear-end, and near-collinear head-on crashes.
This is because low approach angles that are common in such
crashes are currently ignored to minimize false detection due to
positioning uncertainty.

As a follow-up study, we aim to collect more field data for AV
crashes and use the model to make inferences with a greater sam-
ple size and higher market penetration of AVs on the road. Further-
more, we plan to include other variables such as environmental
roadway surface conditions and weather conditions and study
how they differ in contributing to vehicle crashes. This model
can also be employed in future studies to compare inferences of
crashes per mile of conventional vehicles against AVs using mile-
age data reported to the CA DMV. The results of this study are
expected to be used for deriving valuable policies and coming up
with innovative and safer AV in-vehicle warning (e.g., rear-end col-
lision warning) technologies to fully exploit the benefits of AVs.
Nevertheless, this experiment has limitations including, a prior
assumption to this study is that there was no spatial–temporal
variation of factors such as land use, geometrical features, etc., dur-
ing the study period (2017–2020) that could affect the findings of
this study. Additionally, the data used were for selected roadbeds
in California. Although the methodology can produce inference to
other areas of study, the findings of this study may not necessarily
be replicated in another area. Nevertheless, the full market pene-
tration of AVs will not be accomplished in the near future. Thus,
at the moment it is difficult to incorporate an effective full-scale
field safety experiment with V2V communication.
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a b s t r a c t

Introduction: The concept of addressing and minimizing construction site safety risks in the early phase of
a project has generated research interest, especially since the National Institute for Occupational Safety
and Health (NIOSH) launched its national Prevention through Design (PtD) initiative in July 2007. In the
last decade, several studies on PtD with differeing goals and methods have been published in construc-
tion journals. To date, few systematic examinations of the development and trends associated with PtD
research have been conducted in the discipline. Method: This paper presents a study of the latest PtD
research trends in construction safety management through analysis of publications in prominent con-
struction journals from 2008 to 2020. Both descriptive and content analyses were conducted based on
the number of papers published annually and clusters of topics covered in the papers. Results: The study
shows an increasing interest in PtD research in recent years. Research topics covered mainly focus on the
perspectives of PtD stakeholders, PtD resources/tools/procedures, and technology applications to facili-
tate PtD implementation in practice. This review study provides an improved understanding of the
state-of-the-art of PtD research in terms of accomplishments and research gaps. The study also compares
the findings from journal articles with industry best practices related to PtD to guide future research in
this domain. Practical Application: This review study is of significant value to researchers to overcome the
limitations of the current PtD studies, and to extend the scope of PtD research, and can be used by indus-
try professionals when considering and selecting appropriate PtD resources/tools in practice.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Szymberski (1997) proposed a hypothetical time-safety influ-
ence curve, which suggests that the ability to influence safety
decreases as a project progresses. The curve implies that the most
effective phases during which to consider and address site safety
issues are the conceptual and preliminary design phases before
hazards are present on site. This hypothetical time-safety curve
was empirically tested and validated with workplace safety and
injury data in multiple previous studies including Lingard et al.
(2015) and Karakhan et al. (2018). Moreover, several studies have
attempted to quantify the relationship between construction
safety and design. For example, Behm (2005) found that 42% of
the reviewed fatality incidents could have been prevented or the

severity of injuries could have been reduced if site safety was con-
sidered during design. Failing to address site hazards in the design
phase can also result in higher economic and social costs
(Gambatese et al., 2017).

Recognizing the importance and benefits of addressing site
safety during design and planning phases of a project, many coun-
tries/regions around the world have put in place Prevention through
Design (PtD) regulations. For instance, in Europe, Directive 92/57/
EEC ‘‘On the implementation of minimum safety and health require-
ments at temporary or mobile construction sites” (Directive, 1992)
is in place to address safety and health hazards throughout the
project lifecycle. But, currently, the United States lacks PtD regula-
tions that prescribe addressing construction safety in the design
(Poghosyan et al., 2018). In July 2007, NIOSH held the first PtD
workshop and launched a national initiative to advocate for PtD
practices (NIOSH, 2013). The ultimate goal of the PtD initiative
was to prevent or reduce occupational injuries, illnesses, and fatal-
ities through the inclusion of precautions into all designs (e.g., per-
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manent structures, temporary structures, and work environment)
that impact workers (e.g., construction and maintenance workers).
The PtD approach is aligned with the hierarchy of hazard controls
that focuses on eliminating, reducing, and minimizing hazards dur-
ing the design and re-design phases (NIOSH, 2015). PtD is also
commonly referred to as design for safety (DfS), design for con-
struction safety (DfCS), construction hazard prevention through
design (CHPtD), safety by design (SbD), safety in design, and safe
design (Goh & Chua, 2016; Toole et al., 2017).

Literature reviews about construction safety management have
been conducted that also covered the topic of PtD, but most of
them placed particular focus on specific aspects, such as digital
design tools for construction safety (Zhou et al., 2012) and PtD
implementation factors (Poghosyan et al., 2018). A 2019 study by
Hardison and Hallowell reviewed PtD studies to investigate the
efficacy of the concept at reducing actual risk (Hardison &
Hallowell, 2019). While the review provides useful information
on PtD, the focus of the review is narrow (based on research cate-
gories and the type of evidence). Additionally, a recent PtD work
(Ibrahim et al., 2022) provides a review from a scientometric per-
spective in terms of research trends, co-occurrence networks, arti-
cle citations, and co-occurring keywords. The study also provides
qualitative analysis on five main research themes: concept and
management, technological advancement, capability and compe-
tency, education, and sustainability, which are different than those
summarized in the present work. In contrast with the previous
review studies, the present study emphasizes PtD research from
2008 onward, aiming to provide a thorough and systematic review
to understand PtD research trends, achievements, and shortcom-
ings since the first PtD workshop held in 2007. The present study
also provides a broader overview of PtD research topics - reviews
twice the number of articles when compared to Hardison and
Hallowell (2019) - and the achievements and shortcomings for
each topic – critical components for formulating practical guidance
and directing future research agenda.

Based on the aforementioned discussion, the research objec-
tives of the study can be summarized in three main points: (1)
summarize the nature of PtD research based on information in
available publication; (2) provide an overview of main PtD
research topics related to the construction industry; and (3) iden-
tify research gaps and recommend future research directions
related to PtD in construction. Achieving these objectives con-
tributes to the body of knowledge and practice on PtD in construc-
tion in two aspects. First, it highlights the research trends and
themes of PtD studies and reinforces the crucial role of PtD in
the construction safety management domain; and second, it pro-
vides researchers and practitioners an in-depth and thorough
investigation of the extant PtD literature and offers potential
opportunities to fill the identified gaps and advance the PtD
frontier.

2. Methodology

The review of PtD research was performed using a systematic
review method recommended by Denyer and Tranfield (2009).
According to Denyer and Tranfield, a systematic review is different
from a traditional literature review, as it explores a clearly speci-
fied set of questions. Therefore, the first step in conducting a sys-
tematic review is to formulate specific research questions and
establish a set of relevance and quality criteria to identify literature
that should be included in the review, and what information
should be extracted from each document. The fundamental ques-
tions posed for the present study are: (1) What is known from
existing literature about the concept of PtD in the construction
industry? For example, who are the parties of interest? What are

the common interventions of interest?; and (2) What are the
research trends of the existing studies, in terms of the number of
publications by year, by journal, by country/region, and by
research topic?

After the research questions are formulated, the subsequent
steps are to locate and select relevant studies to ensure the review
incorporates high-quality research contributions. The researchers
conducted a search of academic databases, similar to that con-
ducted by Poghosyan et al. (2018). To select literature of interest
and filter out irrelevant literature, the scope of the research is lim-
ited to the following criteria: (1) Databases: Science Direct, Taylor
and Francis, Emerald Insight, American Society of Civil Engineers
(ASCE), Engineering Village, and Google Scholar; (2) Publication
type: English peer-reviewed journals; (3) Article type: technical
papers, scholarly papers, and case studies; (4) Key descriptors:
‘‘prevention through design,” ‘‘construction hazard prevention
through design,” ‘‘design for safety,” ‘‘design risk management,”
and ‘‘safety in design:” (5) Period: 2008 to 2020; and (6) Discipline:
architecture, engineering, and construction. The initial search was
performed to select papers having those keywords within the title,
abstract, or entire article. In addition to database searches, refer-
ence lists of review studies and reports related to the topic [e.g.,
CPWR (2018) and Poghosyan et al. (2018)] were included in the
initial search, and screened for titles that include key terms. The
initial search yielded 260 publications. The articles are further
examined to eliminate those that are irrelevant to the reviewed
subject (e.g., those that briefly mention the concept of PtD or sim-
ply cite a PtD-related research study). As a result, 140 articles of
the 260 publications were selected and included in the analysis.

The last step was to extract the pertinent information from the
collected documents, to make associations, and to summarize the
findings using both descriptive and content analyses. This
approach is helpful in providing an overview of the research stud-
ies, identifying research trends and gaps, and guiding future stud-
ies (Zhou et al., 2015). Five data fields were recorded during the
coding process: (1) paper title, (2) publication year, (3) journal
title, (4) the country/region of the first author’s institute/company,
and (5) research topic.

Lastly, the present paper summarizes the findings from the
descriptive analysis by presenting the results in terms of research
trends and research topics, as well as those from the content anal-
ysis. After reviewing the selected journal articles, the authors
attempted to associate the findings described in the journal articles
with current PtD industry practices and standards to discover gaps
between research and practice, and to provide further evidence to
support the findings and solidify recommendations for future
research. The authors selected the SmartMarket reports from
Dodge Data & Analytics (construction.com/toolkit/reports/), ANSI/
ASSP Z590.3 Prevention through Design Standard, as well as other
NIOSH and Centers for Disease Control and Prevention (CDC)
related documents that pertain to the concept of PtD as sources
to gain an understanding of the industry trends in the United
States. The authors believe that the findings described in the iden-
tified reports and documents are potential indicators of current
PtD practices given the large number of contractors and/or archi-
tects who participated in the studies. Based on the findings, con-
clusions are drawn and recommendations to future research are
provided.

3. Overview of the literature

3.1. Publications distributed by year

The year profile of PtD publications from 2008 to 2020 is shown
in Fig. 1. The dotted trend line in the figure was obtained using a
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simple moving average method over a two-year period. The figure
reveals that the relevant papers published annually prior to 2011
were fewer than 10. There has been an increase in yearly journal
articles published since 2015, with the number of publications
more than doubling between 2008 and 2011. Fig. 1 highlights
the general increasing trend of PtD publications and shows that
more attention has been paid to the concept of PtD and its applica-
tions in the construction industry. The research finding is consis-
tent with that of Sinyai and Choi (2020) – the increase in the
number of publications pertaining to the topic of PtD is pro-
nounced, and has become a new area of research in the construc-
tion occupational safety and health domain.

3.2. Publications distributed by journals

The 140 reviewed articles are distributed across 42 journals.
The main sources are the Journal of Construction Engineering and
Management (21), Safety Science (19), Automation in Construction
(12), and Construction Management and Economics (10). This result
suggests that researchers prefer these sources as mediums for dis-
seminating PtD related findings.

3.3. Publications distributed by country/region

Based on the first/corresponding author’s affiliation/company,
25 countries/regions contributed at least one publication to PtD
research. Table 1 lists the countries/regions that published at least
five articles. Even though PtD practices remain voluntary in the
United States, the United States contributed the highest number
of PtD publications (39.3%). Apparently, the concept of PtD has
drawn researchers’ attention worldwide, especially in the United
States where PtD legislation is absent and efforts have been under-
taken to actively investigate and promote PtD. However, only peer-
reviewed journal articles published in English were included in the
analysis, which may limit the scope of the analysis in terms of the

countries/regions with PtD publications, and could limit general-
ization of the research findings to a larger group.

3.4. Publications distributed by research topic

The reviewed articles were categorized by content analysis
based on the research topics investigated and discussed. Six main
topic groups were identified based on the categorization, namely:
(1) design-related factors and Occupational Safety and Health
(OSH); (2) perspectives of PtD stakeholders; (3) barriers, enablers,
and motivators to PtD implementations; (4) PtD interventions,
including regulation and legislation as well as education and train-
ing; (5) PtD resources/tools/procedures and practical cases; and (6)
construction technologies in PtD research. These six groups add up
to more than 90% of all of the identified studies. Table 2 shows the
count and percentage distribution of the research topics. Some
articles discussed more than one identified theme and, therefore,
the total count amounts to more than 140 articles and the percent-
age adds up to more than 100%. The most frequent study topic is
PtD resources/tools/procedures and practical case descriptions,
accounting for 49.3% of all studies. Since the number of studies
on other PtD related topics such as PtD practice directions (Toole
& Gambatese, 2008; Gambatese et al., 2017) is relatively small
(n = 5), the content analysis only focuses on the six main groups.

4. Content analysis and discussion

4.1. Design and OSH

Prior to the first NIOSH PtD workshop in the United States,
many studies (e.g., Behm, 2005) explored design’s potential to
reduce site risks through accident analysis. Several studies (16
were identified in the present study), using different methods,

Fig. 1. Year Profile of PtD Publications (from 2008 to 2020).

Table 1
Contributions by country/region.

Country/Region Count Percentage

USA 55 39.3%
UK 15 10.7%
China 13 9.3%
Australia 12 8.6%
Spain 8 5.7%
Singapore 6 4.3%
Others 34 22.1%

Table 2
Topic categorization of the reviewed PtD articles.

Topics Count Percentage

Design and OSH 16 11.4%
Perspectives of PtD stakeholders 27 19.3%
PtD Barriers, Enablers and Motivators 14 10.0%
PtD Interventions Regulations and Legislations 6 4.3%

Education and Training 10 7.1%
PtD Resources/Tools/Procedures and Practical

Cases
69 49.3%

Technologies and PtD 45 32.1%
Other PtD Topics (e.g., PtD practice directions, risk

and financial impacts, PtD with lean
construction etc.)

5 3.6%
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have been conducted worldwide since then to validate the rela-
tionship between designs and OSH. Researchers mostly relied on
historical injury/fatality databases and/or experts’ perspectives
(e.g., Burlet-Vienney et al., 2015; Gambatese et al., 2008; Wong
et al., 2009) to examine and quantify if an injury/fatality related
to design factors. Multiple other approaches were adopted to con-
firm the influence of designs on OSH, such as surveys (Wong et al.,
2009), safety performance data along with interviews (Atkinson &
Westall, 2010), empirical analysis (Lingard et al., 2012), and a sys-
tems approach (Alomari & Gambatese, 2016; Pirzadeh & Lingard,
2017).

Notably, only a few studies have attempted to measure if PtD
design decisions actually reduced OSH risks during construction,
similar to that conducted in longitudinal studies carried out by
Weinstein et al. (2005) and Lingard (2013). Additionally, there is
no well-established system that identifies whether design-related
factors are relevant to OSH and helps in assessing the extent of
influence on the frequency, severity, and/or exposure of a risk fac-
tor. Continued research efforts are required to establish systematic
and consistent empirical methods to assess the causal relationship
between the concept of PtD and OSH for workers involved in the
entire life cycle of a project.

4.2. Perspectives of PtD Stakeholders

Recognizing design as a contributing factor in OSH incidents,
the roles of involved parties in construction projects, their atti-
tudes, awareness, and knowledge of PtD and related practices have
been investigated in studies. Approximately-one-fifth of the
reviewed articles (19.3%) discussed this topic.

� Designers

Most the investigated parties are designers. An essential ques-
tion posed in the analysis is ‘‘who is the designer in PtD?” Besides
architects, and civil and structural engineers, various occupations,
such as designers of temporary structures, mechanical engineers,
electrical engineers, interior designers, surveyors, and specialist
suppliers, contractors or subcontractors that provide design input,
have been included as ‘‘designers” in PtD studies (Breslin, 2007;
Kikwasi & Smallwood, 2016; Öney-Yazıcı & Dulaimi, 2015; Toh
et al., 2017). Indeed, a ‘‘designer” term has a broad meaning. For
example, in the UK (Construction Design and Management
[CDM] 2015), designers are defined as ‘‘organizations or individu-
als who as part of a business, prepare or modify designs for a build-
ing, product or system relating to construction work.” When
preparing or modifying designs, designers should eliminate,
reduce, or control foreseeable risks that may arise during construc-
tion, maintenance, and use of a building. For example, for rooftop
vegetation or skylights, designers could consider placing perma-
nent guardrails around roof openings to prevent construction
workers, maintenance workers, and end users from falling through
the openings to lower levels (Behm, 2012). The responsibility of
‘‘designers” also includes providing information to other stake-
holders to help them fulfill their health and safety duties.

With a predominate role in PtD practices, designer awareness of
the concept, attitude towards the concept, and knowledge level of
PtD are extremely important factors in PtD implementation. Inves-
tigating designers’ PtD perspectives is the subject of interest. There
is general agreement amongst designers from different countries
(e.g., Goh & Chua, 2016; Karakhan & Gambatese, 2017a;
Abueisheh et al. (2020) that designers have a high level of aware-
ness of, and confidence in, the PtD concept, while they have limited
knowledge about the hierarchy of controls used for hazard and risk
mitigation in construction. As for PtD implementation practices, it
was found that the level of engagement is low, and the PtD prac-

tices are immature, informal, and mostly a work-in-progress (Toh
et al., 2017; Che Ibrahim & Belayutham, 2020). Furthermore, com-
pared to engineers, owners, and contractors, designers were gener-
ally more resistant to PtD implementation (Tymvios & Gambatese,
2016b; Karakhan & Gambatese, 2017a); this finding, however,
could be country-specific. Designer nationality, age, experience,
professional background, and the safety culture of the organization
they work in were found to be associated with their attitude
towards PtD (Öney-Yazıcı & Dulaimi, 2015).

� Owners/Clients

Owners/clients have also been identified as having a vital role in
construction safety. Their involvement can influence designer per-
formance and reduce potential onsite risks (Liu et al., 2017; Votano
& Sunindijo, 2014). Owner/client motivations for undertaking PtD
have the greatest influence on integrating safety in designs (Goh
& Chua, 2016; Toh et al., 2017). Owner influence, especially via
an owner’s effective leadership behaviors, was found to lead to
high safety performance (Tymvios & Gambatese, 2016a; Wu
et al., 2015). In practice, clients rarely contributed to improving
the safety of construction workers in Tanzania (Kikwasi &
Smallwood, 2016). In the United States, Tymvios and Gambatese
(2016b), Toole et al. (2017) and Gambatese et al. (2017) found
the vast majority of employees in the owner organizations investi-
gated were unaware of the PtD concept. Nevertheless, the above-
mentioned U.S. studies revealed positive attitudes from owners/-
clients towards PtD as an intervention for improving OSH.

� Constructors

Constructors traditionally have the sole responsibility for main-
taining jobsite safety from legal and contractual perspectives,
especially in the United States. PtD implementation requires close
collaboration between the designer and constructor, such as hav-
ing the constructor review the design as an additional safety check
or having the designer observe construction progress periodically
for potential identification of safety concerns (Toole, 2005). A sur-
vey conducted by Tymvios and Gambatese (2016b) revealed that
only approximately 17% of the participating contractors stated that
they knew of the PtD concept before the survey. More than 80% of
the contractors felt that decisions made before the design phase,
made during the design, and made during construction could help
eliminate hazards. Larsen and Whyte (2013) reinforced the impor-
tance of PtD from the contractor’s perspective in their study, and
found that insufficient design documents increase unplanned
rework, and late design changes increase the difficulty of planning
safe procedures.

The involvement of designers and owners in enhancing con-
struction site safety through the design is strongly supported by
contractors (Tymvios & Gambatese, 2016b). However, contractors
feel that designers might lack knowledge about how construction
site operations and procedures take place to effectively adopt PtD
in their designs (Karakhan & Gambatese, 2017b), which is consis-
tent with designers’ perspectives of their knowledge of the PtD
concept.

To ensure successful PtD implementation, owners/clients,
designers, and constructors all have to play their roles in practice.
And the safety attitudes across PtD stakeholders can be compared
using the inter-organizational safety climate instrument proposed
by Saunders et al. (2017). In summary, PtD stakeholders generally
hold positive attitudes regarding the concept of PtD and agree on
the importance of addressing and dealing with safety and health
hazards in designs. However, implementation of PtD in practice
in the United States is quite limited due to identified barriers,
which are discussed in the next section of this manuscript. Contin-
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ued efforts are expected to explore ways to strengthen stakeholder
confidence in the concept itself and implementation of the con-
cept. For example, learning from experienced stakeholders who
are from countries/regions with PtD regulations could lead to fur-
ther understanding of how to successfully implement PtD in prac-
tice and quantify its impacts.

4.3. PtD barriers, enablers and motivators

Of the 140 reviewed articles, 14 articles (10.0%) discuss barriers,
enablers, and motivators for PtD diffusion. With respect to barriers,
most articles focus on the barriers experienced by designers. As
summarized in Table 3, investigations in countries/regions with
or without PtD regulations have revealed that design professionals
face some of the same obstacles to the diffusion of PtD. These
obstacles include: economic barriers (additional costs associated
with PtD implementation), contractual barriers (changes in con-
tract clauses), and knowledge/information barriers (designer lack
of knowledge about safety or construction means and methods).
Potential legal liability is identified as one of the most prominent
impediments for designers to implement PtD in countries/regions
without PtD regulations (Karakhan & Gambatese 2017a). There
might be an enhanced risk of lawsuits for design firms that adopt
PtD in their project designs (Karakhan & Gambatese, 2017c;
Toole & Erger, 2019).

Researchers have also identified several factors and practices
that enable PtD implementation. Examples of enablers include
designers having the requisite knowledge and skills, adequate time
available in the design to consider safety, construction safety given
a high priority similar to other project objectives, and construction
means and methods are well identified during design (Gambatese
et al., 2017). Regarding motivators of PtD implementation, Bong
et al. (2015) found that legal and regulatory factors were consid-
ered to be major motivators for designers in South Australia
(where PtD regulations are present). For studies conducted in the
United States (where no PtD regulations exist), ethical behavior
was viewed by design professionals as the most prominent enabler
(Karakhan & Gambatese, 2017a). Lastly, advancing the concept of
social equity that requires design professionals to consider the

safety and well-being of all construction stakeholders, including
construction and maintenance workers, was found to be another
PtD motivator (Toole & Carpenter, 2013).

As stated in Gambatese et al. (2017), the findings regarding PtD
barriers, enablers, and motivators are mostly based on observa-
tional or anecdotal research. Quantitative studies supported by
empirical data are needed to confirm the existence or absence of
the identified barriers, enablers, and motivators to understand
and facilitate PtD diffusion across the construction industry.

4.4. PtD Interventions

Aiming to address the identified barriers to PtD implementa-
tion, 16 of the reviewed articles (11.4%) conducted PtD interven-
tion research. The 16 articles discuss two types of PtD
interventions and their effectiveness: regulations/legislation, and
PtD education and training.

� Regulation and Legislation

Many countries/regions (e.g., the UK, Australia, and Singapore)
have implemented regulations and legislation that impose site
safety duties on design professionals with the goal of encouraging
the adoption of PtD in practice. Six reviewed articles examined the
effectiveness of PtD-related regulations on OSH. In the EU, the
studies performed by Martínez-Aires et al. (2010, 2016) revealed
that from the year when the regulations were issued, 10 countries
in the EU have experienced a greater than 10% drop in the work-
place accident rate. Bong et al. (2015) found that the guidelines
in Australia promote PtD requirements without significantly
increasing designer and contractor workloads. Designers were
aware of site hazards and were willing to address them during
the design phase (Bong et al., 2015).

Saunders (2016) attempted to examine the reasons why the
United States performed poorly in construction worker safety
and health performance compared to Australia. Saunders found
that safety decisions in Australia were generally made further
upstream than in the United States due in part to U.S. designers’
fear of liability. One additional possible contributor to poorer
safety performance in the United States is the lack of PtD regula-

Table 3
Barriers to designer implementation of PtD.

Items Previous Studies

Study Gambatese et al.
(2017)

Bong
et al.
(2015)

Goh and Chua
(2016)

Öney-Yazıcı and
Dulaimi (2015)

Tymvios and
Gambatese
(2016b)

Karakhan and
Gambatese
(2017a)

Manu et al. (2019)

Country/Region
Investigated

UK Australia Singapore United Arab Emirates US US Nigeria

Has PtD Regulation? Yes Yes Yes No No No No
Investigated

Stakeholders
D, C, O D, C D D D, C, O D, C D

Barriers Regulatory X X
Economic X X X X
Legal X X X X X
Contractual X X X
Ethical X
Cultural X
Knowledge /
Information

X X X

Other Safety is not
given higher
priority

Client’s
attitude
toward PtD

Lack of PtD
education/training and
resources

Lack of
motivation;

Safety is not
given higher
priority;
Schedule and
budget concerns

Lack of PtD
education/training and
resources

Notes Investigated Stakeholders: D = designers, C = constructors, O = owners.
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tions - implementing PtD remains a voluntary effort in the United
States. As a result, designers tend to avoid making OSH-related
decisions and leave health and safety concerns to the contractors
during the construction phase. Conversely, for countries with PtD
legislation, such as Australia, there is legislation that addresses
the liability of designers on construction projects; thereby OSH
decisions are made earlier in the project development process, dur-
ing the design and planning phases. The absence of PtD regulations
was recognized as one major barrier to PtD implementation by
many studies (see Table 3). Even though there is no obligation to
implement PtD in the United States, some U.S. professional organi-
zations have published new programs and standards to encourage
PtD practice, such as the PtD-related pilot credit in the U.S. Green
Building Council (USGBC) (2015) LEED rating system, and the ANSI/
ASSP Z590.3-2011 standard on prevention through design. How-
ever, no study was found that investigated the prevalence and
effectiveness of using these guidelines and standards.

To date, only limited studies (e.g., Mendeloff & Staetsky, 2014)
have been carried out to examine the effectiveness of PtD regula-
tions on reducing injuries and fatalities. The authors of the present
study did not find a comparative study that investigates the differ-
ences in PtD regulations that are put in place in different countries/
regions. For researchers from a country/region without PtD regula-
tions, such as the United States, studies could be carried out to
learn from countries that have successfully put PtD regulations in
place. For example, studies could be conducted on what should
be included in a PtD review process, how to clearly formulate con-
tractual obligations, and which PtD approach is more effective:
having principal designers and contractors (the approach used in
the UK) or having design for safety registers and/or professionals
(the approach used in Singapore).

� Education and Training

PtD has been a mandatory practice in Europe for over two dec-
ades, but studies have found that PtD is not embedded successfully
in civil engineering curricula throughout all EU countries. In Spain,
Cortés et al. (2012) proposed that a separate course on occupa-
tional risk prevention (a major PtD focus area) should be included
in all engineering degree programs. However, the inclusion of PtD
in courses is insufficient to help future professionals to be qualified
in practicing PtD. Significant improvements in course designs are
also needed (Lopez-Arquillos et al., 2015).

In the United States, Mann Iii (2008) suggested that the most
effective way to introduce PtD in educational curricula is through
modules, rather than in complete courses. Behm et al. (2014)
developed and examined a PtD educational intervention, a 70-
min lecture as a part of an Engineering Project Management class,
through a before-and-after study of engineering students. The
study showed that such an intervention helped in the development
of students’ safe design thinking over time.

To identify the best approaches to deliver the PtD concept and
practices to students, researchers have discovered several innova-
tive safety training methods besides traditional methods (i.e., lec-
tures), such as a Building Information Modeling (BIM) enabled
training module (Clevenger et al., 2015), and an energy-based
training module (Tixier et al., 2018). These studies (Clevenger
et al., 2015; Tixier et al., 2018) have shown such innovative train-
ing methods improved trainee learning experiences and provide a
better platform to obtain PtD knowledge.

For designers no longer enrolled in university courses, there are
several PtD training materials, such as those from NIOSH (www.
cdc.gov/niosh/topics/ptd/pubs.html). However, after investigating
design professionals’ preferred type of PtD training in Nigeria,
Manu et al. (2019) found that professionals have a higher prefer-
ence for attending a seminar/workshop, and a moderate preference

for an online course/study. Öney-Yazıcı and Dulaimi (2015) recom-
mended influencing designers by introducing hands on experience
with the concept because of the prevalence of the ‘‘learn by doing”
method in the industry.

Apparently, the current level of PtD education and training is
inadequate and there is no consensus on the best ways to intro-
duce the PtD concept, procedures, and best practices for students
(future professionals) and for existing professionals. Studies could
be conducted to examine ways to integrate PtD content into exist-
ing university curricula and convey the effectiveness in preventing
accidents when applying academic theories in practices. As for
training methods for professionals, except for exploring effective
ways for PtD knowledge dissemination, researchers are also
encouraged to investigate professionals’ preferred training meth-
ods and to develop an appropriate PtD training program.

4.5. PtD resources/tools/procedures and practical cases

Designers typically lack sufficient knowledge about construc-
tion safety to adopt PtD in designs, as well as to identify and assess
hazards during the design/planning phase. Indeed, the hazard
identification levels in construction projects are far from ideal
(Carter & Smith, 2006). Hallowell and Hansen (2016) found that
designers are only capable of identifying 38% of construction haz-
ards from design documents. However, formal identification of
hazards is one of the fundamental steps to ensure the success of
safety management (Carter & Smith, 2006). Meanwhile, conducting
a risk assessment is essential for designs as designers could benefit
from having information that enables analyzing potential hazards.
To improve designer hazard recognition skills, and their abilities to
assess potential hazards and select safe designs, 61 of the reviewed
articles proposed and developed PtD resources and tools. Examples
of the PtD resources and tools are shown in Table 4 and Table 5. In
addition, seven studies provide practical cases on how PtD was
implemented for different applications, such as for greenery sys-
tems (e.g., Behm 2012), for heavy construction projects (Ezisi &
Issa, 2019), and for solar installations (Ho et al., 2020).

Most of the proposed PtD tools (shown in Tables 4 and 5) fall
under the domain of risk management, especially for hazard iden-
tification and risk assessment. One set of research studies focuses
on identifying a single type of hazard only, such as falls (Cooke
et al., 2008; Zhang, Sulankivi, et al., 2015), and sight obstructions
(Cheng & Teizer, 2014; Marks & Teizer, 2013). Another set of stud-
ies emphasizes hazard identification and assessment for specific
types of construction operations, including underground construc-
tion (Seo & Choi, 2008), highway construction (Esmaeili &
Hallowell, 2013), and multistory buildings (Dharmapalan et al.,
2015). Few tools were developed to provide risk mitigation advice,
recommend design alternatives, or facilitate site-planning pro-
cesses (Dharmapalan et al., 2015), while such information could
be highly useful for designers and constructors when practicing
PtD. Even though it might be impossible to generalize successful
PtD work given that most findings are the results of experience-
based approaches (Lopez-Arquillos et al., 2015), it is important to
investigate ways to apply PtD consistently during design and to
ensure determined safety measures are implemented on sites.

Traditional PtD resources/tools (Table 4) consist of risk-
assessment matrices, design guides, and suggestions from lessons
learned databases, which are consistent with the findings from
Gambatese et al. (2017). With the help of construction technolo-
gies, safety management could be performed more effectively dur-
ing design through visualization, simulation, data mining, and
integration of a safe design database (details about construction
technology usage for PtD can be found in the next section).

The definition of PtD in the construction sector often applies to
‘‘designing out” potential OSH hazards in the process of designing
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the end product to be constructed (Weidman et al., 2016). How-
ever, the definition of PtD goes beyond that; it could be applied
to the design of all tools, equipment, materials, temporary struc-
tures, and work processes that are used during the construction
process, and to the design of the constructed environment itself
(Young-Corbett, 2014). Only a small number of studies have
explored the applications of the PtD concept in relation to tempo-
rary structures (e.g., Zhang et al., 2013), construction equipment
designs (e.g., Marks et al., 2013), and the construction environment
(e.g., Gangolells et al., 2013). Moreover, only a few PtD research
studies have focused on developing PtD solutions for the OSH of
maintenance workers (Behm, 2012; Chew et al., 2019).

Furthermore, the majority of the PtD tools/resources developed
aim at addressing worker safety; only six articles place an empha-
sis on worker health issues, especially on work-related muscu-
loskeletal disorders (WMSDs) [e.g., Nussbaum et al. (2009)].
Thus, more studies are anticipated to explore PtD solutions for
temporary works, construction equipment, and the construction
environment, as well as other frequently experienced health issues
by construction and maintenance workers.

4.6. Technologies and PtD

Thirty-nine of the reviewed articles (27.9%) discussed or applied
construction technologies to address and control OSH risks in early
stages of a project, a significant percentage that supports PtD diffu-
sion in the construction industry. Examples of technology-based
PtD tools/resources are shown in Table 5. Fig. 2 displays the num-
ber of different construction technologies discussed in the identi-
fied studies. It is evident that BIM and visualization technologies,
such as virtual prototyping (VP) and virtual reality (VR), are the
most popular technologies used in PtD research to improve health
and safety management in construction.

BIM is as a powerful information platform for stakeholders to
collaborate. With respect to safety, BIM mainly helps with the
identification, assessment, and control of construction safety haz-
ards in designs (Malekitabar et al., 2016), assists with site safety
planning, and shows potential to integrate with PtD regulations
(e.g., CDM regulations) Mzyece et al. (2019). A variety of BIM-
based PtD tools have been invented to assist designers with con-
ducting automatic safety checks (e.g., Zhang et al., 2013), perform-
ing 4D site safety planning (e.g., Jin et al., 2019), and offering safety

Table 4
Traditional PtD resources/tools.

Author(s) (year) Target Stakeholders Function Description

Designers Constructors HI RA DS SP

Seo and Choi
(2008)

X X X A risk assessment model linking risk events with design items for underground construction
projects (with a case study focused on an open-cut type subway construction project)

Frijters and
Swuste (2008)

X X X X A risk assessment method to evaluate construction risks at an activity level (with a case study
focused on the construction of different types of floor systems)

Zou et al. (2008) X X X X A program titled ROAD (Risk and Opportunity at Design) that helps to perform risk and
opportunity analyses at the design stage of building projects (with two case studies focused on a
five-star green rating office building and a modern university educational building project)

Nussbaum et al.
(2009)

X X X A tool that aims to assist panel designers minimize ergonomic risk for residential carpenters

Gangolells et al.
(2010)

X X X X A risk assessment method that helps designers to assess safety-related performance of
residential construction designs

Fung et al. (2010) X X X A risk assessment model (RAM) that helps with assessing risk levels by analyzing risk factors of
major types of trades (with a case study focused on a construction project in Hong Kong)

Kim et al. (2011) X X X A risk assessment study that evaluates levels of risk related to the design of prefabricated
(panelized) walls

Dewlaney and
Hallowell
(2012)

X X Risk mitigation strategies for high performance sustainable building construction

Fortunato et al.
(2012)

X X A risk identification approach for high-performance sustainable construction projects

Dewlaney et al.
(2012)

X X X A risk quantification approach for high-performance sustainable construction projects

Esmaeili and
Hallowell
(2013)

X X X X A risk assessment model to quantify highway construction risks by combining a safety risk
database and a project schedule

Gangolells et al.
(2013)

X X X X X An integrated model for assessing and controlling environmental, health, and safety risks at the
project level (with a case study focused on construction projects in a small construction
company)

Dharmapalan et al.
(2015)

X X X An online tool (SliDeRulE) that links specific design features with construction risks to assess
safety risks associated with the design of multistory buildings

Esmaeili et al.
(2015)

X X X An attribute-based risk identification and analysis method to help with assessing risks
associated with a set of construction activities or building components

Karakhan and
Gambatese
(2017b)

X X X A risk identification and assessment method that assesses OSH risk associated with the
Leadership in Energy and Environmental Design (LEED) rating system

Penaloza et al.
(2017)

X X X X A risk identification and assessment method for temporary edge protection systems in buildings

Ning et al. (2018) X X X An ant colony site layout planning optimization model with considerations of the facility safety
relationship, geographic safety relationship, and cost reduction (with a case study focused on 13
temporary facilities on a construction site)

Fargnoli et al
(2018)

X X X A tool that integrates quality function deployment (QFD) and the analytic network process
method to help hazard identification and risk assessment at a working task level (with a case
study focused on a construction company)

Notes Function: HI = Hazard identification; RA = Risk assessment; DS = Design suggestions; SP = Site planning.
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Table 5
Technology-based PtD resources/tools.

Construction
Technology

Author(s) (year) Target Stakeholders Function Description

Designers Constructors Others HI RA DS SP

Infographics Edirisinghe et al.
(2016)

X X X An infographic approach that provides suggestions
for wicked design problems (with a case study
focused on façade design)

Lingard (2018) X X An infographics approach that helps designers to
identify potential hazards (with a case study
focused on façade design)

3D/4D CAD Benjaoran and
Bhokha (2010)

X X X X X A CAD-based system to identify work-at-height
hazards, provide advice regarding proper safety
measures, and help with site planning (with a case
study focused on a three-floor hotel)

Rwamamara et al.
(2010)

X X X X A 3D/4D CAD visualization approach to identify
safety risks in the design process (e.g., clash
detection, work tasks sequence, and workspace
congestion), and to assist in site planning (with a
case study focused on a construction project that
consists of four building blocks)

BIM Kim et al. (2011) X X A BIM-based method to generate scaffold plans by
identifying locations of scaffolds, creating building
models, and simulating the work with schedules
(with a case study focused on a five-story office
building)

Zhang et al. (2013),
Melzner et al.
(2013) and Zhang
et al. (2015)

X X X X X BIM-based rule-checking systems to identify
potential fall hazards, provide safety suggestions,
and perform site planning with schedules (with
case studies focused on building projects)

Qi et al. (2014) X X X X Two BIM-based PtD checking tools to check for fall
hazards in BIM models and provide design
alternative suggestions (with a case study focused
on a three-story building)

Zhang et al. (2015) X X X X A BIM-based tool that supports automated
ontology-based job hazard analysis to assist site
safety planning (with a case study focused on a
masonry construction project)

Teo et al. (2016) X X X A BIM-based Construction Safety Audit Scoring
System (ConSASS) that supports hazard checks and
provides control measure suggestions

Ding et al. (2016) X X X A BIM-based tool that integrates risk knowledge to
facilitate a construction risk analysis process
including risk factor identification, risk path
reasoning and prevention plan recommendations
(with a case study focused on deep foundation pit
excavation activities)

Kim et al. (2016) X X X X A BIM-based tool that assists with scaffold planning
with considerations of work sequences and
movements of work crews (with a case study
focused on a single story commercial building
project)

Hossain et al.
(2018)

X X X X A BIM-integrated rule-based risk review system for
building projects (with a case study of a 5-story
building project)

Yuan et al. (2019) X X X A Revit plug-in that helps designers check safety
risks in a building model (with a case study focused
on a six-story building project)

Jin et al. (2019) X X X X A BIM-based risk assessment approach that
integrates with a work breakdown structure and a
construction schedule for site planning (with a case
study focused on a three-story concrete building)

Cortes-Perez et al.
(2020)

X X X X A BIM-based method that integrates with the
Spanish health and safety regulations to assess risks
and generate health and safety plans for building
projects

Kim et al. (2020)
and Lee et al.
(2020)

X X X A BIM-based risk evaluation system that
incorporates safety guidelines to assess risks
associated with common construction hazards (e.g.,
falls and collisions)

Rodrigues et al.
(2021)

X X BIM-based plugin that allows automation in fall
hazard detection and safety object generation, and
integrates with a safety database

Remote Sensing Marks et al. (2013) X Equipment
Manufactures

X X An approach that measures construction equipment
blind spots by using laser scanning data, and
provides design suggestions based on the data

(continued on next page)
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control measures (e.g., Yuan et al., 2019). Additionally, BIM-based
training was found to be an effective method to introduce safety
knowledge (Clevenger et al., 2015). Other visualization technolo-
gies such as VP and VR provide a virtual and visual construction
environment, and are mainly used to assist safety training and
education (e.g., Sacks et al., 2013). Trainee learning interests and
performance related to attaining safety knowledge is improved
when using these technologies. Studies have also shown that VP
is an effective tool in assisting hazard identification (Chun et al.,

2012). Similarly, VR helps users experience a strong sense of pres-
ence (Wang, 2002) when conducting a job safety analysis (Patrucco
et al., 2010).

Furthermore, 3D/4D computer-aided design (CAD) facilitates
the visualization of the design and planning of a construction pro-
ject, enables intuitive comprehension of the construction processes
for identifying space–time conflicts and potential safety hazards
including working-at-height hazards (Benjaoran & Bhokha, 2010),
and offers a collaboration tool for all parties of interest

Table 5 (continued)

Construction
Technology

Author(s) (year) Target Stakeholders Function Description

Designers Constructors Others HI RA DS SP

collected
Cheng and Teizer
(2014)

X X X X An approach that identifies blind spaces that
obstruct the field-of-view of a tower crane operator
based on data sets collected by a laser scanner, and
assists in hazard identification and site-planning
(with a case study focused on the construction of a
four-story campus building)

Other Visualization
Technology

Patrucco et al.
(2010)

X X A Computer Image Generation for Job Simulation
(CIGJS) system that assists job safety analysis (with
a case study focused on extractive activities in a
crushing plant)

Chun et al. (2012) X X A hazard identification approach in a virtual
environment (with a case study focused on a mega
structure consisting of an exhibition hall extension)

Sacks et al. (2015) X X X A Cave Automated Virtual Environment (CAVE) that
allows performing safety reviews through dialogues
between designers and builders

Golabchi et al.
(2015)

X X A risk assessment approach to evaluate ergonomic
risk factors of jobs (with a case study focused on a
production line of a construction modular
prefabrication company)

Golabchi et al.
(2018)

X X X An integrated simulation and visualization-based
safety analysis framework that enables early
identification of ergonomic risks (with a case study
focused on a masonry operation)

Wearable Devices Nath et al. (2017) X X X A method that utilizes smartphone sensory data to
assess the risk levels of awkward postures for
ergonomic analysis (with an experiment on manual
screw driving tasks)

Umer et al. (2018) X X X X A static balance monitoring tool of construction
workers that enables early identification of
construction task hazards and personal risk factors
using a wearable inertial measurement unit (IMU)
and a smartphone (with an experiment on rebar
tying postures)

Antwi-Afari et al.
(2018)

X X X X A wearable insole pressure system which could be
inserted into workers’ safety boot to alert workers
to mitigate the risks of work-related
musculoskeletal disorders

Other Information
Technology

Cooke et al. (2008) X X X A web-based tool (ToolSHeD) to assist with
assessing the risks of falling from heights using
argument trees

Tixier et al. (2017) X X X A safety clash detection approach using data mining
techniques

Goh and Guo
(2018)

X X X A web-based tool (FPSWizard) that assists active
fall protection system (AFPS) selection (with a case
study focused on a work-at-height problem)

Hare et al. (2020) X X X A web-based multi-media tool that assists
designers in identifying hazards and finding
suitable controls

Notes Function: HI = Hazard identification; RA = Risk assessment; DS = Design suggestions; SP = Site planning
Technologies mentioned:
3D/4D CAD: accurate visual representations of construction projects created using 3D CAD tools. 4D CAD models combine 3D CAD models with construction schedules to
create visual representations of construction sequences, and can be used to facilitate team collaboration (Benjaoran and Bhokha, 2010).
BIM: a virtual software and process that involves integration of design and construction elements into accurate virtual models digitally (Eastman et al., 2011).
Infographics: a chart, diagram, or illustration that uses graphic elements to present information in a visually striking way (Merriam-Webster.com, 2022).
Remote sensing: the process of detecting and monitoring an area’s physical properties by measuring its reflected and emitted radiation at a distance (USGS, 2022). Commonly
used remote sensing technologies in the design and construction phases include global positioning systems (GPS), digital imaging acquired by cameras, and point clouds
captured by laser scanners (Moselhi et al., 2020).
Wearable devices: a set of electronic devices that can be attached to humans as accessories or embedded in clothing to monitor worker physiological metrics, locations, or
environmental conditions (Awolusi et al., 2018).
Web-based tools: digital multimedia tools consisting of photographs, videos, databases, and web search capabilities (Hare et al., 2020).
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(Rwamamara et al., 2010). Different from 3D/4D CAD and BIM,
infographics provide graphic visual representations of information
in 2D. Prior studies (e.g., Edirisinghe et al., 2016) have shown that
the use of infographics increased the number of identified poten-
tial OSH issues in designs and enhanced communication.

Focusing on site safety planning, the use of laser scanning data
helps in the identification of hazard proximity including blind spot
measurement for operators of loaders (Marks et al., 2013) and
tower cranes (Cheng & Teizer, 2014). In addition, wearable devices
were used to understand and monitor the postures of construction
workers, and the devices were found to have great potential to pre-
vent work-related musculoskeletal disorders (WMSDs; Antwi-
Afari et al., 2018; Nath et al., 2017) and fall accidents (Umer
et al., 2018). The studies performed by Nnaji et al. (2020; 2021) fur-
ther show the potential of wearable smart devices for incident pre-
vention, and point out the important roles of the physiological and
environmental functions offered by wearable smart devices in
improving worker safety and health. Other information technolo-
gies such as artificial intelligence (AI) provide new means for
researchers to retrieve safety knowledge. Examples include the
work conducted by Goh and Guo (2018) for active fall protection
system designs, and that by Tixier et al. (2017) for clash identifica-
tion. Moreover, as demonstrated by Cooke et al. (2008) and Goh
and Guo (2018), web-interface offers an easy access platform for
sharing PtD knowledge among the construction industry.

Technology advancements have benefited the diffusion of PtD
by providing information platforms for stakeholders when identi-
fying and assessing OSH hazards, assisting pre-construction site
safety planning, sharing and communicating design and construc-
tion information, and providing PtD training and education effec-
tively. Though various types of PtD technology applications have
been developed, research-to-practice gaps exist since most of the
applications are limited to academic research, limited implementa-
tion has been carried out (Zhou et al., 2013), and the technologies
have not experienced wide-spread use in practice. Bridging the gap
between research and practice requires continuous efforts to
inform stakeholders regarding the availability, workability, and
effectiveness of the developed PtD tools.

4.7. Industry PtD practices

Two SmartMarket reports (Dodge Data & Analytics, 2017, 2020)
provide industry insights on the concept of PtD and the related

industry practices. The 2017 study surveyed both contractors and
architects, and the 2020 study only surveyed contractors. The sur-
vey results are consistent with the findings from the reviewed
journal articles in terms of PtD awareness, barriers, and drivers,
and provide additional information on the specific PtD practices
implemented by architects and contractors. For example, some
PtD practices frequently implemented by architects are the identi-
fication of prefabrication opportunities in collaboration with con-
structors and performing safety reviews. As for constructors, the
installation of permanent safety features (e.g., permanent roof
anchors for fall protection), prefabrication/modularization, and
the use of BIM are cited as the most frequently implemented PtD
practices.

Both designers and contractors view prefabrication/modular-
ization as a PtD approach given that working with prefabricated
assemblies and modules may reduce worker exposure in confined
spaces, at heights, and in hazardous environmental conditions
compared to onsite construction. Prefabrication/modularization
was also mentioned as one of the PtD trajectories by Toole and
Gambatese (2008). But, because prefabricated assemblies are often
large in size, and may require additional heavy equipment (e.g.,
cranes) to assemble and/or install, the use of prefabricated mod-
ules may not always have a positive impact on site safety
(McGraw-Hill Construction, 2011). The topic of construction pre-
fabrication/modularization was rarely covered in the reviewed
journal articles. Only the study conducted by Rubio-Romero et al.
(2014) provided quantitative results showing that industrialized
building systems could not claim to be safer than on-site tradi-
tional construction systems in Spain. Future studies should be con-
ducted to investigate whether prefabrication/modularization is an
effective means to practice PtD and determine factors that influ-
ence its effectiveness on improving site safety.

Another topic that was not discussed in the reviewed journal
articles but was investigated in the 2017 report relates to the LEED
pilot credit for PtD. The pilot credit, launched in 2015, requires
conducting design reviews before the completion of schematic
design that consider worker safety and health in the construction
and operation phases. Most of the surveyed architects were not
familiar with the PtD pilot credit even though they are widely
familiar with LEED, and only a few expressed interest in using
the pilot credit at the time of this investigation. Research could
be conducted to compare the safety performance of projects that
have registered for the pilot credit to those that have not, and then

Fig. 2. Number of PtD publications by construction technology.
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identify challenges designers have faced when implementing such
a credit.

5. Proposed future research

Based on the increased number of publications on PtD topics
since the PtD initiative was first started by NIOSH in 2007, it can
be said that interest in PtD research is evident. The analysis of
140 PtD-related journal articles that were published between
2008 and 2020 revealed six primary research topics. Table 6 shows
the list of topics and provides a summary of the current achieve-
ments and shortcomings within each topic.

PtD diffusion is still at its early stage, especially in countries like
the United States that have no mandatory PtD-related require-
ments. Barriers to PtD implementation exist in both people and
processes, which include, among others, a low-level awareness of
and engagement in PtD, lack of support from clients/owners and
constructors due to schedule and budget concerns, lack of PtD
training and resources, and lack of regulatory and legislative sup-
port. Thus, there is a need for continuous effort in both research
and practice that influences and enhances the awareness and
implementation of PtD in the long run. The following section pro-
vides further discussion on the review findings and points out pos-
sible directions of future research. Conducting research in these
directions will eventually improve PtD research design, solidify
current research findings, and strengthen the understanding of
the need for, and adoption of, PtD.

5.1. Use of mixed research methods and empirical evidence

Regardless of the investigated PtD topics, a common issue is
related to the method employed to conduct the research. Through
a careful examination of the adopted research methods, only about
one-fifth of the studies described in the reviewed articles adopted
a mixed-methods approach. Case study and surveys are the two
most frequently adopted research methods, used by 36% and 24%
of the studies, respectively. For studies that utilized a case study
as the primary research method, the findings often could not be
generalized to all construction projects due to the limited number
of case study projects investigated. Data collected with surveys
were often based on participant perceptions or their ability to
recall information, which were often retrospective. Within the
reviewed articles, only the study conducted by Lingard et al.
(2015) provided empirical data to reveal the significance of PtD
from a prospective view. As stated by Abowitz and Toole (2009),
no single method is best. It is suggested to use a mixed-methods
approach for PtD research that aligns with the social sciences to
improve the validity and reliability of the results by combining
quantitative and qualitative approaches in research design and
data collection.

A lack of empirical studies is another notable issue with PtD
studies, which is in line with the findings from Tymvios et al.
(2020). In addition, there is minimal longitudinal research that
evaluates the impacts of OSH design decisions over the life cycles
of projects, not only on the effectiveness of PtD in reducing OSH
risks, but also on the impacts of other important performance indi-
cators such as cost, schedule, productivity, quality, and their poten-
tial influence on the choice of project delivery methods.
Comprehensive evaluations of PtD design decisions on multiple
performance indicators using a weighted system or other evalua-
tion methods could be conducted. To support diffusion, it is essen-
tial that information on the cost impacts of PtD be assessed. Even
though prefabrication/modularization was cited as one of the most
frequently used PtD industry practices in the United States, the
effectiveness of construction prefabrication/modulation on

improving safety performance still needs further confirmation.
Additional understanding of the actual influence of implementa-
tion of PtD would help stakeholders make informed decisions
regarding whether to adopt PtD or not, when to adopt it, and to
what degree.

5.2. PtD regulations, legislations, education, and training

Compared to other PtD topics, fewer studies explored the topics
of PtD regulations and legislations, and PtD education and training,
which are two influential PtD implementation factors. To date, only
limited research studies have been carried out to examine the
effectiveness of existing PtD regulations, and no study was found
to compare the differences in the policies and practices from differ-
ent countries. For sustainable/green construction projects in the
United States, little research (Behm & Pearce, 2017; Karakhan &
Gambatese, 2017a) has investigated the influence of implementing
the LEED PtD pilot credit on project safety performance. Further
studies could be conducted to compare different sets of PtD regu-
lations in different countries and to investigate the status of apply-
ing the PtD pilot credit (or other PtD related guidelines and
regulations), including the level of awareness and interest, chal-
lenges faced, and effectiveness in OSH improvement. The incorpo-
ration of PtD in sustainable design and construction could yield
significant safety and non-safety gains (Karakhan & Gambatese,
2017a; Kamas et al., 2019). Moreover, utilizing visualization meth-
ods such as VR and augmented reality (AR) to develop training
courses/modules related to PtD is a topic that requires further
research. An increasing number of research studies have recently
attempted to develop training courses/modules related to con-
struction site safety (Jeelani et al., 2020; Le et al., 2015; Sacks
et al., 2013). However, there have been no studies that focused
on developing PtD training courses/modules for designers (both
architects and engineers) using VR and AR. Developing such train-
ing would help overcome one of the most notable barriers (de-
signer lack of knowledge about safety or construction means and
methods) to greater diffusion of PtD across the construction indus-
try. Emerging technology has been shown to be crucial for
improved workplace conditions and workplace safety manage-
ment (Nnaji et al., 2020).

5.3. PtD related to worker health and environment, construction
equipment, and temporary structures

Though a variety of PtD tools/resources, with or without the
integration of construction technologies, have been developed to
help designers and constructors implement the concept of PtD,
the primary focus is on worker safety when constructing perma-
nent structures. As a highly fragmented and complex industry,
additional attention should be given to address worker health
issues, improve construction equipment and the work environ-
ment, and enhance the safety of temporary structures. With these
research studies, the industry could better understand the feasibil-
ity of implementing PtD in broader aspects to improve worksite
conditions and ensure worker protection.

5.4. PtD solutions at high levels of hazard control

As shown in Tables 4 and 5, the majority of the currently avail-
able PtD tools focus on providing information on hazard identifica-
tion and risk assessment instead of providing viable and workable
PtD solutions for designers to use in design alternative selection or
site planning. Consistent with the findings of Hardison and
Hallowell (2019), further research studies are needed to examine
whether the risk-based tools are practical to use on real life pro-
jects, and whether they are effective in improving lifecycle safety
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Table 6
Achievements and shortcomings of previous PtD research and possible future research directions.

PtD Topic Achievement Shortcomings Future Directions

Design and OSH There is a relationship between
designs and construction accidents

1) Studies relied on historical injury/fatality databases or experts’ opinions;
2) Studies focused on construction safety. There is a lack of research on PtD

related to health issues, and for other phases of the entire life cycle of a
project; and

3) No well-established method to identify the causal relationship and to
quantify the magnitude of the relationship.

1) Using a mixed-method approach to collect both quantitative and qual-
itative data to improve research validity and reliability;

2) Conducting longitudinal studies to evaluate the impacts of PtD design
decisions; and

3) Developing a systematic and consistent method to assess the relation-
ship between design factors and safety and health for workers over
the whole life cycle of a project.

Perspectives of PtD
Stakeholders

Generally positive attitudes towards
PtD, a low level of PtD knowledge, and
low engagement in PtD

1) Limited samples were investigated;
2) Findings were based on the perspectives of stakeholders; and
3) No empirical data were provided.

1) Collecting more representative and randomly selected samples from a
wide range of PtD stakeholders; and

2) Soliciting empirical data to confirm the findings from previous PtD
research in terms of stakeholder knowledge levels of PtD and their
PtD practices.

PtD Implementation
Barriers, Enablers
and Motivators

Identified barriers (e.g., legal,
economic, and contractual), enablers
(e.g., requisite PtD knowledge and
adequate time), and motivators (e.g.,
legal and regulatory factors, and
ethics) related to designer and
owner/client implementation of PtD

Findings were mostly based on observational or anecdotal research Conducting quantitative studies to confirm the existence or absence of
barriers, enablers, and motivators

PtD Interventions Regulations
and
legislation

PtD regulations
worldwide

1) For research studies conducted in countries/regions that have PtD regula-
tions, no comprehensive investigation was conducted to verify the effec-
tiveness of regulations on OSH; and

2) No studies investigated the differences in PtD regulations that have been
put in place in different countries.

1) Performing research to examine the effectiveness of PtD regulations
on accident prevention;

2) Conducting comparative studies to examine the differences in PtD reg-
ulations; and

3) For researchers from a country/region that has no PtD regulations,
performing studies to learn from countries that have successfully
put PtD regulations in place.

Education
and training

PtD education and
training materials and
opportunities

1) No agreement on how to incorporate the PtD concept in existing university
curricula; and

2) No thorough investigation on the preference and effectiveness of PtD train-
ing methods for professionals.

Establish a systematic PtD education and training program for both
students and professionals

PtD resources/ tools/
procedures and
practical cases

Developed PtD resources/tools/
procedures to help designers and
constructors identify hazards, assess
risk levels, propose design alternatives
and assist in site planning. Provided
practical cases to demonstrate how to
apply the PtD concept in real life
scenarios.

Studies were not comprehensive:
1) The majority of the studies emphasized risk identification and assessment

for very specific hazards such as falls;
2) The majority of the studies focused on permanent structures;
3) Health issues and OSH of maintenance workers were barely discussed; and
4) The impacts of PtD solutions were not well assessed.

1) More research required on health issues of workers, and on mainte-
nance workers;

2) More research on the interactions between workers and temporary
structures, construction equipment, and the work environment;

3) Developing more PtD tools that can be applied to a wide range of
applications, and can assist in design optimization; and

4) Conducting more research on the impacts of PtD solutions/ resources/
tools in terms of safety, cost, productivity, and quality from practical
cases.Technologies and PtD Identified frequently used PtD

construction technologies (e.g., BIM
and other visualization technology
such as VP and VR) and their usage
(e.g., safety reviews/checks and safety
training)

Limited practical implementations
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and health for workers. Through an exploratory study, Karakhan
et al. (2019) showed that construction technologies have great
potential to lessen or eliminate hazards, which are the two higher
levels of the hierarchy of controls and which are generally consid-
ered as the most effective means of risk control. However, only a
limited number of PtD tools have the capability of addressing the
most effective levels of the hierarchy of controls. It is expected that
design deficiencies related to jobsite hazards and time–space-
activity conflicts could be detected, lessened, or eliminated with
the help of visualization tools such as BIM, VR, and geographic
information systems (GIS) (Bansal, 2016), in order to achieve
improved effectiveness of risk control before hazards are present
on sites.

5.5. PtD knowledge integration

Currently, there is no consensus on the most effective formats
and contents for delivering PtD knowledge and skill training, and
how to inform designers of the available PtD resources and tools.
This deficiency is a major barrier that limits widespread PtD imple-
mentation. Future research could be conducted to determine what
key PtD concepts should be delivered (e.g., situational awareness,
and hierarchy of controls), to identify the existing PtD education
and training opportunities for both existing and future design pro-
fessionals, and to propose a systematic and practical PtD educa-
tional framework in construction to improve designer awareness
and their ability to ensure worker protection.

In addition, knowledge regarding PtD regulations, procedures,
tools, and best practices is scattered and fragmented. There is a
lack of clarity as to how to communicate the benefits of PtD imple-
mentation to legislators, professional societies, and designers and
constructors globally, and how the gap in research-to-practice
can be narrowed to better serve the industry. Researchers, practi-
tioners, and legislators could benefit from future studies on how
to foster effective communication of critical information. For
instance, providing information on the cost effectiveness or return
on investment associated with PtD could play a central role in inte-
grating PtD knowledge, given the important role that finance plays
in the adoption of new safety tools and processes. Providing a
streamlined process for informing practitioners and legislators on
the advancements in PtD research and practices would also
improve PtD awareness and knowledge integration.

Limited studies have attempted to integrate PtD knowledge
with design authoring tools to reduce or eliminate design flaws
identified during the design and planning phases. With the integra-
tion and development of emerging technologies including sensors,
drones, and data mining, researchers could collect more reliable
safety, health, and site data. Designers and constructors would cer-
tainly benefit by having additional information, if information is
exchanged in an explicit and efficient manner, and via a collabora-
tive platform. Future research could be conducted to explore the
framework of PtD information exchange, which includes what
types of data to collect, in what formats, when to exchange, on
what platforms, which parties are responsible for the information
exchange, and how to incorporate health and safety knowledge
to facilitate PtD diffusion.

6. Limitations

Similar to other review papers, the present work has some lim-
itations. Firstly, the analysis only covered journal articles in Eng-
lish, using a limited set of keywords for searching within specific
databases. The literature analyzed in this study could be affected
by the database used and choice of keywords. Moreover, additional
studies on PtD could be available in other languages. In addition, as

shown in Table 1, the review only covers PtD research studies con-
ducted in 25 countries/regions. While reviewing studies from 25
countries provides valuable insight, it should be noted that the
findings presented in this study might be limited to the countries
covered and those with similar characteristics. Therefore, research-
ers and practitioners from countries not represented in this study
should be cautious when applying the findings presented in this
study. Secondly, the study placed a primary focus on PtD research
studies instead of industry practices. This action was largely driven
by the limited resources on industry practices that are currently
available (only a few reports from the United States were available
and included). The lack of discussion on PtD industry practices
from the perspective of different countries is another limitation
of this study. As construction means and methods vary by country,
so do the implementation of PtD industry practices and tools.

7. Conclusions and recommendations

The concept of PtD has attracted attention from both the con-
struction industry and academia since it has the potential to effec-
tively eliminate hazards and prevent worker injuries/fatalities
throughout the whole life cycle of a project. This study investigates
the current state-of-the-art of PtD research by examining 140 rel-
evant peer-reviewed journal papers that were published between
2008 and 2020. This paper provides a systematic review based
on descriptive and content analysis, and then compares the find-
ings with industry practices. The study reveals that the annual
number of publications shows a growing interest in the PtD con-
cept, and researchers in the United States contributed the most
PtD research.

A wide variety of PtD topics have been investigated in peer-
reviewed articles by researchers worldwide since 2007. The exist-
ing PtD research studies mainly fall into six topic categories:
design and OSH; perspectives of PtD stakeholders; PtD implemen-
tation barriers, enablers, and motivators; PtD interventions; PtD
resources/tools/procedures and practical cases; and construction
technologies in PtD research studies. The achievements and short-
comings of each topic have been discussed in the paper as well.

7.1. Recommendations for future research

Recommendations for future PtD research, which could be consid-
ered by researchers to overcome the limitations of the current stud-
ies and extend the scope of PtD research, are summarized in Table 6.
The most important recommendations are highlighted below:

� Utilize empirical data and adopting mixed research methods in
PtD studies to improve research quality;

� Conduct longitudinal studies to evaluate the impact of PtD
design decisions on OSH, as well as on other key indicators
(e.g., cost, productivity, and quality) for the entire life cycle of
a project;

� Perform studies on the effects of PtD when integrated with pre-
fabrication/modularization and sustainability (e.g., the imple-
mentation of the LEED PtD Pilot Credit);

� Conduct comparative studies that assess PtD legislation and
regulations;

� Conduct studies on the best ways to promote PtD awareness
and facilitate communication and collaboration between acade-
mia, industry, and governing organizations;

� Develop a PtD education and training framework for existing
and future professionals;

� Conduct studies on implementing PtD concepts to address
worker health issues, improve construction equipment and
the work environment, and enhance safety related to temporary
structures;
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� Utilize technology (e.g., BIM, VR, and GIS) use and integration
with PtD to address the higher levels of the hierarchy of con-
trols; and finally

� Develop a PtD information exchange framework.

7.2. Recommendations for practitioners (practical applications)

Results presented in this paper, especially those related to the
available PtD tools/resources/procedures, could benefit industry
practitioners in understating the current status of PtD research
and in making decisions on when and how to adopt PtD, and iden-
tify the appropriate PtD tools to use in order to improve OSH
effectively.
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a b s t r a c t

Introduction: Although the braking system plays a key role in a safe and smooth vehicular operation, it has
not been given proper attention and hence brake failures are still underrepresented in traffic safety. The
current body of literature on brake failure-related crashes is very limited. Moreover, no previous study
was found to extensively investigate the factors associated with brake failures and the corresponding
injury severity. This study aims to fill this knowledge gap by examining brake failure-related crashes
and assessing the factors associated with the corresponding occupant injury severity. Method: The study
first performed a Chi-square analysis to examine the relationship among brake failure, vehicle age, vehi-
cle type, and grade type. Three hypotheses were formulated to investigate the associations between the
variables. Based on the hypotheses, vehicles aged more than 15 years, trucks, and downhill grade seg-
ments seemed to be highly associated with brake failure occurrences. The study also applied the
Bayesian binary logit model to quantify the significant impacts of brake failures on occupant injury sever-
ity and identified various vehicle, occupants, crash, and roadway characteristics. Conclusions and Practical
Applications: Based on the findings, several recommendations regarding enhancing statewide vehicle
inspection regulation were outlined.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Of all the features constituting a vehicle, the braking system is
likely to be the most important. Its function is to enable the driver
to control the vehicle speed when the need arises in order to pro-
tect the vehicle, driver, and other road users from crashes that
might be fatal. Vehicle stability and operation can deteriorate sig-
nificantly by defective brakes. Although the failures of modern
vehicle braking systems appears to be rare, their performance
can degrade constantly as vehicles age. In 2018, the National Motor
Crash Causation Survey (NMVCCS) reported that of the approxi-
mately 44,000 vehicle defect-related crashes, nearly 22% (10,000)
were due to defective brakes (USDOT, 2018). The distributions of
other vehicle defect types reported were tires/wheels-related (ac-
counting for about 35%), steering/suspension/transmission/engine
(accounting for about 3%), and other/unknown vehicle-related
problems (accounting for about 40%). Being unable to stop is
almost impossible to avoid a crash when it occurs. Considering
the fact, the National Traffic and Motor Vehicle Safety Act autho-

rizes the National Highway Traffic Safety Administration (NHTSA)
to investigate issues relating to motor-vehicle safety, and requires
manufacturers to notify NHTSA of all safety-related defects (e.g.,
brakes, tires, lighting) involving unreasonable risk of a crash, death,
or injury (USDOT, 2020). Therefore, there is a need to conduct
research on investigating brake failure-related crashes and the cor-
responding injury severity.

Wyoming with its extensive network of mountainous roads has
the second-highest traffic fatality rate (21.2 death per 100,000 pop-
ulation) in the nation (NHTSA, 2019). A significant portion of
Wyoming roads goes through mountainous and rolling terrain,
resulting in severe vertical grades and horizontal curves. For
instance, Interstate 80 (I-80) provides a major corridor connection
between the west coast and major cities in the east. About 9% of I-
80 in Wyoming (in both directions) is within vertical grades of
more than 3%, where certain sections reach grades of close to 7%.
These conditions with a high elevation tend to accelerate the vehi-
cle defects quicker than the normal condition. Crashes involving
defective brakes are a growing concern in Wyoming because of
the presence of steep downgrades, which accelerates heavy vehi-
cles’ brake temperatures exceeding the critical temperature, lead-
ing to a higher level of injury severity and significant economic
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impact (Moomen et al., 2019, 2020; Rezapour, Moomen, & Ksaibati,
2019). Among the vehicle defect-related crashes in Wyoming,
brake failures contributed about 25% based on the Wyoming
Department of Transportation (WYDOT) 10 years of crash reports
(2010–2019). This study aims to provide some insights to fulfill
the knowledge gap by analyzing brake defect-related crashes in
Wyoming.

2. Literature review

Crashes with vehicle defects tend to have consequences in
terms of property damage, loss of goods, and loss of life. Yet, a lim-
ited number of studies have been found investigating vehicle
defects and associated safety implications. Previous studies
reported brake and tire failures as the most significant factors in
mechanical failures resulting in crashes (Automobil, 2015;
Schoor, Niekerk, & Grobbelaar, 2001; Solah et al., 2017). In order
to explore the causes of brake failure, a study administered a struc-
tured questionnaire (Owusu-Ansah, Alhassan, Frimpong, &
Agyemang, 2014). The survey results indicated that overheating
of the brake assembly due to prolonging the application of the
brakes is the main reason behind brake failures. While investigat-
ing the effect of brake failure on road traffic, Oduru (2012) con-
cluded that brake failure could result in a fatal crash and, hence,
the vehicle should be inspected regularly to reduce brake failure.
Das, Dutta, and Geedipally (2021) examined the association
between crash severity and vehicle defect types by applying a
Bayesian data mining approach and found that vehicle age is asso-
ciated with severe injury crashes resulting from defective brakes
and worn tires. In order to detect and diagnose car brake failure,
Ibitayo, Mohammed, Rabiu, and Abdulrahman (2016) developed
Expert System (ES), one of the leading Artificial Intelligence tech-
niques that provides input and output equations in assisting
mechanical technicians for car brake failure detection and diagno-
sis via mathematical Differential Equations in form of Dynamic
Control System (DCS).

Trucks carrying huge loads are more prone to brake failures,
especially while descending downgrades because of the generation
of excessive heat on brakes. Yan and Xu (2018) showed that the
brake temperature is positively correlated to the truck weight
and the percentage and length of the downgrade. Dinh, Vu,
Mcllroy, Plant, and Stanton (2020) developed Systems Theoretic
Accident Model and Process and its corresponding Causal Analysis
using Systems Theory (STAMP-CAST) model to analyze downhill
truck crashes caused by a brake failure. The results indicated the
driver’s inexperience, together with the truck’s low quality and
severe road conditions, as potential factors directly leading to the
corresponding crashes. In order to improve the safety performance
of heavy commercial vehicles when a braking failure occurs under
turning conditions, Lu, Wang, and Zhang (2020) carried out the
Trucksim-Simulink joint simulation and hardware in the loop
experiment to jointly verify the control effect of the brake. The
results showed that the influence of vehicle brake failure on vehi-
cle driving stability is reduced, the performance of vehicle brake
under long and downhill conditions and turning conditions are
improved, and the safety stability of vehicle brake failure in hard-
ware loop is improved, which meets the requirements of national
standards for vehicle braking. While examining the injury severity
resulting from brake failure, Wang and Prato (2019) found a posi-
tive relation of truck brake failure with a significant rise in the
fatality probability (14.6%).

Based on the previous studies discussed, vehicle condition (e.g.,
vehicle age), vehicle configuration (e.g., vehicle type), and roadway
geometry (e.g., vertical grade) were reported as the most potential
factors associated with brake failure related crashes. On the other

hand, occupant, vehicle, crash, and roadway characteristics were
frequently utilized in the literature to investigate injury severity
analysis. Table 1 summarizes the type of data previous studies
used with key findings and variables. Hence these factors were
used in this study to examine the occurrence of brake failures
and the corresponding injury severity.

The literature review indicates that the current research on
brake failure crashes is limited, and no study was found that exten-
sively investigated injury severity in brake failure-related crashes
considering various injury-related characteristics. The contribu-
tions of this study include: (a) exploring the relationship among
brake failure, vehicle age, vehicle type, and grade type; (b) assess-
ing the impacts of brake failures on occupant injury severity while
accounting for possible intra-crash correlation (effects of the com-
mon crash-specific unobserved factors in occupant injury severity
within the same crash); and (c) demonstrating the necessity of sta-
tewide vehicle inspection regulations.

3. Research methodology

The first analysis performed in this study was Chi-square anal-
ysis to examine the relationship among brake failure, vehicle age,
vehicle type, and grade type. Three hypotheses were formulated
to investigate the associations between the variables.

i. Null hypothesis (Ho): The brake failure occurrence in newer
vehicles is the same as those in older vehicles regardless of
the vehicle type and the grade type.

Alternate hypothesis (Ha): The brake failure occurrence in newer
vehicles is not the same as those in older vehicles regardless of
the vehicle type and the grade type.
ii. Null hypothesis (Ho): The brake failure occurrence is the

same across different vehicle types regardless of the age of
the vehicle and the grade type.

Alternate hypothesis (Ha): The brake failure occurrence is not the
same across different vehicle types regardless of the age of the
vehicle and grade type.
iii. Null hypothesis (Ho): The brake failure occurrence is the

same across different grade types regardless of the age and
type of vehicle.

Alternate hypothesis (Ha): The brake failure occurrence is not
the same across different grade types regardless of the age
and type of vehicle.

The Chi-square test is frequently used in the literature to test
the difference between what is actually observed and what would
be expected if there were truly no relationship between the vari-
ables of interest (Agresti, 2009). The vehicle age groups used for
the Chi-square analyses were categorized based on the previous
literature (Liu & Subramanian, 2020; Nambisan, Boakye, & Yu,
2021), which include 1–6 years, 7–11 years, 12–15 years, and
greater than 15 years. Note that, less than 1% of total crashes inves-
tigated in this study do not have vehicle year information and thus
those crashes were discarded from the analysis.

To investigate the injury severity resulting from the brake fail-
ures, binary logit models with a Bayesian inference approach were
applied to examine the effects of the vehicle, occupant, crash, and
roadway factors contributing to fatal or any other injuries. Apart
from the traditional logit or probit models, Bayesian statistics are
gaining popularity in traffic safety analysis because of their better
performance over the traditional maximum likelihood estimation
(MLE) based approach (Haque, Chin, & Huang, 2010; Huang &
Abdel-Aty, 2010; Huang, Chin, & Haque, 2008; Ma & Kockelman,
2006; Xie, Zhang, & Liang, 2009). The benefits of using the Bayesian
inference model is listed below:
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� The variables are treated as random and the data are used to
simulate the behavior of the variables in assessing their distri-
butional properties.

� There is flexibility in selecting the parametric family for prior
probability distributions.

� Bayesian inference performs better with small datasets with a
multitude of factors/variables and can handle complex models
much better than MLE-based methods with the power of Mar-
kov Chain Monte Carlo (MCMC) sampling techniques.

Having good knowledge of priors and selecting an appropriate
prior distribution help to overcome the drawbacks of the datasets
with a small sample size. On the other hand, the robust nature of
the Bayesian inference via MCMC methods makes it suitable to
handle complex models. Among the three priors, the selection of
informative prior was limited since there has not been any previ-
ous study that applied Bayesian analysis into occupant injury
severity resulting from brake failures. While selecting between
the weak informative and non-informative prior, Lemoine (2019)
in his study suggested the use of weak informative prior and indi-
cated that the use of non-informative prior produces a similar
result to the frequentist model. Moreover, it was found that models
with non-informative prior take an unreasonably long time to con-
verge compared to models with weakly informative prior. There-
fore, the authors decided to move away from the non-
informative prior and applied the weak informative prior to keep
the estimates as unbiased as possible. Recently, the No-U-Turn
Hamiltonian Monte Carlo (NUT HMC) has been introduced as an
advancement of the MCMC sampling technique (Hoffman &
Gelman, 2014). The application of the NUT HMC technique was
previously rare in the literature, mainly due to the underlying
sophisticated mathematics and statistics. However, recent

improvements in the Stan programming language in R� statistical
software (i.e., ‘‘brms;” Bayesian Regression Models using Stan)
make it more user-friendly to easily implement the Bayesian mod-
els and investigate the posterior distributions using NUT HMC
(Bürkner, 2017; Carpenter et al., 2017; Haq et al., 2020a, 2020b,
2020c, 2021a, 2021b). Therefore, this study developed Bayesian
binary logit models utilizing the NUT HMC sampling technique in
R� installed with the ‘‘brms” package.

The Bayesian inference model was developed by going through
rigorous fine-tuning of model specification, where the adaptive
rejection was set up as 3000 iterations with 1000 as burn-ins.
Three parallel MCMC chains were run to simulate posterior distri-
butions resulting in a total of 6000 (2000 runs � 3 chains) posterior
samples. Gelman-Rubin statistic (R̂) was used to ensure the con-
vergence of the model (Gelman & Rubin, 1992). The value equal
to 1 for each parameter in the model referred to perfect
convergence.

For this study, both response and explanatory variables were
converted into a binary format of either one or zero (1 or 0). If
the binary responses have respective probabilities of p and 1� p,
then the general form of logistic regression can be expressed in
Equation (1).

logit pð Þ ¼ log
p

1� p

� �
¼ b0 þ uj

� �þX
bX ð1Þ

where b0 is the intercept, X is the vector of the explanatory vari-
ables, b is the regression coefficients for the explanatory variables
to be estimated, and uj is the random effect parameter accounting
for the random variation. In a Bayesian modeling framework, the
posterior distribution of the parameters is given by the following
equations.

Table 1
Previous studies related to vehicle defects.

Authors Model/Method Variables Used Key Findings

Schoor et al.
(2001)

Roadside survey Vehicle defects, maintenance history,
overloading, high speed

Tires and brakes were found as the two most dominant components that contribute
to the mechanical defects causing accidents, with overloading an additional factor to
consider.

Oduru
(2012)

A questionnaire
survey

Brake fluid, brake overheating, and brake
servicing period

The results indicated that brake failure is caused by low or shortage of brake fluid and
brake overheating. It was also recommended that vehicle should be inspected
regularly to reduce brake failure

Owusu-
Ansah
et al.
(2014)

A structured
questionnaire
survey

Responses from bus terminals,
automotive workshops, and government
institutions

The survey results showed that brake failure in commercial minibuses is caused
mainly by Overheating of the brake assembly due to prolong application of the
brakes.

Solah et al.
(2017)

Logistic
regression

Roadworthiness inspection results (Pass
and Fail)

It was found that the two most common private passenger vehicle defects were worn
out tire (or lack of tread) and structural integrity.

Yan and Xu
(2018)

Mathematical
model

Vehicle, roadway, and environmental
characteristics

The results indicated that brake temperature is positively correlated to the truck
weight and the percentage and length of the downgrade.

Wang and
Prato
(2019)

Partial
proportional
odds model

Geometric, driver, crash, truck, and
environmental characteristics.

The study found a positive relation of truck brake failure with a significant rise in the
fatality probability.

Moomen
et al.
(2019)

Logistic
regression

Driver, environmental, crash, traffic, and
geometric features

Geometric factors, driver, weather, lighting, and road conditions, and day of week
contributed to truck crashes on downgrades.

Rezapour
et al.
(2019)

Ordered logistic
model

Driver, environmental, crash, traffic, and
geometric features

Several variables including driver, vehicle, geometric and traffic factors were found to
impact single- and multi-vehicle crashes on downgrades.

Dinh et al.
(2020)

Systems
Theoretic
Accident Model

User, vehicle, and road environment
characteristics

The results indicated the driver’s inexperience, together with the truck’s low quality
and severe road conditions as potential factors directly leading to the brake failure-
related crashes.

Lu et al.
(2020)

TruckSim-
Simulink joint
simulation

Vehicle dynamics characteristics The results showed that the influence of vehicle brake failure is increased under long
and downhill conditions.

Moomen
et al.
(2020)

Negative
binomial model

Geometric factors Downgrade length, number of lanes, shoulder width, among others were identified as
important geometric factors.

Das et al.
(2021)

Bayesian data
mining method

Crash, vehicle, and geometric
characteristics

The findings showed that vehicle age is associated with severe injury in vehicle
defects-related crashes.
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Posterior ¼ Likelihood� Prior
Average Likelihood

ð2Þ

p hjyð Þ ¼ p yjhð ÞxpðhÞ
pðyÞ ð3Þ

where h = parameters to be estimated, p yjhð Þ = likelihood function,
pðhÞ prior information of the parameters, p yð Þ= marginal distribu-
tion of y as shown in Equation (4).

pðyÞ ¼
Z
h
pðy; hÞdh ð4Þ

Since p yð Þ is independent of h, the posterior is only proportional
to the product of likelihood and prior, which is clarified in Equation
(5).

p hjyð Þ / p yjhð ÞxpðhÞ ð5Þ
An intra-class correlation (ICC) coefficient is defined as a quan-

titative measure that determines the similarity between individu-
als within groups. In this study, ICC coefficient was used to assess
the random effects, which can examine the correlation among
crashes within a specific group (Jones & Jørgensen, 2003). ICC can
be defined in terms of random effects model (Gelman & Hill, 2007):

yij ¼ lþ aj þ eij ð6Þ
where, yij is i-th observation for j-th group, l is overall mean, aj is a
random effect, and eij is error term. aj is assumed to be normal with
a mean of zero and variance r2, denoted as aj � N 0; r2

� �
: ICC can be

calculated using the following equation (Huang et al., 2008).

ICC ¼ rc
2

rc
2 þ ro

2 ð7Þ

where rc
2 is the between-crash variance of the random intercept

model, and ro
2 is the occupant-level variance, which is equal to

p2

3 ¼ 3:29 for a hierarchical logistic distribution. An ICC value close
to 1 indicates the significance of between-crash variance in describ-
ing total variance and justifies the use of the hierarchical model in
the study (Huang et al., 2008; Kutner, Nachtsheim, Neter, & Li,
2005).

4. Data preparation and description

The study was conducted using 10 years (2010 – 2019) of his-
torical crash data in Wyoming roadways. Two primary data
sources: Critical Analysis Reporting Environment (CARE) and
WYDOT’s Roadway Database were utilized to integrate and man-
age crash data. CARE database has a separate crash, vehicle, and
person file. The first step was to combine the three files based on
the unique crash case number to obtain more details about the
crash, vehicle, and occupant characteristics. The next step was to
merge the person-vehicle crash file to the roadway data file based
on the milepost. At this stage, the crashes with the involvement of
brake failures were filtered out and used for further analysis. This
resulted in 1,415 occupant-level brake failure-related crash data.
The comprehensive final crash data provided detailed information
associated with each crash. Table 2 shows the exact percentages of
crash observations in each of the five injury severity levels. Due to
the limited number of crash observations in each injury severity
level, the five injury severity outcomes were combined into two
categories (i.e., fatal or any injury type and no injury). Note that,
this aggregation is not expected to substantially affect the infer-
ence and a similar approach was commonly found in past studies
(Haq et al, 2020a, 2021a; Xu et al., 2016).

The variables used in the injury severity models were converted
into categorical predictors and set up as binary (1 or 0) whether the

corresponding factor was involved in a fatal/injury-related crash
resulting from brake failure. Table 3 shows the descriptive statis-
tics of the investigated variables used for the injury severity model,
where the presence of fatal and any injuries (FI) or no injuries
involved in brake failure-related crashes was selected as the
response variable. The factors were broadly classified into vehicle
characteristics, occupant characteristics, crash characteristics, and
roadway geometrics to observe their effects on injury severity.
The analyzed vehicle characteristics included vehicle age and type.
Vehicles aged more than 15 years at the time of the brake failure-
related crash were explored. In this study, trucks are defined as any
light (weigh less than 10,000 pounds), medium (weight between
10,000 and 26,000 pounds), or heavy (weight more than 26,000
pounds). Note that, pickup trucks and SUVs are not considered
light trucks in the WYDOT database. Also, SUVs and pickups were
combined into one group because of their similar physical and
operational characteristics (Mokhtar & Pervez, 2012). The occupant
characteristics analyzed for this model included driver and passen-
ger involvement, age and gender, airbag deployment, drug use,
license type, and citation records. The driver’s license type was cat-
egorized as a commercial driving license (CDL) and non-CDL type
as the combination of heavy loads, steep inclines, and long down-
grade lengths raise the probability of brake failure to the commer-
cial vehicle resulting from brake heating. The investigated crash
characteristics included season, day of the week, and the possible
subsequent effects of brake failures (i.e., hitting a guardrail, roll-
over, and fixed object). The season was reduced to two levels, win-
ter and summer. The day of the week was labeled as weekday and
weekend. The horizontal alignment was categorized into curved
and straight segments. Table 3 presents a summary of the investi-
gated variables with the count and percentage of each category.
Zero (0) was taken as the reference category for each variable
and hence the modeling results were observed for the opposite
(1) coded factors.

Crash is a very complex process in which it is very difficult to
capture all the contributory factors during the modeling process.
This leads to a very important phenomenon called unobserved
heterogeneity. The possibility of such unobserved heterogeneity
in the crash modeling process could be substantial, for which sev-
eral previous studies analyzed and captured such heterogeneity
using random effects model (Saeed, Hall, Baroud, & Volovski,
2019; Waseem, Ahmed, & Saeed, 2019). Random effect models
have the ability to control for unobserved heterogeneity when
the heterogeneity is constant over time and not correlated with
independent variables. This constant can be eliminated from longi-
tudinal data through differencing, since taking a first difference
will eliminate any time invariant components of the model
(Wooldridge, 2010). There are two common assumptions for the
random effects and fixed effects model. The random effects
assumption considers the individual unobserved heterogeneity as
uncorrelated with the independent variables, while the fixed effect
assumption considers the individual specific effect as correlated
with the independent variables (Wooldridge, 2010). If the random
effects assumption holds, the random effects estimator performs
more efficient than the fixed effects model.

Table 2
Injury information of the brake failure-related crashes (occupant-level).

Injury Severity Type Count Percentage

Fatal 13 1%
Incapacitating Injury 38 3%
Non-Incapacitating Injury 141 10%
Possible Injury 96 7%
No Injury 1,127 80%
Total 1,415 100%
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For occupant-level injury severity crash data, it is most likely
that the injury severity levels sustained by the occupants involved
in the same crash are correlated (Eluru, Paleti, Pendyala, & Bhat,
2010; Haq et al., 2020a, 2020b, 2020c, 2021a, 2021b; Shaheed,
Gkritza, Carriquiry, & Hallmark, 2016; Zhu & Srinivasan, 2011).
The parameter estimates could be biased for neglecting such
intra-crash correlation in crash data. Therefore, the variability in
the injury severity across occupants in the same crash was exam-
ined. To explore this unobserved heterogeneity, the random-effects
Bayesian approach is applied to the injury severity model.

5. Results and discussions

5.1. Brake failure by vehicle type and vehicle age

Table 4 shows the results for the first hypothesis tested. In
Table 4, the occurrence of brake failures was analyzed based on
the age of the vehicle for various vehicle types. In addition to this,
the analyses were performed by each vertical grade type separately
(i.e., level grade, downhill grade, and uphill grade), and the combi-
nation of all categories. In Table 4, the results were presented in a
set of rows for each vehicle type, sets of columns with results per-
taining to the three grade categories, and one column for all cate-
gories combined. Within each grade category, the table included
three columns for the sample size, the percentage, and the p-
value for the Chi-square test. Within individual rows were the four
age categories and a row that was for all specific vehicles with no
regard to age.

As shown in Table 4, the lowest brake failure occurrence in all
vehicles (rows 16 to 19) was 6.4% (Cell N-16) among the vehicles
1–6 years old, with the highest rate (64.9%) among the vehicles
over 15 years old. The p-value of less than 0.05 from the Chi-
square test denotes a statistical significance of better than 95%.
Based on this, the null hypothesis is rejected and concludes that
the brake failure occurrence involved in crashes is NOT the same
across the age categories of the vehicle. Thus, the analysis suggests
that regardless of the type of vehicle (i.e., passenger cars, SUV/pick-
ups, and trucks) and grade type, people in older vehicles were more
likely to experience brake failures than those who traveled in
newer vehicles. This pattern was consistent across all combina-
tions of individual vehicle types and various grade categories,
except for two insignificant scenarios (i.e., Cells L-3 and L-13).
The reason behind the insignificance findings should be the pres-
ence of uphill segments, which made the drivers avoid brake appli-
cation while ascending, resulting in no potential difference of
brake failures across the age categories of vehicle.

5.2. Brake failure by vehicle age and vehicle type

Table 5 shows the results for the second hypothesis testing.
Here the brake failure occurrence in crashes was summarized
based on the type of vehicle for various vehicle age categories. In
addition to this, the analyses were performed by each vertical
grade type separately (i.e., level grade, downhill grade, and uphill
grade), and the combination of all categories. Table 5 was prepared

Table 3
Descriptive statistics.

Variables Description Coded Response Count Percent

Vehicle characteristics Vehicle age Vehicle age 1 = More than 15 years 911 64%
0 = Otherwise 504 36%

SUV/pickup SUV/pickup involvement 1 = Yes 626 44%
0 = No 789 56%

Truck Truck involvement 1 = Yes 451 32%
0 = No 964 68%

Occupant characteristics Driver Driver presence 1 = If the injured person is a driver 922 65%
0 = Otherwise 493 35%

Passenger Passenger presence 1 = If the injured person is a passenger 493 35%
0 = Otherwise 922 65%

Young Young (Age < 25) 1 = Yes 451 32%
0 = No 964 68%

Middle Middle (25 � age � 55) 1 = Yes 547 39%
0 = No 868 61%

Old Old (Age > 55) 1 = Yes 304 21%
0 = No 1111 79%

Gender Gender 1 = Female 378 27%
0 = Other 1037 73%

Airbag Airbag deployment 1 = Deployed 101 7%
0 = Not deployed 1314 93%

Illegal drugs Drug involvement 1 = Involved 18 1%
0 = Not involved 1397 99%

License License type 1 = CDL 219 15%
0 = Other 1196 85%

Citation Citation records 1 = At least one 293 21%
0 = Otherwise 1122 79%

Crash characteristics Season Season 1 = Summer 769 54%
0 = Otherwise 646 46%

Day of week Day of week 1 =Weekend 372 26%
0 = Weekday 1043 74%

Guardrail Guardrail related 1 = Yes 53 4%
0 = No 1362 96%

Rollover Rollover related 1 = Yes 191 13%
0 = No 1224 87%

Fixed object Fixed object related 1 = Yes 309 22%
0 = No 1106 78%

Roadway geometrics Horizontal alignment Horizontal alignment 1 = Curve 367 26%
0 = Straight 1048 74%

Downhill grade Downhill grade 1 = Yes 500 35%
0 = No 915 65%
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similarly to Table 4, but to reflect the difference in the hypothesis
being tested.

Table 5 shows that the lowest brake failure occurrence in all
vehicles (rows 17 to 19) was 23.9% (Cell N-17) among occupants
in passenger cars, with the highest rate (44.2%) among occupants
in SUV/pickups. The p-value of less than 0.05 from the Chi-
square test denotes the rejection of the null hypothesis and con-
cludes that the brake failure occurrence is NOT the same across dif-
ferent vehicle types regardless of the age of the vehicle and the
grade type. These results were similar across various vehicle age
categories, with the exception of a few for uphill grade categories.
As mentioned earlier, the possible explanation behind the insignif-
icant results should be the fact that drivers typically do not need to
apply brakes while ascending upgrades, resulting in a relatively
less vulnerable situation for brake failures to occur.

The analysis results provided in Table 5 indicate that, overall,
occupants of SUV/pickups were more likely to encounter brake
failures compared to occupants in passenger cars and trucks.
However, it is interesting to note that the finding was not con-
sistent for the downhill grade category. Here trucks were found
to experience a major portion (Cell H-19) of brake failure-related
crashes. This is attributed to the fact that the combination of
heavy loads, steep inclines, and long downgrade lengths
increases the risk of brake failure resulting from brake heating.
As trucks descend downgrades, large amounts of potential
energy are generated and absorbed by the truck’s service brakes.
This potential energy is then converted to heat energy. This is
then absorbed by the braking system, which increases the brak-
ing temperature. This ultimately results in brake failure and
truck runaway.

Table 4
Brake failure occurrence by vehicle type and vehicle age.

Vehicle Type Row # Vehicle Age (years) Brake Failure (Level Grade) Brake Failure(Downhill
Grade)

Brake Failure(Uphill
Grade)

Brake Failure (TOTAL)

Total Percent P-Value Total Percent P-Value Total Percent P-Value Total Percent P-Value

A B C D E F G H I J K L M N O
PAS-CAR 1 1–6 16 6.6% <0.001 2 3.0% <0.001 0 0.0% 0.528 18 5.3% <0.001

2 7–11 24 9.9% 3 4.5% 4 13.3% 31 9.2%
3 12–15 49 20.2% 13 19.7% 8 26.7% 70 20.7%
4 > 15 153 63.2% 48 72.7% 18 60.0% 219 64.8%
5 Total 242 100.0% 66 100.0% 30 100.0% 338 100.0%

SUV/PU 6 1–6 4 1.0% 0.001 3 1.7% <0.001 4 6.5% 0.007 11 1.8% <0.001
7 7–11 31 7.9% 22 12.8% 4 6.5% 57 9.1%
8 12–15 46 11.7% 46 26.7% 6 9.7% 98 15.7%
9 > 15 311 79.3% 101 58.7% 48 77.4% 460 73.5%
10 Total 392 100.0% 172 100.0% 62 100.0% 626 100.0%

TRUCK 11 1–6 34 22.7% <0.001 23 8.8% <0.001 4 10.3% 0.534 61 13.5% <0.001
12 7–11 37 24.7% 26 9.9% 8 20.5% 71 15.7%
13 12–15 39 26.0% 30 11.5% 10 25.6% 79 17.5%
14 > 15 40 26.7% 183 69.8% 17 43.6% 240 53.2%
15 Total 150 100.0% 262 100.0% 39 100.0% 451 100.0%

TOTAL 16 1–6 54 6.9% < 0.001 28 5.6% <0.001 8 6.1% <0.001 90 6.4% <0.001
17 7–11 92 11.7% 51 10.2% 16 12.2% 159 11.2%
18 12–15 134 17.1% 89 17.8% 24 18.3% 247 17.5%
19 > 15 504 64.3% 332 66.4% 83 63.4% 919 64.9%
20 Total 784 100.0% 500 100.0% 131 100.0% 1415 100.0%

Table 5
Brake failure occurrence by vehicle age and vehicle type.

Vehicle Age (years) Row # Vehicle Type Brake Failure (Level Grade) Brake Failure(Downhill
Grade)

Brake Failure(Uphill
Grade)

Brake Failure (TOTAL)

Total Percent P-Value Total Percent P-Value Total Percent P-Value Total Percent P-Value

A B C D E F G H I J K L M N O
1–6 1 PAS-CAR 16 29.6% 0.004 2 7.1% 0.081 0 0.0% 0.008 18 20.0% <0.001

2 SUV/PU 4 7.4% 3 10.7% 4 50.0% 11 12.2%
3 TRUCK 34 63.0% 23 82.1% 4 50.0% 61 67.8%
4 TOTAL 54 100.0% 28 100.0% 8 100.0% 90 100.0%

7–11 5 PAS-CAR 24 26.1% 0.015 3 5.9% 0.008 4 25.0% 0.447 31 19.5% <0.001
6 SUV/PU 31 33.7% 22 43.1% 4 25.0% 57 35.8%
7 TRUCK 37 40.2% 26 51.0% 8 50.0% 71 44.7%
8 TOTAL 92 100.0% 51 100.0% 16 100.0% 159 100.0%

12–15 9 PAS-CAR 49 36.6% 0.007 13 14.6% <0.001 8 33.3% 0.183 70 28.3% 0.081
10 SUV/PU 46 34.3% 46 51.7% 6 25.0% 98 39.7%
11 TRUCK 39 29.1% 30 33.7% 10 41.7% 79 32.0%
12 TOTAL 134 100.0% 89 100.0% 24 100.0% 247 100.0%

> 15 13 PAS-CAR 153 30.4% <0.001 48 14.5% <0.001 18 21.7% 0.633 219 23.8% <0.001
14 SUV/PU 311 61.7% 101 30.4% 48 57.8% 460 50.1%
15 TRUCK 40 7.9% 183 55.1% 17 20.5% 240 26.1%
16 TOTAL 504 100.0% 332 100.0% 83 100.0% 919 100.0%

TOTAL 17 PAS-CAR 242 30.9% <0.001 66 13.2% < 0.001 30 22.9% 0.002 338 23.9% <0.001
18 SUV/PU 392 50.0% 172 34.4% 62 47.3% 626 44.2%
19 TRUCK 150 19.1% 262 52.4% 39 29.8% 451 31.9%
20 TOTAL 784 100.0% 500 100.0% 131 100.0% 1415 100.0%

M.T. Haq, Vincent-Michael Kwesi Ampadu and K. Ksaibati Journal of Safety Research 84 (2023) 7–17

12



5.3. Brake failure by vehicle age and grade type

The results for the third hypothesis testing are summarized in
Table 6. The brake failure occurrence in crashes was analyzed
based on three grade types (i.e., level, downhill, and uphill) for
various vehicle age categories. In addition to this, the analyses
were conducted by each vehicle type separately (passenger car,
SUV/pickups, and trucks), and the combination of all the vehicle
types.

Table 6 shows that the lowest brake failure occurrence in all
vehicles (rows 17 to 19) was 9.3% (Cell N-19) among occupants
while traveling uphill segments, with the highest rate (55.4%)
among occupants traveling level segments. The p-value of less
than 0.05 from the Chi-square test denotes the rejection of the
null hypothesis and concludes that the brake failure occurrence
is NOT the same across different grade types regardless of age
and type of vehicle. These results were similar across various
vehicle type categories, with exceptions for passenger car cate-
gories. It is reasonable that passenger car has relatively good
braking performance because of their shorter braking distance
and time, compared to SUV/pickups and large trucks resulted in
comparatively less vulnerability to brake fades. Although the
overall result indicated the highest brake failure occurrence on
level grade segments, this was not the same when broken down
to various vehicle types. For example, the highest brake failure
occurrence for trucks was 58.1% (Cell K-18) among the truck
occupants while traveling downhill segments. As mentioned ear-
lier, trucks are typically more vulnerable to downgrade crashes
due to their heavy loads and large sizes causing brake overheat-
ing, fade, and failure.

The hypothesis results in this study are also found to be consis-
tent with other previous studies. It was indicated by several stud-
ies that the risk of crashes appears to be increased as the vehicles
ages (Anderson & Searson, 2015; Liu & Subramanian, 2020; NHTSA,
2013; NHTSA, 2018). Yan and Xu (2018) reported trucks as more
vulnerable to brake failures compared to other vehicle types as
the brake temperature was found to be positively correlated to
truck weight. Moreover, there are a number of studies that indi-
cated the prolonging application of the brakes under long downhill
condition as one of the critical factors behind brake failures (Dinh
et al., 2020; Lu et al., 2020; Moomen et al., 2019, 2020; Yan & Xu,
2018).

5.4. Injury severity model

The factors affecting brake failure-related injury severities are
discussed in this section, where 95% Bayesian credible interval
(BCI) was applied to determine the significance of variables con-
tributing to the occupant injury severity. The possible presence
of multicollinearity was checked using the variance inflation factor
(VIF), calculated for each predictor. Typically, a VIF value of greater
than 10 is considered as an indication of the existence of multi-
collinearity (Kutner et al., 2005). However, no such issues were
observed since the VIF value of all factors in the model fell below
two, as shown in Table 7. The parameter estimates of the model
along with the 95% BCI, standard error, and odds ratio (OR) of
the variables are provided in Table 8. The table also includes the
area under the curve (AUC) as a goodness of fit parameter. The pre-
diction accuracy of the model can be measured using the AUC
value, where the value close to 1 implies a better fit of the model.
The result provided in Table 8 demonstrates an excellent overall
model fit (0.814), which implies that 81.4% of the observations
are in agreement with predictors when predicting occupant injury
severity. The number of effective variables (pD) in the model was
found closer to the actual number of significant variables, which
implies the non-complexity of the models.

5.4.1. Measure of unobserved heterogeneity
Intra-class correlation (ICC) coefficient was computed to deter-

mine the proportion of variance in the occupant injury severity
associated with the same crash, as provided in Table 8. The use
of a hierarchical model was highly encouraged for the presence
of unobserved heterogeneity associated with the model, although
no threshold of ICC was found in the literature (McElreath,
2018). Based on Table 8, the ICC value was 0.41 for the model
resulting from between-crash variance. This implies 41% of unex-
plained variations due to the presence of common crash-specific
unobserved factors affecting the occupant injury severity in the
same crash. Therefore, the use of the hierarchical model with ran-
dom effects was justified to explain such unexplained factors
within the same crash.

5.4.2. Significant factor analysis
The modeling results indicate the various vehicle, occupant,

crash, and geometrical characteristics that significantly con-

Table 6
Brake failure occurrence by vehicle age and grade type.

Vehicle Age (years) Row # Grade Type Brake Failure (PAS-CAR) Brake Failure (SUV/PU) Brake Failure (TRUCK) Brake Failure (TOTAL)

Total Percent P-Value Total Percent P-Value Total Percent P-Value Total Percent P-Value

A B C D E F G H I J K L M N O
1–6 1 Level 16 88.9% 0.268 4 36.4% <0.001 34 55.7% <0.001 54 60.0% <0.001

2 Downhill 2 11.1% 3 27.3% 23 37.7% 28 31.1%
3 Uphill 0 0.0% 4 36.4% 4 6.6% 8 8.9%
4 Total 18 100.0% 11 100.0% 61 100.0% 90 100.0%

7–11 5 Level 24 77.4% 0.249 31 54.4% 0.021 37 52.1% < 0.001 92 57.9% <0.001
6 Downhill 3 9.7% 22 38.6% 26 36.6% 51 32.1%
7 Uphill 4 12.9% 4 7.0% 8 11.3% 16 10.1%
8 Total 31 100.0% 57 100.0% 71 100.0% 159 100.0%

12–15 9 Level 49 70.0% 0.261 46 46.9% <0.001 39 49.4% <0.001 134 54.3% <0.001
10 Downhill 13 18.6% 46 46.9% 30 38.0% 89 36.0%
11 Uphill 8 11.4% 6 6.1% 10 12.7% 24 9.7%
12 Total 70 100.0% 98 100.0% 79 100.0% 247 100.0%

> 15 13 Level 153 69.9% 0.781 311 67.6% < 0.001 40 16.7% <0.001 504 54.8% <0.001
14 Downhill 48 21.9% 101 22.0% 183 76.3% 332 36.1%
15 Uphill 18 8.2% 48 10.4% 17 7.1% 83 9.0%
16 Total 219 100.0% 460 100.0% 240 100.0% 919 100.0%

TOTAL 17 Level 242 71.6% <0.001 392 62.6% <0.001 150 33.3% <0.001 784 55.4% <0.001
18 Downhill 66 19.5% 172 27.5% 262 58.1% 500 35.3%
19 Uphill 30 8.9% 62 9.9% 39 8.6% 131 9.3%
20 Total 338 100.0% 626 100.0% 451 100.0% 1415 100.0%
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tributed to the severity of occupant injuries in brake failure-related
crashes, as shown in Table 8. Vehicles older than 15 years were
found to be involved in more fatal/injury-related brake failure
crashes by estimated odds of 1.8 times as compared to vehicles
aged less or equal to 15 years. This is attributed to the fact that
the owner of an older vehicle does not pay more attention to the
routine maintenance of the vehicle parts as compared to the owner
of a newer vehicle. This tends to accelerate the vehicle defects,
including brake deformation quicker than the normal condition.
The result is consistent with the previous study that also found a
significant association of vehicle age with severe injuries (Das

et al., 2021). While investigating vehicle type in association with
brake failures, it was found that trucks were more likely to experi-
ence brake failures compared to SUV/pickup based on the magni-
tude of the estimates, whereas the impact of car type was found
insignificant. The estimated odds of fatal/injury resulting from
brake failure occurrence increased by 1.5 and 6.9 times for the
vehicles being SUV/pickup and trucks, respectively. The reason
should be the fact that heavy vehicles carrying huge loads typically
take more braking distance and time, resulting in faster degrada-
tion of brakes as compared to smaller vehicles. The brake failure
occurrences of heavy vehicles while descending on downgrades
are quite frequently reported by the previous study (Moomen,
Rezapour, & Ksaibati, 2019).

While investigating occupant characteristics associated with
brake failure-related crashes, the estimated odds of fatal/injury
increased by 9.5, 11.8, 1.3, and 1.6 times when the occupant was
driver, passenger, middle-aged, and female, respectively. It is rea-
sonable to find higher injury severity of passengers compared to
the driver because of the lower seat belt compliance rate by the
passenger. Although Wyoming has a mandatory seat belt use law
for all occupants, regardless of the sitting position, it seems possi-
ble that the passengers were less likely to wear a seatbelt. A possi-
ble explanation behind higher severe injuries for females could be
greater physiological strength and injury-sustaining capability of
males as compared to females, as argued by O’Donnell and
Connor (1996). Similar results were also found in the previous
studies (Sharmin et al., 2020; Hossain et al., 2022). The deployment
of the airbag is supposed to reduce the injury severity. However, it
was found to increase the estimated odds of fatal/injury by 7.9
times. This is attributed to the fact that airbags typically deploy
with bigger crash impacts. This could be the probable reason
behind higher injury severity. When the occupants have illegal

Table 7
Variance Inflation Factor (VIF) of the investigated variables used in this study.

Variables VIF Values

Vehicle age (>15 years) 1.13
SUV/pickup (involved) 1.22
Truck (involved) 1.07
Driver (present) 1.31
Passenger (present) 1.01
Middle (25 � age � 55) 1.21
Gender (female) 1.12
Airbag (deployed) 1.06
Illegal drugs (involved) 1.05
License type (CDL) 1.45
Citation (at least one) 1.28
Season (summer) 1.08
Day of week (weekends) 1.03
Guardrail (yes) 1.09
Rollover (yes) 1.28
Fixed object (yes) 1.26
Horizontal alignment (curve) 1.45
Downhill grade (yes) 1.40

Table 8
Factors affecting Occupant Injury Severity in Brake Defects-related Crashes.

Variables Estimates Error Credible Interval ICC

2.5% 97.5%

Random Effects
Between-crash variance 2.32 1.29 0.44 2.61 0.41

Estimates Error 2.5% 97.5% OR
Intercept �5.62 0.42 �6.45 �4.82 -
Vehicle Characteristics
Vehicle age (>15 years) 0.57** 0.18 0.23 0.92 1.77
SUV/pickup (involved) 0.39** 0.17 0.05 0.73 1.48
Truck (involved) 1.94** 0.82 0.43 3.65 6.96

Occupant Characteristics
Driver (present) 2.25** 0.26 1.74 2.76 9.49
Passenger (present) 2.47** 0.27 1.95 3.00 11.82
Middle (25 � age � 55) 0.29* 0.17 �0.05 0.63 1.34
Gender (female) 0.47** 0.18 0.11 0.81 1.60
Airbag (deployed) 2.06** 0.24 1.59 2.53 7.85
Illegal drugs (involved) 1.27** 0.53 0.24 2.33 3.56
License type (CDL) 0.47* 0.26 �0.04 0.98 1.60
Citation (at least one) 0.51** 0.21 0.09 0.91 1.67

Crash Characteristics
Season (summer) 0.35** 0.16 0.04 0.66 1.42
Day of week (weekends) 0.28* 0.17 �0.04 0.60 1.32
Guardrail (yes) 0.68* 0.35 �0.01 1.35 1.97
Rollover (yes) 1.34** 0.21 0.94 1.75 3.82
Fixed object (yes) �0.51** 0.22 �0.93 �0.10 0.60

Roadway Geometrics
Horizontal alignment (curve) 0.38** 0.19 0.01 0.75 1.46
Downhill grade (yes) 0.30* 0.19 �0.05 0.65 1.35

Model Statistics
Number of observations 1,415
Effective number of variables, pD 17.7
AUC 0.814

** Variables significant at 95% credible interval.
* Variables significant at 90% credible interval.
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drug involvement and previous citation records, they were more
likely to experience fatal/injury by estimated odds of 3.6 and 1.7
times, respectively. The results were found in compliance with
the previous studies (Haq et al., 2020b, 2021b; Lemp, Kockelman,
& Unnikrishnan, 2011). Saeed, Nateghi, Hall, and Waldorf (2020)
found that a township’s population composition and its abundance
of alcohol-related businesses influence the alcohol-related driving
crash rates. Drivers with CDL license types were found to be
involved in more fatal/injury crashes by the estimated odds of
1.6 times as compared to non-CDL drivers. Commercial motor
vehicles usually carry huge loads, which require immense brake
force to stop and thus increase the possibility of brake failures.

Among the crash characteristics, brake defects were more likely
to be associated with fatal/injury in the summer season and week-
ends by estimated odds of 1.4 and 1.3 times, respectively. The pos-
sible explanations could be the generation of excessive heat during
summer, which makes the brakes susceptible to faster degradation
and significant stress on the brake pads. The result is consistent
with a recent study by Assemi, Hickman, and Paz (2021), which
also found a significant positive relationship of maximum temper-
ature with vehicle defect-related crashes. Brake failures followed
by hitting a guardrail and rollover increased the estimated odds
of fatal/injury by 1.9 and 3.8 times, respectively. However, the
involvement of a fixed object was found to decrease the estimated
odds of occupant fatality or any injury. Such impacts of guardrail
and rollover on severe injuries are commonly reported by previous
studies (Alrejjal, Farid, & Ksaibati, 2021; Haq, Zlatkovic, & Ksaibati,
2021a). It seems possible that crashes involving fixed objects cause
property damage only, resulting in no or minor injury. When it
comes to roadway geometrics, the presence of curve and down-
grade segments were found to increase the estimated odds of
fatal/injury in brake failure-related crashes by 1.5 and 1.4 times,
respectively. Several highways in Wyoming traverse over moun-
tain passes featuring steep downgrades. The significant mountain
passes in the state include US 14, US 16, Teton pass, South Pass,
and US 14 Alternative. The trucks that traverse these mountain
passes typically carry large loads, putting them in a perilous state.
In fact, during certain periods of the year, some mountain passes
only accommodate lower weight limits, whereas others are closed
to traffic completely. Overheating of the brake assembly due to
prolonging the application of the brakes while descending those
downgrades combined with curves should be the main reason for
brake failures to occur and the corresponding severe injuries. Pre-
vious studies also indicated the adverse impacts of such geometry
on occupant injury severities (Sharmin et al., 2022; Haq, Zlatkovic,
& Ksaibati, 2020a; Moomen, Rezapour, Raza, & Ksaibati, 2020;
Rezapour et al., 2019). While comparing safety sensitivity of road-
way characteristics to various highway classes, Chen, Saeed,
Alinizzi, Lavrenz, and Labi (2019) found that crashes at higher-
class highways (e.g., interstates) are more sensitive to: changes
in traffic volume, average vertical grade, median width, inside
shoulder width, and the pavement condition; but less sensitive
to changes in lane width and pavement condition, as compared
to the relatively lower-class highways (e.g., state roads).

6. Conclusions and recommendations

Although the braking system plays a key role in a safe and
smooth vehicular operation, it has not been given proper attention
and, hence, brake failures are still underrepresented in traffic
safety. The current body of literature on brake failure-related
crashes is very limited. Moreover, no previous study was found
to extensively investigate the factors associated with brake failures
and the corresponding injury severity. This study aims to fill this
knowledge gap by examining brake failure-related crashes and

assessing the impacts of brake failures on occupant injury severity.
An extensive exploratory analysis was conducted using 10 years
(2010–2019) of historical crash data along Wyoming highways.

The study first performed a Chi-square analysis to examine the
relationship among brake failure, vehicle age, vehicle type, and
grade type. Three hypotheses were formulated to investigate the
associations between the variables. The result of the first hypothe-
sis suggested that regardless of the type of vehicle (i.e., passenger
cars, SUV/pickups, and trucks) and grade type (i.e., level, downhill,
and uphill), people in older vehicles were more likely to experience
brake failures than those who traveled in newer vehicles. The sec-
ond hypothesis concluded that the brake failure occurrence is NOT
the same across different vehicle types, regardless of the age of the
vehicle and the grade type. This pattern was consistent across var-
ious vehicle age categories, with the exception of a few for uphill
grade categories. Finally, the third hypothesis indicated that the
brake failure occurrence is NOT the same across different grade
types, regardless of age and type of vehicle. The statement was true
across various vehicle types, with exceptions for passenger car cat-
egories. Based on the hypotheses tested for this study, vehicles
aged more than 15 years, trucks, and downhill grade segments
seemed to be highly associated with brake failure occurrences.

To investigate the impacts of brake defects on occupant injury
severity, the study applied Binary logistic regression with the
Bayesian inference approach. The ICC value showed 41% of unex-
plained variation resulted from between-crash variance, indicating
a strong correlation in the injury propensities among occupants
involved in the same brake failure-related crash. The modeling
results quantified the significant impacts of brake failures on occu-
pant injury severity and identified various vehicle, occupants,
crash, and roadway geometrical characteristics. The incidence of
brake failure in a crash significantly contributed to more severe
injuries when combined with any of the following factors: Vehicle
characteristics – age greater than 15 years, truck and SUV/pickup
involvement; Occupant characteristics – being a driver, passenger,
middle-aged, and female, airbag deployment, drugs use, commer-
cial license type, and citation records; Crash characteristics: sum-
mer season, weekends, hitting a guardrail, and rollover; and
Roadway geometrics: horizontal curves and vertical grades.

Based on the findings, several recommendations can be made to
enhance vehicle safety. In the United States, 34 out of 50 states do
not require annual or biennial vehicle safety inspections, and many
of the states that currently require safety inspections are reconsid-
ering the impact of vehicle inspection policies (Das et al., 2021).
Wyoming does not have any periodic safety and emission inspec-
tion program. Therefore, a statewide vehicle inspection program
concentrating on brakes, tires, and engines should be established
to facilitate safety improvements. Driver education programs on
the braking system should be introduced on when to check, main-
tain, and replace defective brakes. A more upgraded Grade Severity
Rating System (GSRS) should be implemented to define safe des-
cent speeds at Wyoming mountain passes since most of the com-
mercial loaded trucks cannot handle such high speeds. WYDOT
should take necessary actions to improve the crash reporting sys-
tems and emphasize the brake failure-related information on a
challenging roadway with a high truck percentage.

Several data limitations and gaps were encountered in this
study. The Wyoming crash database has an underreporting issue
of detailed information associated with vehicle brakes along with
a high discrepancy in brake failure reporting systems. This requires
the demand for better brake defects-related crash data collection,
since highway patrol are not trained to recognize brake defects.
Ongoing and future research will explore more detailed informa-
tion in terms of vehicular model, manufacturing company, emis-
sion system, safety system, advanced driver assistance system
(ADAS), and other features to analyze brake defects.
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a b s t r a c t

Introduction: The concept of normalization of deviance describes the gradual acceptance of deviant obser-
vations and practices. It is founded upon the gradual desensitization to risk experienced by individuals or
groups who recurrently deviate from standard operating procedures without encountering negative con-
sequences. Since its inception, normalization of deviance has seen extensive, but segmented, application
across numerous high-risk industrial contexts. The current paper describes a systematic review of the
existing literature on the topic of normalization of deviance within high-risk industrial settings.
Method: Four major databases were searched in order to identify relevant academic literature, with 33
academic papers meeting all inclusion criteria. Directed content analysis was used to analyze the texts.
Results: Based on the review, an initial conceptual framework was developed to encapsulate identified
themes and their interactions; key themes linked to the normalization of deviance included risk normal-
ization, production pressure, culture, and a lack of negative consequences. Conclusions: While prelimi-
nary, the present framework offers relevant insights into the phenomenon that may help guide future
analysis using primary data sources and aid in the development of intervention methods. Practical
Applications: Normalization of deviance is an insidious phenomenon that has been noted in several
high-profile disasters across a variety of industrial settings. A number of organizational factors allow
for and/or propagate this process, and as such, the phenomenon should be considered as an aspect of
safety evaluations and interventions.
� 2022 The Author(s). Published by the National Safety Council and Elsevier Ltd. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

In January of 1986, after only 73 seconds of flight, Space Shuttle
Challenger broke apart above the Atlantic Ocean. Following the
incident, a Presidential Commission was established with the aim
of uncovering the contributory factors and causes of the disaster.
On a technical level, the vehicle’s disintegration stemmed from
the failure of eroded O-ring seals. This failure enabled the leakage
of hot gas from the right booster rocket, culminating in structural
collapse (NASA, 1986). Given the distinct and apparently avoidable
nature of the failure, the question of why the issue had not been
addressed at an earlier stage prompted an investigation into the
broader context of the disaster, with a specific focus on the organi-
zational factors that enabled the shuttle to be deemed safe for
launch.

The nature of the disaster, coupled with revelations regarding
NASA’s organizational culture, led to the coining of the term
‘Normalization of Deviance’ (NoD) as a means of describing an
individual/group’s general acceptance of deviant actions or
observations (Vaughan, 1996). Since its inception, the concept
has seen extensive application across a broad range of industrial
sectors and has been used to explain a number of other high-
profile industrial incidents (e.g. Texas City Refinery [Dechy,
Dien, Marsden, & Rousseau, 2018], Northwick Park drug trial
[Hedgecoe, 2014]). To date, an extensive synthesis or compila-
tion demonstrating the state of the literature has not been con-
ducted. This is particularly noteworthy given that the category of
high-risk industry is broad and highly varied, encompassing a
diverse range of production aims, operating environments, and
associated risks. As such, a systematic review across this cate-
gory is needed to critically analyze and present how the concept
of NoD has been applied within different settings and examine
whether differences exist in the proposed theory, application,
or intervention.
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1.1. The Space Shuttle Challenger Disaster

A key finding outlined by the investigation into the Space Shut-
tle Challenger Disaster was that NASA and their engineers were in
fact aware of the vehicle’s structural weakness. Signs of erosion on
the primary O-rings (rubber seals preventing the escape of hot
gases between booster rocket segments) had been noted in 14 of
the previous 24 missions across a period of 5 years (Starbuck &
Milliken, 1988). In 9 of the final 10 flights prior to the disaster,
engineers noted erosion on the primary O-rings, as well as evi-
dence of gas leakage in most of these latter cases. The extent of
the damage was further exemplified by evidence of erosion on
the secondary O-rings, which represented a final safety mechanism
and served as a redundant backup (NASA, 1986). These issues were
highlighted by engineers on multiple occasions, however, NASA
managers failed to implement corrective measures, deeming the
risk of potential O-ring failure to be acceptable. Following the dis-
aster, one of the managers responsible for the operations of the
solid rocket boosters stated:

‘Since the risk of O-ring erosion was accepted and indeed expected,
it was no longer considered an anomaly to be resolved before the
next flight . . . the conclusion was, there was no significant differ-
ence in risk from previous launches. We’d be taking essentially
the same risk on Jan. 28 that we have been ever since we first
saw O-ring erosion.’ (Bell & Esch, 1987, p. 44, 47)

While the presence of the problem and its implications were
acknowledged, the prior accumulation of successful launches fos-
tered a tolerance towards the risk posed, enabling the issue to
become relatively normalized. In spite of the increasing frequency
and magnitude of erosion, as well as evidence of improper func-
tioning, sub-contractor Thiokol suggested to NASA that the O-
ring situation be considered ‘closed’ (Starbuck & Milliken, 1988).
They presented the belief that it did not endanger flight safety
and that the problem would not be resolved any time soon. This
is particularly noteworthy given that the O-rings had previously
been categorized as a ‘‘Criticality 1” component, wherein the com-
ponent’s failure is deemed likely to result in the loss of life or vehi-
cle (NASA, 1986). Though the Criticality 1 of the O-rings was
acknowledged as a launch constraint, it was consistently waived
and rationalized as acceptable in light of prior mission successes
(Starbuck & Milliken, 1988). Even on the eve of the launch, sub-
contractor engineers who expressed concern over the potential
for improper sealing under the low forecasted temperatures
(�1 �C) were informed that they would need to provide evidence
for their claims (Starbuck & Milliken, 1988). The engineers did
not have enough data to determine the adequate functioning of
the O-rings below 12 �C due to a lack of tests. This was not
regarded by the leadership as an adequate cause for delaying the
launch, a reluctance likely exacerbated the occurrence of multiple
previous delays (Starbuck & Milliken, 1988).

1.2. Normalization of Deviance (NoD)

Within organizational contexts, safety culture describes an
organization’s collective underlying employee beliefs and values
regarding personal and group responsibilities for safety and risk
management (Everson, Wilbanks, & Boust, 2020). In reviewing
the course of events preceding the Challenger disaster, it appears
the O-ring failure merely represents the final fault within a
sequence of issues on part of NASA’s organizational system. Inter-
nal pressures stemming from financial costs, efficiency, political,
and managerial demands, in concordance with increasing compla-
cency and overconfidence, compromised the organization’s safety
culture and facilitated patterns of procedural deviations and risk

acceptance (Vaughan, 1996). Diane Vaughan, a sociologist investi-
gating the latent causes of the Challenger incident, coined the term
‘Normalization of Deviance’ (NoD) to describe how the compro-
mised safety culture of NASA propagated itself to the point of
disaster.

Vaughan (1996) defined NoD as the gradual process wherein, in
the absence of perceived losses or harm, deviant practices become
acceptable. A prominent feature of the phenomenon is the desen-
sitization process, wherein frequent engagement in deviant prac-
tices facilitates the practice’s normalization and perceived
standardization within everyday operations. This normalized per-
ception sets a new precedent for what is viewed as tolerable and
routine, establishing a new normal from which further deviations
may occur. In the absence of external intervention (e.g., external
audits, change in procedures), this cycle of deviance is disrupted
only when deviant behavior incurs an undesirable outcome.

According to Vaughan (1996), this process of normalized
deviance provided the foundation for the Challenger disaster. The
theory speculates that successes in the absence of overt negative
consequences may cause an organization’s members to develop
overconfident perceptions of infallibility towards their existing
programs, procedures, and leadership. In the case of the Chal-
lenger, risks associated with the shuttle’s structural flaws, though
likely a cause for concern to external observers, became impercep-
tible to many within the organization itself. Dillon, Rogers, Madsen,
and Tinsley (2013) showcase this phenomenon in a temporal map-
ping of shuttle mission anomalies reported before and after each of
the major disasters of the NASA program: Challenger in 1986, and
Columbia in 2003. Data indicate a downward trend in reported
anomalies over time, with initial missions displaying a far greater
incidence of reporting by comparison to subsequent missions that
preceded the disasters. The authors suggest the decrease in anom-
aly reporting likely resulted from anomaly normalization rather
than resolution. With the accumulation of successful missions,
some occurrences initially deemed anomalous became accepted
as normal facets of operations and were no longer reported; imply-
ing that the more frequently an anomaly or near miss was
observed without serious consequence, the greater the perception
that no significant threat was being posed.

The progressive downgrading of anomaly importance was also
discussed in the report published by the Columbia Accident Inves-
tigation Board (CAIB) (2003) following the Space Shuttle Columbia
disaster. As with the Challenger, the downing of the Columbia
resulted from a known issue; the shedding of insulation foam from
one of the fuel tanks, previously observed within at least 30 prior
missions (CAIB, 2003). While originally considered an in-flight
anomaly, it does not appear to have been deemed a serious risk
to flight safety. In fact, the frequency of observed shedding caused
its significance to be downgraded from an in-flight anomaly to a
so-called ‘action item’ only months prior to the disaster (CAIB,
2003). On the first of February 2003, a piece of foam debris hit
the wing of Space Shuttle Columbia, puncturing a hole in the lead-
ing edge of the wing, and causing damage which proved terminal
upon re-entry into the atmosphere.

1.3. System approach

Following the aftermath of the Challenger disaster, work by
Vaughn proved a crucial contribution to the growing literature
looking into accident causation as a product of complex systems.
Banja (2010) notes that major disasters such as those of the space
shuttles cannot be attributed to singular actions or individuals.
They instead require the commission of numerous, often innocu-
ous, mistakes that breach the organization’s defenses. On this
basis, it was understood that investigations and interventions
should focus on systematic or latent errors, rather than attempt
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to pinpoint active individual errors. Reason (2000) describes how
these latent errors foster an environment where error-provoking
conditions (e.g., time pressure, inexperience) increase the likeli-
hood of active failures (e.g., slips, procedural violations), whilst also
undermining established safety measures that typically prevent
hazards from resulting in losses (e.g., untrustworthy alarms, poorly
designed procedures). The shuttle disasters, though physically
speaking the product of technical failures, stemmed from issues
relating to cognitive biases (i.e., the human vulnerability for sys-
tematic errors in information processing, perception and subse-
quent decision making; Kahneman, 2011). High-risk
environments such as that of NASA, where technical problems
and anomalies are part of the norm rather than an exception, are
therefore particularly vulnerable to fostering desensitized percep-
tions of risk.

1.4. Industrial application

Following its inception within the aerospace industry, the con-
cept of NoD has seen widespread application across numerous
other high-risk industries, including oil and gas (Bogard, Ludwig,
Staats, & Kretschmer, 2015), nuclear (Sanne, 2012), aviation
(Paletz, Bearman, Orasanu, & Holbrook, 2009), and healthcare
(Banja, 2010). As in the space shuttle disasters, the concept has
been utilized to explain how deviant behaviors may become nor-
malized within organizational contexts. Individuals engaging in
deviant actions often appear largely unaware of their deviations
or feel their deviance is justified; in either instance, their ability
to accurately perceive and comprehend risk is compromised
(Banja, 2010; Cavnor, 2018; Hase & Phin, 2015). Given the hazards,
intrinsic safety concerns, and production pressures prevalent
among high-risk industries and work environments, there is con-
siderable interest in understanding the human mechanisms that
may unknowingly propagate and facilitate unwanted outcomes.

Reviews of research into other phenomena such as teamwork
and design characteristics have highlighted the significance of
context-based variations with regards to industrial factors such
as technology level, the focus of service, and the nature of produc-
tion (Carter et al., 2019). To fully understand and utilize the NoD
concept it is therefore important to synthesize research across a
number of relevant high-risk domains to help ascertain the bound-
aries of the phenomenon and identify relevant commonalities,
potential outliers, and general areas of interest that may help guide
future research and intervention.

1.5. Aim

In recent years there has been a notable increase in the number
of research papers on the topic of NoD from within various indus-
try contexts. However, the majority of this research has been con-
ducted independently and in isolation, with a lack of a defined
overall theory. The present systematic review has the following
objectives:

� Synthesize the existing literature in order to identify commonly
discussed themes and components relevant to normalization of
deviance.

� Determine the extent to which the central concept and associ-
ated factors can be generalized across high-risk industrial
contexts.

� Identify gaps in the literature and develop suggestions for
future research directions.

� Develop a preliminary conceptual model that would represent
the manifestation and propagation of the NoD phenomenon
within high-risk industry contexts.

2. Method

2.1. Search method

The literature search was conducted in February 2021. Four
major databases were searched (Scopus, ProQuest, Web of Science,
and Science Direct), using search terms: ‘‘normalization of
deviance” OR ‘‘risk normalization” OR ‘‘normalization of risk” OR
‘‘deviance normalization” OR ‘‘normalization of deviance” OR ‘‘risk
normalization” OR ‘‘normalization of risk” OR ‘‘deviance normal-
ization.” Risk normalization terms were included in the search cri-
teria due to the concept’s close association with NoD. All search
results were then compiled, with all inter and intra database dupli-
cates removed. The total number of unduplicated search results
was 147.

2.2. Selection process

Based on the search criteria, 147 papers were identified. A two-
step sifting process was then undertaken as seen in Fig. 1. Both sift-
ing stages involved the application of exclusion criteria based on
the title and abstract of the identified papers (as recommended
in Siddaway, Wood, & Hedges, 2019). At the first stage, exclusion
criteria related to the availability of the text, with four search
results removed due to the unavailability of both the abstract
and full text. A further 27 results were removed for being unrelated
to NoD or risk normalization, as defined by Vaughan (1996). Specif-
ically, these studies focused on biological normalization.

Of the remaining 106 search results, a further 40 were removed
during the second sift where, based on the title and abstract,
papers were excluded if they did not investigate NoD within
high-risk industries. This choice of exclusion was due to the pre-
sent review’s focus on investigating safety-related deviations
specifically within high-risk industries. While the NoD phe-
nomenon is applicable across other industrial settings (e.g.,
finance, project management, retail) the motivations and conse-
quences for deviating and risk normalization are likely to differ
in the absence of overt physical safety concerns (Banja, 2010).
High-risk industries, therefore, present a varied, but somewhat
more homogenous, industry focus that more closely reflects the
environment of NASA from which NoD originates. For the purposes
of the present review, high-risk industries were defined as falling
into categories such as transport (e.g., aviation and rail), health-
care, and process industries. As such, papers were excluded from
further analysis if either the high-risk industrial setting was not
apparent from the abstract, or if both industry and safety were
not referenced in a relevant capacity.

At the final selection stage, the full text of the remaining studies
was interrogated. Studies for which the full text was inaccessible
or unavailable (20), were removed. The full texts of the remaining
studies were then analyzed against the criteria from the initial
sifts, with the further removal of studies that did not refer to
NoD or risk normalization within the text. Four studies were
removed due to a lack of clarity on the application of the concept,
with insufficient detail available for meaningful analysis. To avoid
repetition and maintain focus on the development of the phe-
nomenon since its inception within the aerospace industry, a fur-
ther four studies were excluded for solely discussing NoD with
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Fig. 1. Literature Selection Process Flow Chart.
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reference to the space shuttle disasters. Finally, studies focusing on
the normalization of deviance with no focus on safety were also
excluded from further analysis.

2.3. Quality assessment

Out of the 33 articles meeting all of the above criteria, 27 were
journal articles, 4 were articles from conference proceedings, 1 was
a book chapter, and 1 was a master’s thesis. Due to the nature of
the existing literature on NoD being mostly conceptual in nature,
as well as the aim of the present review being to understand the
conceptualization of the phenomenon within the academic litera-
ture, no specific assessment tool of literature quality was used.
These rely on evaluating the empirical integrity of studies based
on factors relating to the research’s validity and reliability
(Siddaway et al., 2019); factors that are not applicable to concep-
tual papers or case studies. Instead of utilizing a quality assess-
ment tool, presence within the aforementioned scientific
databases (Scopus, ProQuest, Web of Science, and Science Direct)
was used as a criterion of academic quality and therefore academic
literature. Information on the publication and evidence type of
each included study is displayed in Table 1.

3. Analysis

To comprehend the complex internal dynamics of high-risk
industries, analysis required that the literature be broken down
into comprehensive conceptual categories/components. As sug-
gested by Hsieh and Shannon (2005) a directed content analysis
approach (a method for summarizing large quantities of text via
fewer content categories [Weber, 1990]) was used. This theoretical
conceptualization of the phenomenon was used as a guide for the
initial identification, coding, and categorization of data, as well as
the subsequent development of an initial conceptual framework
intended to encapsulate the reported interactions between the
identified components.

Given that the majority of the identified literature did not solely
focus on the phenomenon of NoD, the coding strategy within the
present review required the initial identification of relevant text
extracts from within each paper (as suggested in Hsieh &
Shannon, 2005). These were identified by reading through the
entire text and extracting sections which, directly or implicitly, ref-
erenced and/or discussed the NoD phenomenon. Sections were
gathered and organized in a Microsoft Word document and were
then coded by the first author on the basis of their semantic mean-
ing, relevance, and relationship to NoD. Extract coding and subse-
quent categorization followed an inductive approach, with each
code being generated on the basis of the content of the identified
extracts (n = 25). Extracts and initial codes were discussed with
the research team to explore the potential higher-order categories
(n = 10), which were developed through the amalgamation of
semantically/categorically similar codes (Elo & Kyngäs, 2008).
Through the process of abstraction (Elo, Kääriäinen, Kanste,
Pölkki, Utriainen, & Kyngäs, 2014), these categories were further
refined until representative overarching categories encompassing
the phenomenon as described and discussed across the identified
literature were developed (n = 7). Individual category names were
determined by conventional terminology used within the texts
(e.g., production pressure, leadership), or were generated using
phraseology intended to describe the category’s subject matter
(e.g., lack of negative consequences). Table 2 presents an overview
of the components identified across the included studies. All com-
ponents were represented across the main industrial sectors; how-
ever, some variations in component frequency across industries
did emerge. These are discussed in section 4.2 Industry Comparison.

To encapsulate the identified components from the current
review and portray the nature of their interactions as illustrated
across the identified literature a conceptual framework was devel-
oped (as seen in Fig. 2). The showcased component interactions
within the framework were developed inductively through the
re-reading of coded excerpts and the identification of reported
links and interactivity.

The following excerpt from Arendt and Manton (2015) offers an
example of the type of content that informed this identification:

‘‘In this case, a senior operating manager put extreme pressure on
his staff and workforce to generate production and numerous deci-
sions were evident that put safety behind economics. This resulted
in a low sense of vulnerability in operating staff due to the apparent
priority of safety behind production. The low sense of vulnerability
led to a ‘‘superman complex” on the part of some operations staff
that encouraged workarounds. . .”

The example excerpt portrays the components of leadership,
production pressure, and risk normalization, and indicates their
interactions. In this instance, the authors report how leadership
actions were directly associated with increased production pres-
sure and a low sense of vulnerability (amalgamated into risk nor-
malization), resulting in subsequent workarounds among
operating staff (deviances). All of these reported links can be noted
within the present framework.

Four of the identified components (production pressure, proce-
dure/environment design, leadership, and culture) displayed a
notable number of interactions with one another and were
reported to have similarly influential relationships on other ele-
ments within the framework, acting as moderating factors. Conse-
quently, while maintained and discussed individually in terms of
their features, relevance, and influence on NoD, these were
grouped under the broader label of ‘Organizational Factors.’

4. Discussion

The aim of the present systematic review was to synthesize the
existing literature on the topic of safety-related NoD within high-
risk industrial settings. It is made evident throughout the literature
that the nature of deviance and NoD is highly complex within
industry contexts, wherein a multitude of factors pertaining to
organizational, social, and technical processes contribute to the
phenomenon (Cavnor, 2018). These are influential to the develop-
ment and propagation of NoD across its different components. Fac-
tors such as production pressure have the potential to influence a
range of outcomes, including the likelihood of normalizing risk,
the likelihood of deviating from set procedures, and the likelihood
of initiating a pre-emptive response following a deviation. Within
the present review, we have represented these interactions
through the use of an initial conceptual framework which expands
upon previous models of NoD by integrating the phenomenon of
risk normalization. While these findings are only preliminary,
and somewhat limited by the scope and nature of the phe-
nomenon’s academic literature, the framework may help in guid-
ing further analysis with primary data sources.

4.1. Conceptual framework

The conceptual NoD framework (Fig. 2) offers a visual represen-
tation of the flow path an organization or a group may take from
normal operations to the onset of a loss event as illustrated across
the identified literature. As within previous models (Hajikazemi,
Aaltonen, Ahola, Aarseth, & Andersen, 2020; Heimann, 2005), the
present framework illustrates a cyclical progression, where the
propagation of NoD is essentially self-sustaining. The cycle is main-
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Table 1
Normalisation of Deviance Literature Categorised by Industry Sector and Evidence Type.

Study Title Industry
Sector

Evidence Type

Arendt and Manton
(2015)

Understanding Process Safety Culture Disease Pathologies - How to Prevent, Mitigate and Recover
From Safety Culture Accidents

Process
Industry*

Conference proceedings - Summary of 3 case studies evaluating process safety
culture

Banja (2010) The Normalization of Deviance in Healthcare Delivery Healthcare Journal article - Conceptual article
Bloch and Williams

(2004)
Normalize Deviance at Your Peril Oil and Gas Journal article - Case study of condenser failure at a major refinery

Bogard et al. (2015) An Industry’s Call to Understand the Contingencies Involved in Process Safety: Normalization of
Deviance

Oil and Gas Journal article - Conceptual article

Cavnor (2018) Fighting the Fire in Our Own House: How Poor Decisions are Smoldering Within the U.S. Fire Service Firefighting Thesis – Policy and incident analysis
Creedy (2011) Quantitative Risk Assessment: How Realistic are Those Frequency Assumptions? Process

Industry*
Journal article - Conceptual article

Dechy et al. (2018) Learning Failures as the Ultimate Root Causes of Accidents Generalised
Industries**

Book chapter - Conceptual article

Everson et al.
(2020)

Exploring Production Pressure and Normalization of Deviance and Their Relationship to Poor Patient
Outcomes

Healthcare Journal article - Meta-synthesis of 7 qualitative closed claims studies from
anesthetise database

Furey and Rixon
(2018)

When Abnormal Becomes Normal: How Altered Perceptions Contributed to the Ocean Ranger Oil Rig
Disaster

Oil and Gas Journal article - Case study of the Ocean Ranger disaster

Geisz-Everson et al.
(2019)

Cardiovascular Complications in Patients Undergoing Noncardiac Surgery: A Cardiac Closed Claims
Thematic Analysis

Healthcare Journal article - Incident report analysis (34 malpractice claims)

Golinski and
Hranchook
(2018)

Adverse Events During Cosmetic Surgery: A Thematic Analysis of Closed Claims Healthcare Journal article - Incident report analysis (25 incident claims)

Hase and Phin
(2015)

The Normalisation of Deviance in the Oil and Gas Industry: The Role of Rig Leadership in Success and
Failure

Oil and Gas Conference proceedings - Conceptual article

Hedgecoe (2014) A Deviation From Standard Design? Clinical Trials, Research Ethics Committees and the Regulatory
Co-construction of Organizational Deviance

Healthcare Journal article - Case study into a failed UK drug clinical trial

Heimann (2005) Repeated Failures in the Management of High Risk Technologies Generalised
Industry**

Journal article - Conceptual article

King (2010) To Err is Human, to Drift is Normalization of Deviance Healthcare Journal article - Conceptual article
Mast (2018) Summary of the King County, Washington, West Point WWTP Flood of 2017 Process

Industry*
Conference proceedings - Case study into a major failure at a wastewater
treatment plant

McNamara (2011) The Normalization of Deviance: What are the Perioperative Risks? Healthcare Journal article - Conceptual article
Mize (2019) The Roundabout Way to Disaster: Recognizing and Responding to Normalization of Deviance Chemical Journal article – A collection of case studies illustrating NoD within chemical

industries
Naweed et al.

(2015)
Are You Fit to Continue? Approaching Rail Systems Thinking at the Cusp of Safety and the Apex of
Performance

Rail Journal article - Observation of driving and interviews, focus group interviews,
scenario simulation exercise (28 participants)

Naweed and Rose
(2015)

It’s a Frightful Scenario: A Study of Tram Collisions on a Mixed-Traffic Environment in an Australian
Metropolitan Setting

Rail Journal article - Accident report review, observation, focus group exercise,
interview (23 participants)

Odom-Forren
(2011)

The Normalization of Deviance: A Threat to Patient Safety Healthcare Journal article - Conceptual article

Paletz et al. (2009) Socializing the Human Factors Analysis and Classification System: Incorporating Social Psychological
Phenomena into a Human Factors Error Classification System

Aviation Journal article - Interviews (28 participants)

Pannick et al.
(2017)

Translating Concerns Into action: A detailed Qualitative Evaluation of an Interdisciplinary
Intervention on Medical Wards

Healthcare Journal article - Qualitative evaluation of an intervention (ethnography and 2
focus groups)

Price and Williams
(2018)

When Doing Wrong Feels so Right: Normalization of Deviance Healthcare Journal article - Conceptual article

Prielipp et al. 2010) The Normalization of Deviance: Do We (Un)Knowingly Accept Doing the Wrong Thing? Healthcare Journal article - Conceptual article
Quinn (2018) When ‘‘SOP” Fails: Disseminating Risk Assessment in Aviation Case Studies and Analysis Aviation Journal article - Conceptual article
Ruault et al. (2013) Sociotechnical Systems Resilience: A Dissonance Engineering Point of View Rail Conference proceedings - Case study of a railway accident
Sanne (2012) Learning From Adverse Events in the Nuclear Power Industry: Organizational Learning, Policy Making

and Normalization
Nuclear Journal article - Conceptual article

Scott et al. (2017) Countering Cognitive Biases in Minimising Low Value Care Healthcare Journal article - Narrative review of PubMed original articles on cognitive
biases in clinical decision making

Simmons et al.
(2011)

Tubing Misconnections: Normalization of Deviance Healthcare Journal article - Review of 116 case studies within 34 reports

(continued on next page)
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tained by the factors and conditions present within a given system,
in this instance the high-risk industry context. In the absence of
losses or negative consequences, and without adequate pre-
emptive response to near-miss events, deviations and their associ-
ated risks become normalized through a feedback loop influenced
by prevailing organizational factors (e.g., procedural shortcuts/-
corner cutting repeatedly carried out in order to benefit production
outputs). In this regard, individual instances of deviations may not
be explicitly harmful, rather, it is the cumulative degradation of
operating procedure that increases the likelihood of a major loss
event.

Each of the identified framework components is defined and
explored in relation to the relevant literature. These components
should be understood as largely non-linear in their interactions,
wherein the degrees of overlap and cumulative contribution is
likely to vary depending on the specific industry contexts. For the-
oretical purposes, it should be assumed that the initial develop-
ment of NoD within organizations begins when a pattern of
deviating from an initial procedural baseline is first sustained.

4.1.1. Risk normalization
Existing literature typically uses the term risk normalization to

describe the desensitization to risks present within one’s environ-
ment, and in broader contexts offers an explanation for how soci-
eties come to accept known risks in order to remain operational.
Schweitzer and Mix (2018), for example, discuss how risks associ-
ated with nuclear energy were largely normalized within French
mainstream media in response to the 2011 Fukushima disaster.
Public support for nuclear energy was generally unfazed following
the incident, which Schweitzer and Mix rationalize to be largely
due to the nation’s heavy dependence on nuclear energy. Similarly,
Luís et al. (2015) observed that increased awareness of coastal haz-
ards appeared to inversely correlate with perceptions of risk
regarding the phenomena; an effect that was particularly strong
among permanent coastal residents. In this regard, normalization
of risk may be largely seen as an adaptive response, facilitating
functionality in the presence of circumstances outside one’s con-
trol (Stave & Törner, 2007). In the industrial context, Stave and
Törner refer to several organizational preconditions that aid in nor-
malizing the presence of risk, citing, for example, how operators
are often assigned high levels of personal responsibility despite
possessing low levels of actual control over their environments
and performance of tasks.

A core feature of the present theoretical framework is its inte-
gration of risk normalization within the NoD phenomenon, with
risk normalization being accounted for as a contributory precursor
to the initiation and subsequent acceptance of deviances. Though
deviances may occur in the absence of risk normalization, it is unli-
kely that behaviors will be repeated if their associated risks are
continuously perceived to be high. Risk normalization thus
requires that individuals develop an increased risk threshold/toler-
ance wherein they lose the ability to accurately perceive vulnera-
bilities within their physical or procedural operating systems.

Periods of perceived successes, or at a minimum, periods absent
of negative events may further encourage a loss of perceived vul-
nerability by increasing complacency and overconfidence in the
safety of operations and the environment (Hase & Phin, 2015;
Mast, 2018). Organizations that maintain a history of success
may come to be perceived as ‘‘too big to fail” (Hedgecoe, 2014).
Arendt and Manton (2015) describe this as a ‘‘superman complex,”
wherein a lack of attention to risk and safety prevents workers
from perceiving vulnerabilities within themselves and their envi-
ronment. Banja (2010) clarifies this illusion of invulnerability by
pointing out that inherent system deviations, flaws, and weak-
nesses are generally inevitable, it is however the unpredictabilityTa
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Table 2
Distribution of NoD components across the identified literature.

Industry Sector Study Organisational Factors

Risk
Normalisation

Production
Pressure

Procedure/ Environment
Design

Leadership Culture Lack of Negative
Consequences

Pre-emptive
Response

Energy/
Process

Chemical Mize (2019) X X X X X
Nuclear Sanne (2012) X X X
Oil and Gas Bloch and Williams (2004) X X X

Bogard et al. (2015) X X X X X
Furey and Rixon (2018) X X X X X
Hase and Phin (2015) X X X

Process Industry* Arendt and Manton (2015) X X X X X
Creedy (2011) X X X
Mast (2018) X X

Healthcare Banja (2010) X X X X X X
Everson et al. (2020) X X X
Geisz-Everson et al. (2019) X X
Golinski and Hranchook
(2018)

X X

Hedgecoe (2014) X X X X X
King (2010) X
McNamara (2011) X X X
Odom-Forren (2011) X X X X
Pannick et al. (2017) X
Price and Williams (2018) X X X X X X
Prielipp et al. (2010) X X X X
Scott et al. (2017) X X
Simmons et al. (2011) X X
Wilbanks et al. (2018) X

Other Aviation Paletz et al. (2009) X X
Quinn (2018) X

Firefighting Cavnor (2018) X X X X X
Food Processing Stave and Törner (2007) X X
Generalised
Industries**

Dechy et al. (2018) X X X
Heimann (2005) X X X
Stergiou-Kita et al. (2015) X X X X

Rail Naweed et al. (2015) X X X
Naweed and Rose (2015) X X
Ruault et al. (2013) X

Note. X denotes the component(s) that were identified within each study, and which contributed to the conceptual framework.
* Industrial sector identified solely as process industry.
** Study either has no specific industrial focus, or the focus is not stated.

N
.Sedlar,A

.Irw
in,D

.M
artin

et
al.

Journal
of

Safety
R
esearch

84
(2023)

290–
305

297



and infrequency with which these result in serious incidents that
encourages complacency.

Under such circumstances, desensitization to hazards can lead
to the acceptance of increasing levels of risk. Hase and Phin
(2015) describe this process as relatively mundane, innocuous,
and largely imperceptible, given the gradual manner in which it
develops. Creedy (2011) moreover highlights the temporal nature
of the phenomenon in observing how deviations in standard oper-
ating procedure often parallel the time elapsed following a past
incident. Paletz et al. (2009) similarly outline the dangers of com-
placency among experienced pilots, who report becoming accus-
tomed to the risks of flying in bad weather conditions, and
demonstrate greater engagement in risky behavior than their less
experienced counterparts.

An additional variable that has been noted to impact percep-
tions of risk is the introduction of new protective measures or sys-
tem safety barriers. These represent the physical and non-physical
initiatives used to enhance the safety of operations and mitigate
unwanted outcomes. The introduction of a new protective measure
generally increases perceived safety, which may unwittingly
encourage employee perceptions of system invulnerability (Mize,
2019; Prielipp, Magro, Morell, & Brull, 2010). In other words, new
protective measures may be viewed as solutions rather than fail-
safes to known problems. Their introduction may therefore incen-
tivize deviations in an attempt to bypass prior safety demands and

maximize production efficiency (Banja, 2010; Mize, 2019; Prielipp
et al., 2010).

4.1.2. Organizational factors
For the purposes of the present model, several of the identified

components are encapsulated under the category of organizational
factors; specifically, the components of production pressure, proce-
dure/environment design, leadership, and culture. These compo-
nents, and their relevance within the organizational context,
were often discussed in tandem, and as interconnected facets
which are influential on one another. From the organizational
standpoint, it is the accumulation of these organizational compo-
nents that contributes to the normalization of risk, propagation
of deviance, and failure to respond adequately to early warning
signs (i.e., pre-emptive response).

4.1.2.1. Production pressure. Broadly speaking, production pressure
refers to both overt and covert organizational demands and
emphasis on output efficiency (Everson et al., 2020). Issues with
production pressure typically arise due to conflicts between the
demands of safety and production. This conflict is complex and
well documented within the realm of high-risk industries where
production pressure is commonly discussed as a key contributory
factor in industry accidents (Goh, Love, Brown, & Spickett, 2012;
Mohammadi & Tavakolan, 2019; Probst & Graso, 2013).

Fig. 2. Conceptual Framework of NoD Based on the Present Systematic Review. Note. (n) represents the number of individual studies within which the category was
identified.
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The consensus across the high-risk industry safety literature is
that.

production pressure and safety are akin to antagonist agents,
whereby increased attention to one often causes detriment to the
other (Cavnor, 2018). This idea has been discussed further by
Heimann (2005) with reference to type I and type II errors. In prin-
ciple, high-risk industries are generally cited as being averse to
committing Type I errors (active errors of commission), where
implementing an incorrect policy or course of action results in fail-
ure. Heimann (2005) notes that Type I error aversion is indeed
often present initially within organizations, which typically begin
operating with low thresholds of risk tolerance so as to create
the impression of a functionally safe system. Under such condi-
tions, accidents are generally infrequent and less severe, which
encourages focus to shift towards the elimination of Type II errors
of omission (e.g., the use of unnecessary measures that are costly
to efficiency and productivity). This desire for increased productiv-
ity and efficiency acts as the driving force for deviations and short-
cuts to be undertaken by operators (Dechy et al., 2018).

In the absence of immediate negative outcomes, organizations
and individuals may become susceptible to the aforementioned
influence of risk normalization and may feel justified in re-
evaluating and altering their potentially costly and overly ‘conser-
vative’ thresholds. As a result, a so-called ‘‘cycle of failure” is prop-
agated, wherein continued deviation from initial standards in
pursuit of efficiency ultimately culminates in major failure
(Heimann, 2005).

Naweed, Rainbird, and Dance (2015) and Naweed and Rose
(2015) reference how organizations within the rail industry
emphasize punctuality and ‘on-time performance,’ describing the
heightened pressure experienced by operators running behind
schedule as a condition under which they report greater suscepti-
bility to taking shortcuts and violating procedures to recover lost
time. Specifically, Naweed et al. (2015) note that driver interpreta-
tion of signals has shifted over time in order to facilitate faster train
movement. This behavior has increased the likelihood of ‘signal
passed at danger’ (SPAD) events, wherein a train passes a stop sig-
nal without explicit allowance to do so; a practice which, when
performed frequently, is associated with an increased risk of
derailment or collision.

Pressures associated with having to accomplish more with less
are exemplified in a number of other cases throughout the litera-
ture, such as Mize (2019) who outlines a case of operators within
a chemical plant violating standard procedure to meet increasing
production targets, and Cavnor (2018) who notes evidence of fire-
fighters skipping safety checks prior to entering compromised
structures to achieve tactical goals more efficiently. Within health-
care, McNamara (2011) and Arendt and Manton (2015) cite man-
agerial and institutional pressures on productivity and
maintenance of the operating room on schedule as factors typically
accountable for the introduction of deviations. Clinicians may, for
example, disconnect vitality monitors prior to the end of a proce-
dure, or before a patient has fully emerged from anesthesia, in
order to speed up the turnover process (Prielipp et al., 2010). How-
ever, Bogard et al. (2015) state that these shortcuts and deviations
rarely result in serious process safety issues and often directly
facilitate the organization’s target progression.

It is important to also acknowledge, however, that the relation-
ships between production pressures, safety, and Type I and II errors
vary across individual industries. Specifically, it is somewhat more
complicated in occupations such as healthcare and firefighting
where circumstances may cause production pressures to be explic-
itly tied to physical safety. In these contexts, both Type I and Type
II errors may result in harm or loss of life, either through the initi-
ation of incorrect/unsafe treatment, or the withholding of correct
treatment (Price & Williams, 2018). In this regard, motivations

for deviating may differ in some respects from traditional process
industries given that production demands are directly concerned
with minimizing the harm done. Insights from clinician reports
regarding their rationale for procedural deviations reflect this, with
individuals often citing a desire to minimize patient discomfort
and eliminate unnecessary or counterproductive measures as
being justification for procedural deviations (Banja, 2010; Scott,
Soon, Elshaug, & Lindner, 2017).

Deviations guided by a patient-centric or ‘greater good’
approach may provide justification for the normalization of short-
cuts, given the perception that these might offer a means of attend-
ing to more patients, or provide the opportunity to prioritize those
with more serious conditions (Price & Williams, 2018). Cavnor
(2018) similarly notes a form of ‘melioration bias’ (a tendency
towards alternatives seen as preferable in the short-term) in regard
to certain operating procedures; namely the correct wearing of
PPE, which firefighters have claimed hinders movement and
impedes life-saving action.

Among process industries, common generalized instances of
justified deviance may be observed in shortcuts performed by
operators seeking to improve productivity; not for explicit and
immediate personal gain, but rather as a means of satisfying
broader organizational demands (Mize, 2019). These deviations,
intended to maximize productivity, may be further compounded
by a pre-existing rule ambiguity and unfamiliarity, particularly
for tasks that do not involve standardized checklists (Banja,
2010; Mize, 2019; Stergiou-Kita et al., 2015).

4.1.2.2. Procedure/Environment Design. Within many high-risk
industries, special considerations must be made for the design of
both the physical work environment and the nature of processes
and procedures in order to facilitate productivity and reduce risk
(Gambatese & Hinze, 1999; Marsden & Green, 1996; Park & Jung,
2003; Reuter & Camba, 2017). These considerations may include
placing emphasis on computerization and automation to stream-
line processes and reduce workload (Marsden & Green, 1996;
Park & Jung, 2003; Wang & Ruxton, 1997), standardizing operating
procedures (Kurt, Arslan, Comrie, Khalid, & Turan, 2016), and eval-
uating and making provisions for fail-safes that will mitigate unin-
tentional error or sudden failure (Garrick & Morey, 2015).

Procedures are agreed-upon methods of work, intended to
ensure that tasks are performed in an efficient, controlled, and safe
manner (Marsden & Green, 1996). Issues with procedures gener-
ally arise when these are deficient in designating activities or
enabling the successful accomplishment of tasks (i.e., due to being
inaccurate, outdated, incomplete, or overly complex and demand-
ing; Park & Jung, 2003).

Throughout the identified literature, inappropriate implemen-
tation of procedures and poor environmental designs were fre-
quently cited as contributory to the initiation and maintenance
of deviant behavior. The reasoning provided was that under time
and production constraints, procedural or environmental limita-
tions often provide justification for deviances and violations
(Mize, 2019; Price & Williams, 2018); with some operators arguing
that perfect compliance to rules and standards makes it impossible
to achieve productivity demands (Banja, 2010).

Price and Williams (2018) state that the very presence of
deviance inherently signals potential flaws within a system’s envi-
ronment or work process. In reference to healthcare, they illustrate
how factors such as inconveniently placed hand hygiene stations
decrease hygiene compliance, and even minor obstacles such as
malfunctioning barcode scanners disrupt entire workflows and
prompt the skipping of the scanning process in order to achieve
on-time administration of medication.

In some organizations, Quinn (2018) argues that rather than
amending poor procedure and environmental design, deviances
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become a normalized and expected practice intended to ‘‘fill in the
gaps” of standard operating procedures. In other instances, there
may be an initial lack of overt procedural rules or adequate
resources that precipitates compensatory individual and team
solutions (Cavnor, 2018; Hedgecoe, 2014; Stave & Törner, 2007).

A further weakness explicitly referenced within the literature is
that of maladaptive alarm/warning system design resulting in the
experience of alarm fatigue. Bogard et al. (2015) highlight how
overexposure to alarms causes desensitization and loss of vulnera-
bility towards these. Frequent alarm exposure, particularly when
false, normalizes the alarm presence as routine, prompting a lack
of response. Poor implementation of an alarm system may also
encourage procedural deviations intended to circumvent system
activation, as evidenced in the railway industry where cautionary
signals have been largely devalued by drivers. Naweed et al.
(2015) report that on some journeys it is routine to operate in a
continuous ‘‘alarmed” state without ever being clear of cautionary
signals.

4.1.2.3. Leadership. Within organizational contexts, leadership
describes a variety of multifaceted management roles that encom-
pass a range of responsibilities, styles, and behaviors depending on
the context and the leader’s respective level of responsibility
(Denis, Langley, & Rouleau, 2010; Pilbeam, Doherty, Davidson, &
Denyer, 2016). Senior management and leadership are responsible
for a range of decision-making directly associated with safety,
including training and resource allocation and investment, over-
sight, scheduling, and maintenance of equipment (Kelloway,
Nielsen, & Dimoff, 2017; Reason, 2000), as well as role modeling
and influencing worker attitudes and behavior (Flin & Yule, 2004;
Pilbeam et al., 2016).

Reason (2000) has been particularly critical of the role of lead-
ership, identifying decision makers and line management as a core
element of any productive system. Reason further argues that
many organizational accidents can be traced back to deficiencies
in managerial decision-making. Similarly, within the identified lit-
erature, Everson et al. (2020) describe the nature of an organiza-
tion’s safety culture to be largely determined by the approaches
taken by executive leadership. Mize (2019) notes that it is the lead-
ership of an organization that is responsible for setting expecta-
tions for employee attitudes and behavior, with the responsibility
of providing sufficient training and reinforcement of operational
discipline. In this regard, leadership failures in the maintenance
of a system’s risk mitigation often play a crucial role in facilitating
NoD (Bogard et al., 2015). Actions by leadership are generally per-
ceived as having top-down consequences, wherein poor leadership
decisions are filtered through the various levels of an organization,
causing damage to an organization’s operational safety and general
safety culture (Hase & Phin, 2015).

Supervisors may, for example, avoid or choose not to discipline
operators who engage in shortcuts and deviations in order to sim-
plify processes, reduce workloads and increase production speed
(Bogard et al., 2015). To conserve resources, some organizations
may also fail to provide adequate training by limiting the amount
of time available for operators to familiarize themselves with new
tools or procedures (Geisz-Everson, Jordan, Nicely, & McElhone,
2019), or in some cases, through the active teaching of already nor-
malized shortcuts and deviations (Banja, 2010; Odom-Forren,
2011). A key issue here is that in such instances deviations per-
formed by authority figures typically go unchallenged
(McNamara, 2011).

Actions such as these facilitate NoD by instilling a ‘‘production
over safety mindset” when led by the example of decision-
making authority figures (Cavnor, 2018). When an organization
places excessive demand on economics, leadership may fail to
uphold process safety as a core value, resulting in the dismissal

of warning signs and the encouragement of workarounds in the
interest of production (Arendt & Manton, 2015; Dechy et al.,
2018). Younger, and more inexperienced employees are particu-
larly vulnerable to production demands given their limitations in
power, agency, and inability to accurately comprehend or question
safety procedures (Banja, 2010; Stergiou-Kita et al., 2015). Further-
more, it is suggested that observations of issues and weaknesses
may be minimized when reported to supervisors/higher authori-
ties due to a fear of repercussion or punitive action from leadership
and/or a general lack of confidence that voicing concerns would
lead to actual change (Banja, 2010; Furey & Rixon, 2018; Odom-
Forren, 2011).

4.1.2.4. Culture. Culture describes the collective nature of an orga-
nization’s underlying values, beliefs, expectations, and perceptions
that guide and inform individual and group behaviors and prac-
tices (Everson et al., 2020; Van den Berg & Wilderom, 2004). Van
den Berg and Wilderom (2004) describe organizational culture as
the ‘‘glue” which binds together an organization. When it comes
to NoD, the significance of culture is pertinent with regard to
understanding how formal and informal attitudes and decision-
making processes enable deviances to take place and be normal-
ized. As previously mentioned, within Vaughan’s investigation,
understanding the culture within NASA as a social organization
was crucial to helping identify the rationale and motivations, par-
ticularly from a managerial standpoint, behind the decision-
making that took place prior to the disaster. Vaughan specifically
outlined how NASA’s culture was one with a ‘‘major preoccupa-
tion” with bureaucracy, which failed to realistically account for
safety, cost, efficiency, and productivity demands (Vaughan, 1996).

Throughout the identified literature, organizations were cited
as possessing individual identities that shaped the nature of group
dynamics within work settings (Cavnor, 2018; Price & Williams,
2018; Stergiou-Kita et al., 2015). These social identities, while
influenced by organizational demands, were said to also exist inde-
pendently as products of an organization’s history, projected
image, and working environment. Cavnor (2018) for example,
extensively discusses the cultural and social implications of fire-
fighting, describing how beliefs shared among firefighter groups
often encourage behaviors that favor risk acceptance. As a result,
authors frequently identified the importance of understanding cul-
ture as a variable that may inadvertently sustain unhelpful prac-
tices (Everson et al., 2020; Hase & Phin, 2015; Price & Williams,
2018; Stergiou-Kita et al., 2015).

An organization’s history, externally projected image, and
working environment, were said to be of particular significance
to culture, as these often become integrated with the individual
identities of work personnel, fostering traditions and operational
practices that may be both adaptive and maladaptive (Cavnor,
2018; Stergiou-Kita et al., 2015). Price and Williams (2018), note
how healthcare workers traditionally promote a standard of indi-
vidual perfection that ultimately distracts from addressing wider
underlying issues relating to equipment, systems, or procedure.
Similarly, the distinct social image of firefighters may promote
mutual trust, courage, and concern for the safety of others, how-
ever, it may also encourage excessive and unreasonable risk-
taking (Cavnor, 2018; Stergiou-Kita et al., 2015). In this regard,
Hedgecoe (2014) notes that the everyday culture of work groups
may often inadvertently accommodate and normalize risk; leading
organizational cultures to foster environments where normalized
deviances are mundane occurrences rather than exceptions (Hase
& Phin, 2015). Stave and Törner (2007) similarly describe the work-
ing practices of a team as the product of continuous internal nego-
tiations, which may lead to risk acceptance within work cultures
that do not prioritize safety.
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Alternatively, some organizations were said to also manifest a
’silo effect,’ characterized by a lack of cohesion and interaction
between workgroups and departments. These experience frag-
mented individual group cultures, operating on independent stan-
dards so as to meet their own needs rather than a common shared
agenda across the organization (Golinski & Hranchook, 2018). This
may result in inconsistent practices across an organization,
wherein a lack of communication perpetuates rule unfamiliarity
and deviations in practice. Thus, despite the aforementioned
potential for unwanted consequences, a shared social identity
among employees is typically seen as desirable within the organi-
zational context (Golinski & Hranchook, 2018).

Helmreich and Merritt (2001) described how organizational
culture represents a ‘complex framework’ composed of national,
organizational, and professional attitudes and values. It should
therefore be noted that while frequently referenced, given its
breadth and complexity, the concept of organizational culture is
not always clearly defined. This has also been pointed out within
wider literature where the notion of organizational culture has
been criticized for lacking clarity and definition (Van den Berg &
Wilderom, 2004). Moreover, there is debate as to whether an orga-
nization may truly be defined under a singular overarching cultural
identity, or whether its culture should be understood as the pro-
duct of several collective subcultures and group identities across
various departments and chains of command (Willcoxson &
Millett, 2000). The present review does distinguish the component
of culture as somewhat independent of leadership and production
pressure, which may traditionally be considered subsets of the
organizational culture. While, as with all the themes discussed,
there is likely to be overlap in the actual manifestation of compo-
nents within real-world settings, culture as it pertains to NoD was
in many instances flagged as a unique contributor to the phe-
nomenon, particularly with regards to the organizational culture
surrounding safety (Arendt & Manton, 2015; Cavnor, 2018;
Everson et al., 2020; Stergiou-Kita et al., 2015).

4.1.3. Lack of negative consequences
In general literature, the relevance of perceived negative conse-

quences has been explored primarily within the realms of human
risk perception, specifically with regard to the human evaluations
and management of risk on individual and societal levels (Creyer,
Ross, & Evers, 2003; Johnson & Tversky, 1984; Sitkin & Pablo,
1992). The perceived lack of negative consequence works in tan-
dem with the previously discussed issue of unnoticed, latent
errors/failures that accumulate over lengths of time (Dekker &
Pruchnicki, 2014). Similarly, Rasmussen (1997) highlights the issue
of reliability being mistaken as an indicator of safety (i.e., that
something is good enough simply by virtue of its past successes).
As with risk normalization, the absence of consequence fosters a
‘presumption of safety’ that impairs the collective and individual
abilities to detect risk (Hedgecoe, 2014).

Unsurprisingly, the absence of negative consequences is consis-
tently cited as an integral element of NoD and is discussed exten-
sively in relation to deviance and risk perception desensitization
(Price & Williams, 2018). It is widely understood that perceptions
of risk and risky behavior are subjective and may be positively or
negatively evaluated depending on the framing and evaluative
points of reference used (Kahneman & Tversky, 1979; Tversky &
Kahneman, 1985). With regards to NoD, when a deviation fails to
result in an apparent adverse outcome, it may be seen as an indi-
cation that initial standards or procedures are over-conservative
(Creedy, 2011). This perception, or framing, justifies deviations as
acceptable evolutions of the productive process, wherein behavior
is merely adapting to maximize efficiency; a notion that is parallel
and complimentary to Rasmussen’s ‘‘migration model” of the
adaptive processes undertaken by organizations attempting to

maximize productivity and profitability. Rasmussen notes that this
behavior is typical of sociotechnical systems given the pressures
and constraints under which they operate (Rasmussen, 1997).
These pressures encourage deviations in attitude and action, which
in the absence of consequence, are highly prone to repetition
(Paletz et al., 2009), and acceptance by both workers and manage-
ment throughout the organization (Bogard et al., 2015); with per-
ceived benefits to production additionally de-incentivizing
intervention and enforcement of discipline (Bogard et al., 2015).

4.1.4. Pre-Emptive Response
Perrow (1999) famously argued that ‘‘normal accidents” or fail-

ures within highly complex systems, such as those found within
high-risk industries, are likely to be unavoidable given the com-
plexity of the system’s components (machinery/equipment, opera-
tors/employees, procedures etc.) and the manifold possibilities for
these components to interact and result in failure. Turner and
Pidgeon (1997), however, denotes that incidents are nearly always
preceded by warning signs and claims that major accidents require
preconditions to be present, often for extended periods of time.
Turner argues that accidents can be prevented if these are identi-
fied and appropriately dealt with. Reason (1990) describes these
preconditions as ‘‘resident pathogens,” that is, latent failures which
may combine with any number of factors such as active failures
(human error and violations) or system faults to produce an
adverse outcome. Reason, in agreement with Perrow, states that
highly complex systems do contain a greater number of resident
pathogens, and will thus be more susceptible to failure; however,
he also asserts that these can be monitored, assessed, and under-
stood with adequate system knowledge (Reason, 1990).

Pre-emptive responses to risks have in more recent years been
discussed in terms related to organizational resilience (i.e., the
ability of an organization to identify, cope with, and learn from
incidents and failures and adjust positively under challenging con-
ditions; Hutter, 2010; Vogus & Sutcliffe, 2007). A well-known gen-
eral approach for pre-emptively dealing with hazards within high-
risk work environments involves the implementation of a hierar-
chy of controls framework, intended to identify and prioritize haz-
ards and their respective intervention strategies (Barnett, 2020;
Hopkins, 2006; Morris & Cannady, 2019). Depending on the haz-
ards present, a range of control measures with various levels of
efficacy can be implemented. These typically include elimination
(physical removal of a hazard), substitution (replacement of a haz-
ard with a less dangerous alternative), engineering controls (isolat-
ing a hazard from workers, often through technology),
administrative controls (changes in work practices) and use of
PPE (use of personal protective equipment; Morris & Cannady,
2019).

With regards to NoD pre-emptive response refers to measures
taken to anticipate, identify, and prevent the propagation of mal-
adaptive deviance. This encompasses both the nature of proactive
measures used to detect and respond to near-misses/signals, as
well as the quality of retroactive learning following an incident
or near-miss (Cavnor, 2018). The importance of identification and
learning is particularly relevant given that pre- and post- investiga-
tion processes are both susceptible to normalization biases. Initial
signals normalized in advance of an incident may be subject to the
same framing after an accident, often in an attempt to cover up
wrong-doings and minimize responsibility (Furey & Rixon, 2018;
Sanne, 2012). Moreover, signals of potential disaster can manifest
at various time intervals and across varied locations, which may
cause individuals within an organization to view pre- and post-
events from a detached personal level (Simmons, Symes,
Guenter, & Graves, 2011).

Ideally, behavioral deviances, warning signals, and near-misses
should always be accounted for. However, in light of the potential
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associated effort and costs, individuals may be biased towards dis-
counting originally proposed risks when there is a lack of incentive
for reporting/speaking up (Banja, 2010; Cavnor, 2018; Sanne,
2012). Furthermore, while some organizations outline policies
regarding what events need to be reported, criteria are often sub-
jective and dependent upon voluntary input (Dechy et al., 2018).

Another component detrimental to pre-emptive learning is that
of inappropriate safety reporting systems. Pannick et al. (2017)
describe a healthcare setting wherein the formal mechanism for
recording incidents was an online reporting system that was diffi-
cult to use and poorly suited for this purpose, with long delays in
the processing of even relatively simple issues; resulting in com-
mon/recurrent problems being left unreported and normalized
within everyday practice. Failure to document warning signs or
procedural changes, even those perceived as positive workarounds
and innovations, enables these to remain unchallenged, and set
precedents for procedural ambiguity and shifting norms (Mize,
2019). When incident analysis does take place, Price and
Williams (2018) specifically outline the importance of appropriate
system/process investigation in order to avoid simply blaming
individual behaviors or components. They cite how patient safety
literature demonstrates the efficacy of addressing issues from a
system, rather than a human, perspective.

4.2. Industry comparison

While the healthcare industry represents the largest single
industrial sector among the identified literature, many of the core
components and patterns of NoD appear generally consistent
across the industries accounted for within this review. Production
pressure was among the most consistently referenced and dis-
cussed components across the industry literature, however, its
prevalence in healthcare (11/14 healthcare papers) is particularly
noteworthy. Another distinction between healthcare and other
industries can be seen in the apparent lack of reference to risk nor-
malization within the identified healthcare literature (3/14 health-
care papers, by contrast to 8/9 papers within the process industry
and 5/10 within other industries).

These differences may be due to a number of reasons however a
comparative analysis of healthcare to other high-risk industries by
Gaba (2000) extensively discusses several key structural differ-
ences between healthcare and other high-risk industries; including
a lack of centralization, regulation, investigation, and reporting by
contrast to other high-risk industries such as aviation, oil and gas,
nuclear, and chemical manufacturing (Gaba, 2000; Hudson, 2003).
While issues of production demands may be more openly vocal-
ized, issues surrounding the conscious or unconscious normaliza-
tion of risky behaviors or malpractice may be more covert within
healthcare, potentially due to the more explicit medical attitudes
regarding individual responsibility and blame (Gaba, 2000;
Hudson, 2003; Price & Williams, 2018). Gaba also describes how
healthcare systems may often enable ‘‘structural secrecy,” wherein
problems can be ‘‘defensively encapsulated” within respective
units or departments and blame may be shifted elsewhere.

Depending on the industry, the nature of risk and risk manage-
ment will also vary, given the variations in potential outcomes
associated with hazards and risky behavior, and whether these
are likely to only affect workers themselves or have consequences
for others (Banja, 2010; Cavnor, 2018; Hudson, 2003). In this
regard, healthcare, while conscious of medical dangers, may be
said to have a more reactive focus to managing dangers, with some
proactive considerations; given that medical personnel manage a
wide range of unpredictable dangers and hazards experienced by
others but rarely themselves. Other high-risk industries, such as
oil and gas and nuclear, may be described as having more proactive
approaches, given that their workers must, by contrast, contend

with an array of potential risks that have the potential to be haz-
ardous to themselves, their colleagues, and the wider society
(Hudson, 2003).

Furthermore, as previously highlighted, the production out-
comes and demands for service industries, particularly public ser-
vice industries such as healthcare and firefighting, by comparison
to process industries, should be accounted for; specifically with
regard to understanding the nature of industry outputs (i.e., mini-
mizing harm and saving lives vs. maximizing physical productivity
and efficiency). This difference is not undermined within the pre-
sent model, as ’production pressure’ does not specify the type of
motivation it describes, but rather refers to any form of medium
or motivation by which perceived output demands are prioritized
and likely to encourage deviations in practice. Arguably, these
descriptive differences may also fundamentally be merely a simple
case of categorization and semantics; however, given the complex-
ity of organizational contexts and individual experiences, the
importance of understanding and accounting for the unique vari-
ables within individual organizations should not be understated.

4.3. Theoretical contribution

The current academic literature on the topic of NoD indicates
that research has been largely independent and fragmented across
a variety of sectors. The present systematic review synthesizes lit-
erature from a variety of high-risk industries in an attempt to
ascertain common components of the phenomenon and introduce
a new conceptual framework that seeks to encapsulate the manner
in which the phenomenon has been presented and discussed. One
of the main theoretical contributions of the present paper is the
integration of risk normalization within a model of NoD as an inte-
gral component in the development and maintenance of the phe-
nomenon. While entirely conceptual at present, this model
suggests that intervention methods for the prevention of harmful
NoD may need to focus on the initial normalization of risk; more
specifically, ensuring that operator perceptions of risk do not
degrade over time. Furthermore, the present review highlights
the impact of organizational factors on the propagation of NoD.
While these are likely to be context-specific and variable, they
point toward factors that should be considered when investigating
NoD within the high-risk industry context (e.g., Is production pres-
sure encouraging deviations and short-cuts? Does culture within
the work environment discourage the reporting of near misses?).

4.4. Limitations

While the present review and conceptual model are based on
the current academic literature on the topic of NoD, there are some
notable limitations that should be considered. Namely, the model
is preliminary and untested and based on a relatively small sample
of academic literature. While a systematic method of analysis was
utilized for its creation, with directed content analysis often being
used to develop conceptual models (Elo et al., 2014), an inherent
level of subjectivity and potential bias exist both in the initial cod-
ing and subsequent categorization and model mapping. This may
have been particularly pronounced within the present review
where only one coder was used (first author). However, the coder
remained open to new and alternative codes or potential catego-
rizations. Future research will address this limitation through the
testing of the preliminary framework in real-world settings (e.g.,
case studies).

A further consideration that should be addressed is that NoD
with regards to the high-risk industry has so far been mostly dis-
cussed within the confines of conceptual articles or on the basis
of accident reports and case studies. Of the 33 identified studies
within the present review, 21 utilized secondary data, and of the
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remaining 13, seven were based on case studies. As such, the
majority of the reviewed literature consisted of studies that did
not present novel data or findings, but rather built upon and dis-
cussed the relevant topics from a number of industry perspectives.
Though these offer valuable insights and points of consideration,
the presence of primary data within this review has been severely
limited. The review is therefore confined to focusing on the phe-
nomenon from a largely conceptual and observational standpoint.
The lack of applied research on the topic is an issue highlighted by
several authors, who acknowledge that many of the observations
and speculations, though theoretically reasonable, are yet to be
actively quantified in terms of real-world intervention and risk
reduction (Arendt & Manton, 2015; Bogard et al., 2015; Cavnor,
2018; Creedy, 2011).

4.5. Future research

These limitations suggest testing of the present model is
required prior to any serious or consequential application. Specifi-
cally, the framework should be tested and quantified with respect
to real-life settings, individual industries, and primary data, in
order to make further refinements and provide validity. This could
be accomplished through the analysis of incident reports, or by
using primary data obtained from interviews or direct observa-
tions. Additionally, applied methods of analysis could be used in
order to test specific components of the framework.

Of specific interest would be investigations into the develop-
ment of risk normalization at the individual level, the specific fac-
tors accelerating this normalization, and the examination of
potential interventions intended to reduce the likelihood that nor-
malization of risk will lead to the initiation and normalization of
deviance. Furthermore, the effect of the absence of negative conse-
quences following a deviation could be investigated, with specific
reference to the subsequent likelihood of engaging in said devia-
tion. As suggested by Bogard et al. (2015), behavioral research is
desperately needed to support the mostly conceptual nature of
the academic literature investigating the present phenomenon.
Based on the present review, we argue that more general empirical
and experimental research would not only aid in the understand-
ing of NoD but may further provide insights into potential inter-
ventions through the investigation of the aforementioned causal
relationships. The use of an experimental vignette method (EVM)
in particular could lend itself to further investigations, wherein fic-
titious scenarios may be manipulated to investigate the impact of
specific factors on the attitudes and perceptions of participants
(Aguinis & Bradley, 2014). These scenarios can be designed to repli-
cate the working environments of individual workforces, allowing
for the assessment of specific predispositions to normalization of
risk/deviance. Such investigation may also be of particular impor-
tance for investigating elements of risk normalization within
healthcare settings where the concept has thus far not been
explored or considered in as much depth as in other high-risk
industries.

Additionally, the further conceptualization of the role of Type I
and II errors in the development of NoD within organizational sys-
tems appears warranted, especially with respect to their efficiency,
safety, and cost/benefit interactions/trade-offs, as highlighted by
Heimann (2005); in addition to their potentially varied presenta-
tions and implications within different industrial sectors (e.g.,
healthcare versus process industries). Understanding the priorities
of an industry and its workers with regards to type I and II errors
may also be supplemental to NoD investigations by illuminating
where an organization stands from a ‘‘cycles of failure” perspective
(Heimann, 2005). The identification of patterns of deviance in tan-
dem with type I and II prioritization may prove to be particularly
important in the recognition of otherwise overlooked system risks

and may help inform on appropriate preventive measures and/or
beneficial system changes.

5. Conclusion

The study of NoD is theoretically based on the systems
approach to accident causation, wherein emphasis is placed on
understanding how dynamic components of a system enable a
given phenomenon to manifest and propagate. An important facet
of this approach is its emphasis on understanding the impact of
latent failures, framing active failures as by-products of a flawed
system rather than vice-versa. The benefit of this perspective is
that it enables the development of interventions and improve-
ments that can be applicable and generalized across a range of con-
texts that accommodate similar system dynamics. The present
review, which aimed to synthesize the existing literature on the
phenomenon of NoD from a range of high-risk industrial sectors,
may represent an initial step toward such interventions with
regard to the NoD phenomenon and high-risk industry. Using a
directed content analysis approach, the present systematic review
of 33 articles synthesizes the existing literature and presents its
findings within a conceptual framework. The framework seeks to
encapsulate the reported interactions between identified industry
components and NoD, while building upon prior examples through
the incorporation of risk normalization. While unable to offer
specific interventions, the present paper provides foundations for
future applied research on the topic and offers a common frame-
work for the phenomenon that is applicable across a range of
industrial sectors.
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a b s t r a c t

Introduction: To better understand what is known about issues affecting American Indian and Alaska
Native (AI/AN) workers, authors conducted a literature review of publications specific to AI/AN and occu-
pational safety and health. Methods: Search criteria included: (a) American Indian tribes and Alaska
Native villages in the United States; (b) First Nations and aboriginals in Canada; and (c) occupational
safety and health. Results: Results of two identical searches in 2017 and 2019 identified 119 articles
and 26 articles respectively, with references to AI/AN people and occupation. Of the 145 total articles,
only 11 articles met the search criteria for addressing occupational safety and health research among
AI/AN workers. Information from each article was abstracted and categorized according to National
Occupational Research Agenda (NORA) sector, resulting in: four articles related to agriculture, forestry,
and fishing; three related to mining; one related to manufacturing; and one related to services. Two arti-
cles reported on AI/AN people and occupational well-being in general. Conclusions: The review was lim-
ited by the small number and age of relevant articles, reflecting the likelihood that findings could be out
of date. General themes across the reviewed articles point to the need for increased overall awareness
and education regarding injury prevention and risks associated with occupational injuries and fatalities
among AI/AN workers. Similarly, increased use of personal protective equipment (PPE) is recommended
for the agriculture, forestry, and fishing industries, as well as for workers exposed to metals dust. Practical
Applications: The lack of research in most NORA sectors indicates the need for heightened research efforts
directed toward AI/AN workers.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

American Indian and Alaska Native (AI/AN) people accounted
for 2% (5.8 million) of the total U.S. population in 2020 (U.S.
Census Bureau, 2020). Little is known about the occupational
safety and health of AI/AN workers. AI/AN people face a dispropor-
tionate burden of illness as well as a lower life expectancy than the
total U.S. population. The leading causes of death for AI/AN people
include heart disease, cancer, unintentional injuries, and diabetes.
AI/AN people experience higher rates of these and other causes of
death compared to the total U.S. population (Indian Health Service,
2019).

As sovereign nations, AI/AN tribes maintain a government-to-
government relationship with the U.S. federal government (§
4.01[1][a], 2017).Of the 5.8 million AI/AN, 2.7 million individuals
report AI/AN as their only race, of which, over half (1,548,549)

are active in the workforce (Centers for Disease Control and
Prevention, National Institute for Occupational Safety and Health,
2022; U.S. Census Bureau, 2020). Approximately 28% of people
who identify as AI/AN lived on federal or state reservations or trust
lands from 2016 to 2018. Of those, 52.0% were active in the labor
force, compared to 63.6% of AI/AN people who did not live in AI/
AN areas (Bureau of Labor Statistics, 2019). Table 1 describes AI/
AN employment in the U.S. by National Occupational Research
Agenda (NORA) sector, based upon the North American Industry
Classification System (NAICS). These sectors include: agriculture,
forestry, and fishing; construction; healthcare and social assis-
tance; manufacturing; mining; oil and gas extraction; public
safety; services; transportation, warehousing, and utilities; and
wholesale and retail trade (National Occupational Research
Agenda, 2018). The services sector has the highest number of AI/
AN workers, followed by wholesale and retail trade and healthcare
and social assistance.

Detailed data on AI/AN workers is scarce for several reasons.
Race and ethnicity are not commonly collected in traditional occu-
pational safety and health data sources. For example, the Occupa-
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tional Safety and Health Administration’s (OSHA) injury and illness
recording requirements do not collect information on race or eth-
nicity (National Academies of Sciences, Engineering, and Medicine,
2018). Sources that do collect race and ethnicity, such as the Sur-
vey of Occupational Injuries and Illnesses, often do not require a
response to these questions (Bureau of Labor Statistics, U.S.
Department of Labor, 2021). Therefore, race and ethnicity data
are frequently missing. Additionally, AI/AN workers may choose
to not report or self-identify their race and ethnicity. Furthermore,
no tribal surveillance systems or data sources collect this
information.

AI/AN occupational fatalities are likely underestimated, as they
are often not reported to OSHA when they occur on tribal lands and
reservations (Hill, Reyes, & Dalsey, 2013). Despite the existence of
tribal occupational safety and health programs and codes and laws,
the scientific literature on AI/AN occupational health and safety is
limited (Center for State, Tribal, Local, and Territorial Support,
Centers for Disease Control and Prevention, 2017). An additional
challenge when working with AI/AN data is that sources do not
always specify whether AI/AN is reported as an individual’s only
race or a race in combination with another. The purpose of this
review is to summarize what is documented in the peer-
reviewed literature about AI/AN worker safety and health.

AI/AN workers are often employed in hazardous occupations
and were 42% more likely to be employed in high risk occupations
than non-Hispanic White workers in 2010 (Steege, Baron, Marsh,
Menendez, & Myers, 2014). High risk occupations are those whose
‘‘days away from work” illness or injury rates are more than twice
the national average, such as construction workers and miners
(Council of State and Territorial Epidemiologists, 2017). In 2019,
24% of AI/AN employees worked in occupations classified as having
high morbidity risk, while only 16% of all U.S. employees worked in
these occupations (Council of State and Territorial Epidemiologists,
2017; Centers for Disease Control and Prevention, National
Institute for Occupational Safety and Health, 2022). In 2020,
5,340 AI/AN workers suffered a nonfatal injury resulting in one
or more days away from work, and 32 AI/AN workers were killed
on the job (Bureau of Labor Statistics, U.S. Department of Labor,
2020; Bureau of Labor Statistics, U.S. Department of Labor, 2020).
The occupational fatality rate for all U.S. workers in 2020 was 3.5
deaths per 100,000 workers, compared to 3.6 deaths per 100,000
AI/AN workers (Bureau of Labor Statistics, U.S. Department of
Labor, 2020; Centers for Disease Control and Prevention, National

Institute for Occupational Safety and Health, 2022). It appears that
AI/AN workers may face a high risk of occupational injury, and the
nature of these risks may differ from that of workers of other races
and ethnicities. AI/AN workers are an underserved worker popula-
tion, and research on AI/AN people and occupational safety and
health is limited.

2. Methods

Authors submitted a literature search request in 2017 and again
in 2019 to the Centers for Disease Control and Prevention’s Public
Health Library and Information Center Reference Team. Both
searches included online databases MedLine, Embase, PsycInfo,
CINAHL, and Scopus. To identify all possible articles, no date limits
were placed on the search activities. Search criteria included: (a)
American Indian tribes and Alaska Native villages in the United
States; (b) First Nations/Aboriginal groups located in Canada; and
(c) occupational health and safety. Search criteria excluded articles
on other indigenous groups in Australia, Mexico, Central and South
America, and migrant workers. The review also excluded articles
related to environmental exposures, substance abuse, and child
or civilian seatbelt safety and traffic laws, unless related to work
activities. Search terms included: American Indians, Alaska
Natives, Inuit, Native American, Native Alaskan, Tribal Nation, First
Nations, Indian reservation, occupational safety, occupational
health, occupational injuries, occupational fatalities, occupational
health services, occupational medicine, occupational illnesses,
workers’ compensation, epidemiology, population surveillance,
participatory research, chemical exposures, hazardous chemicals,
ergonomics, psychosocial, falls, accidents, construction, agricul-
ture, farming, mining, fishing, motor vehicle, collisions, asthma,
noise, National Institute for Occupational Safety and Health, and
violence.

Results of the initial search in 2017 identified 119 articles,
reports, and theses. An identical search limited to articles pub-
lished since the initial search was requested in 2019 and identified
26 additional articles. Further inclusion criteria was used to focus
on peer-reviewed journals, published after 2000, addressing AI/
AN occupational safety and health. Fig. 1 illustrates the process
used to select relevant articles for the literature review. Authors
abstracted information from each relevant article and categorized
them according to NORA sector. Although many articles pertained
to AI/AN people, most documented research unrelated to occupa-
tional safety and health.

3. Results

This review comprises 11 articles categorized by NORA sector
including: four articles categorized into the agriculture, forestry,
and fishing sector; one to manufacturing; three to mining; and
one article to services. Two of the 11 articles did not fit within
one specific sector but described research relating to the overall
well-being of AI/AN workers. Authors categorized the article
related to rodeo competitors to the agriculture, forestry, and fish-
ing sector, even though the specific rodeo NAICS code falls under
the Arts, Entertainment, and Recreation sector. Although Canada
was included in the original search criteria, only articles about
AI/AN workers in the United States met the inclusion criteria.
The findings and themes presented in these articles are discussed
by NORA sector below and referenced in Table 2.

3.1. Agriculture, forestry and, fishing

Four of the 11 articles found in the literature search were
related to agriculture, forestry, and fishing. Of these four, two dis-

Table 1
American Indian and Alaska native employment by national occupational research
agenda sector, 2020.

National Occupational Research Agenda (NORA)
Sectors

AI/AN People in
Workforce
(n = 1,548,549)

Agriculture, Forestry, and Fishing 28,877
Construction 144,847
Healthcare and Social Assistance 211,576
Manufacturing 132,012
Mining (includes Oil and Gas Extraction) 16,408
Services (includes Public Safety) 695,309
Transportation, Warehousing, and Utilities 82,896
Wholesale and Retail Trade 236,624

Note: The Employed Labor Force Query System is based on data from the Bureau of
Labor Statistics Current Population Survey, which uses Bureau of Census Industry
Codes. These codes can not be directly matched with the North American Industry
Classification System, which organizes the current NORA sectors. As a result, the
table includes the population for the NORA sector, Oil and Gas Extraction, in the
Mining category. Similarly, it includes the population for the Public Safety sector in
the Services category.
Source: Centers for Disease Control and Prevention, National Institute for Occupa-
tional Safety and Health. (2020). Retrieved from Employed Labor Force Query
System: https://wwwn.cdc.gov/wisards/cps/default.aspx.

K. Wingate, E. Dalsey and D.P. Scott Journal of Safety Research 84 (2023) 204–211

205

https://wwwn.cdc.gov/wisards/cps/default.aspx


cussed farmworkers, one investigated professional rodeo competi-
tors, and one focused on bison workers.

3.1.1. Objectives and methods
Among the four articles, three included discussion on work-

related injuries among farmworkers and rodeo competitors. Gold-
camp, Hendricks, Layne, and Myers analyzed previously collected
data from the Minority Farm Operator Childhood Agricultural
Injury Survey (M-CAIS), conducted in 2000, to examine nonfatal
injuries among youth farmworkers (Goldcamp, Hendricks, Layne,
& Myers, 2006). Crichlow, Williamson, Geurin, and Heggem admin-
istered a self-reported survey to 180 professional rodeo competi-
tors to evaluate injuries and use of protective equipment
(Crichlow, Williamson, Geurin, & Heggem, 2006). Lastly, Duysen
et al. conducted observational audits and analyzed convenience
surveys completed by herd managers in order to investigate the
hazards of bison handling (Duysen, et al., 2017).

In the fourth article related to agriculture, forestry, and fishing,
Helitzer, Hathorn, Benally, and Ortega conducted a five-year agri-
cultural intervention based on a theoretical framework, the Diffu-
sion of Innovations Theory, to develop a culturally relevant model
to train American Indian farmers in New Mexico on the safe use
of pesticides. The intervention trained six ‘‘model farmers” on safe
pesticide use, and later implemented an intervention and delayed
intervention across 830 Navajo family farms (Helitzer, Hathorn,
Benally, & Ortega, 2014).

3.1.2. Findings
The three articles discussing work-related injuries first identi-

fied estimates for injuries at various work sites. The nonfatal injury
rate for work-related injuries on Native American farms was 17.7
per 1,000 household youth, compared to a non-work injury rate
of 13.8 per 1,000 household youth. This rate was even higher for

youth under 10 years of age at 21.8 injuries per 1,000 working
youth. Lacerations and fractures, generally to the arm and leg, were
the most common work-related injuries reported among house-
hold youth working on Native American-operated farms
(Goldcamp, Hendricks, Layne, & Myers, 2006). Among rodeo com-
petitors responding to a self-reported survey, the most common
injuries were among the lower extremities, rather than the body
core. The self-reported injury rate among competitors was 14 inju-
ries per 100 rodeos. Injury history varied among rodeo events,
ranging from 24% of tie-down ropers to 100% of bull riders. Addi-
tionally, 26% of the competitors had a history of rodeo injury that
prevented them from working, leading to an average of 3.2 months
away from competition (Crichlow, Williamson, Geurin, & Heggem,
2006). Injuries were also commonly observed at bison handling
sites, which may be due to the high-stress handling that exists dur-
ing bison roundups. These injuries were reportedly caused by
equipment, tools, weather, bison, and ATV use. Additional safety
concerns found through the observational audits include obsolete
or broken equipment, poor facility designs, and inadequate barriers
in the chutes (Duysen, et al., 2017).

A common theme among these articles was the lack of personal
protective equipment (PPE) among workers in this sector. Among
rodeo competitors, although past injuries were common, only
40% of athletes reported using PPE. The most widely used protec-
tive equipment were vests (Crichlow, Williamson, Geurin, &
Heggem, 2006). Additionally, research has shown that safety equi-
pement is rarely used at AI/AN bison worksites as well as at agri-
culture sites in general. Specifically, inappropriate footwear was
reported by 27% of herd managers. PPE use was reportedly very
low and deficiencies in the equipment such as dust masks and
safety goggles were also reported (Duysen, et al., 2017). Authors
recommended increased safety training, such as proper PPE,
including targeted interventions related to the demographics of

Fig. 1. Flow diagram of literature selection process.
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Table 2
Summary of articles by NORA sector.

Sector Author(s) and Title Objective Study Type Findings

Agriculture,
Forestry,
and Fishing

Goldcamp, E. M., et al. (2006) Nonfatal injuries to
household youth on Native American operated farms
in the U.S., 2000.

Identify characteristics of work and non-
work-related farming injuries to Native
American youth

Cross-sectional survey; self-
administered by 9,556 racial
minority-operated farms

There were an estimated 177 nonfatal injuries of youth living
on Native American operated farms in 2000. The injury rate
was 17.7 per 1,000 Native American working youth, compared
to 13.8 per 1,000 non-working youth.

Agriculture,
Forestry,
and Fishing

Crichlow, R. et al. (2006) Self-reported injury history
in Native American professional rodeo competitors.

Evaluate rodeo injury and use of
protective equipment.

Cross-sectional survey; self-
administered to 180 competitors

14 injuries per 100 rodeos were reported, ranging from 100% of
bull riders to 24% of tie-down ropers. Only 40% reported use of
protective equipment.

Agriculture,
Forestry,
and Fishing

Duysen, E., et al. (2017) Assessment of tribal bison
worker hazards using trusted research facilitators.

Identify hazards of bison handling in
American Indians

Cross-sectional survey;
collaborative pilot research project
with observational audits and
convenience surveys

A lack of safety equipment was observed at worksites. Bison
injuries occurred at 9 out of 10 sites, and worker injuries
occurred at 3 out of 10 sites.

Agriculture,
Forestry,
and Fishing

Helitzer, D. L., et al. (2014) Culturally relevant model
program to prevent and reduce agricultural injuries.

Describe a pesticide injury prevention
program among AI farmers based on
Diffusion of Innovations theory

Longitudinal study of injury
prevention intervention using train
the trainer for two groups:
intervention and delayed
intervention

There was an increase in pesticides stored out of reach of
children (G = 15.5, p < 0.001; G = 7.7, p < 0.05)1 as well as
owning safety equipment (G = 64.8, p < 0.001; G = 12.5,
p < 0.005)1 and knowledge of safe pesticide application
(t = 5.479, p < 0.001; t = 8.559, p < 0.05)2.

Manufacturing Gonzales, M. et al. (2004) Concentrations of surface-
dust metals in Native American jewelry-making homes
in Zuni Pueblo, New Mexico.

Identify and quantify metals used by
home-based AI jewelers

Cross-sectional exposure survey; in-
person interviews with 40
participants

Metal dust concentrations were significantly higher in
jewelers’ homes compared to homes of non-jewelers
(p < 0.02).

Mining Schubauer-Berigan, M. K., Daniels, R. D., and
Pinkerton, L. E. (2009) Radon exposure and mortality
among white and American Indian uraniumminers: an
update of the Colorado Plateau cohort.

Follow-up study of 4,137 uranium miners
on the U.S. Colorado Plateau

Prospective cohort study; analysis
of linked databases

Silicosis, tuberculosis and other lung diseases remained highly
elevated among American Indian miners compared to white
miners.

Mining Jones, B. (2017) The social costs of uranium mining in
the US Colorado Plateau cohort, 1960–2005.

Estimated health costs associated with
mining in Colorado Plateau

Cost analysis of prospective cohort
study

Over $2 billion in health costs over 1960–2005 existed due to
uranium mining. Native Americans had larger costs per
elevated death.

Mining Mulloy, K. B., et al. (2001) Lung cancer in a
nonsmoking underground uranium miner.

Illustrate the effects of increased risk of
lung cancer among uranium miners

Case report of 72-year-old Navajo
male who worked as uraniumminer
for 17 years

The uranium miner’s radon exposure was estimated at
506 months of work with no other exposures. His risk of lung
cancer was 100 times greater than if he never mined. He was
treated for pneumonia and died from respiratory failure.

Service Klepeis, N. E., et al. (2016) Measuring indoor air
quality and engaging California Indian stakeholders at
the Win-River Resort and Casino: collaborative smoke-
free policy development.

Describe efforts to institute smoke-free
policies in AI casino

Formative evaluation using air
testing, surveys, and focus groups

Increased exposures to secondhand smoke existed in the
casino. 100% Smoke-free policies were implemented in 2014
and amended to permit smoking on 30% of the casino floor in
2015.

Other Redwood, D., et al. (2012) Occupational and
environmental exposures among Alaska Native and
American Indian people living in Alaska and the
Southwest United States.

Report on prevalence of self-reported
exposure to 9 occupational and
environmental hazards in a large cohort of
AI/AN living in AK and Southwest U.S.

Prospective cohort study; self- and
interviewer- administered
questionnaire to 11,326

28% of participants reported exposure to 1 to 2 hazards and 8%
were exposed to 3 or more. Exposures were higher for men,
those ages 40–59, and those living in the Southwest (p < 0.05).

Other Christiansen, K., et al. (2017) Work, worksites, and
wellbeing among North American Indian women: a
qualitative study.

Identify factors contributing to work-
family balance and health behaviors
among American Indian women

Cross-sectional study; interviews
and focus groups with 89 women in
4 tribal communities

Shift and seasonal work make healthy lifestyles difficult for AI/
AN women. Men have to travel farther for work, leaving
women to take care of the home.

1 G = test statistics from log-likelihood goodness-of-fit test.
2 t = test statistic from paired-sample t-test.
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the worker population (Goldcamp, Hendricks, Layne, & Myers,
2006).

The fourth article analyzing a five-year agricultural intervention
identified significant improvements in safe pesticide use, storage
behaviors, and safety and pesticide application ownership. These
knowledge improvements were maintained over time by the study
group who received the immediate intervention, while the group
who received the delayed intervention demonstrated a greater
improvement in attitudes about pest management. Including the
agricultural workers on the training development as well as a
face-to-face training method and a culturally appropriate founda-
tion led to success in this intervention (Helitzer, Hathorn,
Benally, & Ortega, 2014).

3.2. Manufacturing

3.2.1. Objective and methods
Only one article related to manufacturing was identified. Gon-

zales et al. conducted a pilot study to inventory the materials used
by Native American home-based jewelry makers in western New
Mexico. Researchers compared surface concentrations of metals
between 20 jewelry-making households and 20 control households
where jewelry was not made (Gonzales, et al., 2004).

3.2.2. Findings
Within the jewelers’ homes, metal dust concentrations were

significantly higher in work areas than in living areas. Concentra-
tions were also higher in living areas of jewelers’ homes compared
with the homes of non-jewelers. Additionally, use of ventilation
varied depending on the metal. When ventilation was present in
jewelry work areas, metal concentrations for a few metals were
significantly reduced compared to concentrations where no venti-
lation was present (Gonzales, et al., 2004).

Gonzales et al. also reported that PPE was not commonly used
among jewelry makers. For example, less than a quarter of partic-
ipants reported using safety glasses, dust masks, or gloves. Even
fewer jewelry makers reported using coveralls, and no participants
reported ever using a face shield. Similarly, mechanical ventilation
such as exhaust fans were used by less than half of jewelry makers.
While natural ventilation like open doors or windows were used
more frequently, many jewelry makers used no ventilation at all
(Gonzales, et al., 2004).

3.3. Mining

3.3.1. Objectives and methods
Three articles highlighting mining were identified in the litera-

ture searches. Two of these articles discussed the Colorado Plateau
cohort, a group of miners who were originally evaluated from 1950
through 1960 to investigate the association between radon and
lung cancer as well as the risks of other diseases among miners
(Schubauer-Berigan, Daniels, & Pinkerton, 2009). Schubauer-
Berigan et al. used mortality data gathered from 1990 through
2005 that was linked to the National Death Index and the Social
Security Administration’s mortality file databases as well as the
Renal Management Information System database. Jones also used
these data, from 1960 through 2005, to conduct an economic cost
analysis in order to understand the health costs associated with
uranium mining. The value of a statistical life-year was calculated
as $213,000 per year of life lost (Jones, 2017). The third article pre-
sented a case study of a 72-year-old Navajo male who spent
17 years working as an underground uranium miner (Mulloy,
James, Mohs, & Kornfeld, 2001).

3.3.2. Findings
The Colorado Plateau cohort included 3,358 white uranium

miners and 779 miners who were American Indian. Forty-five per-
cent of the American Indian miners were current or former smok-
ers, compared to 84% of white miners. Among all miners, lung
cancer accounted for one in five deaths. The mortality data
revealed that during the 1990 to 2005 time period, American
Indian miners had a lung cancer standardized mortality ratio of
3.27 compared with the regional population; white miners had a
ratio of 3.99 (Schubauer-Berigan, Daniels, & Pinkerton, 2009).

In Jones’ analysis of the Colorado Plateau cohort, the median
years of life lost was 13.3 for white uraniumminers in the Colorado
Plateau cohort and 13.9 for American Indian miners. Jones reported
that $1.24 billion in health costs was created due to lung cancer
mortality, and $127.9 million of the cost was for American Indian
miners. The cost analysis further revealed that lung cancer
accounted for 60% of total health costs for American Indian miners.
Overall, $213.7 million of total mortality health costs were associ-
ated with American Indians. Additionally, a 6.9% larger excess
death mortality health cost existed for American Indian miners
compared to white miners. Jones argues that American Indian min-
ers faced a disproportionate share of the social costs of mining in
the Colorado Plateau, compared to white miners (Jones, 2017).

The third article presented a case study of a Navajo uranium
miner and estimated his exposure to radon progeny at 506 work-
ing level months. The miner did not have any other significant
occupational or environmental exposures, such as smoking. He
developed lung cancer 22 years after leaving mining and died from
pneumonia and respiratory failure. Unfortunately, lung function
prediction equations, which use standards of physical characteris-
tics such as age, sex, and height to determine a predicted lung
function value, often lack specific variables for ethnicities or races.
This can produce bias against Hispanic and American Indian min-
ers. Additional difficulties include the lack of diagnostic resources
for disease recognition and distance for primary care for American
Indians in the Navajo Nation (Mulloy, James, Mohs, & Kornfeld,
2001).

3.4. Services

3.4.1. Objective and methods
One article about workers in the services sector was identified.

Klepeis (2016) reported on efforts of a coalition of public health
professionals working with casino management to conduct on-
site studies of secondhand smoke (SHS) in a casino on a tribal
reservation. The goal was to help provide guidance for future
efforts of adopting smoke-free policies in casinos. During a
seven-year period, the coalition members conducted air quality
testing, collected surveys from casino employees and patrons,
and held staff and community focus groups (Klepeis, et al., 2016).

3.4.2. Findings
Air quality evaluations revealed a range of only 8 to 12% of

active smokers amongst all patrons throughout the casino; how-
ever, despite the small percentage of smoking patrons, elevated
levels of urinary cotinine and airborne nicotine confirmed evidence
of high levels of SHS. Survey responses indicated that over half of
patrons would visit the casino about the same or more often if a
smoke-free policy were enacted. Additionally, most of the casino
employees preferred to work in a smoke-free environment. Based
on these findings, Klepeis et al. reported that a 100% smoke-free
policy be implemented in the casino. After the smoking ban was
in effect, particle levels dropped by 98% in main smoking areas
throughout the casino and by 51% in previously designated non-
smoking areas. After a reduction in revenue and complaints from
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smoking patrons, the smoke-free policy was amended to restrict
smoking on 70% of the casino floor (Klepeis, et al., 2016).

3.5. Other

3.5.1. Objectives and methods
Two articles were identified through the literature searches that

did not focus on a specific industry sector, but rather on AI/AN
worker exposures and overall well-being. Redwood et al. analyzed
previously collected data from over 11,000 participants in the Edu-
cation and Research Towards Health (EARTH) Study. They investi-
gated self-reported occupational and environmental hazard
exposures among participants in Alaska, of which 95% were Alaska
Native, and Navajo participants living in the Southwest United
States. Nine environmental hazards of concern were identified by
tribal leadership and a study advisory board: petroleum, pesticides,
welding/silversmithing, asbestos, military chemicals, mining dust,
heavy metals, lead, and radioactive materials. Study participants
were asked to indicate possible exposures to these hazards
(Redwood, et al., 2012). Christiansen et al. conducted in-person
interviews and focus groups with 89 females living in tribal com-
munities in the Southwest and Upper Midwest to investigate
work-related themes including structural characteristics, role
stressors, and the influence of social support (Christiansen,
Gadhoke, Pardilla, & Gittelsohn, 2019).

3.5.2. Findings
Among Navajo workers, 64% of all study participants reported

no hazardous exposure to the nine environmental hazards of con-
cern, while 28% reported exposure to one to two hazards, and 8%
reported exposure to three or more hazards. Among AI/AN partic-
ipants living in Alaska, the top three most commonly reported haz-
ards were petroleum products, military chemicals, and asbestos.
Among Navajo participants living in the Southwest United States,
the top three most commonly reported hazards were pesticides,
petroleum, and welding/silversmithing. Among all study partici-
pants, reported exposures were higher among male participants,
participants aged 40 through 59, and individuals living in the
Southwest compared to Alaska. Additionally, Redwood et al. iden-
tified a higher likelihood of reported hazard exposure for partici-
pants who spoke an AI/AN language at home compared to
participants who spoke only English at home, as well as for partic-
ipants with lower educational attainment (Redwood, et al., 2012).

For females living in tribal communities, Christiansen et al.
identified common issues related to structural characteristics,
including unemployment, seasonal employment, and low-wage
work opportunities. The proximity to worksites as well as social
and medical services was also commonly discussed among females
as males were more likely to have to travel long distances for work.
As a result, females experienced the burden of being sole caregiver
for their family. Some females also described being both the care-
giver and breadwinner for their family when their partners were
incarcerated or involved with drugs or alcohol. Workplace wellness
programs and incentives as well as relationships with coworkers
highlighted some ways that employed females engaged in healthy
activities in the workplace. Conversely, some females noted that
these opportunities were not always available or their work duties
made it impossible to participate (Christiansen, Gadhoke, Pardilla,
& Gittelsohn, 2019).

4. Conclusion

This review captures the available literature on occupational
health and safety among AI/AN workers. Out of 145 articles, only
11 were peer-reviewed and dealt specifically with occupational

health and safety among AI/AN people in the past 20 years. Of
the 11 articles: four addressed agriculture, forestry, and fishing;
three addressed mining; one addressed each of manufacturing
and services. Lastly, two focused on AI/AN people and occupational
exposures or well-being in general. It is interesting to note that the
two smallest workforce sectors (agriculture, forestry, and fishing,
28,877; and mining, 16,408) have been the subject of the most
research, likely attributable to high risk rates as well as congres-
sionally appropriated funds for mining research. Other sectors with
much larger workforces, such as healthcare and social assistance
(211,576), services (695,309), and wholesale and retail trade
(236,624) are virtually unexplored. The lack of representative
research across NORA sectors underscores gaps in knowledge and
the need for additional research.

Limitations of this review were the small number of articles
identified and in some cases the age of the article, reflecting the
likelihood that findings could be out of date. The absence of rele-
vant literature may also be due to other priorities or lack of
resources for tribes to collect data or conduct research themselves.
Tribes also may choose to operationalize their sovereign status and
safeguard their data and stories, which may have been mishandled,
misinterpreted, and even misused in the past. For example, tribes
may choose to not publish in mainstream publications or may
not allow non-tribal entities to conduct research on AI/AN workers.

Additional limitations include the inability to compare injury
rates across various publications, as the populations included and
methodologies used varied widely. Specifically, it is difficult at
times to compare findings across AI/AN communities as conclu-
sions for one tribe may not be generalizable to all tribal communi-
ties. Finally, it is difficult to classify exposures as occupationally-
related, which may lead to many occupational health and safety
risks being underreported or ignored.

5. Practical Applications

General themes across these publications point to the need for
increased overall awareness and education regarding injury pre-
vention and risks associated with occupational injuries and fatali-
ties. It is important that recommendations and interventions
related to education be culturally appropriate and tailored specifi-
cally to AI/AN communities at risk. Including AI/AN workers in the
development of worker safety and health materials and trainings
would ensure that these interventions are culturally appropriate.
Differentiating between AI/AN workers who live on tribal lands
and those who live in the general population is also important in
order to understand the unique needs of those who live and work
on tribal lands. It is also important to acknowledge and honor tri-
bal uniqueness and practices.

Increased use of PPE is recommended specifically for agriculture
and fishing, as well as those exposed to metal dust. Addressing
adherence to safety protocols, including the use of PPE, is also nec-
essary in order to reduce occupational injury risk. According to the
hierarchy of controls, PPE is considered the least effective at pro-
tecting workers. Therefore, it is important that additional research
investigates interventions and evaluations for elimination, engi-
neering, and administrative controls for AI/AN workers, as well
as all workers in these industries.

Improving occupational health and safety surveillance systems
to accurately identify worker race and ethnicity is vital to better
understanding the safety and health trends among AI/AN workers.
The inclusion of AI/AN as a race category is necessary in all data
collection methods, not just those related to occupational health
and safety. Requiring responses for race and ethnicity in surveil-
lance systems is also important to help identify vulnerable worker
populations (National Academies of Sciences, Engineering, and
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Medicine, 2018). Furthermore, collecting tribal affiliation could be
extremely valuable with 574 federally recognized tribes and non-
federally recognized tribes in the United States (National
Conference of State Legislatures, 2020; Bureau of Labor Statistics,
2019). Future research could utilize community-based participa-
tory research strategies in order to identify additional issues in
worker safety and health and approaches that may be unique to
AI/AN communities. Utilizing already available data, such as Web-
Cident, My Tribal Data, and state health departments, beyond tra-
ditional worker data sources to further explore AI/AN worker
safety and health trends is also necessary.

Lastly, additional research is needed to fully understand the
socioeconomic inequities experienced by AI/AN people resulting
from structural racism, such as living in poverty, lacking a high
school degree, and lacking access to health insurance (Sequist,
2021). These disparities related to social determinants of health
may also contribute to inequalities AI/AN people face in the work-
force, such as larger numbers of young workers and workers in the
service sector, that are too complicated to be addressed through
this literature review analysis. Considering the role of social deter-
minants of health as well as AI/AN culture and social contexts in
occupational health research and prevention measures is one
way to examine work-related risks and outcomes unique to AI/
AN workers (Flynn, Check, Steege, Siven, & Syron, 2022). Gaps in
occupational safety and health research for AI/AN workers indicate
the need for additional and renewed efforts to identify workplace
disparities and to educate workers and employers regarding effec-
tive interventions and prevention strategies.
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a b s t r a c t

Introduction: Previous studies have indicated low driver yielding rates to pedestrians in various countries.
This study analyzed four different strategies to improve driver yielding rates at marked crosswalks on
channelized right turn lanes at signalized intersections. Method: A sample of 5,419 drivers was collected
for four gestures using field experiments for males and females in the State of Qatar. The experiments
were conducted in daytime and nighttime on weekends at three different locations; two sites are located
in an urban area and the third is located in non-urban area. The effect of pedestrians’ and drivers’ demo-
graphic characteristics, gestures, approach speed, time of the day, location of the intersection, car type,
and driver distractions on yielding behavior is investigated using logistic regression analysis. Results: It
was found that for the base gesture, only 2.00% of drivers yielded to the pedestrians, while for hand,
attempt, and vest-attempt gestures the yielding percentages were considerably higher, 12.81%, 19.59%,
and 24.60%, respectively. The results also showed that females received significantly higher yielding rates
compared to males. In addition, the probability of a driver yielding increased 2.8 times when drivers
approached at slower speed compared to a higher speed. Further, drivers’ age group, accompanied,
and distractions were not significant in determining drivers’ probability of yielding.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

According to the World Health Organization (WHO), approxi-
mately 1.35 million fatalities around the world are caused by traf-
fic accidents. Furthermore, traffic accidents are responsible for
considerable economic losses to individuals and nations as a
whole. Among the total road deaths, vulnerable road users (i.e.,
pedestrians, cyclists, and motorcyclists) contribute to more than
50% of total fatalities (World Health Organization, 2020). In the
State of Qatar, pedestrian fatalities contributed to 28.6% of total
road fatalities; slightly higher compared to 25% in United Arab
Emirates and 17% in the United States (de Albuquerque &
Awadalla, 2020; Gulf Times, 2020; National Center for Statistics

and Analysis, 2019). Moreover, statistical data from 2005 to 2018
showed that pedestrian fatalities contributed to an average of
one third of total fatalities in the State of Qatar (National Road
Safety Strategy, 2018). Although detailed crash data showing exact
pedestrian-vehicle crash location is not available for the State of
Qatar, the issues with pedestrian safety and presence of a higher
proportion of residents from varied background/nationalities
emphasizes the need for this research (Timmermans et al., 2019,
2020). Generally, pedestrian crossings are facilitated by signalized
crosswalks at intersections and midblock, or by marked crosswalks
at channelized right turn lanes. At signalized crossings, pedestrians
have dedicated time for completing crossing. Typically, in the State
of Qatar, right turn lanes at signalized intersections are channel-
ized and right turning traffic do not enter the intersections. Usu-
ally, marked crosswalks are provided on these dedicated right
turn lanes to designate crossing area for pedestrians. The pedes-
trian crossing area is designated by standard white stripes (zebra
markings) with a warning sign fixed ahead to alert drivers that
they are approaching the pedestrian crossing. These crosswalks
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are not controlled by traffic signals and operate on a priority basis.
Globally, pedestrians have the right of way and drivers should yield
to pedestrians (Muley et al., 2019). Similarly, in accordance with
the State of Qatar’s traffic law, drivers should stop prior to the
crosswalk to ensure the safe passage of pedestrians (2007) and a
fine of 300 Qatari Riyal (around 82.5 USD) is charged to the drivers
who fail to yield at pedestrian crossings (MOI, 2007). However,
such fines are not implemented and generally drivers tend not to
yield to pedestrians, but rather compete over the right of way
(Bella et al., 2017; Hirun, 2016; Malenje et al., 2019; Muley et al.,
2019). Consequently, pedestrians are forced to wait for an appro-
priate gap to be able to cross at their designated crosswalks, which
leads to failure of the intended function of the marked crosswalks.
On the other hand, due to this, the pedestrians do not feel the
necessity to cross only at their designated locations, which may
encourage them to jaywalk, causing unsafe conditions that may
lead to crashes. In order to reduce or minimize the risks and poten-
tial crashes, Pedestrian-Vehicle Interaction (PVI) must be properly
understood (Iryo-Asano & Alhajyaseen, 2017b). The non-verbal
communications between pedestrians and vehicles, which is
highly subjected to misinterpretation, have received significant
interest from researchers, government, and concerned authorities
to study their impacts on the PVI aiming at developing effective
mitigations and policies to minimize pedestrian fatalities
(Schroeder & Rouphail, 2011). The PVI is controlled by two aspects,
pedestrians’ walking behavior and drivers’ yielding behavior
(Alhajyaseen & Iryo-Asano, 2017; Alhajyaseen et al., 2013). The
study of the driver yielding behavior is considered as more relevant
to road safety since pedestrians are at higher risk of injury as they
have no protection, unlike drivers. Further, local field experiments
are considered vital to realistically capture the impact of the vari-
ous variables on driver yielding behavior as road users with differ-
ent backgrounds and diverse cultures may perceive situations in
different ways, and also react differently based on their own risk
assessment and risk taking. Subsequently, this study aims to inves-
tigate strategies using field experiments to improve the driver
yielding behavior at marked crosswalks located at exclusive right
turn lanes.

2. Strategies to improve driver yielding rates

Driver’s yielding behavior is influenced by many factors such as
environmental factors (e.g., road geometry, time of day, weather,
and legal obligations), pedestrian’s characteristics (e.g., number
of pedestrians, gender, and utilized gesture), and driver’s charac-
teristics (e.g., age, gender, distraction, attitude, approach speed,
and temperament; Ferenchak, 2016; Hirun, 2016; Iryo-Asano &
Alhajyaseen, 2017; Stapleton et al., 2017). The impact of using
advance yield markings on drivers’ yielding behavior was investi-
gated by Samuel et al. (2013). The markings were provided at
about 6.1 m to 15.24 m ahead of the crosswalks to give the drivers
more time to check and stop before reaching the crosswalks. The
results of the before and after study showed an 8.2% increase in
driver’s yielding at the crosswalk. Other studies found that ensur-
ing the visibility of pedestrians was proven to be effective in
enhancing yielding rates and preventing pedestrian crashes
(Clark et al., 2019; Retting et al., 2003; Schroeder & Rouphail
et al., 2014). Clark et al. (2019) examined the effect of using Pedes-
trian Crossing Flags (PCFs) at marked crosswalks and found a sig-
nificant increase in driver yielding behavior. In a similar study by
Turner et al. (2006), high yielding rates reaching an average of
65% were reported when PCFs were being used. In order to further
increase driver awareness, there should be a common way of com-
munication between drivers and pedestrians as interface between
them have endured increased conflicts globally over the years.

Consequently, the method of communication can play a major role
on the percentage of yielded vehicles (Hu & Cicchino, 2018;
Ravishankar & Nair, 2018; Zhuang & Wu, 2011). Guéguen,
Eyssartier, and Meineri (2016) investigated the impacts of pedes-
trians’ smile on driver’s yielding behavior. It was found that the
pedestrian’s smile increased number of drivers yielding to pedes-
trians when they crossed at crosswalk or outside pedestrian cross-
ing. This positive effect was observed regardless of gender of driver
and the pedestrian. Other ways of communication that pedestrians
can use to show their intent at crosswalks are facial expressions
and direct gaze. Direct gaze is an emotional and social cue that
can be utilized by pedestrians as a way to get the attention of dri-
vers prior to crossing (Böckler et al., 2014). Field experiments were
conducted to assess the effect of pedestrians staring at drivers
yielding at crosswalks (Guéguen et al., 2015). It was found that
the overall yielding percent improved significantly (67.7% vs
55.1%) when the pedestrian stared at the drivers. Further, drivers
stopped more for a females rather than males. In addition, male
drivers were more influenced by pedestrian’s stare compared to
female drivers. The reported yielding rates were promising as there
was a considerable increase in the percentage of yielding vehicles
through use of communication skills by pedestrians without instal-
ling any device or providing additional notifications to drivers
before reaching crosswalks.

Furthermore, surveys and field experiments were carried out in
China to find which gesture out of 11 studied gestures would have
the highest impact on drivers yielding rate (Zhuang & Wu, 2014).
From the surveys, four gestures were selected by the drivers for
their good clarity, familiarity, and visibility. The gestures that were
selected were ‘L-bent-level,’ ‘R-bent-erect,’ ‘T gesture,’ and ‘L-
straight-erect.’ For the site experiments, only ‘L-bent-level’ gesture
was found to have a significant impact on yielding rates and
decrease in speed of vehicles prior to crosswalks. The yielding rate
was increased from 1.2% to 8.2% when ‘L-bent-level’ gesture was
used in comparison with the baseline scenario with no gesture.
Also, this gesture had no impact on the drivers’ comfort, which
was observed by monitoring the use of horn or shift in lanes. Since
the side effects are negligible with positive impact on the driver’s
yielding, it was recommended for pedestrians to utilize the ‘L-
bent-level’ gesture (Zhuang & Wu, 2014). Moreover, results to field
experiments on the drivers behavior at crosswalks using two ges-
tures (raising hand and extended arm) were provided by Crowley-
Koch et al. (2011). The experiments were conducted at 10 different
locations in the United States. The average increase in the yielding
rate percent for all locations were 18.67% and 33.59% in the case of
extended arm and raising hand, respectively, in comparison with
baseline yielding rate (i.e., no gestures). It was further recom-
mended to combine those gestures with other interventions like
engineering changes to further enhance the yielding rate.

Another way of communication that was studied is gratitude
(Nasar, 2003). Experiments were conducted for a period of three
weeks. In the first and third weeks, the data were collected without
treatment. However, at the second week the treatment was imple-
mented. Two signs were used for treatment; one sign thanking the
driver for stopping if the driver stopped, and a second sign saying
please stop next time if the driver did not stop. The second sign
was held by the person standing downstream of the road to ensure
that drivers who did not yield had seen the sign. The results
showed that the yielding rate increased to 50.9%, while base yield-
ing rate were 46% and 37.3% for week 1 and week 3, respectively.
Furthermore, it was also shown that during the second week, the
yielding rate of vehicles on the downstream road was 44%, while
for other weeks the yielding rates were 38% and 42%. It was con-
cluded that hand-held signs enhanced the yielding rate of drivers
at crosswalks. Several other variables impacting the drivers’ yield-
ing behavior were studied by researchers. Interestingly the yield-
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ing rate was enhanced by 40.27% (reaching 94.11%) when flashing
devices were installed at the crossings (Lantieri et al., 2020). The
adopted system consisted of in-curb LED flashing white strips,
backlit ‘yield here to pedestrian’ vertical signs, flashing orange bea-
cons, and enhanced lighting.

Malenje et al. (2019) investigated the effect of six environmen-
tal factors on the driver’s yielding behavior at 13 uncontrolled
crosswalks in Shanghai, China. It was found that the temporal
gap size and number of traffic lanes had the largest impact on
the driver yielding behavior. Also, higher yielding rates were
observed in the presence of police. Another significant variable
impacting the yielding behavior was the approach speed of the
vehicle. Several studies noted that a driver tends to yield only if
a reasonable reaction can be made depending on the travel speed,
distance to conflict area, and maximum deceleration rate that the
driver feels comfortable making (Bertulis & Dulaski, 2014; Chen
et al., 2016; Dutta & Ahmed, 2018; Fricker & Zhang, 2019; Lu
et al., 2016; Schneider et al., 2018; Wang et al., 2016).

A survey conducted by Hirun (2016) indicated that more than
50% of the drivers did not have knowledge about the right of
way of pedestrians at zebra crossings in Thailand. The impact of
public enforcement campaigns regarding the right of way at pedes-
trian crossings was studied and found to have a positive influence
on the increase of yielding rates (Van Houten et al., 2013, 2017).
Further, a study was conducted in three different locations with
different types of non-signalized crossings to determine driver
yielding rates (Fu et al., 2018) in three different situations: (1)
the driver cannot stop completely; (2) the drivers’ stopping is
based on their reaction time; and (3) the drivers can stop com-
pletely. It was noted that the highest yielding rate was associated
with the site containing painted crosswalk and drivers having suf-
ficient time to stop (82.4% for situation 3 compared to 52.0% for sit-
uation 2 and 0% for situation 1. However, considering the applied
safety measures, the site containing a stop sign showed higher
time for vehicles to reach the crosswalk (TC) and lower vehicle
deceleration rate (DRS) than the other sites. Likewise, the direction
of crossing was also found to be significantly affecting yielding
behavior in the State of Qatar (Muley et al., 2017). The study con-
cluded that the pedestrians’ attempting to cross from the sidewalk
toward the intersection had a higher yielding rate.

In summary, several countermeasures and approaches have
been studied to improve yielding rates at crosswalks. Remarkably,
the main focus from previous studies was set on the effect of ges-
tures on drivers yielding behavior without taking into account the
other factors including time, location type, demographic character-
istics, car type, and distractions. To the best of our knowledge, the
effect of gestures in combination with the other parameters has
not been investigated before. Moreover, the effect of gestures on
the drivers’ yielding behavior at marked (unsignalized) crossing,
has not been studied in the State of Qatar and other GCC countries,
which are characterized with a very heterogeneous population
with very diverse cultural backgrounds and habits (Soliman
et al., 2018; Timmermans et al., 2019). Therefore, this experimental
study was conducted to collect field data to address this gap. The
detailed research objectives are provided in the following section.

3. Study objectives

This study aims to investigate the yielding behavior of drivers at
marked crosswalks located on the channelized right-turn lanes at
signalized intersections. The underlying hypothesis of the study
is that the drivers’ decision to yield depends on multiple factors
including driver’s characteristics (e.g., gender, age), pedestrian
characteristics (e.g., gender, gesture), vehicle characteristics (car
type, and approach speed), and environment characteristics (time
of the day, location of the intersection [Urban vs Non-urban]).
Two objectives will be tested: (a) first is to determine the factors
affecting driver yielding behavior under given circumstance and
(b) second is to assess best strategy to improve driver yielding
rates by testing different gestures.

4. Experimental setup

4.1. Participants

Three male and two female postgraduate students participated
in this study as subjects and observers. Accordingly, the study con-
sidered two different situations considering males and females.
Males were dressed similarly in casual clothes (T-shirt, jeans, and

Fig. 1. Typical conditions for data collection.
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sneakers) and the females were wearing traditional Arabic clothing
(Abaya and Hijab). Other participants were drivers on the roads
during the observation period. To ensure consistency, several
meetings were held with the participating students to agree on
the steps followed during experimental sessions. In addition,
observers were trained to adequately view, analyze, and record
the driver’s yielding behavior uniformly. Pilot studies were con-
ducted inside the Qatar University campus by mentors to ensure
uniformity and accuracy in data collection.

4.2. Study sites

The experiments were conducted at three marked crosswalks
located at channelized right-turn lanes at signalized intersections
in the State of Qatar. It should be noted that all three sites have
similar geometric layout and same type of control at the free right
turn. Further, two sites were located in an urban area, in Doha city
(Tawar intersection and The Mall intersections), and the third was
located in non-urban area, in Al-Khor city (Al-Khor intersection).
The pedestrian crossing area is defined by standard white stripes
(zebra markings) with a warning sign placed fixed ahead to warn
drivers approaching the pedestrian crossing. Fig. 1 presents a typ-
ical road layout at the selected crossings.

As shown in Fig. 2, the Tawar intersection and The Mall inter-
sections were selected as representatives of urban area as the
two intersections were nearby shopping malls and residential area.
The Al-khor intersection was selected as representative of non-
urban area due to its low population density and presence of fewer
commercial establishments. The Tawar intersection is a major
intersection located close to a large shopping center and business
area. Similarly, The Mall intersection is located in front of a large
and famous shopping center in Doha city and with many commer-
cial establishments in the vicinity. The Al-Khor intersection is

located in a small coastal city in the State of Qatar, 50 kilometers
north of the capital, Doha. Few shops and residential buildings
are located in the vicinity of this intersection.

Table 1 provides a summary of the site characteristics. All three
sites had similar characteristics in terms of approach speed of
80 km/hr, and the availability of entry deceleration lane. Slight
variations were noted in the width of the crosswalk (varied from
5.00 m to 5.50 m) and the number of approach lanes (from four
lanes for Al-Khor intersection to six lanes for Tawar and The Mall
intersections).

4.3. Conditions

This study was conducted on weekends (Fridays and Saturdays)
twice a day; daytime and nighttime. The data were collected in
clear weather so that the visibility and stopping sight distances
were not impacted. Further, the data were only recorded when
no other pedestrian, except the subject, was present on the
approach. Consequently, the driver’s reaction to the subject cross-
ing the marked crosswalk was recorded. Additionally, in the case of
traffic jam or queues of vehicles waiting to merge on the intended
approach, the experiment was stopped and resumed once the free
flow of traffic was resumed. Moreover, this study only considered
drivers in sedan cars and Sport Utility Vehicles (SUV). The drivers
of trucks and motorcycles were excluded from the study as they
were only 0.03% of the total vehicles encountered during the
experiment.

4.4. Gestures

Four different gestures were used by the subjects while per-
forming the experiments at the crosswalks, as shown in Fig. 3.
For all the gestures, when the vehicle reached a predefined land-

Fig. 2. Three marked uncontrolled crosswalks located at channelized right-turn lanes in Qatar.
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mark located approximately 30 meters away from the pedestrian
crossing, the subject indicated his/her intent to cross by making
direct contact with the driver. It was ensured that there are no
obstacles between the vehicle and pedestrian jeopardizing the dri-
ver’s vision. In the first gesture, the pedestrian maintained a neu-
tral facial expression and approached the crosswalk without any
other interaction with the driver (Fig. 3(a)). This gesture was con-
sidered as the base gesture and was used for comparison purpose.
For the second gesture, called hand gesture, the pedestrian raised
one hand without moving his/her body to seek yielding. The hand
was raised straight at chest height and palm facing the driver
(Fig. 3(b)). While in the third gesture, the pedestrian made an
attempt to cross without raising the hand, this is called an attempt
(Fig. 3(c)). The fourth gesture was similar to the third gesture, but
the pedestrian was wearing a fluorescent vest, hence called v-
attempt (Fig. 3(d)). This gesture was introduced to test low/no cost
strategies to improve driver yielding behaviors without any infras-
tructure improvement.

4.5. Procedure

The data were collected when the subject was crossing toward
the intersection for all the cases. Further, the observers were at dis-
creet locations to avoid any influence on driver behavior. If the dri-

ver yielded, the pedestrian crossed the street and returned back to
the same place to repeat the procedure. If the driver didn’t yield,
then the pedestrian walked back for some distance and continued
the experiment with another approaching driver. When the subject
was performing the experiment, two other participants recorded
the driver characteristics and behavior as well as vehicle character-
istics from a discreet location. The observation sessions lasted until
criteria for a minimum one hour period and 80 observations
recorded per time period per gesture per site. This procedure was
repeated for all four gestures, for two situations (male and female
subjects), and for two conditions (daytime and nighttime) at each
of the three crossings.

For each observation, the observers recorded the yielding
behavior along with driver and vehicle characteristics. Yielding
was considered when the driver reached a complete stop prior to
the crosswalk allowing the pedestrian to cross. Meanwhile, when
the driver passed the crosswalk without allowing the pedestrian
to cross, it is considered as no yielding condition. Furthermore,
the recorded data included the location of crossing, situation (day-
time and nighttime), and the utilized gesture. The driver character-
istics include estimated age group, gender, distractions (if using a
handheld device), and whether the driver was accompanied by
another person. On the other hand, the characteristics of the vehi-
cle included type of vehicle and approach speed. The driver’s age

Fig. 3. Gestures used in this study.

Table 1
Site characteristics.

Site Number of
Lanes

Approach Speed Limit
(km/hr)

Type of Yield
Indication

Availability of exit
Acceleration Lane

Availability of entry
Deceleration Lane

Crosswalk
characteristics

length
(m)

width
(m)

Tawar Six lanes -
Divided

North 80 Yield sign No Yes 3 5.50

The Mall Six lanes -
Divided

West 80 Yield sign No Yes 3 5.30

Al-khor Four lanes -
Divided

West 80 Yield sign No Yes 3 5.00
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was categorized into three age groups; young (18–24 years), mid-
dle age (25–44 years), and older age (�45 years). The observer sub-
jectively assigned each driver to the suitable age group based on
his/her visual assessment. Approach speed was noted as slow or
other. Slow approach represented a speed of 20-25kmph. Obser-
vers were trained, through several trails, to recognize this speed
and note down the same as slow. All other observed speeds were
categorized as other. Fig. 4 summarizes the data framework used
for this paper. All the experiments were conducted during week-
ends; between 3:00 PM to 6:00 PM for the daytime condition
and 7:00 PM to 10:00 PM for the nighttime condition. The data col-
lection was performed between November 2020 and February

2021. During this period of the year, the weather is usually clear
with temperature between 18 and 25 degrees.

5. Data overview

In total, 5,419 driver observations were collected while con-
ducting this study, out of which 2,720 observations were for males
and 2,699 were for females. The total number of observations for
base, hand, attempt and vest-attempt gestures were 1597, 1366,
1220, and 1236, respectively. Alkhor intersection has the lowest
number of observations with a total of 1,640, followed by The Mall
intersection with a total number of 1,884 observations, and Tawar
intersection with a total of 1,895 observations. The proportion of
female drivers (24.5%) was found to be lower than male drivers
(75.5%). Further, the percentage of SUVs were higher than sedan
cars by 10.83%, as shown in Table 2. Table 3 summarizes the yield-
ing rates for each experimental condition for male and female sub-
jects. Overall, the female subjects received significantly higher
yielding rate (Mean: 16.30%, Standard Deviation (SD): 36.95%)
compared to male subjects (Mean: 11.40%, SD: 31.78%) (two-
tailed/unpaired: t(5287) = 5.238, p <.001). However, the increase in
yielding rate for females in comparison to males was found to be
insignificant when location, condition, and gesture were consid-
ered separately as shown in Table 3. Overall, 2.00%, 12.81%,
19.59%, and 24.60% yielding rates were observed for base, hand,
attempt, and v-attempt gestures, respectively.

6. Model development and analysis

To test the impact of various driver and built environment char-
acteristics, Binary Logistic Regression (BLR) models were devel-
oped using IBM SPSS 26.0 software. The model is aimed to
predict the likelihood of driver’s yielding for given conditions. For-
ward selection approach was used with a cut-off value of 0.05 sig-
nificance level. The independent variable, driver yielding was
coded as a binary variable, with a value of 1 when a driver yields
to the pedestrian and 0 when the driver doesn’t yield to the pedes-Fig. 4. Overview of the data collection framework.

Table 2
Number of observations for drivers’ gender and vehicle types considering each location, condition and gesture.

Site Condition Gesture Drivers’ gender Vehicle types

Male Female Sedan SUV

Al khor Day Base 179 18 96 101
Hand 163 23 77 109
Attempt 164 22 82 104
Vest Attempt 183 28 84 127

Night Base 187 38 99 126
Hand 176 34 101 109
Attempt 187 33 81 139
Vest Attempt 170 35 90 115

Tawar Day Base 261 56 134 183
Hand 261 44 137 168
Attempt 172 33 85 120
Vest Attempt 162 39 88 113

Night Base 181 64 104 141
Hand 165 45 87 123
Attempt 156 48 101 103
Vest Attempt 159 49 83 125

The Mall Day Base 185 132 146 171
Hand 152 94 108 138
Attempt 122 79 108 93
Vest Attempt 141 62 96 107

Night Base 181 115 138 158
Hand 139 70 92 117
Attempt 127 77 97 107
Vest Attempt 109 99 102 106

Overall 4082 1337 2416 3003

A. Almukdad, D. Muley, R. Alfahel et al. Journal of Safety Research 84 (2023) 232–242

237



trian. The coding of dependent variables is shown in Table 4. A
total of five different BLR models were developed to explore the
data. The first model determined the probability of a driver yield-
ing considering all experimental conditions. Section 6.1 describes
the details of the model. While the remaining four models ana-
lyzed the probability of driver yielding for each tested gesture
independently; Section 6.2 explains details these BLR models.

6.1. Overall driver yielding BLR model

The first model was used to predict the overall driver’s yielding
behavior. Table 5 shows the details of the model. The Nagelkerke R
Square was 20.1%, illustrating that the dependent variable yielding
has variance that can be described by the independent variables
satisfactorily. Initially, all variables were included as input vari-
ables for model development. Out of the 10 input variables, seven

were significant in predicting the probability of driver yielding.
Three variables (drivers’ age group, accompanied, and using phone)
were excluded as they did not have significant effect on the prob-
ability of driver’s yielding. Gesture was found to be the most signif-
icant variable affecting the probability of yielding. In terms of
gesture, hand, attempt and v-attempt are compared with the base
gesture. The odds that the driver would yield when hand, attempt,
and v-attempt gestures were used are 7.467, 13.190, and 17.596
times higher than the base gesture, respectively.

Further, as the approach speed reduced, the odds of the driver
yielding increased by 2.8 compared to a faster approach speed.
Female drivers had higher odds of yielding than their male coun-
terparts by 1.795 and 1.563, respectively. Furthermore, the car
type had a significant impact on the driver’s yielding behavior,
the yielding probability of drivers’ with SUVs is 1.194 times higher
than the yielding probability of sedan car drivers. Furthermore, the

Table 3
Driver yielding rates for all experimental conditions.

Site/intersection Condition Gesture Male subject Female subject t-test

% yielding Total observations % yielding Total Observations t Sig.

Al khor Day Base 0.00% 107 1.11% 90 1.000 0.32
Hand 6.98% 86 11.00% 100 0.961 0.338
Attempt 19.15% 94 27.17% 92 1.295 0.197
Vest Attempt 21.90% 105 29.25% 106 1.221 0.224

Night Base 0.00% 124 0.99% 101 1.000 0.32
Hand 3.00% 100 7.27% 110 1.414 0.159
Attempt 10.28% 107 15.93% 113 1.243 0.215
Vest Attempt 20.95% 105 30.00% 100 1.485 0.139

Tawar Day Base 1.95% 154 6.75% 163 2.119 0.035
Hand 12.42% 161 12.50% 144 0.020 0.984
Attempt 13.59% 103 14.71% 102 0.228 0.820
Vest Attempt 13.86% 101 17.00% 100 0.613 0.540

Night Base 0.83% 120 3.20% 125 1.325 0.187
Hand 6.54% 107 8.74% 103 0.596 0.552
Attempt 8.82% 102 10.78% 102 0.469 0.640
Vest Attempt 13.89% 108 15.00% 100 0.227 0.821

The Mall Day Base 0.71% 140 3.95% 177 1.984 0.048
Hand 18.85% 122 27.42% 124 1.596 0.112
Attempt 27.72% 101 42.00% 100 2.137 0.034
Vest Attempt 28.16% 103 43.00% 100 2.223 0.027

Night Base 0.00% 153 2.10% 143 1.744 0.083
Hand 12.26% 106 22.33% 103 1.928 0.055
Attempt 20.19% 104 27.00% 100 1.142 0.255
Vest Attempt 27.10% 107 35.64% 101 1.325 0.187

Overall 11.40% 2720 16.30% 2699 5.238 <0.001

Table 4
Independent variables coding used in the model.

Independent variables Code Frequency Independent variables Code Frequency

Gesture
Base *
Hand
Attempt
V-Attempt

0
1
2
3

1597
1366
1220
1236

Drivers’ gender
Female *
Male

0
1

1337
4082

Drivers’ age group
Young *
Middle
Elder

0
1
2

765
3357
1297

Car Type
Sedan *
SUV

0
1

2416
3003

Approach speed
Slow *
Other

0
1

1099
4320

Accompanied
No *
Yes

0
1

2705
2714

Location
Rural *
Urban

0
1

1640
3779

Using phone
No *
Yes

0
1

4691
728

Subject’s gender
Female *
Male

0
1

2699
2720

Time
Day *
Night

0
1

2775
2644

Note: * shows the reference category in the BLR models.
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odds of yielding were significantly higher in the daytime (1.52
times) compared to the nighttime. Moreover, the drivers’ yielding
probability in urban areas is 1.428 times compared to the one in
non-urban area.

6.2. Gesture based driver yielding BLR models

Four separate models were estimated to determine the proba-
bility of driver’s yielding for each tested gesture during the exper-
iments. These models were developed to assess the influence of
independent variables for different gestures on driver yielding
rates. It should be noted that the proportion of drivers’ yielding
for base gesture were low, hence Firth logistic regression model
was developed. This model utilizes penalized maximum likelihood
instead of standard maximum likelihood estimation to avoid
biased estimation of results (Rahman & Sultana, 2017). Tables 6

and 7 show the details of BLR models. It should be noted that all
the independent variables shown in Table 4 were included while
developing these models. However, the results for only significant
variables were reported in Tables 6 and 7. The Nagelkerke R Square
for base, hand, attempt, and v-attempt gestures cases were 17.5%,
11.1%, 7.2%, and 7.8%, respectively.

Drivers’ gender was found to be a significant factor affecting the
yielding behavior for hand, attempt, and v-attempt gestures, while
for the base gesture it was not significant. In all cases, subject’s
gender and approach speed had shown significant impact on the
driver yielding behavior. Time variable was also significant in pre-
dicting the driver yielding behavior for all gestures, except v-
attempt. The location variable was significant only for the base
and hand gestures, while it was not significant for the attempt
and v-attempt gestures. Although the car type was significant in
the first/overall model, it was not significant for the individual ges-
tures model. In general, drivers’ age group, accompanied, and using

Table 5
BLR model for predicting drivers yielding behavior.

Independent variables b SE Sig. Exp(b) 95% C.I. for Exp(bÞ
Lower Upper

Drivers’ gender �0.585 0.093 <0.001 0.557 0.465 0.668
Subject’s gender �0.446 0.085 <0.001 0.640 0.542 0.755
Car 0.177 0.085 0.037 1.194 1.011 1.411
Base Gesture <0.001
Hand Gesture 2.010 0.198 <0.001 7.467 5.065 11.007
Attempt Gesture 2.579 0.195 <0.001 13.190 9.000 19.331
V-Attempt Gesture 2.868 0.193 <0.001 17.596 12.056 25.684
Time �0.418 0.085 <0.001 0.658 0.557 0.778
Location 0.356 0.097 <0.001 1.428 1.182 1.726
Approach speed �1.029 0.093 <0.001 0.357 0.298 0.428
Constant �2.734 0.221 <0.001 0.065

Note: SE refers to Standard Error, Significance level a = 0.05.

Table 6
Direction and level of significance of each variable considering base and hand gestures in terms of the probability of yielding.

Independent variables Base case Hand gesture

b Sig. SE Exp(bÞ 95% C.I. for Exp(bÞ b Sig. SE Exp(bÞ 95% C.I. for Exp(bÞ
Lower Upper Lower Upper

Drivers’ gender - 0.110 - - - - �0.431 0.019 0.184 0.650 0.453 0.932
Pedestrians’ gender �1.603 <0.001 0.461 0.201 �2.645 �0.746 �0.423 0.013 0.170 0.655 0.469 0.914
Time �0.759 0.046 0.384 0.467 �1.583 �0.013 �0.433 0.013 0.174 0.649 0.461 0.913
Location �1.602 0.003 0.651 0.201 �3.209 �0.465 �1.024 <0.001 0.227 0.359 0.230 0.560
Approach speed �1.748 <0.001 0.355 0.174 �2.470 �1.027 �1.230 <0.001 0.181 0.292 0.205 0.417
Accompanied 0.813 0.029 0.375 2.255 0.081 1.609 - 0.409 - - - -
Constant �2.043 <0.001 0.390 0.130 �2.878 �1.305 �0.104 0.640 0.222 0.901
Nagelkerke R square 17.5% 11.1%

Note: - indicates that variable not significant, values not available and Significance level a = 0.05, SE refers to Standard Error.

Table 7
Direction and level of significance of each variable considering attempt and V-attempt gestures in terms of the probability of yielding.

Independent variables Attempt gesture V-attempt gesture

b Sig. SE Exp(bÞ 95% C.I. for Exp(bÞ b Sig. SE Exp(bÞ 95% C.I. for Exp(bÞ
Lower Upper Lower Upper

Drivers’ gender �0.565 <0.001 0.163 0.568 0.413 0.782 �0.664 <0.001 0.148 0.515 0.386 0.688
Pedestrians’ gender �0.423 0.005 0.149 0.655 0.489 0.878 �0.367 0.007 0.137 0.693 0.530 0.906
Time �0.595 <0.001 0.150 0.552 0.411 0.740 - 0.198 - - - -
Location - 0.146 - - - - - 0.763 - - - -
Approach speed �0.790 <0.001 0.163 0.454 0.330 0.625 �0.942 <0.001 0.149 0.390 0.291 0.523
Accompanied - 0.976 - - - - - 0.503 - - - -
Constant 0.071 0.733 0.209 1.074 0.229 0.193 0.176 1.258
Nagelkerke R square 7.2% 7.8%

Note: - indicates that variable not significant, values not available, Significance level a = 0.05, SE refers to Standard Error.
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phone were not significant variables with regard to the driver’s
yielding probability.

7. Discussion

The results showed that the female subjects received higher
yielding rates and female drivers showed higher probability of
yielding in comparison with their male counterparts. This can be
justified by the emotional and cultural factors that people tend
to associate with females out of respect, especially in the Gulf
Region, which is in line with previous studies (Guéguen et al.,
2016; Schroeder & Rouphail et al., 2014). Another reason can be
the safer driving behaviors of females compared to males, as it
was found that female drivers have fewer lapses, errors, and viola-
tions (Soliman et al., 2018). Further, female pedestrian casualties
are low over the past years (National Road Safety Strategy, 2018).
Additionally, the proportion of female drivers is less than male dri-
vers; as per a recent monthly statistic provided by the Ministry of
Development Planning and Statistics (MDPS), the total number of
issued drivers licenses for males was 6,363 compared to 1,237
for females in December 2021 (MDPS, 2021). Moreover, the type
of gesture utilized by the pedestrian prior to crossing was deter-
mined to have the highest influence on the yielding behavior.
The probability of driver yielding increased by 7.467, 13.190, and
17.596 in comparison with the base gesture for hand, attempt,
and v-attempt gestures, respectively. This can be linked to the
higher level of assertiveness exhibited by pedestrians in attempt-
ing to cross, compared to raising hand and base gesture. Similar
findings were also reported by previous studies (Böckler et al.,
2014; Crowley-Koch et al., 2011; Guéguen et al., 2015, 2016;
Zhuang & Wu, 2014). Furthermore, a strong correlation between
vehicle approach speed and the probability of yielding is found
(a 2.8 time increase in driver’s yielding when they are approaching
at a lower speed). Similar findings were concluded in previous
studies (Bertulis & Dulaski, 2014; Chen et al., 2016; Dutta &
Ahmed, 2018; Fricker & Zhang, 2019; Lu et al., 2016; Schneider
et al., 2018; andWang et al., 2016). The aforementioned can be jus-
tified by the availability of a reasonable reaction time and the abil-
ity to stop before the crosswalk with a comfortable deceleration
rate, which encourage drivers to yield to pedestrians. This high-
lights the importance of applying traffic calming measures that
encourage drivers to reduce their speeds while approaching a
pedestrian crossing.

The time of day was also found as an important parameter in
influencing the yielding behavior. The drivers showed higher prob-
ability of yielding to subjects (1.52 times) during the daytime com-
pared to nighttime. However, the time of day was found to have no
impact for the v-attempt gesture. This might be due to the
increased visibility and attraction during nighttime due to the flu-
orescent vest. Furthermore, attempt and v-attempt gestures were
not significantly affected by the area type, unlike base and hand
gestures, which had higher probability of yielding in non-urban
areas than urban areas.

The type of vehicle was found to have no impact on the proba-
bility of yielding (i.e., sedan and SUV), indicating no clear power
paradox existed. However, vehicle type showed adverse effects
on the yielding behavior in a previous study (Sun et al., 2003). Sim-
ilarly, the findings showed that the age group of drivers and dis-
tractions (especially using mobile phones while driving or being
accompanied by other passengers) had negligible impact on the
probability of yielding.

Overall, the approach speed was the most significant factor in
improving the driver yielding probability. This indicates that the
application of various traffic calming techniques and use of
advanced markings will aid in increasing driver yielding rates. Fur-

ther, use of gestures also increased probability of driver yielding.
This shows yielding rates can be improved without substantial
physical changes or investments. Campaigns should be conducted
to encourage pedestrians to use gestures to promote yielding at
crosswalks on channelized right turn lanes. The campaigns can
be more targeted to male drivers and specific to male pedestrians.
Further, pedestrians should be encouraged to use fluorescent vests
while crossing, especially during the nighttime. It should be noted
that a majority of pedestrian fatalities/injuries are for foreign
nationalities or expats (i.e., 74.5%) (Planning and Statistics
Authority, 2019a). So the awareness campaigns should be targeted
to the most affected group of residents to maximize the benefits.
Use of such simple technique can help to achieve significant bene-
fits. Further, the campaigns can also include importance of the
location and time of day while encouraging driver yielding at
marked crosswalks. In summary, the authorities can work on engi-
neering and educational measures to improve driver yielding and
improve pedestrian risk assessment.

8. Conclusions

This study investigates the impact of four different pedestrian
gestures on driver yielding behavior under different conditions
using field experiments at three locations in the State of Qatar. This
study utilized observations from 5,419 drivers at marked cross-
walks located on the channelized right-turn lanes at signalized
intersections. Overall 13.84% of drivers yielded to pedestrians with
2.00%, 12.81%, 19.59%, and 24.60% yielding rates for base, hand,
attempt, and v-attempt gestures, respectively. BLR models were
developed to assess the effect of driver characteristics, pedestrian
characteristics, vehicle characteristics, and environment variables
on the probability of driver yielding. The results showed that the
drivers’ yielding behavior was highly dependent on the gestures
utilized by the subjects. The odds of driver yielding for hand,
attempt, and v-attempt gestures were 7.467, 13.190, and 17.596
times than that of the base gesture, respectively. Furthermore, a
strong correlation was found between vehicle approach speed
and the driver yielding probability. The drivers approaching at
lower speeds had 2.8 times greater probability of yielding in com-
parison to the drivers approaching with high speed. Furthermore,
drivers had a significantly higher yielding probability when
encountering female subjects compared to the male subjects. Also,
the study showed that female drivers had higher probability of
yielding to pedestrians in comparison with male drivers. Higher
yielding rates were observed when base, hand, and attempt ges-
tures were used during daytime compared to nighttime. Further,
the yielding rates for V-attempt gesture were not affected by the
time of day.

The outcomes of this study highlighted the importance of sev-
eral variables on the driver’s yielding behavior in the State of Qatar.
These results can be applicable to the Arabian Gulf countries
exhibiting similar characteristics. Accordingly, several engineering
and education strategies can be employed to improve the yielding
rates of drivers. Various techniques enforcing reduction in
approach speed prior to pedestrian crossings by restricting the
speed limit or providing speed calming measures such as road
markings (i.e., zigzag lines, triangles, or horizontal lines) before
the crossing to alert the drivers are highly recommended. Further,
authorities can launch awareness campaigns for the pedestrians to
use specific gesture showing assertiveness to seek yielding while
crossing. On the other hand, public awareness campaigns targeting
drivers to highlight the importance of yielding to pedestrians and
giving them the right of way will also be helpful. At a later stage,
authorities might consider law enforcement to warn/penalize dri-
vers who do not give way to pedestrians. Also, proper lighting at
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crossings must be assured to enhance visibility during nighttime.
These aforementioned measures will enhance pedestrians’ safety
and comfortability on the roads, which can help to promote walk-
ing and reduce fatalities. The results of this study can help trans-
port planners and traffic engineers in improving driver behavior
at unsignalized right turn lanes. Furthermore, the study was con-
ducted in the State of Qatar, which has a heterogeneous driver pop-
ulation with different cultural backgrounds. It should be noted that
the State of Qatar is home to expats from 94 different nationalities
(Snoj, 2019), which have distinct backgrounds, exposure, and driv-
ing cultures. This makes the outcomes applicable to other GCC
countries exhibiting similar diverse population characteristics.

Several recommendations for future research include other
types of gestures and other pedestrian’s characteristics such as
age, type of clothing, and nationality. Further, the yielding behavior
during weekdays in comparison with weekends can be assessed.
One of the limitations in this study can be the low observations
of female drivers in comparison to male drivers. Low female popu-
lation in the State of Qatar, due to the presence of large proportion
of male workers for the many mega infrastructural projects that
are ongoing as part of the preparation for the FIFA World Cup
2022, can be a reason (i.e., female 26.3% and male 73.7% in 2019;
Planning and Statistics Authority, 2019b). In addition, only SUVs
and sedan cars were considered in this study since other vehicle
types (i.e., heavy vehicles and motorcycles) were not observed in
significant numbers at study sites.

Disclaimer

No funding was received for this study.
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a b s t r a c t

Introduction: Police-recorded road injury data are frequently used to approximate injury risk for different
road user groups but a detailed analysis of incidents involving ridden horses has not previously been con-
ducted. This study aims to describe human injuries resulting from interactions between ridden horses
and other road users on public roads in Great Britain and identify factors associated with severe to fatal
injuries. Method: Police-recorded road incident data involving ridden horses (2010–2019) were extracted
from the Department for Transport (DfT) database and described. Multivariable mixed-effects logistic
regression modeling was used to identify factors associated with severe/fatal injury outcomes. Results:
A total of 1,031 injury incidents involving ridden horses were reported by police forces, involving
2,243 road users. Out of 1,187 road users injured, 81.4% were female, 84.1% were horse riders, and
25.2% (n = 293/1,161) were in the 0–20 year age category. Horse riders represented 238/267 serious inju-
ries and 17/18 fatalities. Vehicle types involved in incidents where horse riders were seriously/fatally
injured were mostly cars (53.4%, n = 141/264) and vans/light goods vehicles (9.8%, n = 26). Horse riders,
cyclists, and motorcyclists had higher odds of severe/fatal injury compared to car occupants (p < 0.001).
Severe/fatal injuries were more likely on roads with 60–70 mph speed limits versus 20–30 mph roads,
while odds of severe/fatal injury increased with increasing road user age (p < 0.001). Conclusions:
Improved equestrian road safety will largely impact females and young people as well as reducing risk
of severe/fatal injuries in older road users and those using modes of transport such as pedal-cycles
and motorcycles. Our findings support existing evidence that reductions in speed limits on rural roads
would help reduce the risk of serious/fatal injuries. Practical applications:More robust equestrian incident
data would better inform evidence-based initiatives to improve road safety for all road users. We suggest
how this can be done.
� 2022 The Authors. Published by the National Safety Council and Elsevier Ltd. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Equestrianism is a common sport and leisure activity in Great
Britain (GB [comprised of England, Scotland and Wales]). In 2019,
as part of the British Equestrian Trade Association’s National
Equestrian Survey, it was estimated that 3 million people in GB
have ridden a horse at least once in the past year, while 1.8 million
are regular riders that ride at least once a month (British
Equestrian Trade Association (BETA), 2019). Exercising horses by
using a combination of off-road routes and public roads (a term
referred to as hacking) remains a common equestrian activity in
GB with more than half of 797 horse owners surveyed between

2009 and 2011 reporting they had ‘‘hacked” their horses in the pre-
vious week (Wylie, Ireland, Collins, Verheyen, & Newton, 2013).
Use of public off-road routes by equestrians is restricted in England
andWales, but not Scotland, to only those designated for horse use,
meaning only a small proportion of the existing public off-road
network is available to equestrians in contrast to pedestrians and
cyclists (Rights of way and accessing land, 2020). Even where
access to equestrian off-road routes exists, road use is often
required to reach those routes or travel between them. A more
recent study in 2020 found that road use by equestrians in GB
and Northern Ireland is common, with 84% (4481/ 5335) of eques-
trians surveyed reporting they use roads at least once per week and
not just for riding their horse but also for leading the horse while
walking next to them, carriage driving, and riding while leading
another horse (Pollard & Furtado, 2021).

https://doi.org/10.1016/j.jsr.2022.10.010
0022-4375/� 2022 The Authors. Published by the National Safety Council and Elsevier Ltd.
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Road incidents involving equestrians are also reported to be
common. A survey of 426 horse riders in GB and Northern Ireland
found that 60.3% had reported having a near-miss while using
roads in the previous year (Scofield, Savin, & Randle, 2013). A more
recent and extensive survey of equestrians in GB and Northern Ire-
land found that out of 6,390 equestrians participating, 67.7%
reported having a near-miss and 6.1% an injury incident in the pre-
vious year (injury sustained by them and/or their horse) (Pollard &
Furtado, 2021). At a more regional level, out of 1,976 equestrians
surveyed in Devon, a South West county of England, 79.1%
reported having a near-miss, 15.6% experienced a collision, and
7.7% sustained personal injury (Trump & Parkin, 2020). Real or per-
ceived risk presented by high volumes of traffic and/or fast-moving
vehicles has been identified as a barrier to walking and cycling
(Anciaes, Stockton, Ortegon, & Scholes, 2019; Jacobsen, Racioppi,
& Rutter, 2009; Sanders, 2015). Similar perceptions have been
identified in equestrians with road use centering around an indi-
vidualized assessment of risk comprised of the actions of other
road users, the non-inclusive characteristics of the road network,
the relationship with the individual horse, and the equestrian’s
own emotional management (Pollard & Furtado, 2021;
Simsekoglu, Dalland, & Robertsen, 2020). The incident-causing
actions of vehicle drivers around horses have been associated with
differences in hazard perception, leading to an underestimation of
risk when approaching a horse on a road, or frustration at encoun-
tering a slow-moving road user (Chapman & Musselwhite, 2011).

Similar equestrian road safety concerns have been reported by
equestrians in Australia and Norway (Simsekoglu et al., 2020;
Thompson & Matthews, 2015). However, published data regarding
equestrian road safety from other countries are currently lacking,
particularly regarding road incidents in countries where equids
(horses, donkeys, and mules) are used extensively as working ani-
mals for the transportation of people and goods. Despite the negative
experiences of a considerable proportion of equestrians when using
the road network, equestrian road safety figures are generally
under-represented by road safety stakeholder reports and govern-
ment communications in GB. For example, The Department for
Transport (Dft) ReportedRoadCasualtiesGreat BritainAnnual Report
2019 (Reported road casualties Great Britain, 2019) does not repre-
sent equestrians alongside pedestrians, cyclists, and motorcyclists.
This may be because equestrians are considered to represent only a
minimal proportion of road users in GB. While this may be true in
relation tomotorized vehicles, it is at oddswith the existing evidence
as to the number of people in GB that take part in equestrian activi-
ties, the regularity with which the equestrian population use roads
with their horses, and the frequency of incidents they experience.
Additionally, rate-based equestrian casualty data are not currently
available,making it challenging todeterminehowthe incidence rates
of equestrian casualties are changing over time.

Equestrian road incident data in GB are collated independently
by two organizations, the DfT and the British Horse Society (BHS).
The DfT, together with the Scottish and Welsh Governments, has
been collating road safety data for road collisions resulting in per-
sonal injury in Great Britain (GB) since 1979. These data represent
injury collisions reported to British police forces. The records are
made freely available and are often used by local authorities,
policy-makers, and road safety stakeholders. It is possible to extract
road incidents involving ridden horses from these data. The British
Horse Society (BHS) has been collating horse-related road incidents
via the Horse Incidents website since 2010, including both injury
and non-injury incidents (Report Your Horse Incident, 2020). Inci-
dents are reported by the public and submitted by anyone directly
involved in, or having witnessed, an incident involving a ridden or
non-ridden horse on a public road. A description and analysis of
BHS road incident data has been published elsewhere (Pollard &
Grewar, 2020), including an analysis of factors associated with col-

lision risk and fatality outcome for the main horse involved in the
incident. Close passing by vehicle drivers was one of the most sig-
nificant contributors to collision risk between a vehicle and a horse
and/or their handler, while collisions and speeding were signifi-
cantly more likely to result in a horse fatality. Horse and human
injuries were related; equestrians were 12 times as likely to be
severely or fatally injured in incidents that resulted in horse fatality.

It is well recognized that road incidents are often under-
reported, particularly if they do not result in serious or fatal human
injury (James, 1991; Murphy et al., 2020). For example; National
Health Service [NHS] Hospital Episode Statistics document that
between April 2019 and April 2020 in England alone, 3,298 people
were admitted to hospital due to an animal-rider or animal-drawn
vehicle transport incident (Hospital Admitted Patient Care Activity
2019-20, 2020). In contrast; DfT road safety data for 2019 record
only 124 people to have been involved in a road incident involving
a ridden horse across England, Scotland, and Wales (Road Safety
Data - data.gov.uk, 2020). Additionally; under-reporting may be
more prevalent in certain road user groups due to, for example, dif-
fering perceptions of injury severity. British horse racing staff were
less likely to report or take time-off for ‘‘invisible” injures, such as
concussions and musculoskeletal injuries in comparison to frac-
tures (Davies, McConn-Palfreyman, Parker, Cameron, & Williams,
2022); while anecdotal experiences from a major trauma surgeon
in GB suggest that equestrians do not tend to seek medical treat-
ment unless ‘‘something is hanging off” or that treatment of rela-
tively serious injuries is often delayed (Research shines linght on
equestrian-related injuries, 2022). In a large survey of equestrians
in GB and Northern Ireland about their road use habits and experi-
ences; participants were asked to comment on what would make
them more or less likely to report a horse-related road incident –
feelings that their reporting would not make a difference to their
individual case or to equestrians in their area often dissuaded them
from reporting an incident (Pollard & Furtado, 2021). If this under-
reporting is not recognized it can lead to underestimation of road
safety problems and lack of prioritization for policy changes and
funding to improve road safety. It is also important to recognize
who is most likely to be seriously injured or killed in interactions
between different road user groups (Webster & Davies, 2020).

Investigating the data that are currently available regarding
police-recorded road incidents involving ridden horses will pro-
vide a better understanding of equestrian incidents on the road
network and help focus future equestrian road safety policy and
research. Additionally, it will help to highlight the gaps and limita-
tions of the DfT road safety database in light of more recent publi-
cations in the field of equestrian road safety. The aims of this study
are to describe and investigate data on human injuries resulting
from interactions between ridden horses and other road users on
public roads in GB. The specific objectives are to:

(i) describe road incidents involving ridden horses and result-
ing in human injury as reported by police to the DfT data-
base between 2010 and 2019

(ii) use the DfT data to identify factors associated with higher
odds of serious to fatal injury sustained by road users
involved in incidents with ridden horses

(iii) provide recommendations on how equestrian road incident
data could be made more robust in order to better inform
evidence-based road safety initiatives

2. Materials and methods

2.1. The DfT road safety data

The DfT road safety data for road incidents resulting in personal
injury include the location, circumstances, types of vehicles

D. Pollard and J.D. Grewar Journal of Safety Research 84 (2023) 86–98

87



involved, and resultant casualties. Casualties in this instance are
defined as any person sustaining personal injury as a direct result
of the road incident. These data represent injury-causing incidents
reported to police forces across GB and recorded by police to the
DfT road safety database using the STATS 19 reporting form.1

Instructions on how the STATS 19 forms should be completed are
also available, which provide definitions of the data to be collected.2

These data are made publicly available via three separate but related
coded datasets representing individual incidents, the vehicles
involved and the resultant casualties, including a variable lookup
data guide3 for the codes. The incident index field provides a unique
identifier for each incident and links vehicles and casualties to each
incident, while the vehicle reference field links casualties to each
vehicle.

All incident, vehicle, and casualty datasets between 2010 and
2019 were screened to identify incidents that involved ridden
horses. All data including ridden horses or horse riders as casu-
alties were extracted alongside data of other road users and casu-
alties involved in the incidents. The unique identifier fields were
used to merge all data into a single dataset for statistical analysis.
A limitation of these data are that, for equestrians, only data on rid-
den horses are available; data including horse-drawn vehicles and
horses being handled in another way on public roads, although col-
lected, cannot be extracted as it is part of the ‘other vehicles’
category.

Severity of injury to road users involved in horse-related road
incidents, as defined in the instructions on how the STATS 19 forms
should be completed,4 was categorized as:

1. Fatal – death occurring within 30 days of the incident and as a
direct result of the incident.

2. Serious – examples include broken neck or back, severe head
injury, severe chest injury, any difficulty breathing, internal
injuries, multiple severe injuries, loss of arm or leg (or part),
deep penetrating wound, fracture, deep cuts/lacerations, head
injury, crushing, burns (excluding friction burns), concussion,
loss of consciousness, severe general shock requiring hospital
treatment, detention in hospital as an in-patient, either imme-
diately or later, and death occurring more than 30 days after
the incident but as a direct result of the incident.

3. Slight – examples include whiplash or neck pain, shallow cuts/
lacerations/abrasions, sprains and strains (not necessarily
requiring medical treatment), bruising and slight shock requir-
ing roadside attention.

4. None – shaken but no other injury or medical treatment
received.

In order to investigate factors associated with severe to fatal
injury outcomes among the reported horse-related road incidents,
a binary severity of injury variable was generated with a no injury
to slight injury (0) category and a severe to fatal injury (1)
category.

2.2. Data analysis

The DfT road-related incident data were stored in Microsoft
Excel (Office 365) spreadsheets and imported into Stata (IC v.

13.0) statistical software for statistical analysis. Ordinal variables
were summarized as medians with an interquartile range (IQR)
and range (minimum to maximum), and categorical variables were
described as proportions (%). The spatial distribution of road casu-
alties with serious or fatal injuries that occurred between 2010 and
2019 were mapped in QGIS 3.10 (http://qgis.org) using reported
latitude and longitude coordinates to visually describe the regional
location of the most serious incidents.

Initial relationships between variables of interest (e.g., injury
severity and whether police attended the incident or not) were
assessed using the Chi-square (v2) test or Fisher’s exact test for cat-
egorical data and the Mann-Whitney U test for continuous/ordinal
data. The significance level was set as p < 0.05.

The data were analyzed at road user level with each observation
representing a road user and their injury outcome. Univariable
mixed-effects logistic regression modeling was used to identify
factors associated with higher risk of severe to fatal injury outcome
as a direct result of the incident. Risk was presented by calculating
odds ratios (OR) and corresponding 95% confidence intervals (CI).
As there was a lack of independence between observations for road
users involved in the same incident, the statistical model had to be
adjusted to take into account similarities within these incidents
(e.g., occurring at the same time, on the same day, and on the same
road). The statistical model was additionally adjusted for the year
the incident took place to adjust for any similarities between inci-
dents occurring in the same year. This was done by including year
as a random effect in the model and the incident index (the unique
identifier for each incident) as a random effect nested within year.
Following univariable analyses, variables where the likelihood
ratio statistic (LRS) p < 0.25 were selected for multivariable model-
ing (Dohoo, Martin, & Stryhn, 2009). The final multivariable mixed-
effects logistic regression model was built using manual, stepwise,
forward selection, with variables individually added into the model
from most to least significant based on their Wald p-values and
retained in the final model if model fit was significantly improved
(Wald p < 0.05). Missing data remained missing and responses
with missing data were automatically excluded from the analyses
during model building, with the exception of some variables where
a large number of records were missing (e.g., driver or rider age
band). In these instances an ‘‘unknown” category was created. All
variables that were excluded during the model building process
were forced back into the final model individually at the end to
assess any potential interaction or confounder effects.

3. Results

3.1. Description of police-recorded injury incidents involving ridden
horses on public roads

Screening of the DfT road safety data between 2010 and 2019
revealed a total of 1,031 injury incidents involving ridden horses
on the public road network were reported by police forces in GB.
Tables 1 and 2 present a summary of the descriptive data obtained
from the DfT road safety dataset at both incident (Table 1) and road
user (Table 2) level.

The South East (19.4%), South West (16.5%), Yorkshire and The
Humber (12.6%) and West Midlands (10.8%) regions of England
had the highest frequency of reported incidents while Scotland
(3.7%) and Greater London (2.1%) had the lowest frequency. These
incidents involved a total of 2,243 road users. Of these 1,187
(52.9%) were injured; 1.5% (n = 18) fatally, 22.5% (n = 267) seri-
ously and 76.0% (n = 902) slightly. The frequency of serious and
fatal injuries, although distributed across GB, had a localised spa-
tial distribution with higher frequencies around Greater London

1 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/at-
tachment_data/file/230590/stats19.pdf.

2 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/at-
tachment_data/file/230596/stats20-2011.pdf.

3 https://data.gov.uk/dataset/cb7ae6f0-4be6-4935–9277-47e5ce24a11f/road-
safety-data.

4 https://assets.publishing.service.gov.uk/government/uploads/system/uploads/at-
tachment_data/file/230596/stats20-2011.pdf.
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and the South East, the South West, West Midlands and Yorkshire
regions (Fig. 1).

Incidents were generally least frequent during the winter
months (December to February; 19.6%, n = 790) and most frequent
during the summer months (June to August; 29.2%, n = 1,177). Inci-
dents were more frequent on Saturdays (17.5%) and Sundays
(17.3%) and least frequent on Mondays (11.5%). Most incidents
(30.8%) occurred in the morning between the hours of 09:00 and
12:00 and in the afternoon (28.6%) between the hours of 14:00
and 17:00 hours. More than half of incidents occurred on unclassi-
fied roads (56.2%) and in rural areas (85.1%) with either 30 mph
(42.2%) or 60 mph (46.0%) speed limits. Most of the incidents
occurred during fine weather conditions with no high winds
(89.9%) and dry road surface conditions (83.4%). Although all inci-
dents were recorded by the police, the police attended only 53.7%
of the incidents.

A total of 1,129 horse riders were involved in the incidents;
83.5% (n = 943) were female, 13.7% (n = 155) were male, and 31
did not have gender recorded. Age category data were available
for 1,050 horse riders; the largest proportion belonged to the 46–
55 year (18.7%, n = 196) and 36–45 year (17.5%, n = 184) age cate-
gories while 26.3% (n = 276) were in the 0–20 year age category.
A considerable proportion of interactions did not involve impact
between the ridden horse and the vehicle (46.9%) but where
impact did occur, most first points of impact were either on the off-
side of the horse (40.2%) or from the rear (28.6%).

A median of two vehicles and/or ridden horses were involved in
each incident (IQR 2 to 2; range 1 to 18). Of the other road users
(n = 1,114) involved in the incidents with ridden horses, most were
car occupants (62.7%), van/light goods vehicle occupants (8.8%),
and motorcycle riders/passengers (6.8%). Of the other road users,
56.4% were male, 20.3% were female, and 23.3% did not have a gen-
der recorded. Age category data were available for 771 vehicle dri-
vers/riders; the largest proportion belonged to the 46–55 year age
category (18.6%).

Out of the 1,187 road users injured a median of 1 were injured
per incident (range 1 to 5). The majority of road users injured were
female (81.5%) and belonged to the 36–55 year (35.6%,
n = 413/1,161) year age category while 25.2% (n = 293) were in
the 0–20 year age category. Horse riders were the main road user
group injured in these incidents (84.1%) and represented 238 out
of 267 serious injuries and 17 out of the 18 fatalities (Fig. 2). Out

Table 1
A summary of injury road incidents (n = 1,031) involving ridden horses as recorded by
police forces in Great Britain between 2010 and 2019.

Variable Number of incidents Percentage (%)

Incident year
2010 126 12.2
2011 135 13.1
2012 127 12.3
2013 108 10.5
2014 115 11.2
2015 101 9.8
2016 103 10.0
2017 84 8.2
2018 73 7.1
2019 59 5.7

Incident region
East of England 98 9.5
East Midlands 81 7.9
Greater London 22 2.1
North East 49 4.8
North West 83 8.1
Scotland 38 3.7
South East 200 19.4
South West 170 16.5
Wales 49 4.8
West Midlands 111 10.8
Yorkshire and The Humber 130 12.6

Incident month
January 81 7.9
February 88 8.5
March 74 7.2
April 103 10.0
May 86 8.3
June 78 7.6
July 97 9.4
August 85 8.2
September 100 9.7
October 77 7.5
November 84 8.2
December 78 7.6

Incident day
Sunday 178 17.3
Monday 118 11.5
Tuesday 156 15.1
Wednesday 142 13.8
Thursday 133 12.9
Friday 124 12.0
Saturday 180 17.5

Incident time of day
09:00–12:00 318 30.8
12:00–14:00 202 19.6
14:00–17:00 295 28.6
17:00–20:00 156 15.1
20:00–00:00 15 1.5
00:00–09:00 45 4.4

Incident area
Urban 154 14.9
Rural 877 85.1

Incident road type
A 118 11.5
B 140 13.6
C 194 18.8
Unclassified 579 56.2

Speed limit of road (mph)
20 8 0.8
30 435 42.2
40 84 8.2
50 27 2.6
60 474 46.0
70 3 0.3

Table 1 (continued)

Variable Number of incidents Percentage (%)

Weather conditions
Fine no high winds 928 90.0
Rain no high winds 41 4.0
Snow no high winds 1 0.1
Fine with high winds 19 1.8
Rain with high winds 5 0.5
Fog/mist 1 0.1
Other 10 1.0
Unknown 26 2.52

Road surface condition
Dry 855 83.4
Wet/damp 167 16.3
Frost/ice 2 0.2
Flood > 3 cm 1 0.1

Attended by police
Yes 554 53.7
No 477 46.3
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of the 120 road users aged 15 years and younger that were injured,
109 (90.8%) were horse riders. Police were more likely to attend
incidents that resulted in severe to fatal injury (p < 0.001, v2 22.2).

Twenty-seven incidents where the horse rider was seriously or
fatally injured included multiple ridden horses; 26 involved two
ridden horses and one incident involved four ridden horses. Vehi-
cle types involved in incidents where horse riders were either seri-
ously or fatally injured were mostly cars (53.4%, n = 141) and
vans/light goods vehicles (9.8%, n = 26) (Fig. 3). A considerable pro-
portion (12.5%, n = 33) of horse rider serious injuries and fatalities
were reported to not have included another vehicle. As specific
details of incidents were not available, it is not possible to specu-
late as to how the injuries to horse riders occurred where no other
vehicles were involved.

3.2. Factors associated with severe to fatal injury outcomes

A total of 2,243 observations were available for mixed-effects
logistic regression modeling. There were 10 year categories (2010
to 2019) with a minimum of 120 and a maximum of 293 observa-
tions per year within which were nested 1,031 incidents with a
minimum of 1 and a maximum of 19 observations per incident –
equating to the number of road users involved in each incident.

Univariable mixed-effects logistic regression results are pre-
sented in Table S1. Multivariable modeling identified six variables
significantly associated with severe to fatal injury, after adjust-
ment for injury year and incident (Table 3). There was evidence
of a lack of independence of observations across the calendar years
and at incident level (i.e., across observations of road users
involved in the same incident and in incidents occurring in the
same year; LRS = 0.0284). The severity of injury was associated
with mode of transport, first point of impact, the speed limit of
the road, the month of the year, the region, and the age of the dri-
ver or rider involved in the incident. Compared to people traveling
in cars, the odds of severe to fatal injury in incidents involving rid-
den horses were higher for cyclists (OR 108.5, 95% CI 24.1, 487.2),
horse riders (OR 73.4, 95% CI 26.1, 206.2), and motorcyclists (OR
18.2, 95% CI 4.4, 75.6). Incidents where the first point of impact
was from the front (OR 2.5, 95% CI 1.3, 4.7) or the rear (OR 2.0,
95% CI 1.1, 3.6) were more likely to result in severe or fatal injury
compared to when the first point of impact was from the offside.
Non-impact incidents were similarly associated with higher odds
of severe or fatal injury (OR 1.7, 95% CI 1.1, 2.9). The odds of serious
or fatal injury almost doubled (OR 1.6, 95% CI 1.1, 2.4) for roads
with speed limits of between 60 and 70 mph compared to roads
with speed limits of between 20 and 30 mph. Injury severity odds
were higher between January to February (OR2.3, 95% CI 1.2, 4.4)
and May to June (OR 2.8, 95% CI 1.5, 5.3) compared to between
March to April. Regionally, serious and fatal injuries were more

Table 2
A summary of data regarding road users (n = 2,243) involved in injury road incidents
with ridden horses as recorded by police forces in Great Britain between 2010 and
2019.

Variable Number of
incidents

Percentage
(%)

Vehicle type involved in incident with ridden
horse (n = 1,114)

Car 698 62.7
Van 98 8.8
Motorcycle 76 6.8
Heavy goods vehicle 74 6.6
Agricultural vehicle 63 5.7
Minibus/bus 33 3.0
Pedal cycle 28 2.5
Other/unknown 44 4.0
Vehicle occupant gender (n = 1,114)
Female 226 20.3
Male 628 56.4
Not recorded 260 23.3
Vehicle driver/rider age category (n = 771)
11–15 2 0.3
16–20 46 6.0
21–25 59 7.7
26–35 125 16.2
36–45 126 16.3
46–55 143 18.6
56–65 112 14.5
66–75 82 10.6
>75 76 9.9
Horse rider gender (n = 1,129)
Female 943 83.5
Male 155 13.7
Not recorded 31 2.8
Horse rider age category in years (n = 1,050)
0–5 2 0.2
6–10 22 2.1
11–15 93 8.9
16–20 159 15.1
21–25 125 11.9
26–35 153 14.6
36–45 184 17.5
46–55 196 18.7
56–65 86 8.2
66–75 26 2.5
>75 4 0.4
Impact between ridden horse and vehicle

(n = 1,127)
Yes 599 53.1
No 528 46.9
Location of first point of impact between

vehicle and ridden horse (n = 599)
Front 130 21.7
Rear 171 28.6
Offside 241 40.2
Nearside 57 9.5
Injuries in incidents involving ridden horses

(n = 2,243)
Yes 1,187 52.9
No 1,056 47.1
Injured road users in incidents involving

ridden horses (n = 1,187)
Horse rider 998 84.1
Car occupant 105 8.9
Pedestrian 37 3.1
Cyclist 24 2.0
Motorcyclist 15 1.3
Other vehicle 8 0.7

Gender of injured road users (n = 1,187)
Female 967 81.5
Male 220 18.5
Age category of injured road users (n = 1,161)
0–5 7 0.6
6–10 19 1.6
11–15 94 8.1
16–20 173 14.9

Table 2 (continued)

Variable Number of
incidents

Percentage
(%)

21–25 128 11.0
26–35 168 14.5
36–45 199 17.1
46–55 214 18.4
56–65 98 8.4
66–75 39 3.4
>75 22 1.9
Injury severity (n = 1,187)
Slight 902 76.0
Serious 267 22.5
Fatal 18 1.5
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likely in the South East (OR 1.6, 95% CI 1.5, 7.5), West Midlands (OR
2.6, 95% CI 1.1, 6.1) and Yorkshire (OR 2.5, 95% CI 1.1, 5.9) com-
pared to the North West. Lastly, the odds of serious or fatal injury
increased with increasing age band of the driver or rider involved
in the incident with the odds of road users over 66 years of age sus-
taining serious or fatal injuries nearly 9-fold higher (p < 0.001)
than that of the youngest age group (0–15 years).

4. Discussion

The analysis of road incidents and their contributory factors is
vital to help prevent future injuries and fatalities on the road net-
work. We have previously described in detail and analyzed horse-
related road incidents reported to the BHS and occurring between
2010 and 2020 in England, Scotland, Wales, and Northern Ireland,

Fig. 1. The frequency of serious and fatal casualties resulting from road incidents involving ridden horses (n = 1,031) on public roads in Great Britain between 2010 and 2019
as recorded by police forces.
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which provided important insight into collision and horse fatality
risk (Pollard & Grewar, 2020). As evidence-based data regarding
injuries sustained by road users involved in incidents with ridden
horses were lacking, we set out to describe the type of road inci-
dents recorded by police forces and the impact on the road users

involved. We also present recommendations on how the robust-
ness of equestrian road incident data can be improved to better
feed into the current knowledge on the frequency, location, and
circumstances surrounding road incidents involving horses, and
how best to prevent them.

Fig. 2. The number and type of road users injured and the severity of injury sustained in police-reported incidents involving ridden horses (n = 1,031) on public roads in Great
Britain between 2010 and 2019.

Fig. 3. The types of vehicles (n = 264) involved in police-reported incidents resulting in severe or fatal injury to a horse rider on public roads in Great Britain between 2010
and 2019.
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4.1. Police-recorded injury incidents involving ridden horses on public
roads

The spatial distribution of DfT road incidents corresponds with
highest frequencies of serious or fatal outcomes with the South
East, South West, West Midlands, and Yorkshire areas of England
having the highest proportions of incidents as well as those with
the most serious outcomes. This was partially reflected in the
results of the multivariable regression modeling where the South
East, West Midlands, and Yorkshire had approximately-three times
the odds of severe to fatal injury outcomes for road users (most of
whom were horse riders) involved in incidents including ridden
horses in comparison to the North West. Similarly, the South East
was found to have significantly higher odds of collision incidents
between vehicles and equestrians compared to the North West
when the BHS horse incidents data were analyzed (Pollard &
Grewar, 2020). Equestrians in the West Midlands and Yorkshire

regions of England were found to be more likely to use roads and
had higher odds of a road-related near-miss in the previous year
compared to equestrians in Scotland (Pollard & Furtado, 2021).
Corroboration of data for certain regions being more risky for
equestrians than others can prompt further investigation into the
location of regional incidents, such as the characteristics of the
road and road user behavior, and lead to interventions to improve
equestrian road safety. Additionally, this information could help
secure funding for more sophisticated rate-based regional esti-
mates of risk, based on the distance and/or time equestrians spent
on roads and the density of equestrians in the region.

The frequency of incidents reported coincided with the days
(weekend days), times (predominantly mornings and afternoons),
seasons (summer months) and weather conditions (fine, dry condi-
tions) when equestrians report they are more likely to be riding
their horses and, therefore, accessing roads (Trump & Parkin,
2020). However, incident month was the only time variable

Table 3
Multivariable mixed-effects logistic regression modeling, with incident year and id as random effects, of factors associated with higher odds of severe to fatal injury to road users
(n = 2,239) involved in incidents including ridden horses (n = 1,031) and reported by police to the Department for Transport road safety database between 2010 and 2019.

Variable Coefficient Standard error Odds ratio (OR) 95% confidence interval (OR) Wald P-value

Mode of transport
Car Reference 1.0
Pedal cycle 4.7 0.8 113.5 24.8, 518.6 <0.001
Motorcycle 2.9 0.7 18.5 4.4, 77.6 <0.001
Ridden horse 4.3 0.5 75.7 26.8, 214.1 <0.001
Other/unknown* �0.7 1.1 0.5 0.1, 4.4 0.535

First point of impact
Offside Reference 1.0
Nearside 0.2 0.4 1.2 0.5, 2.8 0.721
Back 0.7 0.3 2.0 1.1, 3.7 0.030
Front 0.9 0.3 2.6 1.3, 4.8 0.004
No impact 0.6 0.4 1.8 1.1, 2.9 0.025

Speed limit of road (miles per hour)
20–30 Reference 1.0
40–50 0.5 0.3 1.7 0.9, 3.1 0.084
60–70 0.5 0.2 1.7 1.1, 2.5 0.014

Month
January-February 0.9 0.3 2.4 1.2, 4.6 0.010
March-April Reference 1.0
May-June 1.1 0.3 2.9 1.5, 5.6 0.002
July-August 0.4 0.3 1.4 0.8, 2.7 0.273
September-October 0.4 0.3 1.5 0.8, 2.8 0.259
November-December 0.4 0.3 1.5 0.7, 2.8 0.266

Region
East of England 0.6 0.5 1.8 0.7, 4.5 0.214
East Midlands 0.8 0.5 2.1 0.8, 5.6 0.124
Greater London 0.7 0.8 2.0 0.4, 9.6 0.362
North East 0.5 0.6 1.6 0.5, 4.9 0.398
North West Reference 1.0
Scotland 0.9 0.6 2.6 0.8, 8.3 0.110
South East 1.2 0.4 3.4 1.5, 7.8 0.004
South West 0.5 0.4 1.6 0.7, 3.8 0.252
Wales 0.6 0.5 1.8 0.6, 5.3 0.268
West Midlands 1.0 0.5 2.6 1.1, 6.3 0.036
Yorkshire and the Humber 0.9 0.4 2.5 1.1, 6.0 0.036

Driver/rider age band (years)
0–15 Reference 1.0
16–20 0.4 0.4 1.4 0.6, 3.2 0.392
21–25 0.1 0.4 1.1 0.4, 2.6 0.879
26–35 0.8 0.4 2.3 1.1, 5.1 0.037
36–45 1.0 0.4 2.7 1.3, 5.9 0.011
46–55 1.0 0.4 2.7 1.2, 5.6 0.012
56–65 1.3 0.4 3.8 1.6, 9.0 0.003
>66 2.2 0.5 8.8 3.2, 24.4 <0.001
Unknown �1.2 0.6 0.3 0.1, 1.0 0.046

* Other modes of transport include minibuses/buses, agricultural vehicles, vans, light and heavy goods vehicles.
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retained in the final multivariable model with the odds of having a
severe or fatal injury outcome higher in late winter and early sum-
mer compared to the spring. This finding suggests that winter
months have a disproportionally higher frequency of incidents
with a serious outcome compared to spring months when the
weather starts improving. This is similar to trends seen in cycling
road incidents and injuries in the UK; cycling is more common dur-
ing the spring and summer months but the casualty rate per mile
traveled is higher in autumn and winter months (Reported road
accidents, 2021). This is likely due to a complex combination of
factors, such as adverse road surface conditions due to rain and
ice/snow, poorer visibility (shorter daylight hours, lower light or
low sun in the mornings or evenings) and strong winds (Pazdan,
2020). Location wise, most incidents occurred in rural areas and
on minor unclassified roads. By definition, unclassified roads are
local roads intended for local traffic that should be used by smaller
amounts of traffic traveling at lower speeds over shorter distances
(Guidance on road classification and the primary route network,
2021). The 2019 annual report for road casualties in Great Britain
showed that the majority of road fatalities (57%) occurred on rural
roads (Reported road casualties Great Britain, 2019). These include
narrow, single-track roads with areas of poor visibility, due to
overhanging vegetation or high hedges, and often speed limits of
60 mph; speed limits often not suitable for the road conditions,
types of road users using the roads, and surroundings.

In our multivariable model, however, the speed limit of the road
was a much more important determinant of injury severity than a
rural, urban, or suburban location. Odds of severe or fatal injury
almost doubled on roads with speed limits of 60–70 mph com-
pared to roads with speed limits of 20–30 mph. It is well-
established that speed is one of the main determinants of collision
risk and collision severity (Aarts & Van Schagen, 2006; Richter,
Berman, Friedman, & Ben-David, 2006). While the speed limit of
a road may not necessarily equal higher speeds, it has been shown
to be an important proxy measurement; raising speed limits con-
tributes to increased road fatalities while lowering speed limits
has the opposite effect. As an example, a Swedish study evaluating
insurance data between 2005 and 2017 found that a reduction in
speed limits (from 50-60 km/h to 30–40 km/h) was associated
with lower risk of moderate to fatal injury for cyclists involved in
collisions with cars (Isaksson-Hellman & Töreki, 2019), while
research in the United States found an increase in road fatalities
between 1995 and 2005, which could be attributed to raised speed
limits on all road types in the United States, with the highest fatal-
ity increase on rural interstates (Friedman, Hedeker, & Richter,
2009). Therefore, there is substantial evidence that supports our
conclusions that reduction of speed limits alongside improved
enforcement, particularly on rural roads, would lead to fewer and
less severe road incidents.

eAlmost half of all injury incidents involving ridden horses did
not result in physical contact or impact between the ridden horse
and the vehicle, which is in keeping with previously published
research using both BHS and survey data fromGB and Northern Ire-
land (Pollard & Grewar, 2020; Trump & Parkin, 2020). Where
impact did occur, it most commonly occurred on the offside or rear
of the horse, however, rear and front (head-on) impacts were more
likely to result in severe or fatal injury compared to offside impacts.
Interestingly, the odds of severe or fatal injury were also almost
doubled for non impact incidents compared to offside impacts. This
is important to understand; lack of a collision in equestrian inci-
dents does not equate to lack of injury evenwhen another road user
is involved. This invites the concept of three minds at work when,
for example, a vehicle driver encounters a ridden horse on the road;
that of the vehicle driver, the rider, and the horse. Horses are prey
animals and their reactions to a perceived hazard (which could be
a loud, noisy trailer, a fast-moving vehicle, or a silent bicycle) most

commonly set off the ‘flight’ response where the horse will attempt
to escape from the danger but sometimes the ‘fight’ response will
be activated, where a horse may kick out at the hazard
(Keaveney, 2008; Norwood et al., 2000; Thompson, McGreevy, &
McManus, 2015). This may not only be dangerous for the horse-
rider combination, but also for other road users. Helping non-
equestrians understand simple horse behavior would help put the
risk faced by equestrians on roads into perspective.

Similar to cyclists (Aldred & Crosweller, 2015), fear of injury or
witnessing or being involved in a road incident are important con-
tributors to equestrians’ avoidance of roads (Pollard & Furtado,
2021) and, as such, may be barriers to the uptake of equestrian
activities. This also presents a problem in terms of the ‘Safety in
numbers’ effect, which has been demonstrated to exist for pedes-
trians and cyclists; it is used to explain the inverse statistical rela-
tionship between the number of pedestrians and cyclists in a
population and the number of injuries they sustain due to road
incidents (Elvik & Bjørnskau, 2017; Fyhri, Sundfør, Bjørnskau, &
Laureshyn, 2017; Jacobsen, 2003). Although the exact mechanisms
behind this effect have not yet been elucidated, the most common
theories include the concept of motorists becoming more attentive
when exposed to higher numbers of pedestrians and cyclists
(Jacobsen, 2003), that road users that gain more experience and
become more familiar with other road users develop better expec-
tations of behaviors (Phillips, Bjørnskau, Hagman, & Sagberg,
2011), or that the demands of larger populations of cyclists and
pedestrians drive safer transport infrastructure, norms, and behav-
iors (Bhatia & Wier, 2011). Whether one or several of these pro-
posed mechanisms play a part in increasing safety of pedestrians
and cyclists, it is likely a similar Safety in Numbers effect exists
for equestrians and avoidance of roads by equestrians could lead
to a downward spiral in terms of equestrian road safety. Equestri-
ans have previously described feeling increasingly less safe on
roads (Pollard & Furtado, 2021), leading to fewer equestrians using
roads and in turn contributing to higher incident risk for those
equestrians still using roads.

This leads onto who is most likely to be involved in road inci-
dents with ridden horses and who is most likely to be injured. Over
80% of road users injured in these incidents were female, 36% were
aged between 36 and 55 years of age, while 25% were aged
between 0 and 20 years of age, and 84% were horse riders. Perhaps
of particular concern is that out of 120 injured road users aged
15 years and younger, over 90% were horse riders. Our previous
research also identified that younger equestrians were more likely
to use roads but also to report experiencing a near-miss incident
on roads in the previous year compared to older equestrians, while
equestrians riding while leading another ridden horse (often a
child on a pony) were more likely to have experienced an injury
incident on the road in the previous year (Pollard & Furtado,
2021). These findings are at odds with the vision of Sport England’s
‘‘Uniting the Movement” strategy in GB, which aims to encourage
sport and physical activity uptake in communities, particularly
by involving more women and young people (Uniting the
Movement, 2021). If these groups are the ones having more nega-
tive experiences and being injured while doing equestrian activi-
ties on roads, it is likely to dissuade them from participating in
activities related to equestrianism, which for somemay be the only
physical activity they are involved in (Church, Taylor, Maxwell,
Gibson, & Twomey, 2020). Conversely, physical activity and mental
stimulation are of equal importance to older age categories. Our
multivariable injury outcome model identified that odds of severe
or fatal injury increased with increasing age of the road user
involved with odds of severe or fatal injury almost nine times as
likely in the over 66 year old category compared to the 15 years
and younger category. Improving equestrian road safety will there-
fore help to safeguard our younger and older generations.
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When further taking into account severity of injury, it is almost
always the horse rider, a cyclist, or motorcyclists, rather than a per-
son enclosed in a vehicle, that are severely or fatally injured in road
incidents involving ridden horses. This also highlights that other
road users, such as cyclists and motorcyclists, should be made
aware to take particular care when interacting with horses on
the road to additionally reduce any injury risk to themselves. For
leisure and sport cyclists this could be done via cycling clubs and
groups, while for commuter cyclists this could be done via cycle
to work schemes or other environmental and sustainability frame-
works adopted by employers. The vehicle types involved in the
highest proportion of severe or fatal injuries to horse riders were
cars and vans/light goods vehicles. While these are the road user
groups that are also likely to frequently encounter ridden horses
on roads, this finding is something that should be investigated
further.

4.2. Recommendations on improving the robustness of equestrian road
incident data

The DfT data have several limitations when representing eques-
trian road incidents, which are discussed below and also comprise
the limitations of this study. We provide some recommendations
on how the robustness of equestrian road incident data could be
improved.

4.2.1. The type of data collected
The DfT data represent only a proportion of actual road inci-

dents as recorded by police forces. Recording, therefore, relies on
the incident being reported to the police and is subject to consid-
erable under-reporting for nonfatal injury incidents. The only type
of equestrian activity recorded is ridden activity and while eques-
trians often ride their horses on roads, the current data do not
acknowledge other types of equestrian activities that also regularly
occur on roads, such as leading a horse on foot and horse-drawn
vehicles (Pollard & Furtado, 2021). We recommend that all eques-
trian activities are included as identifiable categories in the dataset
to better understand overall equestrian injury risk. Another consid-
eration is inclusion of incidents where a loose horse (absence of
rider/handler) is involved in a road incident with another road
user. This can happen in several ways, including horses not being
secured properly or escaping onto the road network due to dam-
aged fencing or gates being left open, a horse that is running loose
on the road because the rider has become unseated, or vehicles
encountering semi-feral free-roaming ponies in large conservation
areas such as the New Forest and Dartmoor. In fact, collisions with
a loose horse are one of the most common causes of road-related
horse fatality in Britain (Pollard & Grewar, 2020) and additionally
pose a high risk of injury for the vehicle occupant. Enabling the
extraction of these data would provide important information on
human injury risk as a consequence of being involved in a collision
with a large animal.

The DfT data contain only incidents resulting in personal injury
to one or more road users. While this is vital information, collation
of data regarding near-misses (involving close passes or speeding)
or incidents causing distress (aggressive or intimidating behavior
aimed at the rider/handler or the horse) to the equestrian contain
vital early warning indicators of specific road environments or road
use behaviors that could escalate to injury (Aldred, 2016). Accord-
ing to Dee et al. (Dee, Cox, & Ogle, 2013)there is often a misinter-
pretation of a near-miss as being a high-probability, low-
consequence severity occurrence rather than a narrowly averted
low-probability, high-consequence severity occurrence. Proper
investigation, evaluation, and intervention following a near-miss
often prevents the occurrence of a more severe incident. Not only
that, but experience of near-misses by cyclists can have a consider-

able impact on risk perception and future participation in cycling
(Aldred & Crosweller, 2015; Sanders, 2015). Self-reported near-
misses by cyclists were shown to reasonably accurately represent
actual events with many driver behaviors reportedly similar
between near-misses and police-recorded slight injury collisions
involving cyclists (Aldred, 2016). However, these near-miss data
need to be accepted and utilized by road safety policy makers
and authorities in order to be adopted into intervention-based
strategies. Being aware of the frequency and location of these
non-injury incidents could help police forces and local authorities
work with their local equestrian communities to improve road
safety. We suggest ways in which this could be done in the follow-
ing subsection.

The current data analyzed were retrospectively collected and
although recorded in a standardized way, are still liable to subjec-
tive interpretation of events. The incidents also lacked context
whether provided by eye-witness accounts or video footage, which
would have been useful to explain how some of the injury inci-
dents occurred. For example, incidents with ridden horses where
no other road users were involved – is this because the other road
user could not be identified or because it truly was an incident not
involving another road user? While this may not be available in
public records of police-recorded data, it is an important consider-
ation for any future equestrian road safety research.

Equestrians are currently not represented in any rate-based
casualty estimates (based on casualties per mile traveled), which
indicate that pedestrians, cyclists, and motorcyclists, although hav-
ing lower numbers of casualties compared to vehicle drivers, have
high rates of casualties when the miles traveled are taken into
account. It is likely that equestrians have similarly elevated casu-
alty rates if the distance or time spent using roads is taken into
consideration. Therefore, studies designed to determine rate-
based incident or casualty estimates would better represent the
actual risk experienced by equestrians when using the public road
network.

4.2.2. Combining multiple sources of data
In an ideal world, a central database would exist linking multi-

ple sources of data (e.g., incident circumstances, road characteris-
tics, road user demographics, healthcare data regarding injury
outcomes and objective video footage if available). This would
ensure that all data and outcomes of interest were reported and
coded in the same way.

Information on equestrian road incidents is currently frag-
mented. There are two databases which collate, store, and make
available equestrian road incident data to the public: the Dft data,
as described here, and the BHS Horse Incidents database described
in a previous study (Pollard & Grewar, 2020). The BHS data contain
information on incidents across all equestrian activities on roads in
GB and Northern Ireland, injury outcomes for both the main rider/
handler and horse involved in the incident, as well as data on near-
miss incidents (including road rage and aggressive behavior direc-
ted at the rider/handler and or horse). These databases are inde-
pendent although there is likely considerable overlap between
injury incidents reported to both the police and the BHS as the
BHS actively advocates the reporting of both injury and non-
injury incidents to the police. However, this does mean that eques-
trians have to go through two separate reporting processes for a
single incident, potentially contributing to lower reporting of fre-
quent road incidents. As discussed above, the importance of pre-
senting near-miss data, where available, should not be
underestimated. We suggest that road safety stakeholders consider
both police-recorded injury data alongside BHS near-miss data
when assessing equestrian road safety in their local areas.

Some police forces have created self-reporting online portals
that have streamlined the collection of video and photographic evi-
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dence related to driving offenses frommembers of the public using
dashboard, body, or helmet camera footage (e.g., Operation SNAP
(GoSafe - Op snap, 2022; Devon and Cornwall Police Operation
Snap digital submissions, 2022; Operation Snap | Warwickshire
Police, 2022; Operation Snap | West Mercia Police, 2002). Equestri-
ans can submit evidence regarding injury and near-miss incidents
to this portal, however, these data are not publicly available nor is
it currently possible to obtain equestrian-specific non-injury data
from police forces. Submitting of this evidence also relies on eques-
trians wearing suitable video recording equipment and being able
to capture the moment in time from the right perspective.

Finally, linking road incident data to both medical and veteri-
nary healthcare data could provide a better understanding of inju-
ries, hospitalization period, and the financial implication of
equestrian road incidents. Although summary-level data for NHS
Hospital Episode Statistics are publicly available (Hospital
Episode Statistics (HES), 2022), special permissions have to be
obtained to access the full NHS records to provide meaningful
insight into the healthcare impact of equestrian road incidents.
Similarly, screening of large-scale veterinary hospital records from
practices that use the same practice management software could
provide important horse injury data (Welsh, Duz, Parkin, &
Marshall, 2016).

4.2.3. The importance of language
Encouraging the reporting of road-related equestrian incidents

will help create a more complete picture of what is happening on
the road network. However, the language we use around road
safety can be problematic when it comes to describing equestrian
incidents in relation to other road incidents. While horses are used
as modes of transport, they are not vehicles. Classing horses as
vehicles fails to acknowledge their role as autonomous road users
in their own right as well as failing to recognize the complex bond
that most equestrians have with their horses; often perceiving
them as valued friends, companions or family members
(Dashper, 2017; Lee Davis, Maurstad, & Dean, 2015; McGowan,
Phillips, Hodgson, Perkins, & McGowan, 2012). We recommend
that reference to vehicles in the DfT database is changed to ‘‘modes
of transport,” which would be a better representation of how roads
are used by all road users. Additionally, collating data on whether
the horses involved were injured in the incidents would elevate
their role on the road from being a vehicle to a special type of road
user.

Avoidance of the word ‘‘accident” is well established in current
road safety culture, with the word accident implying a lack of attri-
butable blame or a sense of inevitability; but, it is well-established
that most injury events on roads are largely predictable and pre-
ventable (Davis & Pless, 2001; Stewart & Lord, 2002). Terminology
such as ‘‘crash” or ‘‘collision” have, therefore, been widely favored
by road safety professionals and academics. However, this can be
problematic for describing horse incidents because, as shown by
the current data and elsewhere, a considerable proportion of horse
incidents (even those resulting in injury and involving other road
users) do not involve physical contact between another road user
and the horse or their rider/handler (Pollard & Grewar, 2020;
Trump & Parkin, 2020). In cycling, the terms ‘non-collision inci-
dent’ and ‘single cyclist collision’ are used to describe incidents
where no other road users were involved and the cyclist injured
themselves by, for example, slipping on an icy road (Gildea, Hall,
& Simms, 2021). We propose that use of the word road incidents
should be considered by road safety stakeholders to encompass
the experiences of all road users and include the analysis of
near-miss incidents. These can subsequently be broken down into
collision or non-collision incidents and injury or non-injury inci-
dents as required.

5. Conclusions

Despite the considerable number of people involved in eques-
trian pursuits and the frequency with which they use roads with
their horses, horse riders and handlers in GB often feel like low-
priority road users and equestrian activities are seldom promoted
as part of government active travel or green exercise initiatives.
In road incidents involving ridden horses, it is almost always the
horse rider that is injured. The horse riders injured in these inci-
dents are largely women and just over a quarter are young adults
or children. These findings are at odds with the aims of several
national campaigns that seek to increase participation in sport,
physical activity, and access to green spaces, particularly for
women and young people.

When taking into consideration injury severity in incidents
involving ridden horses, horse riders, cyclists and motorcyclists
were more likely than car occupants to be severely or fatally
injured, while odds of severe or fatal injury increased with increas-
ing road user age. The vehicles associated with the most severe
injury to horse riders were cars and light goods vehicles or vans.
These findings warrant further investigation in order to assess
opportunities to create a safer, more inclusive road network and
promote positive interactions between road users. Our findings
also support the evidence that reductions in speed limits on roads
frequented by horse riders, which would be the majority of the
rural and some non-rural road networks, would help reduce the
risk of serious or fatal injuries.

6. Practical applications

Although the frequency of police-recorded road incidents
involving ridden horses is low in relation to incidents involving
other road users, the limitation of the DfT database should be kept
in mind. These data present only a proportion of true injury inci-
dents for one subset of equestrians. Additionally, rate-based casu-
alty estimates (based on time spent on the road or distance
traveled) for equestrians are currently lacking, making it difficult
to fully understand the risk faced by equestrians while using roads
and time changing trends. However, the BHS database presents a
complementary and readily-available source of data that can be
used to analyze patterns of near-miss incidents, which are extre-
mely frequent, and pinpoint problem areas where action can be
taken before serious or fatal incidents occur. Improving the robust-
ness of equestrian road incident data would ensure that road safety
stakeholders and police forces are made aware of the frequency
and location of near-misses and injury incidents that occur
between equestrians and other road users that would help them
work within their local communities to improve road safety.
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a b s t r a c t

Introduction: The Ontario manufacturing sector is over-represented when it comes to workers’ compen-
sation claims in the province. A previous study suggested that this may be the result of compliance gaps
with respect to the province’s occupational health and safety (OHS) legislation. These gaps may be, in
part, due to differences in perceptions, attitudes, and beliefs toward OHS between workers and manage-
ment. This is noteworthy as these two cohorts, when working well together, can foster a healthy and safe
work environment. Therefore, this study sought to ascertain the perceptions, attitudes, and beliefs of
workers and management with respect to OHS in the Ontario manufacturing sector and to identify dif-
ferences between the groups, if any. Methods: A survey was created and disseminated online to get the
widest reach across the province as possible. Descriptive statistics were used to present the data and
chi-square analyses were performed to determine if there were any statistically significant differences
in responses between workers and managers. Results: In total, 3,963 surveys were included in the anal-
ysis, which consisted of 2,401 (60.6%) workers and 1,562 (39.4%) managers. Overall, workers were more
likely to state that their workplace was ‘a bit unsafe’ relative to managers and this difference was statis-
tically significant. There were also statistically significant differences between the two cohorts with
respect to health and safety communication matters, the perception of safety as a high priority, whether
people work safely when unsupervised, and whether control measures are adequate. Conclusions: In sum-
mary, there were differences in perception, attitudes, and beliefs toward OHS between workers and man-
agers in Ontario manufacturing and these differences must be addressed in order to improve the sector’s
health and safety performance. Practical Applications: Manufacturing workplaces can improve their health
and safety performance by strengthening labor-management relationships, including having routine
health and safety communication.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Ensuring a healthy and safe work environment is not only the
‘right thing to do,’ but there is also a rather significant financial
burden associated with work-related incidents. According to the
Workplace Safety and Insurance Board (WSIB) in Ontario, Canada,
nearly $2.5 billion in benefit payments were issued for work-
related injury and illness claims in 2020 (Workplace Safety and
Insurance Board, 2022a). In particular, Ontario’s manufacturing
sector reported 7,205 lost-time injury claims, which represents
15 % of all claims in the province (Workplace Safety and

Insurance Board, 2022b). This is noteworthy as this sector only
employs about 12 % of the total workforce in Ontario
(Government of Ontario, 2011). Given the above WSIB claim statis-
tics, a reasonable person would argue that the current situation is
unacceptable and that measures need to be taken to rectify it. One
means of addressing this issue is to examine compliance gaps
within the manufacturing sector with respect to the province’s
occupational health and safety legislation. A study by Hon and
Fairclough (2017) found that many Ontario manufacturing work-
places were not meeting the minimum requirements mandated
in the province’s Occupational Health and Safety Act and its Regu-
lations, such as education and training as well as health and safety
policies. To understand why these gaps exist, the authors recom-
mended that future research should include an assessment of the
attitudes, beliefs, and perceptions of those in the province’s manu-
facturing sector regarding occupational health and safety (Hon &
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Fairclough, 2017). According to a review of 30 years of safety cli-
mate research, past studies have primarily focused on workers’
perceptions toward safety in the workplace (Zohar, 2010). Given
that occupational health and safety is rooted by the internal
responsibility system which states that every-one in the workplace
(regardless of position) plays a role in health and safety
(Government of Ontario, 2022), it is important to understand the
perspectives toward health and safety from the two key workplace
parties – workers and managers. Survey-based studies have previ-
ously identified workplace health and safety perception differences
between management and workers in steel mills in southeastern
United States (Prussia et al., 2003), the nuclear sector in the United
States (Findley et al., 2007), the trucking industry in the United
States (Huang et al., 2014), as well as in construction in Columbia
(Marín et al., 2019). These previous studies found that managers
tended to have a higher perception of workplace health and safety
than workers, which can lead to organizational conflict (Findley
et al., 2007). To the best of our knowledge, this is the first study
of its kind to explore this issue in Ontario – the province with
the largest workforce in Canada (Statistics Canada, 2022). There-
fore, the objective of this study was to compare management
and workers’ perceptions, attitudes, and beliefs toward occupa-
tional health and safety in the Ontario manufacturing sector, since
an understanding of these viewpoints is critical toward addressing
compliance gaps.

2. Methods

This was a survey-based cross-sectional study in which institu-
tional ethics was approved prior to the collection of any data (Ryer-
son REB 2020–385).

2.1. Survey design

As no similar study has been conducted previously, a de novo
survey was developed with questions related to attitudes, beliefs,
and perceptions of occupational health and safety. Most of the
questions were extracted and modified from existing surveys –
many of which were previously pre-tested and/or validated
(Adebola, 2014; Health & Safety Executive, 2004; Prairie Research
Associates, 2015). The survey was arranged into various sections
with the first section containing demographic questions such as
job role and employment length. The second section, with multiple
Likert-type responses, asked about an individual’s perception
toward health and safety (sourced primarily from the Health &
Safety Executive questionnaire; Health & Safety Executive, 2004).
The third section sought the respondent’s attitudes and beliefs
regarding health and safety initiatives in the workplace, such as
communication and hazard control measures (sourced primarily
from the Prairie Research Associates survey; Prairie Research
Associates, 2015). In this section, respondents gave their level of
agreement toward various statements using a 5-point Likert-type
response ranging from strongly agree (1) to strongly disagree (5).
Lastly, in the fourth section, respondents were asked to identify
their top three workplace health and safety concerns.

The questionnaire has been included as a Supplemental File. It
is evident in the survey that questions 1 to 10 were related to
demographics, and the question on page 5 asked about specific
hazards found in the workplace. Cronbach’s alpha was calculated
for the remaining questions related to perceptions, attitudes, and
beliefs (after recoding to ensure the answers were going in the
same direction) to ensure internal consistency. The result was
0.89, which suggests a good consistency (Bland et al., 1997). In
addition, the survey was pre-tested by several volunteers to ensure
that the survey was functional on multiple browser types and that

the questions were unambiguous. Where relevant, questions were
revised based on feedback from pilot respondents.

2.2. Participant recruitment

Workplace Safety & Prevention Services (WSPS), a not-for-profit
health and safety association in Ontario that serves the manufac-
turing sector, led the recruitment of prospective participants.
WSPS marketed the survey on their social media outlets (Facebook,
Twitter, LinkedIn) and in electronic newsletters that encouraged
both managers and workers from the Ontario manufacturing sector
to complete the survey. Upon clicking the link to the survey, a
respondent was taken to the consent preamble that preceded the
survey questions. To encourage participation, prospective respon-
dents were given the opportunity to enter a draw for a $50 e-gift
card after completing the questionnaire.

The inclusion criteria for workers were that the individual must
have been employed in their current workplace for at least three
months so that they had an opportunity to gain an understanding
of the occupational health and safety practices/protocols in their
workplace. Meanwhile, the manager’s inclusion criteria were that
they had to be in their current role for at least three months to
have had some time to understand their role and responsibilities
from an occupational health and safety perspective.

The survey was hosted on a web-based platform, Opinio, and
was open from February 15, 2021, to April 30, 2021.

2.3. Data analysis

Descriptive frequency statistics were used to report the partic-
ipants’ responses stratified by worker and manager. Chi-square
analysis was conducted to determine whether there was a statisti-
cally significant difference (p-value < 0.05) in the responses
regarding the perceptions, attitudes, and beliefs of occupational
health and safety between the two cohorts. For those variables
found to be significant, post-hoc testing was performed to identify
response categories that were statistically significant from one
another. The top five occupational health and safety concerns were
ranked by worker and manager/supervisor. The statistical analyses
were performed using SAS version 9.4 (Toronto, ON) and figures
were created using R version 4.0.4.

3. Results

3.1. Demographics

A total of 5,245 responses were received, of which 1,282 were
excluded from analysis because the respondent’s job role was not
specified, they did not reside in Ontario, they were not employed
in the Ontario manufacturing industry, or less than 90 % of their
survey was completed. Overall, 3,963 (75.6 %) of all responses were
included in the analysis, consisting of 2,401 (60.6 %) workers and
1,562 (39.4 %) managers/supervisors (however, the actual sample
size for each question differed from these values as respondents
might have opted to skip some of the questions). A response rate
could not be determined accurately because the number of people
who were invited to participate was unknown. Relative to man-
agers, a greater proportion of the workers were younger, female,
had part-time job status, were employed for a shorter length of
time, were employed at facilities with a smaller workforce (<50
employees), and more often worked evenings and nights (Table 1).
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3.2. Perceptions of health and safety

In terms of perception of overall safety, there was a statistically
significant difference between workers and management whereby
a larger proportion of workers (14.97 %) felt the workplace was ‘a
bit unsafe’ compared to management (11.45 %) (Fig. 1). There were
also statistically significant differences between the two cohorts
regarding the workplace party they believed was primarily respon-
sible for controlling health and safety risks in the workplace, the
amount of health and safety training that had been provided, and
whether they perceived the amount of health and safety training
as being adequate (Table 2). A larger proportion of workers
believed that ‘‘employer” and ‘‘employee” were primarily responsi-
ble for controlling the health and safety risks in the workplace,
whereas managers generally felt that this was within the purview
of the ‘‘occupational health and safety coordinator/department” or
the ‘‘Ontario Ministry of Labour.” The response of having had ‘not
very much’ health and safety training was significantly higher in
workers (21.97 %) compared to management (11.72 %), and signif-
icantly more workers felt that the training that they have received
was ‘‘not enough” (14.81 %) compared with managers/supervisors
(11.72 %).

3.3. Attitude and beliefs toward occupational health and safety issues

There was a statistically significant difference in the beliefs of
workers and managers regarding various aspects of communica-
tion of occupational health and safety matters (Fig. 2). Specifically,
managers were more likely to agree that workers are involved in
safety decisions (69 % vs 64 %), that there are frequent communica-
tions about safety in the workplace (71 % vs 66 %), and workers are
regularly asked about their safety concerns (70 % vs 66 %).

Approximately 70 % of both cohorts agreed or strongly agreed
with the statement, ‘‘workplace injuries and accidents are an inevi-
table part of life” (Table 3). There were also statistically significant
differences between the two cohorts in their level of agreement
with respect to the following statements (i.e., agree or strongly
agree):

� The safety of workers is a high priority for my workplace (77 %
managers vs 73 % workers)

� Workplace health and safety requirements negatively impacts
business operations (56 % workers vs 53 % managers)

� At my workplace, people here always work safely even when
they are not being supervised (67 % managers vs 66 % workers)

Table 1
Characteristics of respondents stratified by Worker and Manager/Supervisor.

Variable Subcategory Worker (%) Manager/Supervisor (%) Chi-square p-value

Age 25 and under 290 (12.1) 82 (5.3) <0.0001
25 to 35 1183 (49.4) 689 (44.2)
36 to 45 790 (33.0) 620 (39.8)
46 to 55 122 (5.1) 149 (9.6)
55 and above 12 (0.5) 19 (1.2)

Sex Female 1150 (48.3) 641 (41.4) <0.0001
Male 1121 (51.3) 898 (58.0)
Do not identify as either male or female 10 (0.4) 10 (0.7)

Job Status Full-time 1701 (71.9) 1258 (81.7) <0.0001
Part-time 631 (26.7) 245 (15.9)
Casual 35 (1.5) 36 (2.3)

Postal Code K 303 (12.6) 145 (9.3) 0.007
L 507 (21.1) 331 (21.2)
M 805 (33.5) 519 (33.2)
N 407 (17.0) 276 (17.7)
P 379 (15.8) 291 (18.6)

Employment Length Less than 1 year 314 (13.2) 52 (3.4) <0.0001
At least 1 year, but less than 5 years 1179 (49.4) 614 (39.6)
At least 5 years, but less than 10 years 764 (32.0) 696 (44.9)
At least 10 years, but less than 20 years 115 (4.8) 164 (10.6)
20 years or more 13 (0.6) 26 (1.7)

Industry Computer and electronic manufacturing 515 (21.6) 305 (19.7) 0.002
Food, textiles and related manufacturing 691 (29.0) 380 (24.5)
Machinery, electrical equipment and miscellaneous manufacturing 647 (27.1) 451 (29.1)
Metal, transportation equipment and furniture manufacturing 363 (15.2) 267 (17.2)
Non-metallic and mineral manufacturing 94 (3.9) 85 (5.5)
Printing, petroleum and chemical manufacturing 77 (3.2) 64 (4.1)

Unionized workplace? Yes 1964 (85.6) 1253 (85.4) 0.83
No 330 (14.4) 215 (14.7)

Facility Size Small (less than 50 employees) 729 (30.6) 250 (16.1) <0.0001
Medium (50 to 250 employees) 1408 (59.1) 947 (60.9)
Large (251+ employees) 247 (10.4) 358 (23.0)

Normal work shift Day shift 1264 (52.8) 896 (57.5) <0.0001
Evening shift 522 (21.8) 239 (15.3)
Night shift 132 (5.5) 60 (3.9)
A mix of shifts 474 (19.8) 364 (23.4)
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� Not all the health and safety procedures/rules are strictly fol-
lowed at my workplace (63 % managers vs 61 % workers)

� At my workplace, hazard control measures are adequate (65 %
workers vs 62 % managers)

� My workplace has a joint health and safety committee that is
effective at improving safety (72 % managers vs 66 % workers)

3.4. Top occupational health and safety concerns

While machine safety was the top work-related health and
safety concern for both cohorts, it was significantly higher in man-
agement (32.65 %) compared to workers (26.16 %) (Table 4). The
other top health and safety concerns were similar between the

two cohorts and included chemical hazards, radiation, fire hazards,
biological hazards, as well as electrical hazards.

4. Discussion

This study examined the perceptions, attitudes, and beliefs
regarding occupational health and safety between workers and
managers in the Ontario manufacturing sector. The results indicate
that there are indeed differences between the two cohorts in some
key areas. Overall, workers feel less safe than managers in the
workplace. This finding is not surprising as similar results have
been reported previously, albeit in other industrial sectors
(Hallowell, 2010; Marín et al., 2019). Also, this result may be attrib-
uted to the fact that workers are more regularly exposed to haz-

Fig. 1. Responses by Worker (n = 2391) and Manager/Supervisor (n = 1555) to the question ‘‘Overall, how safe do you feel in your workplace?” (p < 0.001); *statistically
significant in post-hoc testing (p < 0.05).

Table 2
Perceptions of occupational health and safety stratified by Worker and Manager/Supervisor.

Perception Subcategory Worker (%) Manager/Supervisor (%) Chi-square p-value

Which party do you think is primarily
responsible for controlling health
and safety risks in the workplace?

Employer 737 (30.8%)** 370 (23.8%)** <0.001
Employee 561 (23.4%)** 260 (16.7%)**
Joint Health and Safety Committee 465 (19.4%) 362 (23.3%)
OHS Coordinator/Department 437 (18.3%)** 397 (25.5%)**
Ontario Ministry of Labour 163 (6.8%)* 150 (9.6%)*
Other (please specify) 0 (0.0%) 2 (0.1%)
Don’t know 32 (1.3%) 15 (1.0%)

How much health and safety training
have you received from your
current employer?

A great deal 444 (18.6) 248 (16.0) <0.001
A fair amount 1347 (56.6)** 985 (63.4)**
Not very much 523 (22.0)** 182 (11.7)**
None at all 67 (2.8)** 12 (0.8)**

The amount of health and safety
training that you have received
from your current employer is. . .

Too much 599 (25.2) 374 (24.1) 0.01
About right 1396 (58.8)* 985 (63.4)*
Not enough 352 (14.8)* 182 (11.7)*
Don’t know 29 (1.2) 12 (0.8)

Note: statistically significant in post-hoc testing: * p < 0.05; ** p < 0.01.
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ards, whereas managers typically perform less hazardous adminis-
trative tasks (Marín et al., 2019; Nordlöf et al., 2015).

There were also statistically significant differences between
workers and managers with respect to their perception of health
and safety training – both in terms of amount and whether it
was believed to be enough. A systematic review found that health
and safety training leads to improvements with respect to knowl-
edge, safe behaviors, as well as health outcomes (Robson et al.,
2012). As such, it would be prudent for the participating organiza-
tions to continue offering and possibly expand the amount of
health and safety training that is available. In addition, it is sug-
gested that this training review the roles and responsibilities of
the various workplace parties, in particular, that the employer
has ultimate responsibility for health and safety in Ontario
(Occupational Health and Safety Act, 2016), as less than 30 % of
respondents correctly identified the employer as the primary party
responsible for managing health and safety risks in the workplace.
Prussia et al. (2003) also found differences in the way managers
and workers attribute responsibility for safety. This bears mention-
ing as employers that invest in workplace health and safety and are
proactive are more likely to experience fewer injuries and illnesses
(Battaglia et al., 2015; Geldart et al., 2010).

Statistically significant differences in perceptions regarding
health and safety communication between managers and workers
were found, including frequency of workplace safety information.
This disconnect is noteworthy as open and timely communication
is correlated with improved health and safety performance
(Cigularov et al., 2010; Gittleman et al., 2010).

A notable finding is that both cohorts feel that workplace inju-
ries and accidents are an inevitable part of life. This fatalistic atti-
tude has been attributed to poor safety culture (Henning et al.,
2009; Nordlöf et al., 2015), which bears mentioning as studies have
shown that a more positive safety culture in a workplace leads to
better health and safety performance (Wu et al., 2008; Noweir
et al., 2013). It would therefore be important to address these neg-

ative attitudes so that both workers and management recognize
that many work-related incidents are preventable and, in turn,
improve their organization’s health and safety performance.

When comparing the beliefs and attitudes of the two cohorts
toward health and safety, there were several statistically signifi-
cant differences. This included the finding that workers were less
likely to agree that: (a) their safety is a high priority, (b) people
work safely even when not being supervised, (c) hazard control
measures are adequate, and (d) the Joint Health and Safety Com-
mittee is effective at improving health and safety. Meanwhile,
managers were less likely to agree that (a) health and safety
rules/procedures are being followed and (b) workplace health
and safety requirements negatively impacts operations. These find-
ings are consistent with previous studies that found differences in
safety beliefs and attitudes between these two cohorts in other
industries (Findley et al., 2007; Gittleman et al., 2010; Huang
et al., 2012; Huang et al., 2014).

Such differences between managers and workers can result in
misunderstandings, conflict, increased risk, and poorer safety per-
formance (Findley et al., 2007; Human Factors Group, 2002). Stud-
ies have also shown that workers’ safety performance is greatly
influenced by their relationship with their managers, including a
reduction in injury rates when their managers showed greater con-
cern for them and supported the workers’ positive safety behaviors
(Geldart et al., 2010; Hofmann & Morgeson, 2009). Therefore, the
next logical step would be to identify those factors that lead to
these differences in beliefs and attitudes between workers and
managers and, subsequently, address these gaps in order to
improve health and safety performance (Marín et al., 2019).

Despite differences in perceptions and attitudes, both workers
and managers were in agreement with respect to the top health
and safety issue in the Ontario manufacturing sector – machine
safety. This is not surprising as this hazard was highlighted as a
common concern in the manufacturing sector by the Ontario Min-
istry of Labour (Government of Ontario, 2021). However, the

Fig. 2. Perception of workers and managers with respect to health and safety communication. Specific questions are: (A) ‘‘Workers here are involved in decisions affecting
their safety” (p < 0.01); (B) ‘‘There are frequent communications about safety in my workplace” (p < 0.01); and (C) ‘‘Workers are regularly asked about their safety concerns”
(p < 0.05).
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results found that a statistically significant larger percentage of
managers ranked machine safety as the top hazard, suggesting that
this is another gap that needs to be addressed in order to improve
health and safety performance.

There are limitations associated with this study that need to be
discussed. As this was a cross-sectional study, the results are only
representative of the time of sample collection and perceptions
may change over time. Therefore, a longitudinal examination of
perceptions is suggested as a future study to determine any trends.
As the response rate of the survey is not known, the study could
have experienced response and/or non-response bias. Social desir-
ability bias could not be ruled out as managers tends to answer
more positively so as not to tarnish the reputation of their respec-
tive organizations (Marín et al., 2019). Also, this study did not iden-
tify how the respondents’ perceptions, attitudes, and beliefs were

formulated; examining the reasons for these perceptions in a
future study would aid in developing appropriate interventions.
Lastly, the purpose of this study was solely descriptive and meant
to compare the responses between management and workers. See-
ing that we did identify differences between the two cohorts,
future work should include performing multivariate analyses to
examine associations, if any, and to identify potential confounders.

In summary, this study found that the perceptions, attitudes,
and beliefs regarding occupational health and safety of workers
compared with managers in Ontario’s manufacturing sector differ
– in some cases, the differences were statistically significant. These
differences must be narrowed through improvements in labor-
management relations. In turn, this will lead to improved health
and safety awareness and performance, including compliance with
legislation, in the manufacturing sector in Ontario.

5. Practical Applications

This study concluded that changes are required to labor-
management relationships in the Ontario manufacturing sector
to improve health and safety performance. Based on our findings,
some examples of changes include, but are not limited to:
increased education and training; managers/supervisors to lead
by example on safety issues; organizations being proactive with
respect to health and safety concerns; and improving worker-

Table 3
Attitudes and beliefs toward occupational health and safety stratified by Worker and Manager/Supervisor.

Attitude or belief Cohort Strongly Agree Agree Neutral Disagree Strongly Disagree Chi-square p-value

Workplace injuries and accidents are
an inevitable part of life

Worker (%) 659 (27.5) 1017 (42.5) 569 (23.8) 133 (5.6) 17 (0.7) 0.68
Manager (%) 421 (27.1) 667 (42.9) 363 (23.3) 86 (5.5) 18 (1.2)

At my workplace, safety is as
important as quality of the work
and getting the work done on time

Worker (%) 660 (27.7) 1020 (42.8) 543 (22.8) 141 (5.9) 20 (0.8) 0.186
Manager (%) 469 (30.2) 614 (39.6) 367 (23.7) 84 (5.4) 18 (1.2)

The safety of workers is a high
priority for my workplace

Worker (%) 667 (28.3) 1065 (44.5) 526 (22.0) 108 (4.5) 16 (0.7) 0.048
Manager (%) 489 (31.4) 702 (45.1) 298 (19.2) 62 (4.0) 5 (0.3)

Workplace health and safety
requirements negatively impacts
business operations

Worker (%) 398 (16.6) 946 (39.5) 591 (24.7) 291 (12.2) 169 (7.1) 0.043
Manager (%) 257 (16.5) 573 (36.8) 407 (26.2) 173 (11.1) 146 (9.4)

Formal safety inspections are
regularly conducted in my
workplace

Worker (%) 632 (26.5) 1023 (42.9) 564 (23.6) 152 (6.4) 16 (0.7) 0.193
Manager (%) 431 (27.8) 648 (41.8) 387 (25.0) 73 (4.7) 10 (0.7)

New employees at my workplace
learn quickly that they are
expected to follow safety rules

Worker (%) 574 (24.1) 1037 (43.6) 580 (24.4) 169 (7.1) 21 (0.9) 0.44
Manager (%) 373 (24.1) 700 (45.2) 376 (24.3) 87 (5.6) 13 (0.8)

At my workplace, safety is given a
high priority in training programs

Worker (%) 548 (23.0) 1045 (43.8) 592 (24.8) 181 (7.6) 22 (0.9) 0.071
Manager (%) 365 (23.6) 695 (44.9) 388 (25.1) 82 (5.3) 19 (1.2)

At my workplace, there are rules and
procedures about how to work
safely

Worker (%) 535 (22.4) 1063 (44.5) 605 (23.4) 168 (7.0) 16 (0.7) 0.113
Manager (%) 366 (23.6) 731 (47.2) 346 (22.3) 93 (6.0) 13 (0.8)

At my workplace everyone has the
tools and equipment they need to
do their job safely

Worker (%) 549 (23.1) 1050 (44.2) 599 (25.2) 162 (6.8) 16 (0.7) 0.156
Manager (%) 378 (24.5) 705 (45.6) 368 (23.8) 80 (5.2) 14 (0.9)

At my workplace, people here always
work safely even when they are
not being supervised

Worker (%) 519 (21.8) 1045 (43.9) 598 (25.1) 184 (7.7) 33 (1.4) 0.04
Manager (%) 317 (20.6) 719 (46.7) 402 (26.1) 84 (5.5) 18 (1.2)

Not all the health and safety
procedures/ rules are strictly
followed at my workplace

Worker (%) 467 (19.5) 992 (41.5) 625 (26.2) 246 (10.3) 60 (2.5) 0.018
Manager (%) 293 (18.9) 685 (44.2) 393 (25.3) 123 (7.9) 57 (3.7)

At my workplace, disciplinary action
is taken against people who break
health and safety procedures/
instructions/rules

Worker (%) 515 (21.6) 1073 (45.0) 587 (24.6) 184 (7.7) 23 (1.0) 0.267
Manager (%) 308 (19.9) 717 (46.3) 401 (25.9) 102 (6.6) 21 (1.4)

At my workplace, hazard control
measures are adequate

Worker (%) 488 (20.5) 1053 (44.3) 626 (26.3) 185 (7.8) 32 (1.3) 0.017
Manager (%) 272 (17.6) 696 (44.9) 457 (29.5) 97 (6.3) 28 (1.8)

Workplace health and safety
requirements benefits my
workplace

Worker (%) 568 (23.8) 1074 (45.0) 549 (23.0) 164 (6.9) 33 (1.4) 0.376
Manager (%) 351 (22.6) 735 (47.2) 332 (21.3) 109 (7.0) 29 (1.9)

My workplace has a joint health and
safety committee that is effective
at improving safety

Worker (%) 541 (22.7) 1039 (43.7) 609 (25.5) 174 (7.3) 22 (0.9) 0.003
Manager (%) 398 (25.8) 717 (46.4) 328 (21.2) 89 (5.8) 12 (0.8)

Table 4
Top five occupational health and safety concerns stratified by Worker and Manager/
Supervisor.

Worker Concerns (%) Rank Manager/Supervisor Concerns (%)

Machine safety (26.2) 1 Machine safety (32.7)
Chemical hazards (25.7) 2 Fire hazards (27.2)
Radiation (24.1) 3 Radiation (26.0)
Fire hazards (23.5) 4 Chemical hazards (24.7)
Biological hazards (22.6) 5 Electrical hazards (22.5)
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management communication, especially with respect to health and
safety issues.
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a b s t r a c t

Introduction: Shared e-scooters are an emerging mode of transportation with many features that make
their physical properties, behavior, and travel patterns unique. Safety concerns have been raised concern-
ing their usage, but it is difficult to understand effective interventions with so little data available.
Methods: Using media and police reports, a crash dataset was developed of rented dockless e-scooter
fatalities in crashes involving motor vehicles that occurred in the United States in 2018–2019 (n = 17)
and the corresponding records from the National Highway Traffic Safety Administration data were iden-
tified. The dataset was used to perform a comparative analysis with other traffic fatalities during the
same time period. Results: Compared to fatalities from other modes of transportation, e-scooter fatality
victims are younger and more likely male. More e-scooter fatalities occur at night than any other mode,
except pedestrians. E-scooter users are comparatively as likely as other unmotorized vulnerable road
users to be killed in a hit-and-run crash. While e-scooter fatalities had the highest proportion of alcohol
involvement of any mode, this was not significantly higher than the rate seen in pedestrian and motor-
cyclist fatalities. E-scooter fatalities were more likely than pedestrian fatalities to be intersection-related,
and to involve crosswalks or traffic signals. Conclusions: E-scooter users share a mix of the same vulner-
abilities as both pedestrians and cyclists. Although e-scooter fatalities are demographically most similar
to motorcycle fatalities, crash circumstances share more similarities with pedestrian or cyclist fatalities.
Other characteristics of e-scooter fatalities are notably distinct from other modes. Practical Applications:
E-scooter use must be understood by users and policymakers to be a distinct mode of transportation. This
research highlights the similarities and differences between similar modes, like walking and cycling. By
using this information on comparative risk, e-scooter riders and policymakers can take strategic action to
minimize the number of fatal crashes.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

The shared e-scooter is a powered two-wheel (PTW) vehicle
with many features that make it a unique transportation mode.
E-scooters offer many advantages as an alternative mode of trans-
portation in dense urban areas, particularly the potential of reduc-
ing pollution and motor-vehicle traffic (Shaheen & Cohen, 2019).
However, an increasing number of crashes and fatalities publicized
in the news media have raised public concern about the safety of
these devices. Families of victims have called for the removal of
shared e-scooters in cities like Atlanta, Georgia (Hansen, 2019)
and Ft. Lauderdale, Florida (Wallman & Maines, 2019). In August

2019, the Nashville City Council rejected a proposed ban on e-
scooters following a fatal accident (Morgan, Lewis, & Bockius LLP,
2021). These concerns about the safety of these vehicles exist
despite the small absolute number of fatalities compared to the
number of other surface transportation fatalities (NHTSA, 2020b).

The different vehicle characteristics of and user behavior with
e-scooters have raised questions about the similarities and differ-
ences between e-scooter crashes and other similar crashes involv-
ing vulnerable road users, such as cyclists and pedestrians
(Kleinertz, Ntalos, Hennes, et al., 2021). Previous research on the
nature of rented e-scooter fatalities has largely not been possible,
due to the newness of the mode. While many cities have enforced
different policies and restrictions on e-scooter use (Unagi, 2021),
the lack of data makes it difficult to find significant evidence on
crash risk. However, by developing a better understanding of
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how shared e-scooter users face similar and different risks to peo-
ple using better-understood modes of transportation (i.e., pedestri-
ans, pedalcyclists, and motorcyclists) it is possible to form a clearer
picture of e-scooter fatality risk.

2. Background

2.1. E-Scooters

Starting in 2017, e-scooter companies began rolling out shared
e-scooter services in cities across the United States. Since over a
third of residential trips made by vehicles in the United States
are under two miles, the potential market for short-range trans-
portation is large (Federal Highway Administration, 2017). Early
pro e-scooter studies examined possible economic and environ-
mental benefits of decreased automobile use (Shaheen & Cohen,
2019) and increased mobility (Smith & Schwieterman, 2018). How-
ever, safety concerns regarding e-scooter implementation have
been prevalent since early adoption (Abcarian, 2018).

Shared e-scooters are extremely lightweight and small, even
compared to motorcycles or mopeds. The Electric Scooter Guide
(2021) database lists specifications for nearly 200 different e-
scooter models. E-scooters are between 38 inches and 55 inches
high, with a median weight of 47 pounds. Some e-scooters listed
in the guide weigh as little as 23 pounds, but most of their ana-
lyzed models are between 32 pounds (first quartile) and 72 pounds
(third quartile). Standing e-scooters are distinct for their ‘standing
design’ where the rider remains upright while riding, standing on a
narrow foot platform (Shaheen & Cohen, 2019). E-scooters are also
designed for single-person transportation (SAE International,
2019). E-scooter companies typically forbid taking on a second
rider because the second rider is in a hazardous position (Bird,
2020; Lime, 2021). In two of the fatal crashes identified that
involved ‘‘double riding” with a second person on the e-scooter,
it was the second rider or ‘‘passenger” who was fatally injured
while the primary rider survived (Griggs & Lou, 2019; Carmel,
2019). Much like pedestrians and cyclists, the e-scooter rider is
particularly vulnerable in comparison to the automobile occupant,
with no barrier and no safety features like seatbelts or airbags to
protect them in the event of an accident.

Even before the coronavirus pandemic started in 2020, over a
hundred million trips had been taken in the shared e-scooter mar-
ket (National Association of City Transportation Officials, 2019).
Many companies operating in the area had achieved billion-
dollar valuations in record time (Yakowicz, 2018). In 2019, 109
cities around the United States were host to these dockless sys-
tems, with mixed reception (NACTO, 2019). Although travel has
decreased substantially across all modes due to the coronavirus
pandemic, micromobility has emerged as an increasingly viable
alternative (Perry, 2020); new research has targeted micromobility
as a potential option to reduce the spread of contagious disease,
since unlike public transit, it does not require many individuals
to share the same air (National Science Foundation, 2020).

Early studies have largely focused on injuries that presented to
emergency rooms (such as Austin Public Health and City of Austin,
2019; Badeau, Carman, et al., 2019) and other impacts to the
healthcare system (such as Bekhit, Le Fevre, et al.; Mayhew &
Bergin, 2019; Mitchell et al., 2019). But without significant fatality
data, it has not been possible to extend this analysis to crashes that
resulted in a fatality. Interventions to improve safety have also
generally relied on analogies to cyclists, motorcyclists, or pedestri-
ans. Interventions such as mandatory helmets (U.S. Consumer
Product Safety Commission, 2014) or bike lanes (Bird, 2019)
depend on justifying the similarity to cyclists. Other ongoing policy
debates, such as whether e-scooters should ride on the sidewalk or

the street (Unagi, 2021), also depend on an understanding of e-
scooter risk, and how their features compare to other modes.

2.2. E-Scooter users

The unique features of e-scooters have also prompted unique
behavior from users. Naturalistic studies have observed a ‘‘hybrid”
phenomenon, where e-scooter riders may switch patterns of
behavior rapidly and repeatedly; for example, acting as a pedes-
trian, then as a cyclist, then back to acting as a pedestrian (Todd,
Krauss, Zimmermann, & Dunning, 2019). In addition, the shared
aspect of the e-scooter allows users to rent the scooter for a short
time, typically under 30 minutes (NACTO, 2019), and then leave
the e-scooter at their destination for another user to pick up. This
distributed model theoretically allows for high vehicle utilization
(Tilleman & Feasley, 2018), but it has raised concerns over whether
users can be responsible for handling the devices safely, bringing
their own safety equipment (Penney and Associates, 2021), and
whether they have the proper training to do so (Fielding, 2019).
Early studies have suggested that e-scooter riders often have poor
awareness of the e-scooter laws in the city, for example, whether
or not riding on sidewalks is legal (James et al., 2019).

Previous literature suggests that e-scooter use, like bikeshare
and privately owned bicycle ridership, tends to lean male. Natural-
istic observations of e-scooter riders in Brisbane reported that 76%
were ‘‘apparently” male, which was less than the sex-ratio they
observed for private bicyclists (84%) but more than for shared bikes
(72%) (Haworth, Schramm, & Twisk, 2021). Similarly, a survey of
shared e-scooter riders in Vienna found that 74% identified as male
(Laa & Leth, 2020), while 62% of users in a survey of 75,000 in Port-
land, Oregon self-identified as male (Portland Bureau of
Transportation, 2018).

Males have made up a more slender majority in some of the
studies conducted on e-scooter injuries. An early study by Austin
Public Health (2019) found that injured e-scooter riders were
55% male, based on emergency room and medical services data.
A similar rate (52%) was found in a Washington, D.C. study
(Cicchino, Kulie, & McCarthy, 2021) that also looked at emergency
department presentations; they also found a higher ratio of males
in riders injured on the road (88%), but found that gender did not
play a significant role in injury severity, as tested through ratings
on the Abbreviated Injury Scale. A Singapore review of emergency
department records using 2015–2016 data found that 66% of
injured riders were male (Liew, Wee, & Pek, 2020).
Nellamattathil and Amber (2020) used radiology data to study e-
scooter injuries from a sample that was 76% male. Similarly, an
analysis of media-reported crashes in the United States by Yang
et al. (2020) found that 72% of the e-scooter riders involved were
male.

Research has also suggested gendered differences in e-scooter
perception and use. A survey of university staff in Arizona found
that males were significantly more likely than females to perceive
e-scooters as ‘‘very safe” (Sanders et al., 2020) and Dill (2019) indi-
cated that males are more likely than females to use e-scooters for
commuting and to say that their preference for e-scooters is due to
speed, which may be related to their increased risk. In addition,
previous research has suggested that e-scooter riders tend to go
faster when commuting than when riding recreationally
(Almannaa et al., 2021). Injury studies similarly suggest that com-
muters are more likely to be involved in on-road crashes, sustain-
ing more severe injuries (Cicchino, Kulie, & McCarthy, 2021).

Although studies have found people of all ages injured in e-
scooter crashes, measures of centrality have consistently suggested
that the typical e-scooter rider is in their 20 s or 30 s. Cicchino et al.
(2021) found that the mean age of the injured rider was 39.5 (SD:
15.2). Their results suggested that younger riders were signifi-
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cantly more likely to be involved in motor-vehicle crashes, and that
their crashes were more likely to have happened at intersections.
Badeau et al. (2019) found the average age of 34 years for an
injured e-scooter rider who presented to an emergency depart-
ment in Salt Lake City, Utah. Laa and Leth (2020) describe the e-
scooter users in Vienna, Austria identified by their surveys and
field observations as generally young or middle aged, with 24% of
their sample under the age of 25, and 46% between the ages of
25 and 34.

2.3. Transportation safety

Our analysis also focused on some of the major aspects of trans-
portation safety that have been studied with regards to motor
vehicles, in order to study whether these factors may play a similar
role in e-scooter fatalities.

2.4. Demographics

The role of age has long been researched as an important mod-
erating factor in transportation fatalities. NHTSA’s 1993 Report to
Congress on safety issues related to younger and older drivers
noted that crash involvement rates by age are highest for drivers
aged 15–19 (at over 150 crashes per 1,000 licensed drivers, accord-
ing to NHTSA data), and that this rate decreases substantially as
drivers age (to roughly 50 crashes per 1,000 licensed drivers for
the 40–44 age group) without rising again. However, in fatal
crashes, the age of at-fault drivers follows a ‘‘U” shaped-
distribution: high for younger and older drivers, and low for the
ages in between (Eustace & Wei, 2010). The influence of age is
marked in several ways: effect on behavior (i.e., risk-taking in
younger populations; NHTSA, 1993); effect on susceptibility (e.g.,
the physical fragility in older populations; as in Kim et al., 2008);
and the underlying distribution of usage rates, which also vary
by mode of transportation with age. The final count of fatalities
is a product of both the risk and the usage rates for each age
bracket.

2.5. Hit-and-Runs

Hit-and-run refers to crashes where the driver illegally leaves
the scene without stopping: hit-and-run crashes are considered a
criminal offense, and they can increase crash severity by causing
a delay in medical attention for the victims. In recent years, both
the prevalence and proportion of fatal hit-and-run crashes have
been increasing (Benson, Arnold, Tefft, & Horrey, 2018). This makes
hit-and-run crash risk a question of increasing relevance and
importance in traffic safety.

2.6. Involvement of alcohol

Although all 50 states and the District of Columbia have passed
legislation against operating a motor vehicle with a blood alcohol
concentration (BAC) of 0.08 or above, alcohol impairment remains
a pressing traffic safety concern (NHTSA, 2021b). Overall, 28% of
traffic fatalities occur in alcohol-impaired driving crashes
(NHTSA, 2021b). The rate of alcohol impairment is also known to
vary by state. In some states, like Rhode Island, over one-third of
drivers involved in fatal crashes are impaired, while in Utah the
rate is 11% (NHTSA, 2021b). However, it can be difficult to get reli-
able statistics on the rate of alcohol impairment in crashes because
of the incentive for drivers to flee the scene and differing standards
for testing between medical establishments and jurisdictions
(NHTSA, 2021b).

A lesser-publicized traffic safety issue is the high rate of alcohol
involvement in non-motorist fatalities. Many of the same risks pre-

sent for drivers, including impaired psychomotor skills, visual-
perceptual difficulties, and slowed information processing
(Moskowitz & Burns, 1990) also endanger pedestrians, pedalcy-
clists, and other VRUs when they are impaired. For example,
Oxley et al. (2006) suggest that road crossing behavior may be less
safe in pedestrians with higher BAC levels. They attribute this to
impaired judgment in gauging risk based on the speed and dis-
tance of the approaching vehicle. Research has also shown higher
BACs to be associated with delayed response times and worse per-
formance for motorcyclists (Creaser, Ward, et al., 2009).

Previous studies on e-scooter injuries have drawn attention to
the rate of alcohol involvement among injured riders. Estimates
have ranged widely. Studies have reported 16% (patient-
reported) in a Salt Lake City, Utah emergency room (Badeau
et al., 2019); 13% in Dunedin, New Zealand based on routine alco-
hol screening in emergency room presentations (Beck, Barker,
et al., 2020); 38% tested above the legal limit at admission in three
Level 1 trauma centers (Kobayashi et al., 2019): 5% at emergency
departments in Southern California (Trivedi et al., 2019), 12% in
Washington D.C. (Cicchino et al., 2021), and 29% self-reported as
drinking alcohol in the 12 hours preceding their injury in Austin,
TX (Austin Public Health, 2019). An earlier comparison of e-
scooter and cyclist injuries in Hamburg, Germany by Kleinertz
et al. (2021) suggested that alcohol played a greater role in e-
scooter injuries (28%) than cycling injuries (6%); however, another
Canadian study found that alcohol involvement in nonfatal crashes
by bicyclists was as high as 14.5% (Asbridge et al., 2014).

3. Materials

Without a national system to record and track e-scooter deaths,
it is difficult to collect data on shared e-scooter fatalities. NHTSA’s
Fatality Analysis Reporting System (FARS) collects data on motor-
vehicle traffic fatalities, but all these fatalities must include a
motor vehicle, which not all e-scooter fatalities do. In addition,
NHTSA’s FARS criteria limit its police-reported fatality data to
deaths occurring on public highways (i.e., on a publicly owned
road, which excludes driveways or private parking lots) and deaths
occurring within 30 days of the initial crash (NHTSA, 2021a). E-
scooter users are accounted for under the FARS schema as ‘‘users
of personal conveyance,” which also includes any non-motorized,
non-pedaling modes like skateboards and roller blades (NHTSA,
2020a). However, e-scooters are not identified any more specifi-
cally in the raw data available.

In order to create an e-scooter fatality data set, we started with
the lists of e-scooter fatalities compiled by other researchers, such
as the Collaborative Sciences Center for Road Safety at the
University of North Carolina Chapel Hill (2021), a National Broad-
casting Company (NBC) list of fatal micromobility crashes
(Fleischer, Yarborough & Jones, 2019), and a list of international
e-scooter incidents by Quartz (Griswold, 2020). We limited our
analysis specifically to fatalities involving a shared, standing e-
scooter in 2018 and 2019. Many incidents listed by other sources
included privately owned or seated devices, which we removed
from our dataset.

We used the identifying information of location, time, and vic-
tim age/gender to match each e-scooter fatality to its correspond-
ing record in FARS. We flagged these records as e-scooter fatalities
in our dataset. This allowed us to compare e-scooter fatalities
alongside the other vehicle modes in FARS. All but three of 20 fatal-
ities meeting our criteria had a corresponding record in FARS.
Those three fatalities were not recorded in FARS because no motor
vehicle was deemed to be involved. This final list of fatalities and
the news source identifying them as e-scooter related, are listed
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in Table 1 E-Scooter Fatalities Involving Motor Vehicles in 2018–
2019.

In our analysis, we considered fatalities associated with each
mode to be fatalities in which a person using that mode was a
fatality: when a crash appears in the ‘‘Passenger Car” row, the crash
involved a ‘‘Passenger Car” occupant (driver or passenger) who
died as a result of the crash. If the Passenger Car instead hit and
killed a pedalcyclist (a cycle powered by pedaling), the fatality
would be in the Pedalcyclist row. If a Passenger Car hit a cyclist
and both the cyclist and an occupant of the car died, it counted
as a fatality for both modes.

As points of comparison, in addition to conventional motor
vehicles like passenger cars and motorcycles, and conventional
VRUs like pedestrians and pedalcyclists, this analysis includes
modes of motorist and non-motorist transport that may share sim-
ilarities with e-scooters: ‘‘moped/motorized bicycles” is a vehicle
code that includes e-bikes and mopeds; ‘‘motor scooter” refers to
Vespa-style seated scooters; and, as previously mentioned, ‘‘per-
sonal conveyance” is a catch-all for any wheeled non-pedaling
transportation, such as skateboards, roller blades, and wheelchairs
(NHTSA, 2020a). The category for Passenger Cars includes conven-
tional motor vehicles, but not pickup trucks, vans, or anything big-
ger (NHTSA, 2020a). We used these categories to further group
vehicles in a variety of ways. The National Safety Council (2018)
defines vulnerable road users (VRUs) as anybody in or near a traf-
ficway who is not inside an enclosed vehicle. In our analysis, this
includes pedestrians, pedalcyclists, and users of e-scooters, per-
sonal conveyances, motor scooters, mopeds, and motorcycles
(i.e., every category except for passenger cars). Another category
is vehicles that NHTSA defines as ‘‘Motor Vehicles,” which includes
passenger cars, motor scooters, mopeds, and motorcycles. NHTSA
does not consider e-scooters or personal conveyances to be motor
vehicles, even though they often have motors, so in this analysis,
‘‘unmotorized vehicles” refers to pedestrians, pedalcyclists, e-
scooter users, and people on personal conveyances, even though
the latter category may have motors.

4. Methodology

Pearson’s Chi-Squared Test of Independence was the primary
statistical test used in this analysis. However, the accuracy of the
chi-squared test relies on the expectation of at least five data
points per category, a criterion that was not always met due to
the low number of data points for e-scooters. In these situations,
Fisher’s Exact Test of Independence was used in place of chi-

square for its ability to handle small sample sizes, similar to
Shah, Aryal, Wen, and Cherry (2021). These tests were conducted
using chisq.test() and fisher.test() from the R ‘stats’ library (R
Core Team, 2013). The smallest p-value that can be calculated
using these functions is p < 2.2 � 10�16. Additionally, because this
analysis involved performing many different statistical tests on the
same dataset, Bonferroni’s Correction was applied to the signifi-
cance level to reduce the likelihood of producing an erroneously
significant result through random chance (Weisstein, n.d.). Since
15 statistical tests were performed in this analysis, a significance
level of 0.05/15, or 0.0033, was used for all tests.

5. Results

5.1. Victim demographics

5.1.1. Gender
In the NHTSA 2018–2019 data, the lowest proportion of male

fatalities was in passenger cars (61% male), followed by pedestri-
ans (70% male). In contrast, all but one e-scooter fatalities in the
data were male (94%, see Table 2). This same gender ratio is only
approached among motorcyclist fatalities (91% male) and pedalcy-
clists (86%), as illustrated in Fig. 1 Gender of Victim by Mode of
Transportation (see Table 3).

A Pearson’s Chi-Squared Test of Independence was conducted
comparing e-scooters to other VRUs (all categories except Passen-
ger Cars), which yielded a p = 0.24, suggesting that the percentage
of male victims using e-scooters is not significantly different from
other VRUs. However, pedestrian victims are significantly less
likely to be male (Chi-Squared Test p < 2.2 � 10�16) compared to
other VRUs.

5.1.2. Age
The age distribution of e-scooter fatalities is particularly nota-

ble for the young age of the victims: all but one e-scooter fatality
in the 2018–2019 data was under the age of 40. The cumulative
distribution is strikingly convex compared to the distribution of
other modes (Fig. 2 Cumulative Distribution of Traffic Fatalities
by Age). While motorcycle deaths are sometimes associated with
young men, only 46% of motorcyclist fatalities are between the
ages of 20–40. E-scooter victims are significantly more likely (Fish-
er’s Exact Test p = 0.0006) to be between those ages even when
compared to motorcyclists, who have the next greatest share of
fatalities aged 20–40.

The young slant in casualties is illustrated as a cumulative dis-
tribution in Fig. 2 Cumulative Distribution of Traffic Fatalities by
Age. Passenger car and pedestrian deaths are spread uniformly

Table 1
E-Scooter fatalities involving motor vehicles in 2018–2019.

Victim Age (Sex) Date of Crash Source

20 (M) 09/21/18 Cho, DiMargo, and Swalec, 2018
26 (M) 12/22/18 Cervantes and Stickney, 2018
21 (M) 02/01/19 CBS Austin, 2019
27 (M) 04/11/19 Lohrmann, 2019
31 (M) 04/13/19 Cosgrove, 2019
5 (M) 04/23/19 Griggs & Lou, 2019
20 (M) 04/23/19 Prince, 2019a
26 (M) 05/16/19 Alund, 2019
33 (M) 06/20/19 Marrero, 2019
34 (F) 07/27/19 Pozen, 2019
37 (M) 07/17/19 Prince, 2019b
45 (M) 08/06/19 Jones, 2019
26 (M) 08/04/19 Sukut, 2019
28 (M) 10/09/19 KHQ Q6, 2019
16 (M) 10/27/19 Carmel, 2019
16 (M) 11/20/19 News 12, 2019
35 (M) 11/04/19 Stunson, 2019

Note: In this table, male is signified by (M) and female is signified by (F).

Table 2
Traffic fatalities by gender.

Victim’s Mode Female Male

E-scooter 5.9%
(n = 1)

94%
(n = 16)

Moped/Motorized Bicycle 11%
(n = 16)

89%
(n = 128)

Motor Scooter 11%
(n = 42)

89%
(n = 339)

Passenger Car 39%
(n = 10099)

61%
(n = 15650)

Pedalcyclist 14%
(n = 235)

86%
(n = 1480)

Pedestrian 30%
(n = 3818)

70%
(n = 8809)

Personal Conveyance 20%
(n = 65)

80%
(n = 268)

Regular Motorcycle 8.6%
(n = 796)

91%
(n = 8422)
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across age groups. Other modes, like golf carts and three-wheeled
motorcycles, lean heavily older in comparison, with a minority of
fatalities under the age of 40.

5.2. Crash circumstances

5.2.1. Alcohol involvement
Rates of alcohol involvement among fatally injured e-scooters

users was high (41%) even compared to the next highest, pedestri-
ans (30%) and motorcyclists (29%). These rates are illustrated in
Fig. 3 Alcohol Involvement by Mode and Role in Fatal Crash. How-
ever, Fisher’s Exact Test of Independence comparing the rate of
impairment in e-scooter users to other VRUs yields p = 0.818, sug-
gesting that the difference is not statistically significant. However,
this may be attributable to the small sample size. The involvement
of another party (a non-fatality driving a motor vehicle) under the
influence was low in comparison to the rate of alcohol involvement
among victims (see Table 4 and Table 5).

Fig. 1. Gender of victim by mode of transportation.

Table 3
Traffic fatalities by age group.

Victim’s Mode Age 0–19 Age 20–40 Age 41+

E-scooter 18%
(n = 3)

76%
(n = 13)

5.9%
(n = 1)

Moped/Motorized Bicycle 5.6%
(n = 8)

33%
(n = 47)

62%
(n = 89)

Motor Scooter 4.2%
(n = 16)

29%
(n = 112)

66%
(n = 253)

Passenger Car 12%
(n = 3186)

42%
(n = 10752)

46%
(n = 11811)

Pedalcyclist 10%
(n = 171)

26%
(n = 442)

64%
(n = 1092)

Pedestrian 6.2%
(n = 783)

32%
(n = 4036)

62%
(n = 7753)

Personal Conveyance 16%
(n = 53)

14%
(n = 48)

70%
(n = 231)

Regular Motorcycle 2.8%
(n = 262)

46%
(n = 4214)

51%
(n = 4742)

Fig. 2. Cumulative distribution of traffic fatalities by age.
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5.2.2. Daylight conditions
E-scooter fatalities occur at night in the dark more than any

other mode of transportation (see Table 6 and Fig. 4 Percent of
Fatal Crashes Occurring at Night by Mode). However, when com-
pared to each other using Fisher’s Exact Test of Independence,
the rate of nighttime fatalities between pedestrians and e-scooter
riders are not significantly different (p = 0.78). Pearson’s Chi-
Squared Test of Independence was conducted, comparing e-
scooters and pedestrians combined to all other VRUs (mopeds,
motor scooters, pedalcyclists, and motorcycles), which yielded
p < 2.2 � 10�16, suggesting that pedestrians and people on e-
scooters are both more likely to be killed at night compared to
other VRUs.

5.2.3. Hit-and-run crashes
Although the e-scooter fatalities in the sample had a higher

absolute percentage of hit-and-runs (24%) than any other mode
(Table 7), they were not significantly different from the hit-and-
run rates for pedalcyclists (18%) and pedestrians (20%) (Fisher’s
Exact Test p = 0.031) at the significance level of 0.0033 required
by Bonferroni’s Correction. However, the rates of hit-and-runs are
significantly higher for unmotorized VRUs (pedestrians, bicycles,
e-scooters, and personal conveyance) than for motorized VRUs
(mopeds, motor scooters, and motorcycles) (Fisher’s Exact Test
p < 2.2 � 10�16) (see Fig. 5).

5.3. Crash location
5.3.1. Intersections. Half of the fatal e-scooter crashes identified in
FARS were either at an intersection or intersection-related (see
Table 8 Junction and intersection-related crashes). Rates of e-
scooter (47%) and pedalcycle (38%) crashes are not significantly
different (Fisher’s Exact Test p = 0.31) from each other. However,
the combined rate of fatal pedalcycle and e-scooter intersection-
related crashes is significantly higher (Chi-Squared Test p < 2.2 �
10�16) than that for pedestrians (26%). This distinction makes

Fig. 3. Alcohol involvement by mode and role in fatal crash.

Table 4
Fatalities where another party, other than the victim/victim’s driver, had been drinking.

Victim’s Mode Alcohol Involvement in Other Party No Alcohol Involvement Unknown

E-scooter 5.9% (n = 1) 29% (n = 5) 65% (n = 11)
Moped/Motorized Bicycle 10% (n = 11) 14% (n = 15) 76% (n = 81)
Motor Scooter 6.9% (n = 19) 16% (n = 45) 77% (n = 213)
Passenger Car 9.4% (n = 1221) 18% (n = 2315) 73% (n = 9445)
Pedalcyclist 8.5% (n = 145) 19% (n = 328) 72% (n = 1237)
Pedestrian 7% (n = 863) 18% (n = 2260) 75% (n = 9206)
Personal Conveyance 5.5% (n = 18) 18% (n = 61) 76% (n = 251)
Regular Motorcycle 7.3% (n = 387) 20% (n = 1035) 73% (n = 3878)

Table 5
Fatalities where victim (or victim’s driver) had been drinking.

Victim’s Mode Alcohol Involvement
in Victim

No Alcohol
Involvement

Unknown

E-scooter 41%
(n = 7)

29%
(n = 5)

29%
(n = 5)

Moped/Motorized
Bicycle

20%
(n = 29)

34%
(n = 49)

45%
(n = 65)

Motor Scooter 20%
(n = 75)

34%
(n = 127)

46%
(n = 171)

Passenger Car 27%
(n = 6085)

37%
(n = 8294)

36%
(n = 8097)

Pedalcyclist 18%
(n = 306)

42%
(n = 722)

40%
(n = 683)

Pedestrian 30%
(n = 3674)

34%
(n = 4256)

36%
(n = 4482)

Personal
Conveyance

19%
(n = 64)

38%
(n = 125)

43%
(n = 141)

Regular
Motorcycle

29%
(n = 2602)

39%
(n = 3460)

32%
(n = 2818)
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Table 6
Traffic fatalities by daylight conditions.

Victim’s Mode At Dusk In Daylight In the Dark At Dawn Unknown

E-scooter 5.9%
(n = 1)

12%
(n = 2)

82%
(n = 14)

0%
(n = 0)

0%
(n = 0)

Moped/Motorized Bicycle 0.7%
(n = 1)

40%
(n = 57)

57%
(n = 82)

2.1%
(n = 3)

0%
(n = 0)

Motor Scooter 2.4%
(n = 9)

51%
(n = 192)

45%
(n = 166)

1.6%
(n = 6)

0%
(n = 0)

Passenger Car 2%
(n = 453)

51%
(n = 11446)

45%
(n = 10081)

2.1%
(n = 484)

0.48%
(n = 109)

Pedalcyclist 1.8%
(n = 31)

47%
(n = 810)

48%
(n = 827)

2.1%
(n = 36)

0.41%
(n = 7)

Pedestrian 1.9%
(n = 236)

20%
(n = 2516)

75%
(n = 9367)

1.8%
(n = 222)

0.57%
(n = 71)

Personal Conveyance 3.9%
(n = 13)

37%
(n = 121)

58%
(n = 191)

0.91%
(n = 3)

0.61%
(n = 2)

Regular Motorcycle 3.8%
(n = 342)

58%
(n = 5140)

37%
(n = 3252)

1.2%
(n = 104)

0.53%
(n = 47)

Fig. 4. Percent of fatal crashes occurring at night by mode.

Fig. 5. Rate of hit-and-runs in fatal crashes.

E. Karpinski, E. Bayles, L. Daigle et al. Journal of Safety Research 84 (2023) 61–73

67



sense: unlike pedestrians, e-scooter riders and pedalcyclists often
navigate intersections with the flow of traffic, so the traffic risks
they experience would be similar.

Related to the high rate of intersection-related crashes, many of
the e-scooter crashes analyzed involved traffic control. While none
of them involved a stop sign, they did involve traffic signals at
almost triple the rate for pedestrians and pedalcyclists (as shown
in Table 9). Fisher’s Exact Test yields p = 0.005 when comparing
the rate of e-scooter fatalities at traffic signals to that for pedestri-
ans and pedalcyclists, which is not statistically significant at the
more conservative alpha-level of 0.0033 as required by Bonfer-
roni’s multiple testing correction. Further data and analysis may
be able to more definitively confirm or deny this connection.

5.3.2. Crosswalks. E-scooter and personal conveyance user fatalities
were roughly twice as likely to have been killed at a crosswalk than
a pedestrian (Chi-Squared Test p = 3.39 � 10�4), and nearly-three
to four times more likely to have been killed in a crosswalk than
a pedalcyclist (Chi-Squared Test p = 1.95 � 10�10) (see Table 10).
As an additional measure to control for differences in crosswalk
use between urban and rural areas, this comparison was made only
in crashes that NHTSA classified as in urban areas. They define this
as census areas of 50,000 or more people.

5.3.3. Point of impact. The most likely point of impact for a fatal
crash, across all modes, is the front of the other motor vehicle. This
is followed by an impact to the right side for fast moving VRUs.
More powerful, motorized VRUs have elevated rates of rear and left
side impacts, such as motorcycles (20% and 16%, respectively) and

motor scooters (10% and 9%). By combining motorcycles and motor
scooters into a single group and performing a Chi-Squared Test, we
see that this high rate of right-side impacts is significantly high
compared to other VRUs (p < 2.2 � 10�16). Table 11 lists the point
of impact to the other vehicle in crashes that involved at least one
other motor vehicle (e.g., single-vehicle motorcycle accidents are
not represented in the table).

VRUs experience right-side impact crashes at different rates. E-
scooters and mopeds combined appear to have a higher rate of
right-side impacts than other small micromobility (pedestrians,
pedalcyclists, and personal conveyance), but the difference (Chi-
Squared Test p = 0.018) is not statistically significant with
a = 0.0033. We also note that the VRUs in this data appear vulner-
able to right-side-impact (sometimes referred to as ‘‘right hook”)
crashes in the same approximate order of speed: motorcycles, then
motor scooters, then e-scooters, then mopeds/motorized bicycles,
then pedalcycles, then personal conveyance, and then pedestrians.

5.4. Characterization of factors. The characteristics of e-scooter
fatalities are not a clear or precise match to the characteristics of
pedestrians, pedalcyclists, or motorcyclists (see Table 12). E-
scooters share some characteristics, but not all, with each mode.
E-scooters share crash circumstances (likelihood to be struck in
dark conditions, hit-and-runs, and for the victim to be intoxicated
with alcohol) most closely with pedestrians, but demographically,
e-scooter victims stand alone. The closest demographically similar
mode is motorcyclists (young and predominantly male) but e-
scooters are significantly more likely to be under 40 years of age.
Motorcyclists also share with e-scooters and pedestrians a high
rate of alcohol involvement among their fatalities. The relationship
between e-scooter and pedalcyclist fatalities is also unique. E-
scooter and cyclist fatalities are similarly likely to be male, hit-
and-run, and at an intersection, but pedalcyclist fatalities are much
less likely to be under 40, intoxicated by alcohol, killed at night, or
struck in a crosswalk.

6. Discussion

6.1. Crash demographics

As discussed, males typically have historically made up the
majority of traffic fatalities (Chang, 2008). Certain modes, like
motorcycles and pedalcycles, have historically seen males compose
80–90% or more of their fatalities. This strong majority is in line
with the results we have found for e-scooters, of 94% male. While
this is more imbalanced than either e-scooter injury studies or e-
scooter user surveys have found, this is not necessarily a contradic-

Table 7
Rate of hit-and-runs in fatal crashes.

Victim’s Mode Not Hit-and-Run Hit-and-Run

E-scooter 76%
(n = 13)

24%
(n = 4)

Moped/Motorized Bicycle 82%
(n = 87)

18%
(n = 19)

Motor Scooter 88%
(n = 245)

12%
(n = 32)

Passenger Car 97%
(n = 12666)

2.5%
(n = 326)

Pedalcyclist 82%
(n = 1405)

18%
(n = 306)

Pedestrian 80%
(n = 9868)

20%
(n = 2544)

Personal Conveyance 83%
(n = 274)

17%
(n = 56)

Regular Motorcycle 95%
(n = 5046)

4.8%
(n = 254)

Table 8
Junction and intersection-related crashes.

Victim’s Mode Driveway Related Entrance/Exit Ramp Intersection Related No Junction

E-scooter 5.9%
(n = 1)

5.9%
(n = 1)

47%
(n = 8)

41%
(n = 7)

Moped/Motorized Bicycle 7.7%
(n = 11)

0%
(n = 0)

36%
(n = 51)

57%
(n = 81)

Motor Scooter 6.2%
(n = 23)

0.8%
(n = 3)

44%
(n = 165)

48%
(n = 179)

Passenger Car 2.9%
(n = 651)

1.9%
(n = 427)

26%
(n = 5777)

67%
(n = 15118)

Pedalcyclist 3.7%
(n = 64)

0.41%
(n = 7)

38%
(n = 654)

56%
(n = 961)

Pedestrian 2.1%
(n = 261)

1.4%
(n = 171)

26%
(n = 3236)

68%
(n = 8409)

Personal Conveyance 6.4%
(n = 21)

0%
(n = 0)

45%
(n = 148)

48%
(n = 159)

Regular Motorcycle 8.2%
(n = 727)

3.2%
(n = 285)

34%
(n = 3027)

52%
(n = 4661)
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tion with the literature. Previous research on sex ratio of injuries
and fatalities in transportation has established that transportation
injuries often have a more balanced sex ratio than transportation
fatalities (Santamariña-Rubio et al., 2014).

One possible reason for young men to be overrepresented in e-
scooter fatalities is that e-scooter users are generally young, typi-
cally between the ages of 16 to 35 (Laa & Leth, 2020) and traffic
fatalities in this age group are overwhelmingly male (Chang,
2008). Traffic fatalities under the age of 16 or over the age of 40
exhibit less of a gender disparity (Chang, 2008). One underlying
explanation for this is that both age and gender have a substantial

Table 9
Traffic controls present at fatal crashes.

Victim’s Mode No Control Other/Unknown Control Traffic Signal Stop Sign

E-scooter 53%
(n = 9)

5.9%
(n = 1)

41%
(n = 7)

0%
(n = 0)

Moped/Motorized Bicycle 73%
(n = 115)

4.5%
(n = 7)

15%
(n = 23)

7.6%
(n = 12)

Motor Scooter 69%
(n = 288)

4.8%
(n = 20)

16%
(n = 67)

10%
(n = 43)

Passenger Car 76%
(n = 18747)

6%
(n = 1495)

9.3%
(n = 2315)

9%
(n = 2218)

Pedalcyclist 74%
(n = 1270)

3.3%
(n = 56)

17%
(n = 299)

5.2%
(n = 89)

Pedestrian 81%
(n = 10046)

4.6%
(n = 571)

13%
(n = 1632)

1.6%
(n = 204)

Personal Conveyance 73%
(n = 240)

2.7%
(n = 9)

19%
(n = 64)

5.2%
(n = 17)

Regular Motorcycle 74%
(n = 7222)

6.2%
(n = 611)

10%
(n = 1023)

9.4%
(n = 923)

Table 10
Locations of non-motorists in fatal crashes.

Victim’s Mode Crosswalk Intersection Travel Lane

E-scooter 24%
(n = 4)

18%
(n = 3)

59%
(n = 10)

Pedalcyclist 9.7%
(n = 130)

22%
(n = 292)

63%
(n = 841)

Pedestrian 15%
(n = 1564)

4.4%
(n = 450)

73%
(n = 7453)

Personal Conveyance 22%
(n = 67)

13%
(n = 38)

62%
(n = 173)

Table 11
Point of impact to other party’s vehicle.

Victim’s Mode Front Rear Right Side Left Side Other/Unknown

E-scooter 78%
(n = 14)

5.6%
(n = 1)

11%
(n = 2)

0%
(n = 0)

5.6%
(n = 1)

Moped/Motorized Bicycle 78%
(n = 86)

3.6%
(n = 4)

8.2%
(n = 9)

4.5%
(n = 5)

5.5%
(n = 6)

Motor Scooter 64%
(n = 181)

9.9%
(n = 28)

14%
(n = 40)

9.2%
(n = 26)

2.5%
(n = 7)

Passenger Car 75%
(n = 10849)

12%
(n = 1752)

4.1%
(n = 601)

6.9%
(n = 1001)

2.1%
(n = 299)

Pedalcyclist 80%
(n = 1410)

2.4%
(n = 42)

6.4%
(n = 113)

3.8%
(n = 67)

7.1%
(n = 125)

Pedestrian 80%
(n = 10576)

3.4%
(n = 454)

3.5%
(n = 469)

2.7%
(n = 355)

11%
(n = 1421)

Personal Conveyance 85%
(n = 285)

1.5%
(n = 5)

3.6%
(n = 12)

2.7%
(n = 9)

7.2%
(n = 24)

Regular Motorcycle 40%
(n = 2301)

20%
(n = 1167)

19%
(n = 1129)

16%
(n = 930)

5.1%
(n = 296)

Table 12
Summary of E-scooter variables.

Category Factor E-Scooter Rate Similar to Higher than the rates for

Demographics % Male 94%** Pedalcyclists, Motorcyclists Pedestrians,
Passenger Cars

% Between ages of 20–40 76%** None Personal Conveyance, Pedestrians
Circumstances % Alcohol involvement among fatalities 41% Pedestrians,

Motorcyclists
Pedalcyclists

% In dark conditions 82%** Pedestrians Motorcyclists, Pedalcyclists
% Hit-and-run 24%** Pedestrians, Pedalcyclists, Personal Conveyance Passenger Cars, Motorcycles

Location % At intersection 47%** Pedalcyclist, Personal Conveyance Pedestrian
% At traffic signal 41%* None Passenger Cars
% Fatality in crosswalk 24%** Personal conveyance Pedestrians, Pedalcyclists

Impact % Struck by front of car 78% All VRUs Motorcycles
% Struck by right side of car 11%* Mopeds Pedestrians, Pedalcyclists

* Statistically Significant at a = 0.05.
** Statistically Significant at a = 0.0033.
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impact on risk-taking behavior, with men and younger drivers
associated with higher risk (Turner & McClure, 2003).

6.2. Crash circumstances

Dark conditions may have a confounding effect with alcohol
involvement and with the likelihood of hit and run crashes. Previ-
ous research has found that most hit and runs (78%) occur at night
(Benson et al., 2021) which is also when drivers are most likely to
leave the scene of a crash (Solnick & Hemenway, 1995). Research
has also suggested drivers are more likely to leave the scene if they
are impaired, which may play a role in the elevated rate of hit-and-
runs at night and on weekends, and among drivers with previous
arrests for driving while intoxicated (Solnick & Hemenway,
1994). A 2008 study by Tay et al. (2009) found that drivers are
much more likely to leave the scene of a fatal crash if the victim
is a pedestrian; the researchers suggested that drivers may be
motivated by a belief they will not be apprehended because pedes-
trian collisions are less noticeable than two-car collisions. The sim-
ilar rate of hit-and-runs between pedestrians, personal
conveyance, and e-scooter users, suggests that this effect might
extend to the latter groups. Because the likelihoods of all three
variables are not independent from each other, this effect is only
speculative. However, these preliminary results still suggest some
points of interest.

Pedestrian and e-scooter fatalities alone had a supermajority
occur in dark conditions. Nighttime visibility may be especially
important to them because they may lack a sufficiently powerful
light source to see or be seen easily in the dark. In contrast, larger
VRUs such as motorcycles (37%) or motor scooters (45%) may be
easier to see at night because of their size or because of an
increased amount of lighting present on the vehicle. However,
these may also be confounded by the underlying rates of exposure,
which could be very different by mode.

6.3. Crash locations and configurations

E-scooter riders are notable for their hybridization (i.e., their
ability to switch between pedestrian and cyclist behavior) and
their fatalities so far reflect this pattern. Both fatalities where the
e-scooter rider was acting like a pedestrian (e.g., killed in cross-
walk), and fatalities where the e-scooter rider was acting like a
cyclist (e.g., killed by a right-hook) have occurred in the data. In
this way, e-scooter riders unite some of the most dangerous char-
acteristics of both pedestrian and cyclist modes of transportation.
Like pedestrians, e-scooter riders have a small visual profile and
may be particularly difficult to see at night.

Like cyclists, e-scooter riders are expected to travel on the shoul-
der of the road inmost U.S. states (Unagi, 2021) andmaneuver with
traffic. If an e-scooter rider is not spotted by a motor vehicle (and
they may be traveling in the motor vehicle’s blind spot or be other-
wise difficult to detect), they are in danger of being hit from behind
(if the two trajectories overlap) or experiencing a right-impact
crash if the motor vehicle traveling alongside them makes a right-
turn into the e-scooter rider’s path. The rate of right-side-impact
(‘‘right hook”) crashes was also elevated, albeit non-significantly
in the e-scooter available. Both traffic signals and ‘‘right hook” crash
risk may be important areas for future research.

Half of the fatal e-scooter crashes identified in FARS were either
at an intersection or intersection-related. Since all these cases
involved a motor-vehicle collision, this is consistent with the find-
ings of Cicchino, Kulie, and McCarthy (2021) that most motor-
vehicle and e-scooter collisions occurred at intersections. Shah
et al. (2021) also found that most of their sample of e-scooter
crashes that involved a motor vehicle occurred at intersections,
and that this rate was similar for their bicycle crashes. Our findings

for fatal crashes were similar, although the overall proportion of
intersection-related crashes was lower.

One possible complication to the interaction between e-
scooters and motor vehicles at an intersection is their unusually
large difference in travel speed, also referred to as ‘‘closing” speed.
A high closing speed means the motor vehicle overtakes the second
party more quickly. This provides a smaller window of opportunity
for the first driver to recognize and react if their line of travel will
put them in conflict. In these cases, there is less time for the car dri-
ver to recognize and react to their presence, even if they are in the
driver’s path. Low visibility conditions, such as nighttime, could
exacerbate this risk. In contrast, motorcycles often travel at speeds
closer to cars, giving the driver more time to react. These differ-
ences in speed may also make it difficult for drivers to correctly
assess the speed of the other party and respond appropriately. In
addition, the nuances of predictable behavior vary by mode: while
sidewalk and crosswalk use are expected for pedestrians, drivers
may find it unexpected behavior from e-scooters or cyclists
(Sumner, 2016). The elevated rate of e-scooter users and people
on personal conveyance fatally struck at crosswalks may be a com-
plex result of this effect.

9.4. Limitations

This research is limited by the available data in several ways.
First, the sample size of known e-scooter fatalities involving motor
vehicles is small. This means that only the most obvious patterns
can be tested and be expected to show statistical significance. Local
differences or regional subtleties cannot be meaningfully exam-
ined with the limited national data. It also means that, in many
cases, it is more useful to group e-scooters with a similar mode
of transportation to more clearly establish a pattern. This data also
only involves fatalities where a motor vehicle was involved and
that were identified in media sources. Not all e-scooter deaths
involve a motor vehicle or otherwise meet the criteria to be
included in NHTSA’s FARS data. It is also likely that not all e-
scooter fatalities were publicized by the media. In that case, since
we relied on media reports to identify and label e-scooter fatalities,
it is possible that additional e-scooter fatalities were recorded in
the FARS data that we did not identify. These would have been
therefore misclassified as a different type of non-motorist, most
likely as a person on personal conveyance or else as a pedestrian.
Any other limitations or inaccuracies from the NHTSA FARS data
would also have been propagated forward into our data and our
analysis in this paper. The most pertinent risk from this is the pos-
sibility that different modes have different degrees of accuracy or
reporting. For example, e-scooter fatalities may have undergone
more scrutiny and more testing for alcohol involvement than
pedestrian fatalities, leading to a greater rate of discovery in the
e-scooter fatalities. This could cause an apparent difference in
the rate of alcohol involvement as an artifact of the reporting.
However, the current rates of alcohol involvement were not signif-
icantly different between comparable modes.

Additionally, without detailed usage data, it is difficult to spec-
ulate about normalized risk per mile. These comparisons are lim-
ited to looking at the proportion of fatalities sharing similar
characteristics or circumstances, rather than adjusting for expo-
sure. For example, it may be a coincidence that pedestrians and
e-scooters share a similar proportion of fatalities occurring at
night, because it is possible that a confounding factor like usage
is disguising the real effect, for example, pedestrians could have
twice the risk at night per mile, but travel half as many miles as
e-scooters: the effects would cancel out. This limits the strength
of any speculation about the causes of these differences being
inherent to the mode until more precise and larger datasets
become available.
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10. Conclusions

Compared to other modes of transportation, e-scooter rider
fatalities are unusually likely to be young and male. In these demo-
graphics, they are most similar to motorcyclists, but e-scooters are
still significantly more likely to be under the age of 40. The crash
circumstances of e-scooters (such as dark conditions, hit-and-
run, and victim alcohol intoxication) were statistically similar to
pedestrians. However, the locations of e-scooter crashes are less
analogous to existing modes. No other mode has a similarly high
rate of intersection and crosswalk fatalities. E-scooter fatalities also
had an elevated rate of traffic signals present at the crash and
right-side impacts to the motor vehicles, although neither were
significant at the conservative threshold of a = 0.0033.

11. Practical Applications

The shared e-scooter is a unique and evolving mode of trans-
portation. While existing modes of transportation such as motor
vehicles, pedalcyclists, and pedestrians are well-understood and
have a wealth of established safety literature surrounding them,
these lessons do not necessarily transfer to a new mode with dif-
ferent characteristics. E-scooter user fatalities have important
characteristics in common with motorcyclist, pedestrian, and
pedalcyclist fatalities, and the evidence suggests that they may
share important risk factors. By analyzing e-scooter fatalities in
comparison with these more common and well-researched modes,
we gain further insight into the sources of the safety issues and
what best practices or policy interventions borrowed from other
modes may be useful for e-scooters.

It is important to stress to users and policymakers that e-
scooters are a distinct mode of transportation. The circumstances
of fatal e-scooter collisions have much in common with pedestri-
ans and pedalcyclists. Yet, e-scooter fatalities are younger than
either group. E-scooter safety campaigns may wish to focus on
the demographics most at risk for fatalities, particularly young
men. In other areas, such as the rates of crashes in intersections
and crosswalks, e-scooters and personal conveyance users appear
distinct. Evidence-based safety solutions must reconcile these dis-
tinctions and consider the sources of e-scooter fatality risk before
these sources of risk can be mitigated by policy interventions.

It may not be safe to assume that the same policies designed to
protect pedestrians will necessarily reduce e-scooter fatalities as
well: for example, the elevated rate of e-scooter crosswalk fatali-
ties raises questions about the safety of e-scooter crosswalk use.
Other lessons from pedestrian and cycling safety appear better sui-
ted to transfer to this new domain. For example, the importance of
nighttime visibility and sobriety suggest themselves as continuing
themes that apply similarly to both e-scooters and pedestrians.
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Introduction: It is often assumed that consumers want partial driving automation in their vehicles, yet
there has been little research on the topic. Also unclear is what the public’s appetite is for hands-free driv-
ing capability, automated (auto)-lane-change functionality, and driver monitoring that helps reinforce
proper use of these features. Method: Through an internet-based survey of a nationally representative
sample of 1,010 U.S. adult drivers, this study explored consumer demand for different aspects of partial
driving automation. Results: Eighty percent of drivers want to use lane centering, but more prefer versions
with a hands-on-wheel requirement (36%) than hands-free (27%). More than half of drivers are comfort-
able with different driver monitoring strategies, but comfort level is related to perceptions of feeling safer
with it given its role in helping drivers use the technology properly. People who prefer hands-free lane
centering are the most accepting of other vehicle technologies, including driver monitoring, but some
also indicate an intent to misuse these features. The public is somewhat more reluctant to accept auto
lane change, with 73% saying they would use it, and more often prefer it to be driver-initiated (45%) than
vehicle-initiated (14%). More than three quarters of drivers want auto lane change to have a hands-on-
wheel requirement. Conclusion: Consumers are interested in partial driving automation, but there is resis-
tance to more sophisticated functionality, especially vehicle-initiated auto lane change, in a vehicle that
cannot technically drive itself. Practical applications: This study confirms the public’s appetite for partial
driving automation and possible intention for misuse. It is imperative that the technology be designed in
ways that deter such misuse. The data suggest that consumer information, including marketing, has a role
to play to communicate the purpose and safety value of driver monitoring and other user-centric design
safeguards to promote their implementation, acceptance, and safe adoption.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Many of the vehicles one can buy today come equipped with
driver assistance features. Some driving support is so sophisticated
that it can give consumers the impression that the vehicle can
drive itself. At present, however, there are no driverless or self-
driving vehicles on the consumer market. Partial driving automa-
tion, also known as Level 2 systems (SAE International, 2021), is
currently the most advanced vehicle technology available for pur-
chase in North America. Most of these systems are designed to
operate on highways or limited-access roads, and they provide
continuous speed, headway monitoring, and steering support

through the combined use of adaptive cruise control and sustained
lane centering.

Partial driving automation requires the driver to supervise the
road and the vehicle, and drivers must be able to intervene rapidly
when these systems get into situations they cannot cope with (SAE
International, 2021). On-road testing has shown that these systems
can struggle to provide support under fairly benign conditions
(American Automobile Association, Inc. [AAA], 2020; Insurance
Institute for Highway Safety [IIHS], 2018; Kim, Song, & Doerzaph,
2022); for example, they can have trouble steering the vehicle
within the lane when traveling on hills or in curves or detecting
stopped vehicles. In comparison with crash avoidance features,
such as automatic emergency braking, which has empirical sup-
port for mitigating and preventing crashes (e.g., Cicchino, 2017),
no clear crash-reduction effectiveness has been established for par-
tial driving automation (Goodall, 2021; Highway Loss Data
Institute [HLDI], 2021a, 2021b). Rather, these systems are often
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marketed as driver convenience features, as they are intended to
make driving easier or more comfortable.

Unfortunately, human limitations make the partially automated
nature of the technology an issue when it comes to its safe and
proper use. People have difficulty supervising a task they are not
actively or physically involved in, and this difficulty is exemplified
when the driving task is supported by partial driving automation
(Banks, Eriksson, O’Donoghue, & Stanton, 2018; Biondi, Lohani,
Hopman, Mills, Cooper, & Strayer, 2018; Gaspar & Carney, 2019).
In addition, there is growing evidence that this technology
increases the opportunity for distracted driving (Banks et al.,
2018; Dunn, Dingus, Soccolich, & Horrey, 2021; Kim et al., 2022;
Reagan et al., 2021), and driver distraction increases crash risk
(Dingus et al., 2016). Most of these systems monitor the driver
for behavior that indicates they are out of the loop; for example,
steering wheel torque or capacitive touch sensors are typically
used to detect when the driver’s hands are off the wheel and cam-
eras are used to detect when the driver’s eyes or head position are
directed away from the road. There has been a recent push for
automakers to adopt eye-gaze or head-pose monitoring strategies
(AAA Inc., 2022; IIHS, 2022; Preston, 2021) because what the driver
is paying attention to tends to be more reliably correlated with
where the driver is looking than what the driver’s hands are doing
(for a review, see El Khatib, Ou, & Karray, 2020), yet driver hand
monitoring remains important for detecting manual distraction
(Halin, Verly, & Van Droogenbroeck, 2021). Although there are
societal, legal, and privacy concerns around driver monitoring
(Ghazizadeh & Lee, 2018; Horrey, Lesch, Dainoff, Robertson, &
Noy, 2012), little is known about the driving public’s attitudes con-
cerning driver monitoring and whether they vary based on the
design of the partial automation itself.

While most commercially available systems require drivers to
keep their hands on the wheel, some allow drivers to take their
hands off the wheel for extended periods. Systems that permit
hands-free driving typically utilize eye-gaze or head-pose tracking
to help ensure drivers fulfill their supervisory roles, but most do
not monitor what the driver’s hands are doing when hands-free
driving is engaged. A concern is that hands-free driving might
increase the likelihood of drivers doing non-driving-related man-
ual activities, such as eating or texting. If the driver’s hands are
otherwise occupied, their reaction time to take the wheel will be
slowed (Wang, Zheng, Kaizuka, & Nakano, 2019), even if they are
attentively supervising and can see that steering intervention is
required. While it remains to be demonstrated what the appeal
of hands-free driving is among the driving public, it is also an open
question whether consumer attitudes and expectations for differ-
ent driver monitoring strategies vary based on the appeal of certain
system functionalities, such as hands-free driving.

The increasing functionality of partial automation may also be
exacerbating consumer misunderstanding about the driver’s
responsibilities and the technology’s limitations (Banks &
Stanton, 2016; Mueller, Reagan, & Cicchino, 2021). Some of these
systems have automated (auto)-lane-changing functionalities,
where the vehicle will make a lane change on its own without
the driver needing to steer. Despite this capability, the driver still
has to make sure the maneuvers are safe to perform and to inter-
vene when necessary to prevent crashes. It is difficult to convey
the limits of partial driving automation to consumers when it
can perform maneuvers that are inherently riskier than just steer-
ing within the lane. Some auto-lane-change-assistance features
require driver input, for example by use of the turn stalk or button
press, as a form of verification that the driver is in the loop before
the system will perform the lane-change maneuver. This is known
as driver-initiated auto lane change. Other versions of this feature,
known as vehicle-initiated auto lane change, do not require any
driver input and the vehicle can make the decisions to change lanes

on its own. Vehicle-initiated auto lane change makes it difficult for
even attentive drivers to anticipate these actions, let alone be able
to determine whether it is safe for the maneuver to be performed
before it happens. The complexity of the issue is amplified by the
fact that some automakers offer auto-lane-change functionality
as hands-free (e.g., Toyota’s Teammate Advanced drive and Gen-
eral Motors’s Super Cruise; Toyota, n.d.; General Motors, n.d.).

1.1. Study objectives

The marketing of partial driving automation frequently
assumes that features such as hands-free driving and auto lane
change are what consumers want. However, while the appeal of
fully self-driving technology has received much attention, few
studies have explored what the public appetite is for partial driving
automation that exists in production vehicles today (e.g., Daziano,
Sarrias, & Leard, 2017; Lee, Gershon, Reimer, Mehler, & Coughlin,
2021). The goal of this study was to provide clarity on the subject
and to determine whether preferences for hands-free driving sup-
port are ubiquitous or whether there are differences between lane
centering and auto lane change and, if so, why. Another aim of the
investigation was to determine whether consumers accept and see
the value of driver monitoring technologies that are commonly
equipped with partial driving automation to ensure its proper
use. Furthermore, do those attitudes vary between features that
offer hands-free driving capability and those that require drivers
to keep their hands on the wheel? We conducted a nationally rep-
resentative survey of U.S. drivers to answer these questions.

2. Method

2.1. Procedure

The survey was conducted online from September to October in
2021 and was hosted on the Voxco platform. Individuals were
recruited to participate by email invitation from the Lucid Online
Marketplace, which is a community composed of hundreds of sup-
pliers with a diverse set of recruitment and sourcing methodolo-
gies. Respondents were informed that the survey was about
understanding public opinion concerning commercially available
driver assistance technologies and that it would take approxi-
mately 15 min to complete. They provided written informed con-
sent to participate before gaining access to the survey
instrument. Each respondent who qualified and completed the sur-
vey was paid $5 by the marketplace supplier fromwhom they were
recruited within the Lucid Online Marketplace. The study protocol
was deemed exempt by Advarra, an independent IRB company.

2.2. Sample

Quotas were used to match the sample to the age and gender
distributions of the U.S. population aged 21 and older using 2010
Census data as the target basis because 2020 estimates were not
yet available at the time of the survey; the 2010 age and gender
distributions were similar to the 2020 middle series estimates of
the U.S. resident population (United States Census Bureau, 2020).
As most respondents were expected to be unfamiliar with the
topics discussed in the survey, a pilot testing phase was necessary
to refine survey language; however, the data collected from the
pilot phase (n = 101) were not used for the study analysis. The final
sample consisted of 1,010 U.S. residents aged 21 years and older
who typically drove at least 1 day per week on highways. Six hun-
dred and eighty other individuals agreed to participate but were
determined to be ineligible—nine of whom were younger than
21 years, 294 did not drive at all, 85 drove less than 1 day per
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week, and 292 drove less than 1 day per week on highways. An
additional 34 respondents were removed due to quality control
issues (based on response consistency, response quality, and com-
pletion time criteria) and 775 other individuals started but did not
complete the survey.

2.3. Survey instrument

Definitions about a technology’s purpose, functional capabili-
ties, and limitations were provided to respondents before they
were asked about their opinions and preferences for that given
technology. Lane-centering assistance was also described in the
context of partial driving automation, in that it could be activated
simultaneously with adaptive cruise control. To prevent respon-
dents confusing lane centering with lane departure prevention,
both features were defined independently to distinguish the tem-
porary nature of lane departure prevention from the continuous
steering support of lane centering. Hands-free and hands-on-
wheel driving requirements were defined for lane centering and
auto lane change. Driver-initiated and vehicle-initiated versions
of auto lane change were characterized separately. The survey
included sections on lane centering, driver monitoring, lane-
change assistance, self-driving car appeal, and demographics and
driving habits.

2.3.1. Lane centering
Respondents were asked if they would want to use lane-

centering assistance, and if so, what type they would prefer
(hands-free, hands-on-wheel, no preference). Five-point Likert
scales assessed whether hands-free assistance would make driving
more or less stressful, safe, and boring, and make the driver more
or less comfortable, tired, distracted, and likely to do non-
driving-related activities, compared with hands-on-wheel lane
centering. Participants were additionally asked with 5-point Likert
scales about their likelihood of buying or leasing their next vehicle
with hands-free or hands-on-wheel lane centering, if cost was not
an issue.

2.3.2. Driver monitoring
Using 5-point Likert scales, respondents were asked how com-

fortable they would be with different driver monitoring strategies
for hands-on-wheel and hands-free versions of lane centering, as
well as how safe they would feel knowing that the vehicle would
be monitoring them to help ensure the technology was being used
as designed.

2.3.3. Auto lane change
Respondents were asked about the degree of confidence they

had in their ability to make manual lane changes on the highway
and the degree of stress they tend to experience when making
those maneuvers with 5-point Likert scales. They were then asked
about vehicle technologies that can assist with lane changing. Blind
spot detection alerts the driver if there is another vehicle in their
blind spot when they want to change lanes. Respondents were
asked whether they want to use blind spot detection, driver-
initiated auto lane change, and vehicle-initiated auto lane change.
Every respondent was then asked to specify whether they pre-
ferred to use hands-free or hands-on-wheel versions of driver-
and vehicle-initiated auto lane change and why. Using 5-point Lik-
ert scales, respondents were asked about their willingness to pur-
chase or lease their next vehicle with hands-free and hands-on-
wheel versions of driver-initiated and vehicle-initiated auto lane
change.

2.3.4. Self-driving technology appeal
Respondents were asked ‘‘How appealing would it be for you to

own or regularly use a self-driving vehicle in the future? Self-
driving means that the vehicle itself would control all the safety–
critical functions, even allowing the vehicle to travel without a pas-
senger if required. In other words, the vehicle would be able to
drive itself anytime, anywhere, and under any conditions. You
would be able to get into the vehicle, instruct it where you would
like to travel to, and the vehicle would then carry out your desired
route with no further intervention required from you. There might
not even be a steering wheel or speed controls in the vehicle.”
Degree of appeal was captured through a 5-point Likert scale.

2.4. Data analysis

To simplify interpretation, Likert-scale data were grouped into
broader categories. Differences in survey responses by preference
for lane centering (referred to as lane-centering preference group),
preference for auto lane change (auto-lane-change preference
group), and self-driving car appeal were examined using chi-
square tests. A critical p value of 0.05 was used to determine statis-
tical significance and actual p values were reported for statistically
significant results. Response categories were collapsed for select
comparisons reported in the Results section, and the data for all
response categories for those survey items can be found in Appen-
dix A.

3. Results

3.1. Sample

Table 1 shows the distribution of sample demographics for age,
gender, education, income, U.S. Census region, and weekly high-

Table 1
Sample demographics.

Percent
(N = 1,010)

Age (years)
21 to 34 26
35 to 64 51
65 and older 23

Gender
Male 49
Female 51
Other < 1

Education level
High school diploma or less 23
Some college education, associate degree, or trade school 34
Bachelor’s degree 24
Some graduate education 4
Graduate or professional degree 15

Income
Less than $50,000 45
$50,000 to $74,999 20
$75,000 to $99,999 13
$100,000 to $149,999 13
$150,000 to $199,999 6
$200,000 or more 3

Region
Northeast 17
Midwest 21
South 39
West 24

Highway driving exposure (average days per week)
5 days or more per week 58
3 to 4 days per week 24
1 to 2 days per week 19

Note. Percentages may not sum to 100 due to rounding.
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way driving exposure. The average age of respondents was
46 years (SD = 17, min = 21, max = 91). The majority drove on the
highway 5 or more days per week on average.

3.2. Lane centering

Eighty percent of the sample wanted to use at least some form
of lane centering. More respondents preferred hands-on-wheel
(36 %) than hands-free lane centering (27 %), and 18 % had no pref-
erence between the two types. Sixteen percent did not want to use
any form of lane centering and 4 % were unsure.

3.2.1. Expectations for hands-free vs hands-on-wheel lane centering
As shown in Fig. 1, compared with when using hands-on-wheel

lane centering, most (62 %) of the sample said that using the
hands-free version would make driving more stressful, would
make them more likely to do non-driving-related activities (e.g.,
eat, drink, text, groom, converse with a passenger) (61 %), and
more distracted (56 %) and comfortable (50 %). Nearly half said it
would make driving safer (47 %) or more boring (46 %), and 41 %
said it would make them more tired.

Differences were noted among the lane-centering preference
groups. A larger percentage of respondents who preferred hands-
free or hands-on-wheel versions of lane centering, as well as those
who did not want to use the feature, said hands-free lane centering
would make driving more stressful, X2 (4, 1010) = 69.16, p <.0001,
or would make them more distracted, X2 (4, 1010) = 15.70,
p = 0.003, compared with those who had no preference or were
unsure. Those who preferred hands-free lane centering also most
often reported that the feature would make them more comfort-
able, X2 (4, 1010) = 136.51, p <.0001, and make driving safer, X2

(4, 1010) = 149.71, p <.0001; these opinions were reported least
often among those who did not want to use any version of lane
centering. Additionally, drivers who preferred hands-free lane cen-
tering most often reported it would make driving more boring, X2

(4, 1010) = 36.47, p <.0001, and would make them more tired, X2

(4, 1010) = 49.81, p <.0001.

3.2.2. Conceptual appeal and likelihood of purchasing lane centering
Assuming price was not an issue, a larger proportion of the sam-

ple was willing (defined by being at least moderately likely) to buy
or lease their next vehicle with hands-on-wheel lane centering
than a hands-free version, as shown in Fig. 2. Willingness for
hands-free (X2 (4, 1010) = 229.81, p <.0001) and hands-on-wheel
lane centering (X2 (4, 1010) = 167.42, p <.0001) varied as a function
of preference group. Over three quarters of respondents who pre-
ferred hands-free lane centering were willing to buy either a
hands-free or hands-on-wheel lane-centering feature. More than
two thirds of those who preferred hands-on-wheel lane centering
or who had no preference were willing to buy a hands-on-wheel
version, but less than half of them were willing to buy a hands-
free version. Less than half of respondents who were unsure or
who did not want any lane centering were willing to buy either
type of lane-centering assistance, but willingness to purchase or
lease a vehicle with a hands-on-wheel version was higher among
both groups than for a hands-free one.

3.3. Driver monitoring

Attitudes concerning driver monitoring strategies. In the context
of using a hands-on-wheel lane-centering feature, the majority of
the sample was at least somewhat comfortable with all three dri-
ver monitoring strategies: 70 % with steering wheel sensors to
monitor driver hands, 59 % with camera monitoring of driver
hands, and 57 % with camera monitoring of driver gaze. Similar
percentages of respondents were at least somewhat comfortable
with camera monitoring of driver hands (58 %) and driver gaze
(57 %) in the context of hands-free lane centering.

Comfort with driver monitoring varied by lane-centering pref-
erence group for steering wheel sensor monitoring of driver’s
hands (X2 (4, 1010) = 242.38, p <.0001), camera monitoring of dri-
ver’s hands (X2 (4, 1010) = 207.62, p <.0001), and camera monitor-
ing of driver’s gaze (X2 (4, 1010) = 183.88, p <.0001) when using
hands-on-wheel lane centering as well as camera monitoring of
driver’s hands (X2 (4, 1010) = 177.32, p <.0001) and camera moni-
toring of driver’s gaze (X2 (4, 1010) = 193.11, p <.0001) when using

Fig. 1. Percent of respondents by lane-centering preference group who agree that various outcomes would be greater when using hands-free than hands-on-wheel lane
centering.
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hands-free lane centering. The patterns observed for the overall
sample were primarily driven by respondents who wanted some
form of lane centering, although more respondents who preferred
hands-free lane centering were extremely comfortable with all
forms of driver monitoring for both types of lane centering com-
pared with the other preference groups (Fig. 3). Conversely, almost
half of the respondents who did not want to use any lane-centering
assistance reported being at least somewhat uncomfortable with
driver monitoring when using either type of lane centering, espe-
cially camera-based monitoring.

3.3.1. Perceived safety of driver monitoring to ensure proper system
use

While most respondents said that they would feel safer know-
ing that the vehicle was monitoring them to make sure that the

feature was being used as it was designed to be used (Table 2),
there were differences by lane-centering preference group, X2 (4,
1010) = 185.99, p <.0001. Among those who did not want lane cen-
tering, only 27 % reported they would feel safer with driver moni-
toring. In contrast, the majority of respondents who wanted hands-
free lane centering said they would feel much safer with driver
monitoring.

Differences were also seen with how safe driver monitoring
would make people feel based on how comfortable they were with
the different driver monitoring strategies (Table 3). People who
were at least somewhat comfortable with different driver monitor-
ing strategies reported feeling safer than those who were neutral
or uncomfortable with driver monitoring. The pattern of the inter-
action between feeling comfortable and safe with driver monitor-
ing was similar among the different strategies in the context of

Fig. 2. Percent of respondents at least moderately likely to buy or lease a vehicle with hands-free or hands-on-wheel lane centering per lane-centering preference group.

Fig. 3. Percent of respondents per lane-centering preference group reporting to be comfortable with driver monitoring strategies for hands-free and hands-on-wheel lane
centering.
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using hands-on-wheel and hands-free versions of lane centering.
Specifically, the interaction persisted with respect to steering
wheel sensors to monitor the driver’s hands (X2 (4) = 345.12,
p <.0001) and cameras to monitor the driver’s hands (X2 (4)
= 371.12, p <.0001) and face (X2 (4) = 393.19, p <.0001) in hands-
on-wheel lane-centering systems as well as cameras to monitor
hands (X2 (4) = 380.41, p <.0001) and face (X2 (4) = 359.81,
p <.0001) in hands-free lane-centering systems.

3.4. Lane-changing assistance

3.4.1. Manual lane-changing ability and lane-change assistance
Most of the sample (67 %) indicated that they found changing

lanes on highways at least somewhat stressful, yet 97 % also said
they were at least somewhat confident in their ability to perform
those maneuvers. Even so, most (88 %) reported that they would
like the vehicle to warn them if there is another vehicle in their
blind spot when they want to change lanes (i.e., a blind spot detec-
tion feature), whereas only 5 % were unsure if they would like and
8 % said they would not like such a feature. Fewer respondents had
a desire for auto-lane-change assistance. When asked whether
they would want to use either driver-initiated or vehicle-
initiated auto lane change, 73 % said they would use some form
of auto lane change, with 45 % indicating they would prefer to
use driver-initiated auto lane change, and far fewer (14 %) prefer-
ring vehicle-initiated auto lane change. Few had no preference
(13 %) or were unsure (5 %) if they would use either type of assis-
tance, and 23 % said they would not use either type.

3.4.2. Attitudes toward hands-free and hands-on-wheel auto lane
change

Respondents were asked whether they would prefer hands-free
or hands-on-wheel requirements separately for driver-initiated
and vehicle-initiated versions of auto lane change. Approximately
three quarters preferred auto lane change to require the driver to
keep their hands on the wheel, regardless of whether the feature
was driver-initiated (77 %) or vehicle-initiated (75 %). Only 14 %
preferred the hands-free version for driver-initiated and vehicle-
initiated auto lane change, and the remainder said they were
unsure.

Those who preferred hands-free or hands-on-wheel driver- and
vehicle-initiated auto lane change were asked to select reasons for
their preference from a list of options, with multiple responses
allowed (Table 4). The most common reasons were that they
thought it would improve their driving comfort and make driving
safer and less stressful. However, more respondents who preferred
hands-on-wheel versions gave the reason that it would make driv-
ing safer than those who preferred hands-free versions. While
respondents who preferred hands-free versions more often indi-
cated that the reason for their preference was to have more oppor-
tunity to do non-driving-related activities, this reason was not
selected by most of the sample regardless of hands-free or
hands-on-wheel preference.

3.4.3. Conceptual appeal and likelihood of purchasing auto lane
change

Over half of the sample reported they would be at least moder-
ately likely to get a form of auto lane change on their next vehicle if

Table 2
Perceived safety of driver monitoring as a function of lane-centering preference (in percent).

Would you feel safer knowing that the vehicle is monitoring
you to make sure you are using the feature as it was designed to
be used?

Would you want to use either type of lane-centering assistance?

Yes, but I
prefer
hands-free

Yes, but I
prefer hands-
on-wheel

Yes, and I have no
preference between the
two types

No, I would not
use either
feature

Unsure Total

(n = 268) (n = 364) (n = 177) (n = 158) (n = 43) (n = 1,010)

Much safer 60 32 30 9 16 35
Somewhat safer 28 40 36 18 35 33
Neither more nor less safe 9 22 28 47 42 25
Somewhat less safe 1 3 3 11 2 4
Much less safe < 1 2 2 16 5 4

Note. Percentages may not sum to 100 due to rounding.

Table 3
Perceived safety of driver monitoring as a function of being at least somewhat comfortable with different driver monitoring strategies (in percent).

Would you feel
safer knowing
that the vehicle is
monitoring you
to make sure you
are using the
feature as it was
designed to be
used?

In the case of hands-on-wheel lane-centering assistance, how comfortable would you
be if the vehicle monitored you through. . .

In the case of hands-free lane-centering assistance, how
comfortable would you be if the vehicle monitored you
through. . .

sensors in the steering
wheel to make sure your
hands were on the wheel

a camera to capture what
your hands were doing

a camera to make sure you
were looking at the road

a camera to capture what
your hands were doing

a camera to make sure you
were looking at the road

At least
somewhat
comfortable

Neutral or
not
comfortable

At least
somewhat
comfortable

Neutral or
not
comfortable

At least
somewhat
comfortable

Neutral or
not
comfortable

At least
somewhat
comfortable

Neutral or
not
comfortable

At least
somewhat
comfortable

Neutral or
not
comfortable

(n = 711) (n = 299) (n = 597) (n = 413) (n = 575) (n = 435) (n = 583) (n = 427) (n = 577) (n = 433)

Much safer 47 6 53 9 56 7 55 8 55 9
Somewhat safer 38 21 37 27 34 30 35 29 35 29
Neither more nor

less safe
12 54 8 48 8 46 8 47 9 46

Somewhat less
safe

2 8 2 7 1 8 1 7 1 7

Much less safe 1 11 <1 9 1 9 <1 9 <1 9

Note. Percentages may not sum to 100 due to rounding.
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price were not an issue, and they were more willing to purchase or
lease hands-on-wheel than hands-free versions (Fig. 4). The pro-
portion of respondents that were at least moderately willing to
buy or lease their vehicles with various implementations of auto
lane change differed based on their preferences to use driver- or
vehicle-initiated versions (to buy hands-free driver-initiated: X2

(4, 1010) = 231.93, p <.0001; to buy hands-on-wheel driver-
initiated: X2 (4, 1010) = 212.59, p <.0001; to buy hands-free
vehicle-initiated: X2 (4, 1010) = 219.90, p <.0001; to buy hands-
on-wheel vehicle-initiated: X2 (4, 1010) = 237.91, p <.0001).
Respondents who indicated any preference for driver-initiated or
vehicle-initiated auto lane change indicated a greater willingness
for their next vehicles to be equipped with these systems com-
pared to respondents who were unsure about these features and/
or who do not want to use auto lane change at all. Unlike all the
other preference groups, however, those who wanted vehicle-
initiated auto lane change were similarly willing to have either

hands-on or hands-free driver-initiated and vehicle-initiated ver-
sions in their next vehicle.

3.5. Hands-free driving preferences for different driver support
features

Differences were observed in hands-free and hands-on-wheel
preferences for driver-initiated (X2 (8, 1010) = 106.43, p <.0001)
and vehicle-initiated auto lane change (X2 (8, 1010) = 110.33,
p <.0001) as a function of lane-centering preferences. As shown
in Table 5, over 80 % of respondents who wanted to use either
hands-free or hands-on-wheel versions of lane centering preferred
hands-on-wheel versions of driver- and vehicle-initiated auto lane
change compared with hands-free versions of those features. Smal-
ler majorities of the other lane-centering preference groups indi-
cated a preference for hands-on-wheel versions of auto lane
change.

Table 4
Reasons why respondents preferred driver-initiated or vehicle-initiated auto lane change to allow hands off the wheel or require drivers to keep their hands on the wheel (in
percent).

Reason Driver-initiated auto lane change Vehicle-initiated auto lane change

Prefer it to allow you to
have your hands off the
wheel

Prefer it to require you to
keep your hands on the
wheel

Prefer it to allow you to
have your hands off the
wheel

Prefer it to require you to
keep your hands on the
wheel

(n = 137) (n = 774) (n = 138) (n = 755)

Would make me more comfortable 58 53 46 51
Would make driving less stressful 41 43 40 44
Would make driving safer 30 46 33 45
Would make me less tired 29 20 22 23
Would make me less distracted 16 23 11 22
Would make driving less boring 16 16 20 15
Would give me more opportunity for non-driving-

related activities, such as eating, texting, conversing
with a passenger, etc.

15 4 14 5

Note. Multiple responses were allowed, and preferences were asked separately for driving-initiated and vehicle-initiated auto lane change. Participants who were unsure
about hands-free vs hands-on-wheel requirement preferences for driver-initiated auto lane change (n = 99, 10 % of the sample) and vehicle-initiated auto lane change
(n = 117, 12 % of the sample) were not asked about why they preferred hands-free or hands-on-wheel requirements.

Fig. 4. Percent of respondents at least moderately likely to buy or lease a vehicle with hands-free or hands-on-wheel versions of driver-initiated and vehicle-initiated auto
lane change, per auto-lane-change preference group.
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3.6. Self-driving technology appeal

Thirty-five percent of the sample said they found self-driving
technology extremely appealing, 19 % said moderately appealing,
14 % said somewhat appealing, 8 % said slightly appealing, and
23 % said not at all appealing. Respondents who indicated they
found self-driving technology appealing also indicated a desire
for other vehicle technologies (Fig. 5).

Lane-centering preferences (X2 (16, 1010) = 412.23, p <.0001),
feeling more or less safe with driver monitoring (X2 (16, 1010)
= 320.31, p <.0001), and the appeal of auto lane change (X2 (16,
1010) = 428.40, p <.0001) varied with self-driving technology
appeal. Respondents who found self-driving technology to be
extremely appealing were most likely to prefer hands-free lane
centering and report feeling much safer with driver monitoring.
These respondents also most often wanted to use auto lane change,
although like respondents in other groups, they preferred it to be
driver-initiated rather than vehicle-initiated. Those said that self-
driving technology was not at all appealing were most likely to
not want to use any form of lane centering or auto lane change,
and most frequently reported that driver monitoring would make
them feel neither more nor less safe.

4. Discussion

While this study confirms that there is an appetite for partial
driving automation, it also shows that the appeal of specific fea-
tures varies. Lane centering was revealed to be more appealing
than auto lane change, and vehicle-initiated auto lane change
was overwhelmingly the least appealing of all. Moreover, hands-
on-wheel requirements were widely preferred over hands-free
driving capability for all these features, especially for both types
of auto lane change. Driver monitoring was generally seen as
acceptable, although there was less enthusiasm for camera-based
monitoring than for steering wheel sensor monitoring, which is
to be expected given consumer concerns about privacy and user
autonomy (Ghazizadeh & Lee, 2018; Horrey et al., 2012). Even so,
attitudes and expectations around driver monitoring corresponded
with the perception of being safer with it, given its purpose to help
prevent drivers from misusing the technology. This finding sug-
gests that conveying the safety value of driver monitoring may
be a key component for consumer education and acceptance
(Abraham, Reimer, & Mehler, 2018; Koppel, Charlton, Fildes, &
Fitzharris, 2008; Trimble, Baker, Russell, & Tidwell, 2020). Educa-
tion around driver monitoring and other safeguards may promote

Table 5
Hands-free vs hands-on-wheel driver-initiated and vehicle-initiated auto-lane-change preferences based on respondent preferences for lane centering (in percent).

Would you prefer a [driver-initiated or vehicle-initiated,
separately asked] automated-lane-change assistance
feature to require that you have your hands on the wheel
the whole time or would you prefer it to be hands-free?

Would you want to use either type of lane-centering assistance?

Yes, but I prefer
hands-free

Yes, but I prefer
hands-on-wheel

Yes, and I have no preference
between the two types

No, I would not use
either feature

Unsure

(n = 268) (n = 364) (n = 177) (n = 158) (n = 43)

Driver-initiated
auto lane change

Prefer it to allow you to have your
hands off the wheel

16 11 21 10 5

Prefer it to require you to keep
your hands on the wheel

82 84 64 68 60

Unsure 2 5 15 22 35
Vehicle-initiated

auto lane change
Prefer it to allow you to have your
hands off the wheel

16 12 20 8 7

Prefer it to require you to keep
your hands on the wheel

81 82 66 63 58

Unsure 3 7 14 29 35

Note. Percentages may not sum to 100 due to rounding.

Fig. 5. Percent of respondents per self-driving technology appeal rating with preferences for partial driving automation and safety ratings for driver monitoring.
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adoption of in-vehicle technologies that help to prevent driver dis-
traction and inattention more generally, outside the context of par-
tial driving automation.

Individual differences were also observed in how appealing the
features were. Respondents who found lane centering appealing
tended to find other vehicle technologies also appealing, such as
auto lane change and self-driving technology, which is consistent
with previous research (e.g., Abraham, Lee, Brady, Fitzgerald,
Mehler, Reimer, & Coughlin, 2017). Those people were likewise
more accepting of driver monitoring strategies and were more
likely to say that they would feel safer with it. Interestingly,
respondents who preferred hands-free lane centering were over-
whelmingly the most accepting of all driver monitoring strategies,
and they were also most willing to buy or lease a vehicle with
either hands-on or hands-free versions of lane centering. The rest
of the sample was far more willing to buy or lease their next vehi-
cle with hands-on lane centering than a hands-free version.
Although respondents were less enthusiastic to have their next
vehicle equipped with auto lane change, there was a general pref-
erence for it to be driver-initiated and require the driver to keep
their hands on the wheel.

One of the aims of this study was to investigate the reasons
behind preferences for hands-free or hands-on-wheel versions of
driving automation. Compared with hands-on-wheel lane center-
ing, respondents who wanted a hands-free version said it would
make driving more comfortable and safer than other drivers. In
an interesting display of cognitive dissonance, most of those
respondents also said hands-free lane centering would make driv-
ing more stressful, boring, and tiring as well as increase distraction.
Driver drowsiness and distraction are known crash risk factors
(Dingus et al., 2016), and many other respondents shared these
concerns too. When asked to choose between hands-free or
hands-on-wheel versions of driver-initiated and vehicle-initiated
auto lane change, the most common reasons for selecting either
were to make driving more comfortable, less stressful, and
safer—although more respondents identified ‘‘to make driving
safer” as a reason for wanting a hands-on-wheel feature than a
hands-free one. Evidently, more sophisticated functionality can
lead some people to assume that these features have safety bene-
fits, even though the survey never described them as such, and no
data currently support those assumptions for partial driving
automation in general (e.g., Goodall, 2021; HLDI, 2021a, 2021b).
It is nevertheless curious that the vast majority of those respon-
dents who preferred hands-free lane centering (as well as the rest
of the sample) preferred hands-on-wheel versions of both types of
auto lane change, which indicates some degree of understanding
about the risk, driver responsibility, and maneuver complexity of
the different functionalities.

Related to the common expectation that hands-free lane center-
ing would increase driver distraction, most of the sample also
acknowledged that it would make the driver more likely to do
non-driving-related activities than hands-on-wheel lane centering.
This attitude was particularly reflected among respondents who
wanted hands-free lane centering. Furthermore, a subset of
respondents who preferred hands-free auto lane change said they
wanted that functionality to be hands-free because they wanted to
do non-driving-related activities. These findings are relevant
because, when these features were first described in the survey,
respondents were informed that vehicles with these features are
not autonomous and require the driver to constantly supervise
and intervene whenever necessary. This would suggest that
informing consumers about the driver’s responsibilities and the
system’s limitations does not necessarily prevent the intention of
misuse, which raises concerns for consumer education efforts. That
said, many of these respondents were also the most accepting of all
types of driver monitoring when using any form of lane centering,

which suggests that they may also be more willing to use systems
that have safeguards built in, such as attention reminders and
emergency escalation countermeasures (IIHS, 2022; Mueller
et al., 2022). However, automakers must ensure that these safe-
guards are reliable and robust to inform and reinforce mental mod-
els about the driver’s responsibilities and system limits (Cummings
& Bauchwitz, 2022). Should systems not have adequate safeguards,
there is the potential for hands-free driving to exacerbate the risk
of driver disengagement, which has already been contributing to
crashes involving the misuse of hands-on-wheel partial driving
automation (e.g., National Transportation Safety Board, 2017,
2019, 2020).

Design philosophies that promote cooperative steering between
the driver and the lane-centering support play an important role in
keeping the driver engaged in the driving task. Information feed-
back between a driver’s hands and gaze behavior helps to coordi-
nate anticipatory steering control (Navarro, Hernout, Osiurak, &
Reynaud, 2020). A shared control design philosophy is moreover
beneficial for conveying the driver’s autonomy in the driver-
vehicle interaction (Wen, Kuroki, & Asama, 2019). Designs that
reinforce the driver’s role and responsibilities in the interaction
helps to prevent misperceptions around the use of the system as
being ‘‘driver versus machine,” and instead encourage the driver
to work with the machine. More research is nevertheless needed
to understand how hands-free driving capability affects a driver’s
mental model about the system limitations and their role and
responsibilities when using it (Carsten & Martens, 2019).

4.1. Limitations

Unlike a lot of automaker advertising, the current survey
emphasized the limitations of partial automation features and
the driver’s role when using them. The naming of these systems
alone has been shown to mislead consumers about system capabil-
ity (Teoh, 2020). It is possible that the skepticism exhibited by
some of the sample could have been informed by the pragmatic
descriptions used to introduce the features of interest.

This study captured the conceptual appeal of the technology,
but it cannot predict purchasing behavior or actual use of these
features. The intention to use a technology does not guarantee
actual use (Turner, Kitchenham, Brereton, Charters, & Budgen,
2010), and the appeal of a technology can change once the individ-
ual has had experience using it (Kidd & Reagan, 2018). Moreover,
owning or having regular access to vehicles equipped with partial
driving automation can change driving habits and technology use
(Hardman, 2021). While surveys such as this are useful for investi-
gating the driving public’s attitudes, expectations, and intentions
concerning the latest advanced vehicle technologies, purchasing
behavior itself is necessary to capture the uptake rate, and post-
purchase/use research remains key to understanding consumer
usage patterns (Melnicuk, Birrell, Thompson, Mouzakitis, &
Jennings, 2019).

5. Conclusions

Prior to this study, little was known about the public’s appetite
for commercially available partial driving automation in the United
States, especially with hands-free driving and automated-lane-
changing capability. Results indicate that while some consumers
find hands-free driving appealing, most prefer driver support fea-
tures that require the drivers to keep their hands on the wheel.
Although people are generally comfortable with driver monitoring,
their acceptance level seems to be related to their belief that it
improves safety by ensuring proper system use. There is an indica-
tion that consumers who prefer hands-free lane centering may be
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more likely to do non-driving-related activities when using it, yet
those people are also the most comfortable with all types of driver
monitoring strategies and their purpose. Overall, drivers appear to
understand the differences between lane centering and auto lane
change, and the latter is less appealing, especially in the form of
vehicle-initiated auto lane change.

6. Practical applications

While the intention to misuse a technology does not necessarily
mean it will occur, behavioral observation research indicates that
driver disengagement can increase over time while using partial
driving automation (Banks et al., 2018; Dunn et al., 2021; Kim
et al., 2022; Reagan et al., 2021). The results from this study sug-
gest that informing consumers about the limitations of partial driv-
ing automation does not necessarily deter the intention to misuse
it. Design safeguards with responsible application of automated
functionality are necessary to impose functional ‘guardrails’ that
minimize opportunity for misuse. One of the mechanisms support-
ing these safeguards is driver monitoring. This study’s data show
that the public’s acceptance of it appears to be connected to the
understanding of its purpose in helping drivers use the technology
properly. Notably, this acceptance does not appear to differ

between the context of using hands-free or hands-on-wheel partial
automation. Therefore, in conjunction with design safeguards, con-
sumer information should convey the purpose of driver monitoring
to promote its acceptance and adoption.
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Appendix A. Supplemental analyses

See Tables A1-A4.

Table A1
Percent of respondents by lane-centering preference group for various outcomes that would be expected to occur when using hands-free compared with hands-on-wheel lane
centering.

Compared with hands-on-wheel lane centering,
hands-free lane centering would:

Would you want to use either type of lane-centering assistance?

Yes, but I prefer
hands-free

Yes, but I prefer
hands-on-wheel

Yes, and I have no
preference between
the two types

No, I would
not use either
feature

Unsure Total

(n = 268) (n = 364) (n = 177) (n = 158) (n = 43) (n = 1,010)

Make driving more or less stressful Much more 50 27 10 37 23 32
Somewhat more 22 38 26 32 26 30
Same as hands-on-wheel 7 18 36 20 40 20
Somewhat less 10 14 20 9 9 13
Much less 10 3 7 1 2 5

Make you more or less comfortable Much more 45 13 14 13 2 21
Somewhat more 34 33 27 11 35 29
Same as hands-on-wheel 11 19 34 16 28 20
Somewhat less 6 25 21 26 19 19
Much less 4 9 3 33 16 11

Make you more or less tired Much more 32 12 6 13 14 17
Somewhat more 25 26 19 25 21 24
Same as hands-on-wheel 19 36 41 46 42 34
Somewhat less 13 19 24 11 16 17
Much less 11 7 10 4 7 8

Make driving more or less safe Much more 43 16 13 5 7 21
Somewhat more 31 30 30 12 12 27
Same as hands-on-wheel 15 24 33 27 47 25
Somewhat less 8 23 23 28 28 20
Much less 3 8 2 27 7 8

Make driving more of less boring Much more 33 14 8 18 14 19
Somewhat more 27 31 25 22 21 27
Same as hands-on-wheel 15 30 39 40 49 30
Somewhat less 12 20 19 13 9 16
Much less 13 5 8 7 7 8

Make you more or less distracted Much more 33 20 8 34 21 24
Somewhat more 28 39 36 23 28 33
Same as hands-on-wheel 17 22 27 32 40 24
Somewhat less 10 15 22 7 9 13
Much less 11 5 7 4 2 7

Make you more or less likely to do
non-driving-related activities

Much more 46 23 18 23 16 28
Somewhat more 32 34 37 25 33 33
Same as hands-on-wheel 14 28 33 34 37 26
Somewhat less 4 9 7 6 7 7
Much less 4 6 5 12 7 6

Note. Percentages may not sum to 100 due to rounding.
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Table A2
Percent of respondents likely or unlikely to buy or lease a vehicle with hands-free or hands-on-wheel lane centering per lane-centering preference group.

If cost were not a problem, how
likely would you be to buy or lease
your next vehicle with:

Would you want to use either type of lane-centering assistance?

Yes, but I prefer
hands-free

Yes, but I prefer
hands-on-wheel

Yes, and I have no preference
between the two types

No, I would not use
either feature

Unsure Total

(n = 268) (n = 364) (n = 177) (n = 158) (n =
43)

(n =
1,010)

Hands-free lane
centering

Extremely 61 19 21 6 9 28
Moderately 24 23 27 8 19 21
Somewhat 12 21 33 13 28 20
Slightly 3 18 10 9 16 11
Not at all <1 19 10 65 28 20

Hands-on-wheel lane
centering

Extremely 49 34 34 6 7 32
Moderately 32 34 33 15 33 31
Somewhat 16 19 24 14 33 19
Slightly 3 9 5 18 14 8
Not at all <1 4 3 47 14 10

Note. Percentages may not sum to 100 due to rounding.

Table A3
Percent of respondents per lane-centering preference group reporting to be comfortable or uncomfortable with driver monitoring strategies for hands-free and hands-on-wheel
lane centering.

Would you want to use either type of lane-centering assistance?

Yes, but I
prefer
hands-
free

Yes, but I
prefer
hands-on-
wheel

Yes, and I have
no
preference
between the
two types

No, I
would not
use either
feature

Unsure Total

(n = 268) (n = 364) (n = 177) (n = 158) (n =
43)

(n =
1,010)

In the case of hands-on-wheel lane-centering assistance, how comfortable would you be if the vehicle monitored you through:
Sensors in the steering wheel to make sure your

hands were on the wheel
Extremely comfortable 69 35 38 11 12 40
Somewhat comfortable 24 40 37 14 28 30
Neither comfortable nor
uncomfortable

4 13 18 26 40 15

Somewhat uncomfortable 2 9 6 23 16 9
Extremely uncomfortable 1 2 2 25 5 6

A camera to capture what your hands were doing Extremely comfortable 56 26 29 8 7 31
Somewhat comfortable 29 37 29 8 26 28
Neither comfortable nor
uncomfortable

9 14 16 22 37 15

Somewhat uncomfortable 4 17 19 27 16 15
Extremely uncomfortable 2 7 7 34 14 10

A camera to make sure you were looking at the road Extremely comfortable 59 27 25 11 5 32
Somewhat comfortable 24 32 26 8 28 25
Neither comfortable nor
uncomfortable

9 15 17 18 37 15

Somewhat uncomfortable 4 14 23 25 16 15
Extremely uncomfortable 3 11 9 38 14 13

In the case of hands-free lane-centering assistance, how comfortable would you be if the vehicle monitored you through:
A camera to capture what your hands were doing Extremely comfortable 54 25 28 8 5 30

Somewhat comfortable 28 34 29 10 30 28
Neither comfortable nor
uncomfortable

10 16 16 21 30 16

Somewhat uncomfortable 4 15 18 24 26 14
Extremely uncomfortable 3 10 9 37 9 12

A camera to make sure you were looking at the road Extremely comfortable 57 26 28 11 12 31
Somewhat comfortable 27 33 27 6 26 26
Neither comfortable nor
uncomfortable

8 12 15 21 33 14

Somewhat uncomfortable 3 16 20 19 16 14
Extremely uncomfortable 5 13 11 44 14 15

Note. Percentages may not sum to 100 due to rounding.
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a b s t r a c t

Introduction: Older vehicles, commonly referred to as ‘‘classic,” ‘‘vintage,” or ‘‘historic” vehicles (CVH),
share the roadways with newer vehicles. Older vehicles lacking safety systems likely come with an
increased risk of fatality, however there is no study examining the typical conditions for crashes involving
CVH. Method: This study utilized information from crashes occurring in 2012 to 2019 to estimate fatal
crash rates for vehicles grouped by model year deciles. Data from crashes documented in the National
Highway Traffic Safety Administration’s (NHTSA) FARS and GES/CRSS data sets were utilized to examine
roadway, temporal, and crash types for passenger vehicles produced in 1970 or earlier (CVH). Results:
These data show CVH crashes are rare (<1% of crashes), but carry a relative risk of fatality from 6.70
(95th CI: 5.44–8.26) for impacts with other vehicles, which was the most common crash, to 9.53
(7.28–12.47) for rollovers. Most crashes occurred in dry weather, typically during summer, in rural areas,
most frequently on two lane roads, and in areas with speed limits between 30 and 55 mph. Factors asso-
ciated with fatality for occupants in CVH included alcohol use, lack of seat belt use, and older age.
Conclusions and Practical Applications: Crashes involving a CVH are a rare event but have catastrophic con-
sequences when they do occur. Regulations that limit driving to daylight hours may lower the risk of
crash involvement, and safety messaging to promote belt use and sober driving may also help.
Additionally, as new ‘‘smart” vehicles are developed, engineers should keep in mind that older vehicles
remain on the roadway. New driving technologies will need to safely interact with these older, less safe
vehicles.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Over the past decades, vehicle fatalities in the United States
have generally declined, not only in absolute fatalities but also
when weighted by population levels and by mile driven
(National Center for Statistics and Analysis, 2020a; Weast, 2018).
Changes in traffic fatalities have been attributed to factors includ-
ing vehicle design, road design, laws, and changes in driver behav-
ior (Farmer & Lund, 2015; Stewart, 2020; Santaella-Tenorio et al.,
2017). Although vehicle safety continues to improve, there are
older model vehicles lacking safety systems that continue to share
the roadway with newer vehicles. One such group is the so-called
‘‘classic,” ‘‘vintage,” or ‘‘historic” vehicles (CVH). Across the United
States, there are clubs and organizations for owners to share their
love of these vehicles, but there are limited recommendations for
how to enjoy these vehicles while reducing the risk of severe injury

or fatality. There are no national standards in the United States that
regulate access to roads for these CVH, however, according to Hag-
erty, a company that specializes in insuring these CVH vehicles, 36
of the 50 states do impose some driving restrictions. Typically,
these either limit driving to certain days or enforce a mileage per
year cap (Fitzgerald, 2019). Eleven states require some sort of
safety inspection (Fitzgerald, 2019). Other countries including
India, France, and England have recently adopted regulations
intended to limit the use of older vehicles, primarily due to con-
cerns regarding vehicle emissions. However these, for the most
part, exclude the very old ‘‘classic” vehicles. Going forward, as
vehicles and traffic systems change due to vehicle electrification
and smart driving technologies, it is possible that more govern-
ments may consider restricting roadway access for older vehicles.
These may consider performance concerns related to either envi-
ronmental or roadway safety.

While there is no study specifically examining these very old
vehicles, there is some information in the literature that demon-
strates an increased risk of fatality for occupants of older vehicles

https://doi.org/10.1016/j.jsr.2022.10.004
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involved in crashes. A 2009 study found both severe injury and
fatality occurrence were higher in older model vehicles, but these
were 1994 model year (MY) or newer (Ryb et al., 2009). A study
of single-vehicle crashes in 2003–2010 in Australia indicated fatal-
ity and injury were more frequent in vehicles produced before
1996, but the earliest vehicles included were 1991 MY (Anderson
& Searson, 2015). A 2012 study of United States crashes focused
on vehicles produced in a similar period (1990–2009) found
increased HARM (a composite score based on injuries and the cost
to treat injury) for older vehicles for all types of crashes (Eigen
et al., 2012). More recently, Høye (2019) examined older vehicles
in crashes in Norway and found that the risk of fatality and signif-
icant injury increases with vehicle age. The data also suggested
that rollovers and impacts with fixed objects like trees pose an
especially high fatality risk to an occupant in these older vehicles.
While these data demonstrate, not surprisingly, that older vehicles
are less safe in crashes than newer vehicles, little is known regard-
ing the frequency and typical conditions for crashes involving CVH
vehicles.

The current study seeks to estimate the frequency of crashes
involving older vehicles within the United States and estimate
the rate of fatal crashes, with special attention to crashes involving
CVH vehicles, defined as those with model years of 1970 or earlier.
It will also document common road and environmental factors
associated with CVH vehicle crashes. The CVH group definition
used in this study is intended to identify a vehicle group that is pri-
marily composed of vehicles driven for pleasure, excluding those
older vehicles that are driven due to economic pressures, which
may have different crash involvement characteristics (Høye,
2019). These data will help vehicle enthusiasts and governmental
groups better understand crash frequency and fatality risk for
CVH vehicles in comparison to risks in modern vehicles. This infor-
mation can be used in the development of safety recommendations
and future vehicle regulations.

2. Methods

This study utilized information from crashes occurring in the
United States from 2012 to 2019 to estimate yearly fatal crash
rates for vehicles grouped by model-year deciles. Data from
crashes occurring in 2016 to 2019 was used to examine event fac-
tors associated with classic/vintage/historic (CVH) vehicles. The
data were extracted from three data sets maintained by the
National Highway Traffic Safety Administration (NHTSA): Fatality
Analysis Reporting System (FARS), the National Automotive Sam-
pling System-General Estimates System (GES), and Crash Report
Sampling System (CRSS), which are available online at https://
www.nhtsa.gov/file-downloads?p=nhtsa/downloads/. FARS is a
NHTSA data source aggregating annual fatal crash data for all qual-
ifying fatality crashes within the 50 states and the District of
Columbia. Crashes must involve a motor vehicle traveling on a
public roadway and must have resulted in the death of at least
one motorist or non-motorists within 30 days of the collision to
be documented in the dataset. This dataset was used to estimate
fatality risk and examine the most severe types of crashes for
CVH vehicles. Both the GES and CRSS data sets are stratified pro-
portional samples of crashes in the United States. The CRSS data
set replaced the GES system in 2016 and follows a similar, but
not the same, data sampling strategy (National Center for
Analysis and Statistics, 2020b). Crashes selected for inclusion in
these data sets provide information from police reports describing
the events during the crash, roadway conditions, vehicle damage,
and occupant information including restraint use. These data sets
document roughly 50,000 cases each year. Both GES and CRSS data
sets provide weighting factors, based on the probability of select-

ing the crash for inclusion in the sample, and these weights allow
researchers to make estimates of yearly numbers of crashes. For a
crash event to be a candidate for documentation in the dataset it
must include either police-reported fatalities, injury, or property
damage. Information from the GES and CRSS data provides an esti-
mate of yearly numbers of crashes for the crash rate estimates in
the current study and descriptions of the crash events. All crashes
involving passenger vehicles were extracted from each data set
where passenger vehicles were defined using the vehicle body type
codes (‘‘cars”: 1–10; ‘‘SUVs”: 14, 15; ‘‘vans”: 20, 21, and ‘‘trucks”:
34).

The risk of fatality in CVH vehicles was compared to the risk in
newer vehicles using relative risk. Risk is defined as the number of
events divided by the number of exposures. The exposure level was
defined using the weighted CRSS crash counts (Teoh & Lund, 2011).
The relative risk measure was selected as the risk descriptor to
control for potential bias inherent in using the CRSS crash counts
as the exposure measure. For example, there may be bias as this
approach assumes that cars are on the road as frequently as they
are involved in crashes, with crash involvement equaling exposure.

All statistical analysis utilized the 2016 through 2019 CRSS
data. A chi-square test (or Fishers Exact test when case counts were
below five for CHV) was used to identify a statistically significant
difference in frequencies of events between CVH and newer vehi-
cles for the fatal crash data. The surveyfreq tool in SAS (SAS Insti-
tute, Cary, NC) was utilized to account for the CRSS stratified
sample design when calculating frequencies and 95th confidence
intervals for the broader sample of all types of crashes involving
CVH (National Center for Analysis and Statistics, 2020b). A Rao-
Scott chi-square test was utilized to account for sample design in
making comparisons of proportions from the CRSS data.

3. Results

Crashes involving CVH vehicles represent a small but constant
event each year, constituting between 0.02 and 0.06% of yearly
crashes (Fig. 1).

Fatal crashes involving these types of vehicles occurred in all
states except Maine, Connecticut, and Delaware during the 2012–
2019 timeframe (Fig. 2), with the highest number of crashes occur-
ring in California (98) and Texas (31). However, the highest rate of
involvement per population occurred in South Dakota at 0.56
crashes per million residents per year.

While these were rare events, a larger proportion of the crashes
resulted in a fatality as compared to newer vehicles (Fig. 3).

Fig. 1. Percentage of crashes involving CVH vehicles. Note that 2012–2015 is taken
from NASS-GES and the 2016 – 2019 data is taken from the replacement national
surveillance data set CRSS, and the sample design for these two data are slightly
different.

D. Kielminski, E. Atkinson, D. Peters et al. Journal of Safety Research 84 (2023) 18–23

19

https://www.nhtsa.gov/file-downloads?p=nhtsa/downloads/
https://www.nhtsa.gov/file-downloads?p=nhtsa/downloads/


The risk of fatality for vehicle crashes involving a CVH vehicle
was increased in comparison to vehicles in the 2010–2020 model
year group, based yearly average fatality and crash counts across
the eight years. Note that the proportion of fatal crashes varies year
to year in the CVH vehicles due to differences in both the number
of these vehicles included in the GES or CRSS sample set and the
low frequency of these crashes, which makes yearly estimates
highly sensitive to small differences. However, fatality rates were
more consistent for the 1960 and 1970 deciles where the sample
size tended to be larger where, for example, the 1950 s group
had an estimated crash mean of approximately 700 cases per year
versus 9,000 for the 1970 s group.

A more detailed analysis of crashes focused on crashes occur-
ring in 2016–2019. The data from FARS, for all crashes producing
a fatality in at least one of the vehicles involved in the event,

included a total of 234 CVH and 151,322 newer vehicles. Note that
a subset of these crashes included a fatality in the vehicle of inter-
est and were included in the fatality cases shown in Fig. 3 and sub-
sequent fatality analysis. The data used to describe the overall
crash frequency (CRSS) included a weighted estimate of 15,656
(127 raw count) CVH and 4,095,173 (3,033,363 raw count) newer
vehicles. These data indicated that the most frequent crash type
for CVH vehicles was impact with another vehicle, which
accounted for 76.8% [95th CI: 66.5–87.2%] of crashes. In compar-
ison, these crashes accounted for 84.0% of crashes for newer vehi-
cles, which was not significantly different (p = 0.1159), suggesting
that vehicle to vehicle interactions are an important crash mode for
these very old vehicles. The largest difference in crash type fre-
quency was in impacts with parked cars where these occurred
more frequently in CVH vehicles as compared to newer vehicles,

Fig. 2. Locations and counts of fatal CVH vehicle crashes from 2012 to 2019.

Fig. 3. Proportion of crashes resulting in a fatality in the vehicle (vehicles with a fatality due to the crash in each decile group from FARS / all crashes in decile group as
estimated from GES or CRSS).
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at 7.6% [0 0.0 – 17.6%] of crashes for CVH versus 2.0% (p = 0.0270).
Rollover crashes were estimated to occur at similar rates for both
CVH and newer vehicles (0.6% [0.0–1.32%] of crashes vs 1.0%,
p = 0.4198) but rollovers accounted for a significantly higher pro-
portion of the fatal crashes in CVH vehicles: 22.4% of fatal crashes
for CVH versus 10.1% for newer (p < 0.001). Overall, a significantly
higher proportion of vehicle crashes in CVH vehicles resulted in
‘‘apparent” or more serious injury (based on assessment in the
police record as indicated in the CRSS data), as compared to newer
model-year vehicles (25.6% [17.6–33.6%] vs 18.5%; p = 0.0376),
however detailed injury data are not collected in the data sets, so
it is not possible to make more detailed injury assessments.

The relative risk of fatality in a CVH vehicle in comparison to
newer vehicles in rollovers, impacts with narrow objects, and
impacts with other vehicles ranged from 6.7 to 12.1 (Table 1).
However, these were rare events accounting for less than 1% of
fatalities for all vehicles (regardless of model year) involved in sim-
ilar crashes each year.

In considering the road and environmental factors associated
with CVH vehicle crashes, most occurred in dry weather, with
the proportion of dry weather crashes similar to that for newer
vehicles, at 85.5% [75.5–95.5%] of crashes for CVH versus 82.6%
for newer vehicles (p = 0.5774). The types of roads for the CVH
vehicle crashes were also similar to those for newer vehicles. For
example, a higher proportion of crashes occurred on two lane
roads, at 54.4% [42.7–66.0%] versus 46.3% for newer vehicles, and
a lower proportion on roads with four or more lanes (23.7%
[10.9–36.5%] vs 32.2%), but these differences were not significant
(p = 0.1565 and 0.1699, respectively). No CVH vehicle crash in
the surveillance sample of CRSS occurred on a roadway with a
speed limit above 65 mph. Most crashes occurred on roads with
speed limits between 30 and 55 mph (95.2% [89.8–100.0%]), as
compared to 88.3% of crashes in newer vehicles (p = 0.0848). An
estimated 72.1% [57.9–86.4%] of CVH crashes occurred in rural
areas, and an estimated 2.68% of these rural crashes resulted in a
fatality versus 1.14% for urban crashes. The CVH vehicle crashes
tended to occur in the summer months, with an additional peak
in February, which differed from the relatively flat distribution of
crashes across months for the newer vehicles (Fig. 4).

Most fatal CVH vehicle crashes occurred in the late afternoon/
evening with an additional peak at midnight (Fig. 5).

When considering factors related to the occupants of the vehi-
cle, they demonstrate characteristics known to increase the risk
of fatality in the crash event. For example, alcohol was a factor in
4.0% [0–8.4%] of crashes for CVH vehicles, which was not signifi-
cantly different from 2.5% for crashes involving newer vehicles
(p = 0.3702). However, pooling 2016–2019 data for all crashes pro-
ducing a fatality in the CVH vehicle showed that 24.4% of these
crashes involved driver alcohol use, which was significantly higher
than 18.1% in similar crashes involving newer vehicles (p = 0.017).
Seat belt use was also significantly lower in fatal crashes involving
CVH at 47.7% versus 74.2% for the newer vehicles (p < 0.001), but in
the CVH group belt use was at 85% in those who survived the crash.
The data set does not indicate whether the seat belt was present or

not (many older vehicles were not designed with belts) and there is
no information in FARS to indicate whether an after-market seat
belt was in use. In 20.0% of CVH crashes that produced a fatality,
speed played a role per the police report. While this was higher
than the proportion of 17.4% for similar crashes with newer vehi-
cles, this difference was not significant (p = 0.228). The mean age
of occupants in the CVH vehicles involved in fatal crashes was
52.9 ± 18.8 years, which was older than the mean overall age of
38.4 ± 21.1 years (mean of yearly means) for occupants in all fatal
crashes. Across all fatal crashes, the average age of the occupants
who died because of the crash was older than the average for those
who survived (43.8 vs 35.2 years), and this same trend was
observed when the CVH vehicles were considered (57.6 vs
42.9 years).

4. Discussion

The present study aims to examine the frequency of crashes
involving CVH vehicles in the United States, with special attention
to the type of crash and roadway conditions associated with these
events. Crashes involving CVH most frequently involve impact
with another vehicle and occur in rural areas in summer months
on dry pavement. Occupants of these vehicles experience injuries
due to the crash more frequently than occupants in newer vehicles.
While crashes involving CVH are rare events, these crashes lead to
a higher relative risk of fatality as compared to newer vehicles.
Alcohol, lack of seatbelt use, and age were factors associated with
fatalities in a CVH crash event.

The current study suggests that crashes involving CVH are more
frequent during the summer months, with most crashes occurring
during dry weather. This is consistent with the idea of leisure use
of CVH, where drivers can select optimal times for their use. Also,
the CRSS data suggest that users tend to select rural roadways and
locations with speed limits of 55 or lower, which perhaps drivers
perceive as safer. Note that this study used crash event observa-
tions as a surrogate for exposure, as there are no available data
to fully account for roadway exposure for these vehicles. This
may result in some bias in the data, however the observations
related to the crash events were consistent year to year. Some state
and local laws limit CVH vehicle use, which may contribute to the
relatively low incidence of these crashes.

The results from this study are consistent with other vehicle
safety research. A study in 2019 looked at alcohol usage during
motor-vehicle collisions and survivability. This study showed that
alcohol is an independent risk factor for mortality, with every age
group faring worse in a motor-vehicle collision when compared to
sober drivers (Culhane et al., 2019). The current study found that
alcohol use was high in the CVH crashes that produced a fatality.
Previous work indicated that alcohol was a variable involved in

Table 1
Relative risk of fatality in a crash for CVH vs newer vehicles.

Crash Type RR 95th CI % Fatal
Crashes

Tree 12.10 15.54–16.40 0.3%
Rollover 9.53 7.28–12.47 0.4%
Other Vehicle 6.70 5.44–8.26 0.2%
Utility/Light pole 9.67 5.44–17.19 0.5%
Parked Car 1.67 0.42–6.68 0.2%
Other 4.42 2.94–6.64 1.2%

Fig. 4. Estimated proportion of crashes by season from CRSS data.
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increasing the severity of driver injuries across multiple types of
crashes (Li et al., 2019). Another factor associated with fatality is
the lack of seat-belt usage. The observed use in CVH crashes that
produced a fatality (47.7%) was far lower than the national esti-
mated use rate of 90% (National Center for Statistics and
Analysis, 2021). Lower usage may be due to lower risk perception
in drivers of these vehicles (Sheveland et al., 2020) or may be
related to alcohol use (Marco et al., 2020). In 2014, self-report seat
belt usage in the United States was 86.9% overall with the highest
(88.8%) in urban counties and the lowest (74.7%) in rural counties
(Beck et al., 2014). Rurality was associated with increasing severity
of injuries for drivers involved in MVCs and reasons cited for this
include lower traffic densities, fewer traffic control facilities, and
law enforcement (Li et al., 2019). Several other factors may con-
tribute to the increased number of fatalities in rural/open roads
such as lower belt use, high speeds, roadway characteristics, and
lack of appropriate trauma care in a reasonable timeframe (Beck
et al., 2014). Speed was a factor in CVH fatal crashes at a rate sim-
ilar to that in newer vehicles. A recent study confirmed that a
majority of older drivers occasionally exceed the posted speed
limit (Cull et al., 2020). Another factor associated with fatal CVH
vehicle crashes was the higher average age of occupants. Rolison
and Moutari (2018) focused on drivers 60 and older and found dri-
vers 70 and older had higher risk of crash involvement, even after
accounting for risk exposure. Another recent study demonstrated a
similar finding where more severe injuries were associated with
drivers 65 and older, with these outcomes attributed to chronic
medical conditions and vision, cognition, or mobility impairments
(Li et al., 2019). Involvement in motor-vehicle collision and
impaired motion perception in older adults have also been linked
(Swain et al., 2021). Additionally, Høye (2017) found that drivers
of older vehicles tended to show higher risk-taking behavior
including drunk driving, speeding, and being unbelted compared
to drivers of newer vehicles. This terrible triad of factors are those
generally associated with crash fatalities (Shyhalla, 2014), but the
current study did not explore effects of combined risk factors.

The data presented in the current study suggest that favorable
driving conditions do not necessarily prevent crashes. However,
as fatal crash events were observed to occur more frequently in
evening and late-night times, an effective risk reduction approach

might involve limiting the CVH vehicle roadway access to daylight
hours. The data also indicate that driver choices may contribute to
fatality risk in these crashes. It may also be helpful to increase pub-
lic awareness of the risks associated with use of so called ‘‘classic”
cars and promote safe driving behaviors. The study findings can
also be extrapolated to consider the future roadway. This study
demonstrated that significant numbers of older vehicles, including
CVH, continue to utilize the U.S. roadway. In the near future, vehi-
cles with autonomous driving and vehicle to vehicle communica-
tion technology will become more common. This poses many
questions and possibilities regarding their interaction with other
non-autonomous vehicles sharing the roadways. CVH have differ-
ent shapes and may behave differently on the road in comparison
to their modern counterparts due to differences in vehicle handling
capabilities and driver factors. When looking forward, it is difficult
to predict how driver-assisted technology may behave when
encountering a CVH on the road. It may be possible to design sys-
tems that identify older vehicles and alter driving factors to reduce
the risk of interactions and crashes with these vehicles, but this
will only occur if manufacturers intentionally consider these
events in the development of autonomous driving systems.

There are several limitations associated with our study. Firstly,
the CVH vehicles were treated as a group without considering dif-
ferences based on the specific vehicle type or model year. However,
the study did not seek to attribute fatality risk to a particular type
of vehicle, rather it sought to estimate fatality risk in comparison to
newer vehicles. Secondly, it only considered crashes in the United
States. However, it demonstrated decreasing risk for each decile of
vehicle production moving towards 2020, consistent with other
studies. Additionally, this study utilized national estimates for
numbers of crashes as a surrogate for exposure, as no national sur-
vey of CVH usage is available. Using CRSS data is also a limitation
because a vehicle involved in a crash must be towed away to qual-
ify for the dataset, potentially creating bias. For example, an older
vehicle that was not designed considering crash performance may
be more likely to require towing after a crash and this may there-
fore increase the likelihood of that vehicle being sampled. The rel-
ative risk measure helps control for this concern as it has both new
cars and old cars compared on the same scale. Another limitation is
that the study could only report proportions of crashes resulting in

Fig. 5. Time of day for CVH vehicle fatal crash.
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‘‘no apparent injury” compared to newer vehicles, rather than
injury data. Detailed injury data for very old vehicles is not col-
lected in U.S. federal surveillance data sets. Information involving
injuries would be a useful assessment because crash survivors
may have injuries associated with significant morbidity, which
can affect daily living activities resulting in increased healthcare
spending. A retrospective study from Victoria, Australia investi-
gated the most common injuries in adults aged 65 or older
involved in motor-vehicle accidents. The older adults were found
to have a higher incidence of chest wall injuries such as rib frac-
tures (Yee et al., 2006). Older patients from this study were also
found to have a higher average ICU stay compared to younger
patients as well as a higher in-hospital mortality rate (Yee et al.,
2006).

5. Conclusions and Practical Applications

Overall, this study suggests that even though crashes involving
a CVH are rare events, when these crashes occur they carry a high
relative risk of fatality. The study found multiple occupant-based
risk factors including older age of the occupants, alcohol use, and
lack of seatbelt use. Given the very high relative risk of fatality
associated with CVH crashes, it may be worthwhile to aim safety
messaging toward their drivers and/or limit their access to the
roadway. Based on crash data from recent years, these classic vehi-
cles will continue to coexist with other, new vehicles on public
roadways. As smart driving technologies are developed, it may be
possible to explore new, innovative approaches that may help alle-
viate crash risks when operating CVH vehicles.
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Introduction: The importance of safety in high-risk industries such as oil and gas facilities has been
reported previously. Process safety performance indicators can provide insight into improving the safety
of process industries. This paper aims to rank the process safety indicators (metrics) by Fuzzy Best-Worst
Method (FBWM) using the data gathered through a survey.Method: The study uses a structured approach
considering the UK Health and Safety Executive (HSE), the Center for Chemical Process Safety (CCPS), and
the IOGP (International Association of Oil and Gas Producers) recommendations and guidelines to gener-
ate an aggregate set of indicators. It calculates the level of importance of each indicator based on the
opinions of experts from Iran and someWestern countries. Results: The findings of the study demonstrate
that some lagging indicators such as the number of times processes do not proceed as planned due to
insufficient staff competence and the number of unexpected disruptions of the process due to failure
in instrumentation and alarms are important in process industries in both Iran and Western countries.
Western experts identified process safety incident severity rate as an important lagging indicator,
whereas Iranian experts considered this as relatively unimportant. In addition, leading indicators such
as sufficient process safety training and competency, the desired function of instrumentation and alarms,
and proper management of fatigue risk play an important role in enhancing the safety performance of
process industries. Experts in Iran viewed permit to work as an important leading indicator, while experts
in the West focused on fatigue risk management. Practical Applications: The methodology used in the cur-
rent study gives a good view to managers and safety professionals in regard to the most important indi-
cators of process safety and allows them to focus more on important process safety indicators.
� 2022 The Authors. Published by the National Safety Council and Elsevier Ltd. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

1.1. Background

The importance of safety in high-risk industries such as oil and
gas facilities has been reported previously (Askarian et al., 2018;
Moradi Hanifi et al., 2019; Omidi et al., 2021; Omidi et al., 2018).
Process safety and risk analysis are generally considered to be of
paramount significance in preventing fatalities and asset loss due
to accidents (Amin et al., 2019). In order to monitor and improve
the safety in process facilities and to provide ongoing assurance
that major hazard risks are adequately controlled (HSE, 2006), pro-

cess safety performance indicators (metrics) are applied (Khan
et al., 2010).

Process safety performance indicators and the information they
provide are required to create a safer process industry. Aggregating
existing process safety indicators, sorting them into specific ele-
ments, determining their relative importance, and providing a risk
score for each may not only help to reduce an over-abundance of
indicators but also further reduce losses and improve safety.
Reviewing existing indicators to define a small but effective num-
ber of indicators can reduce the effort required to collect necessary
information (Pasman & Rogers, 2014). Simple and easy-to-use met-
rics and a small number of the best predictive indicators can
improve the effectiveness of the safety management system
(Khan et al., 2010; Sultana et al., 2019). In addition, implementing
practical and actionable safety metrics in key areas can lead to
improvements in performance outcomes and provide important
information about the level of safety within the organization (Øien
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et al., 2011; Stough, 2012). The development of process safety indi-
cators can give early warnings and may help prevent major acci-
dents in process industries (Sultana et al., 2019). However, the
type of safety performance indicators used and their number vary
heavily across industries and between countries.

The levels of safety, accepted levels of risks, and safety regula-
tions are different between countries. Furthermore, the levels of
safety culture in high-hazard industries in Western (industrialized)
countries are different from the cultural contexts of developing
countries. These differences may lead to different risk perceptions
and the use of different safety indicators in high-hazard industries
in developed and developing countries (Manzey & Marold, 2009).

1.2. Lagging and leading indicators

Two types of process safety indicators (lagging and leading) are
identified in the literature (Sultana et al., 2019; Swuste et al.,
2016). Lagging indicators are a form of reactive monitoring based
on measures of undesired outcomes such as injuries, accidents,
near misses, and process safety incidents (CCPS, 2011; HSE,
2006; Louvar, 2010). Lagging indicators need to be monitored but
these indicators do not provide adequate forewarning for prevent-
ing accidents (Louvar, 2010).

In contrast, leading indicators are a form of active monitoring
based on the routine systematic checking of key actions or activi-
ties within the risk control systems. They can be considered as
measures essential to deliver the desired safety outcome (HSE,
2006). Leading indicators focus on the performance of key work
processes, operating discipline, or layers of protection that prevent
incidents (CCPS, 2011). These indicators provide an early warning
to prevent process accidents (Louvar, 2010). The key characteristics
of leading indicators offered in the literature include simplicity
with a close connection to outcomes, readily interpretable by dif-
ferent groups in the same way, objectively and reliably measur-
able, easily and accurately communicated, and broadly applicable
across company operations (Sinelnikov et al., 2015; Stough, 2012).

Both leading and lagging indicators provide insights into the
level of safety of a system. Leading indicators are associated with
potential barrier failures and are proxies for hazards, while lagging
indicators are associated with failures after an incident and are
proxies of the events (Sultana et al., 2019; Swuste et al., 2016).
The development of process safety indicators is an effective strat-
egy to provide early warnings for major accidents and to measure
how safety is managed within installations (Sultana et al., 2019).

1.3. Process safety in developing and developed countries

Process safety can affect chemical and manufacturing industries
in both developing and developed countries. Major process safety
incidents that occurred between the 1970s and the 1990s led to
the development of process safety management in developed
countries (Besserman &Mentzer, 2017). Developing countries have
also addressed and promoted process safety, but more recently.
Typically, developed countries have better reporting procedures,
process safety metrics, and more developed process regulations,
such as the process safety management regulations established
by the U.S. Occupational Safety and Health Administration
(OSHA, 1992), for preventing and mitigating loss incidents. In con-
trast, new process safety regulations in developing countries are
based on previous regulations in developed countries. These help
developing countries use learnings from developed countries to
protect workers, the public, and the environment. Moreover, devel-
oped countries have better emergency response, infrastructure,
more enforcement of regulations, and lower fatality rates than
developing countries. The reported job fatality rate per region by
the International Labor Organization (ILO) in 2001 for the United

Kingdom was 0.84 per 100,000 workers and for India and China
was 9.97 and 12.31, respectively (Besserman & Mentzer, 2017). It
appears from major hazard incidents records in 2007 that the con-
sequences of major incidents (such as the probability of lethality)
are significantly higher in developing countries than in developed
countries (Hemmatian et al., 2014). More incident reports in devel-
oped countries are due to better reporting procedures. Therefore,
developed regions and developing countries are at different points
in the evolution of process safety, which provides a basis for com-
parison (Besserman & Mentzer, 2017).

1.4. Guidelines and recommended practices on process safety
indicators

Following the Texas City explosion and fire at the BP site, sev-
eral organizations such as the UK Health & Safety Executive (UK
HSE), the Center for Chemical Process Safety (CCPS), the American
Petroleum Institute (API), and the Organization for Economic Co-
operation and Development (the OECD) have developed recom-
mendations or guidelines on process safety indicators (Zhen
et al., 2019). The UK HSE (2006) framework considers the two
types of indicators to provide dual assurance to confirm that the
risk control system is operating as intended or process safety risks
are being effectively managed. In the CCPS (2008 and 2011) guide-
lines, three types of process safety performance metrics are
described (i.e., lagging metrics, leading metrics, and near-miss
metrics). The CCPS (2011) metric recommendations are consistent
with the API documents and contain examples of leading metrics
and related quantifiable parameters (Swuste et al., 2016; Zhen
et al., 2019).

OECD published guidelines on safety performance indicators in
two versions; one for industry and the other for public authorities
and communities. In these documents, developed by a group of
experts, safety metrics are defined and classified into result indica-
tors (reactive or lagging indicators) and activity indicators (proac-
tive or leading indicators) (OECD, 2008a, 2008b).

A recommended practice (RP) for the refining and petrochemi-
cal industries was issued by the API (ANSI/API, 2010, 2016). Process
safety indicators in the RP are categorized into four tiers. Tiers 1
and 2 (corresponding to lagging indicators) are intended for pro-
cess safety events and public reporting, and tiers 3 and 4 (corre-
sponding to leading indicators) are related to challenges to safety
systems and operating discipline and management system perfor-
mance for internal use within individual facilities.

The International Association of Oil & Gas Producers (IOGP) pro-
vided further guidance on key performance indicators (OGP report
no. 456) to support the applicability of the API RP 754 and to
reduce and eliminate process risks (IOGP, 2016a; Zhen et al.,
2019). Leading indicators in the report are linked to preventive
barriers and the lagging indicators are linked to de-escalating bar-
riers. The report provides further guidance on the HSE framework
and the ANSI/API RP754 (Swuste et al., 2016; Zhen et al., 2019).

1.5. Prioritization and weighting method

Safety professionals in process industries have different per-
spectives on safety performance indicators. These lead them to
attach different levels of importance to each indicator and to assign
different weights to measurements. Assigning different weights to
different indicators allows managers and safety professionals to
formulate different strategies for improving process safety. The
factors considered to be more influential may vary by country,
encouraging the adoption of different process safety management
strategies.

To accommodate this variation between perspectives, multi-
criteria decision-making (MCDM) may be used (Salimi & Rezaei,
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2018). During the past decade, MCDM methods have increasingly
been used for dealing with uncertainties and solving engineering
problems (Antucheviciene et al., 2015). MCDM methods are appro-
priate where there is uncertainty, for example through vagueness
(due to the lack of complete information) or ambiguity (arising
from the qualitative judgment of decision-makers) (Guo & Zhao,
2017). Consequently, they are helpful for tackling real-world issues
that share these characteristics (Wang & Lee, 2009). The best-worst
multi-criteria decision-making method (BWM), as a new MCDM
method, was proposed by Rezaei (2015). Unlike other MCDM
methods, the BWM obtains the weights of criteria and alternatives
with respect to different criteria by using least pairwise compar-
isons. Extending BWM to the fuzzy environment (fuzzy BWM or
FBWM) and the employment of fuzzy information may be a more
appropriate way for tackling convoluted decision-making prob-
lems under an uncertain environment (Guo & Zhao, 2017;
Hafezalkotob & Hafezalkotob, 2017). It is noteworthy that the
BWM procedure seems to be much easier, more accurate, and less
redundant than the conventional MCDM procedures because the
method does not require secondary comparisons (Guo & Zhao,
2017; Rezaei, 2015).

1.6. Research purpose

The aim of this paper is to demonstrate the difference in ranking
of process safety indicators between experts in Iran and in the
West using FBWM and based on fuzzy preference comparisons.
Specifically, the paper will:

i. use a structured approach considering the UK HSE, the CCPS,
and the IOGP recommendations and guidelines to aggregate
the indicators and to identify a reduced number of suitable
indicators for process safety;

ii. capture perceived importance of process safety indicators
from experts in Iran and the West;

iii. describe and apply FBWM to evaluate two sets of indicators
including lagging and leading indicators;

iv. account for differences in expert perceptions between Iran
and the West.

Experts’ subjective evaluations of process safety indicators are
anticipated to reflect the focus and the level of process safety
and related indicators in Iran and Western countries, permitting
comparison.

2. Method

The importance of process safety indicators has been addressed
in scientific literature and in the reports of national and interna-
tional organizations (Swuste et al., 2016). This study is based on
the UK HSE guideline, the CCPS recommendations, and the IOGP
guideline. These guidelines and recommendations consist of pro-
cess safety indicators that are scientifically designed to consider
process sensitivity, measurable values, and monitorable parame-
ters, and contain easy-to-use metrics (Khan et al., 2010).

Process safety indicators classified into leading and lagging
indicators were ranked by experts. The experts were experienced
staff within the field of process safety and involved in the process
industries in Iran (as a developing country) and Western countries
(Western Europe and the United States) (as developed countries).
Fig. 1 presents the safety practitioners’ working experience. Almost
50% of the Iranian respondents had more than 10 years of work
experience. Among the Western experts, 60% had more than
25 years of experience.

2.1. The basis for the study of lagging and leading indicators

Definitions for lagging and leading indicators were drawn from
the UK HSE, the CPPS, and the IOGP (Fig. 2). In this study, some
indicators from the HSE guide such as the number of incidents or
unexpected disruption of process due to deficiencies in plant
change and permit to work were considered as lagging indicators
and the percentage of successful process implementation due to
the appropriate inspection/maintenance and the appropriate level
of staff competence were regarded as leading indicators (HSE,
2006). Process Safety Total Incident Rate (PSTIR) and Process Safety
Incident Severity Rate (PSISR) were considered as lagging metrics
in CCPS recommendations (CCPS, 2011), and used here. In addition,
three safety performance indicators including fatal accident rate
(FAR), total recordable injury rate (TRIR), and lost time injury fre-
quency (LTIF) from the IOGP were considered as other lagging indi-
cators (Fig. 2) (IOGP, 2016b, 2019).

2.2. Procedure

After determining the indicators from related guidelines, these
were weighted by experts who have worked in the oil and gas
industries in Iran or Western countries, in a comparative study
was conducted to weight the indicators by experts who have had

Fig. 1. Distribution of experts based on their work experience.
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either past or current work experience in the context of oil and gas
industries in Iran and in Western countries. A questionnaire was
developed to gather data in relation to each indicator. The ques-
tionnaire was sent by email to respondents. A total of 35 question-
naires were sent to Iranian industrial practitioners, and 32
questionnaires were returned (response rate = 91%). The question-
naire was sent to 23 Western industrial practitioners, and 13 ques-
tionnaires were returned (response rate = 56%). Fig. 3 shows the
workflow of the approach used in the current study.

2.2.1. Determination of the importance of indicators
FBWM as a pairwise comparison-based method was applied to

determine the fuzzy weights of indicators. The procedure of FBWM
can be described in a series of steps (Guo & Zhao, 2017;
Hafezalkotob & Hafezalkotob, 2017; Rezaei et al., 2017; Rezaei,
2015):

1. Determine the decision criteria system. In the first step, the cri-
teria {C1, C2,. . ., Cn}that should be used for decision making are
considered. In this work, these are process safety indicators.

2. Determine the best (B) and the worst (W) criteria. The best
(most important) and the worst (least important) criteria are
identified by decision-makers (respondents).

3. Execute the fuzzy preference comparisons for the best criterion.
The fuzzy preference of the best criterion over all the other cri-
teria is determined. The linguistic terms of preferences (Table 1)
are used to determine the fuzzy preference of the most impor-
tant (best) criterion over all the criteria. Then, the transforma-
tion of obtained fuzzy preference to triangular fuzzy numbers
(TFNs) (aBj ¼ ðaL

Bj; a
M
Bj ; a

U
Bj)) is done according to the transforma-

tion rules. The resulting fuzzy Best-to-Others vector would be:

AB ¼ ðaB1; aB2; . . . ; aBnÞ

where AB indicates the fuzzy Best-to-Others vector; aBj indicates the
fuzzy preference of the best criterion cB over criterion j,
j ¼ 1;2; . . . ;n. Since each criterion is equally important in compar-
ison with itself then the fuzzy preference of the best criterion over
itself would be aBB ¼ ð1;1;1Þ.

4. Execute the fuzzy preference comparisons for the worst crite-
rion. The fuzzy preferences of all the criteria over the worst cri-
terion are extracted using the linguistic variables. The fuzzy
preferences of all the criteria over the worst criterion are deter-
mined, and the obtained fuzzy preferences are transformed to
TFNs (aBj ¼ ðaL

jW ; aM
jW ; aUjW )) according to the transformation

rules. The resulting fuzzy Others-to-Worst vector would be:

AW ¼ ða1W ; a2W ; . . . ; anWÞ

where AW indicates the fuzzy Others-to-Worst vector; aiW indicates
the fuzzy preference of criterion i over the worst criterion cW ,
i ¼ 1;2; . . . ; n. Since in the comparison process the worst criterion
is equally important in comparison with itself then the fuzzy pref-
erence of the worst criterion to itself is aWW ¼ ð1;1;1Þ.

5. Find the optimal weights ðw�
1;w

�
2; . . . ;w

�
nÞ. The optimal weight

for the criterion j (wj) is the one where for each fuzzy pair of
wB=wj and wj=wW , we have wB=wj ¼ aBj and wj=wW ¼ ajW .
Where wB indicates the weight of the best criterion and wj is
the weight of the worst criterion. To satisfy these conditions
for all j, a solution should be determined where the maximum

absolute differences wB
wj

� aBj
���

��� and wj

wW
� ajW

���
��� for all j is mini-

mized. The optimization problem for determining the optimal
fuzzy weights w�

1;w
�
2; . . . ;w

�
n

� �
can be determined as follows.

Fig. 2. Process safety indicators incorporated in the survey questionnaire.
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min e;

s:t:

wB � eKaBjwj; for all j;

wB þ eJaBjwj; for all j;

wj � eKajWwW ; for all j;

wj þ eJajWwW ; for all j;

X
j

wj ¼ 1;

wj � 0; for all j

In the above problem, the symbol K refers to ‘‘almost lesser
than” which is used to consider fuzzy values in the model. Trans-
ferring the fuzzy constraints to the crisp equivalents would lead
to the following problem:

min e;

s:t:

wB � e � aMBj þ 1� að ÞaUBj
h i

wj for all j;

wB þ e � aMBj � ð1� aÞaLBj
h i

wj for all j;

wj � e � aMjW þ ð1� aÞaUjW
h i

wW for all j;

wj þ e � aMjW � ð1� aÞaLjW
h i

wW for all j;

X
j

wj ¼ 1;

wj � 0; for all j

where, að0 � a � 1Þ indicates a possibility level defined by the deci-
sion maker, while aUBj, a

M
Bj and aL

Bj respectively stand for upper bound,
middle value, and lower bound of the triangular fuzzy number
describing the fuzzy preference of the best criterion over criterion
j. Similarly, aUjW , aM

jW , aL
jW represent the upper bound, middle value,

and lower bound of the triangular fuzzy number describing the
fuzzy preference of criterion j over the worst criterion. The optimal
fuzzy weights w�

1;w
�
2; . . . ;w

�
n

� �
; can be determined by solving the

problem.
In addition, in the current study, a hierarchical structure was

developed to determine the weight of each leading indicator. For
this purpose, three criteria (levels or aspects) consisting of organi-
zational, human, and technical were considered for leading indica-
tors, each of which included sub-criteria (sub-aspects).
Organizational criteria included mechanical integrity, action items
follow-up, management of change (plant change), safety culture,
operating & maintenance procedures (operational procedures),
emergency arrangements, and inspection/maintenance. Human
criteria included process safety training and competency, fatigue
risk management, and communication. Technical criteria included
instrumentation and alarms, plant design, and permit to work.

2.2.2. Actionability of the process safety indicators
The actionability (practicability) of each lagging/leading indica-

tor was examined as well. For determining the actionability of each
indicator, respondents were requested to determine the actionabil-
ity of each study indicator based on the available information on
the companies or publicly available databases of process industries
in their countries. The respondents rated the actionability of each
indicator on a five-point scale from very low to very high.

The possible values for actionability (practicability) were
described based on the linguistic variables (terms) of decision-
makers. The linguistic evaluations were transformed to fuzzy num-
bers (represented by TFNs). The process of fuzzification and
defuzzification were applied to determine the actionability of each
indicator in relation to applications in process industries and to
compute the score for each indicator based on experts’ evaluation.
Table 2 presents the description of linguistic variables of
actionability.

Fig. 3. The workflow of the study comparing the expert opinions regarding lagging
and leading indicators.

Table 1
Linguistics variables for evaluating the factors.

Linguistics terms Membership function

Equally important (EI) (1,1,1)
Weakly important (WI) (0.666,1,1.5)
Fairly important (FI) (1.5,2,2.5)
Very important (VI) (2.5,3,3.5)
Absolutely important (AI) (3.5,4,4.5)
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2.2.3. The score of indicators
The safety score of each indicator was calculated from the per-

ceived importance of the indicator, the perceived probability of
incident occurrence due to failure to observe the indicators, and
the perceived compliance status of the indicator (Tang et al.,
2018b). The perceived importance of indicators was determined
using FBWM. The respondents were asked to rate the perceived
probability of incident occurrence due to failure to observe the
indicators on a five-point scale. The higher the perceived rating
of each indicator, the higher level of perceived probability. The per-
ceived compliance status of each indicator was determined based
on a numbering system adapted from the traffic light system pro-
posed by the HSE in its Asset Integrity Key Program where red,
amber, and green indicate non-compliance, partial compliance
(the desired status has not been met), and compliance, respectively
(HSE, 2008; Tang et al., 2018a). In the numbering system, ‘‘0” was
assigned for indicators without data, and ”1,‘‘ ”2,‘‘ and ”3” were
assigned for non-compliance, partial compliance, and compliance,
respectively. The comparison of indicators’ performance by the
respective performance targets or standards was applied to deter-
mine the compliance status.

The weight of each indicator (Wi) was calculated by multiplying
the perceived importance of the indicator (Ii) with the perceived
probability of incident occurrence due to failure to observe the
indicator (Pi) and the safety score of an indicator (a) was obtained
by multiplying the number assigned to the compliance level of an
indicator (Ci) with the weight of the indicator (Wi), as follows:

Wi ¼ Ii � Pi

Score of each indicator; a ¼ Wi � Ci

A higher score represents greater compliance with performance
targets.

The possible values for each of the variables related to the per-
ceived probability of incident occurrence due to failure to observe
the indicators and the perceived compliance status were described
based on the linguistic variables (terms) of decision-makers.

The linguistic evaluations were transformed into fuzzy numbers
(represented by TFNs). The process of fuzzification and defuzzifica-
tion were applied to compute the score for each indicator based on
experts’ evaluations. Table 3 and Table 4 show the descriptions of
linguistic variables of perceived probability and compliance status
specified by mathematical explanations (fuzzy membership func-
tion). In this work, the average method was applied for the defuzzi-
fication of fuzzy outputs.

2.2.4. Fuzzy risk assessment for leading indicators
For leading indicators, the perceived risk level was determined.

The level of perceived risk was determined based on experts’ judg-
ment. Experts were safety practitioners from Iran and Western
countries. Good risk understanding, adequate expertise, and sub-
jective (knowledge-based) judgments about risk based on proba-
bilities are required for risk assessment (Aven & Krohn, 2014;
Aven et al., 2011). The comparison arises because perceptions of
risk are different between countries (Keown, 1989) and levels of
safety are different in the process sectors of Iran and the West.

The perceived risk value of the indicator (Ri) is the product of
severity (Si) and likelihood of occurrence (or probability) (Pi) as:
Ri ¼ Si � Pi (Gul & Guneri, 2016). In the current study, the per-
ceived risk of the indicator was calculated by multiplying the per-
ceived severity of consequences (or outcomes) due to failure to
observe the indicator with the perceived probability of incident
occurrence due to failure to observe the indicator. Measurement
of this perceived probability was done using a five-point scale from
1 = rare to 5 = almost certain. For determining the perceived sever-
ity of consequences (or outcomes) due to failure to observe the
indicator, the respondents were requested to indicate the per-
ceived severity on a five-point scale from 1 = insignificant to
5 = catastrophic. The acceptability level of the perceived risks
was determined based on the risk assessment matrix provided
by Gul and Guneri (2016) (Table 5).

In process risk analysis, due to the number of uncertainties, real
situations are very often not crisp and deterministic. In these cir-
cumstances, a fuzzy logic system (FLS) can be employed
(Markowski & Mannan, 2008) to develop a fuzzy risk assessment.
This was used here because the categorization of probability and
severity in a traditional approach is imprecise and vague and can
lead to major uncertainties concerning the risk category.

The steps of FLS, used to assess the perceived risks, are as fol-
lows (Markowski & Mannan, 2008, 2009; Yen & Langari, 1999):

1. The fuzzifier transforms crisp inputs into fuzzy inputs. In the
fuzzification process, the mapping of the linguistic variables of
each risk matrix component including probability, severity,
and risk into fuzzy sets is performed in order to activate rules.
Input variables for developing fuzzy risk assessment and their
domain in a number of fuzzy sets are shown in Table 6. Differ-
ent forms of a membership function can be used based on the
type of input and output variables.

2. Inference engine of the FLS maps input fuzzy sets into fuzzy
output sets by a set of rules. It handles the way in which rules
are combined. The set of rules for risk assessment is created

based on the logic of the traditional risk matrix. IF p
�
n is proba-

bility AND s
�
m is severity of consequences THEN risk is r

�
z. p

�
n, s

�
m,

and r
�
z represent the fuzzy sets in relation to probability, sever-

ity, and risk in a universe of discourse, respectively. The set of
25 knowledge rules (e.g., IF Probability is ‘‘Possible” and Sever-
ity of Consequence is ‘‘Moderate” THEN Risk Category (Level) is
‘‘Intermediate Risk”) was generated using the risk matrix con-
sisting of 5 categories of probability, 5 categories of severity,
and 5 categories of risk. The Mamdani fuzzy inference system
was applied to convert the qualitative rules into quantitative

Table 2
Linguistics variables for actionability.

Linguistics terms Membership function

Very low (0,1,1.5)
Low (0.5,1.5,2.5)
Moderate (1.5,2.5,3.5)
High (2.5,3.5,4.5)
Very high (4.5,5,5)

Table 3
Linguistics variables for the perceived probability.

Linguistics terms Membership function

Very low (0,0,0.3)
Low (0.1,0.3,0.5)
Moderate (0.3,0.5,0.7)
High (0.5,0.7,0.9)
Very high (0.9,1,1)

Table 4
Linguistics variables for the compliance status.

Linguistics terms Membership function

Without data ‘‘0” (0,0,1.5)
Non-compliance ‘‘1” (0.5,1.5,2.5)
Partial compliance ‘‘2” (1.5,2.5,3.5)
Compliance ‘‘3” (3.5,4,4)
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results (Mamdani & Assilian, 1975; Yen & Langari, 1999). After
evaluating the rules, the aggregation of the output of different
rules was performed. The aggregated output membership func-
tion is expressed as follows:

lR� rð Þ ¼ max
k

minlk
P� pnð Þ; lk

s ; l
k
R� ðrZÞ

� �

where k, n, m, and z are the number of rules, the number of fuzzy
probability sets, the number of fuzzy severity sets, and the number
of fuzzy risk sets, respectively.

3. Defuzzification is the process of the conversion of the final
fuzzy set into a crisp number. In the process, weighting and
averaging the outputs from all of the individual fuzzy rules into
a crisp numerical output value are carried out. There are various
methods for defuzzification. In the current study, the center of
area (COA) or the centroid method was used for defuzzification.
The defuzzified output applying COA defuzzification method for
the risk category (level) can be expressed by the following
formula:

rcrisp ¼
R
l

R
� rð ÞrdrR
l

R
� rð Þdr

where r is the output variable (risk category), rcrisp denotes the crisp
quantity of the output variable and

R
l

R
� rð Þ indicates the aggregated

membership function.
The mapping from two input parameters (probability and

severity) to one output parameter (risk) provides a basis from
which the relationship between probability, severity, and risk can
be illustrated by a three-dimensional plot (fuzzy risk surface).
The risk surface (Fig. 4) was illustrated based on input parameters
and different regions of risk (Markowski & Mannan, 2008).

3. Results

3.1. Lagging indicators

Lagging indicators that are based on incidents and events were
defined based on the HSE guide, the CCPS recommendation, and
the IOGP guideline. For each lagging indicator, the perceived
importance, the actionability, and the score of the indicator from
Iranian and Western experts’ viewpoints were determined.

As can be seen from Fig. 5, based on the results obtained using
FBWM, two important lagging indicators that were consistent
between Iranian and Western experts were the failure in instru-
mentation and alarms and insufficient staff competence. Notably,
Western experts identified PSISR as an important lagging indicator,
whereas Iranian experts considered this to be the least important
lagging indicator. All experts agreed that LTIF and the number of
incidents or unexpected disruptions of process due to improper
inspection/maintenance were the least important lagging indica-
tors. Experts from the West also considered FAR to be less
important.

In addition, deficiency in the permit to work and LTIF were
some of the more important actionable lagging indicators in both
contexts. LTIF was considered to be less important but actionable
in both study contexts (Table 7). Experts from Iran also identified
the number of times processes do not proceed as planned due to
incorrect/unclear operational procedures and the number of unex-
pected disruption of process due to failure in instrumentation and
alarms as the other important actionable lagging indicators. Those
experts from the West noted FAR and inappropriate emergency
arrangements as the other important actionable lagging indicators
(Table 7).

In terms of the safety scores of lagging indicators, LTIF and
PSTIR had low compliance with safety standards in the West and

Table 5
The risk assessment matrix.

Table 6
Fuzzy sets for risk value in a comparison of expert opinions between Iran and
Western countries.

Linguistic
variables

Linguistic term
(fuzzy set)

Descriptive
range

Universe of
discourse

Probability Rare 0 � L � 0:3 L 2 ð0;1Þ
Unlikely 0:1 � L � 0:5
Possible 0:3 � L � 0:7
Likely 0:5 � L � 0:9
Almost certain 0:7 � L � 1

Severity of
consequences

Insignificant 0 � S � 1:5 S 2 ð0;5Þ
Minor 0:5 � S � 2:5
Moderate 1:5 � S � 3:5
Major 2:5 � S � 4:5
Catastrophic 3:5 � S � 5

Risk category Insignificant 0 � R � 0:45 R 2 ð0;5Þ
Acceptable 0 � R � 1:75
Intermediate 0:25 � R � 3:15
Significant 1:05 � R � 5
Intolerable 2:45 � R � 5 Fig. 4. Risk surface in the current study.
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Iran, respectively. Also, deficiencies in plant change and plant
design were similarly rated by both sets of experts as lagging indi-
cators that had low compliance, suggesting that they are univer-
sally important contributory factors in process safety incidents.
For any lagging indicator, low safety scores indicate that incidents
and disruptions associated with that indicator are more likely.
Western experts gave improper inspection/maintenance a low
score suggesting its importance as a cause of incidents in process
industries (Table 7).

3.2. Leading indicators

The local and global weights of each leading indicator from Ira-
nian and Western experts’ viewpoints are shown in Table 8. In the
current study, a hierarchical structure was developed to determine
the weight of each leading indicator. Three criteria consisting of
organizational, human, and technical were considered for leading
indicators, each of which included sub-criteria. The optimal fuzzy
weight was obtained for each leading indicator in the defined
criteria.

In both contexts, organizational and human criteria had higher
weights than technical criteria. Western experts weighted organi-
zational and human criteria equally (weight = 0.400), whereas Ira-
nian experts considered organizational criteria (weight = 0.424) as
the most important criterion. Experts from Iran identified emer-
gency arrangements and management of change (plant change)
as the most important sub-criteria of the organizational criterion,
while those in the West noted operational procedures and action
items follow-up as the most important sub-criteria of the organiza-
tional criterion (Table 8).

The global weights of the sub-criteria were used to compare the
actual weights of all sub-criteria. For this purpose, the relative
weights were multiplied by the weights of the main criteria
(Rezaei et al., 2015). In both settings, the appropriate process safety
training and competency was the most important leading indica-
tor. This was followed by instrumentation and alarms. Experts in
Iran also viewed permit to work as an important leading indicator,
while experts in the West focused on fatigue risk management.
Overall the least important indicator appeared to be inspection/-
maintenance. Some other indicators showed large variation
between settings, for example plant design and action items

Fig. 5. Perceived relative importance of the lagging indicators for process industries in Iran and Western countries.

Table 7
Actionability and safety scores for lagging indicators in Iran and the West.

Lagging indicator Iran Western countries

Actionability Score of lagging indicator Actionability Score of lagging indicator

Fatal accident rate (FAR) 2.384 0.037 3.861 0.023
Lost time injury frequency (LTIF) 2.909 0.012 3.667 0.0002
Total recordable injury rate (TRIR) 2.586 0.030 3.472 0.049
Process safety total incident rate (PSTIR) 2.036 0.019 3.125 0.021
Process safety incident severity rate (PSISR) 1.552 0.0004 2.875 0.050
Number of incidents or unexpected disruption of process due to:
Deficiencies

in plant change
2.111 0.020 3.153 0.024

Incorrect/unclear
operational procedures

2.788 0.023 3.208 0.030

Improper inspection/maintenance 2.596 0.035 3.639 0.013
Inappropriate emergency arrangements 2.545 0.031 3.681 0.027
Insufficient staff competence 2.313 0.045 3.139 0.064
Breakdown in communication 1.929 0.025 3.139 0.027
Failure in instrumentation and alarms 2.737 0.069 3.361 0.072
Deficiency in plant design 2.510 0.023 3.028 0.020
Deficiency in permit to work 3.152 0.079 3.486 0.040
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follow-up were rated highly by experts in the West but not in Iran.
Conversely, permit to work and emergency arrangements were
rated highly by experts in Iran but not in the West.

Furthermore, as shown in Table 9, scores for actionability of
leading indicators generally were greater in the reports of Western
experts than those from Iran. Western experts identified emer-
gency arrangements, inspection/maintenance, and management
of change (plant change) as the three most actionable leading indi-
cators, whereas Iranian experts considered process safety training
and competency, operating and maintenance procedures (opera-
tional procedures), and permit to work as the three most action-
able leading indicators. The least actionable indicator in both
settings was safety culture because it is difficult to manage and
manipulate.

In terms of the safety scores, while the leading indicator with
the greatest weight by both sets of experts was process safety
training and competence, the other most highly ranked indicators
differed. These were permit to work and emergency arrangements
for Iranian experts and fatigue risk management and instrumenta-
tion and alarm for Western experts. In terms of safety score, fatigue
risk management obtained a relatively lower weight than other
indicators in Iran compared with its relative score in the West,
and permit to work obtained relatively lower weight in the West
than other indicators compared with the situation in Iran (Table 9).

The perceived risk values for leading indicators were different
between experts from Iran and the West (Table 9). In Iran, experts

considered the three greatest risks associated with emergency
arrangements, permit to work, and inspection/maintenance. In
contrast, Western experts rated fatigue risk management, mechan-
ical integrity, and instrumentation and alarms as the three greatest
risks. Notably, the risk level related to fatigue risk management
was perceived highest by the Western experts but lowest by those
from Iran. Safety-related communication was not rated as a high
risk in either setting, suggesting that this is well covered in
practice.

4. Discussion

Safety indicators in process facilities are used as a predictive
signal for major accidents. These indicators report the performance
of the installation reflecting the effectiveness of the safety manage-
ment system and differences in risk levels. Process safety indica-
tors have been developed in different industries and at different
time periods based on safety level and company goals (Swuste
et al., 2016). In addition, the application of process safety indica-
tors differs between countries, so a comparison of process safety
indicators may show similarities or differences between develop-
ing and developed countries and thus may help to enhance the
safety performance in process facilities of both sets of countries
(Besserman & Mentzer, 2017; Swuste et al., 2016).

Table 8
Results of FBWM-weights of criteria and sub-criteria related to leading indicators.

Criteria Iran Western
countries

Sub-criteria Iran Western countries

Criteria
weights

Criteria
weights

Sub-criteria
weights

Global
weights

Rank Sub-criteria
weights

Global
weights

Rank

Organizational 0.424 0.400 Mechanical integrity 0.091 0.028 13 0.143 0.038 8
Action items follow-up 0.111 0.034 12 0.179 0.048 6
Management of change (plant change) 0.176 0.053 6 0.143 0.038 9
Safety culture 0.158 0.048 8 0.143 0.038 10
Operating & maintenance procedures
(operational procedures)

0.148 0.045 9 0.179 0.048 7

Inspection/maintenance 0.116 0.035 11 0.071 0.019 13
Emergency arrangements 0.199 0.060 5 0.143 0.038 11

Human 0.294 0.400 Process safety training and competency 0.403 0.085 1 0.445 0.119 1
Fatigue risk management 0.359 0.075 4 0.364 0.097 2
Communication 0.238 0.050 7 0.182 0.049 5

Technical 0.282 0.200 Instrumentation and alarms 0.400 0.081 3 0.400 0.053 3
Plant design 0.200 0.040 10 0.400 0.053 4
Permit to work 0.400 0.081 2 0.200 0.027 12

Table 9
Actionability, safety scores, and risk values for leading indicators in Iran and the West.

Leading indicators Iran Western countries

Actionability Score of leading
indicator

Risk
value

Actionability Score of leading
indicator

Risk
value

Percentage of successful process implementation due to the appropriate:
Mechanical integrity 1.879 0.018 2.960 3.056 0.084 3.700
Action items follow-up 1.626 0.052 2.930 3.056 0.087 3.170
Management of change (plant change) 2.273 0.082 2.930 3.194 0.070 3.190
Safety culture 1.586 0.028 2.880 2.083 0.056 3.040
Operating & maintenance procedures (operational

procedures)
3.150 0.077 2.870 3.028 0.089 3.140

Inspection/maintenance 2.045 0.049 3.040 3.278 0.040 3.300
Emergency arrangements 2.636 0.115 3.110 3.444 0.088 3.480
Process safety training and competency 3.242 0.151 3.010 2.889 0.187 2.930
Fatigue risk management 2.056 0.030 2.860 2.083 0.132 3.840
Communication 2.141 0.037 2.900 2.556 0.076 2.930
Instrumentation and alarms 2.297 0.060 2.990 3.000 0.115 3.540
Plant design 2.364 0.058 3.030 2.500 0.092 3.320
Permit to work 2.893 0.156 3.100 3.139 0.059 3.270
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This study showed some similarities and some clear differences
in the lagging indicators believed to be the more important ones by
experts in Iran and theWest. Failure in instrumentation and alarms
and insufficient staff competence were important in both settings.
Deficiencies in permit to work processes were considered impor-
tant in Iran, whereas PSISR was considered to be important in
the West. Failure in complying with permit to work processes is
identified as a reason for some accidents such as HSE, 2005. Estab-
lishing an appropriate and effective permit to work system in pro-
cess industries can help prevent and reduce process accidents
(HSE, 2005; Jahangiri et al., 2016). In addition, process industries
in Iran need to attend to the severity of process incidents
(Soltanzadeh et al., 2019). The contributory effects of failure of
work permit procedures in accidents, the importance of instru-
mentation and alarm systems in the safety analysis and in mitigat-
ing an abnormal state and major-accident conditions, and the
effective role of training and competence on major accidents are
reported in other studies (Do Koo et al., 2019; Hemmatian et al.,
2014; Keown, 1989; Kim et al., 2019). The greater importance
attached to PSISR in the West than in Iran perhaps suggests that
there is a need for developing countries to attend to some specific
process safety indicators and rate-based process safety metrics
(such as PSISR) for measuring process safety performance and
improving safety (CCPS, 2011).

With regards to leading indicators, this study shows that some
leading indicators such as process safety training and competency,
instrumentation and alarms, and fatigue risk management are
important in both Iran and the West. The importance and the cur-
rent status of process safety training and competency in the pro-
cess industries is clearly critical and is considered an essential
leading indicator (Sultana et al., 2019). Both operator fatigue and
failed and insufficient instrumentation can lead to major accidents
in the process industries (Knegtering & Pasman, 2009), so the
proper functioning of instrumentation and alarms and the proper
management of fatigue risk are considered important indicators
for executing the processes safely and preventing process safety
incidents. Experts in this study confirmed this. An important differ-
ence between the data obtained from experts in developing and
developed countries was related to plant design. Plant design
(compliance of safety critical items of plant with current design
standards or codes) was identified as another important leading
indicator in the West, whereas it had lower importance in Iran.
Ensuring safety critical items of plant or equipment are compliant
with the relevant standard is essential for the continued delivery of
safe outcomes (HSE, 2006).

Perceptions of risk for leading indicators, as indicated by fuzzy
risk assessments, were higher in the opinion of Western experts
compared to those in Iran. This may be a function of the relatively
greater age and experience of the respondents from the West com-
pared with those from Iran. Experience of decision-making in crit-
ical operational situations could influence the expert’s subjective
judgments (Aven & Krohn, 2014). Past experience and the experi-
ence of negative safety outcomes can also influence the level of
perceived risk and people’s perception of hazards (Keller et al.,
2006). In addition, the difference may also be a function of cultural
background. Perception and evaluation processes are different
between different societies having different cultural values and
risk components, and this can affect individual’s perception of risks
(De Camprieu et al., 2007).

The higher values of perceived risks by experts in Western
countries may lead to greater efforts to improve process safety,
enhance compliance with safety rules and procedures, and may
create a greater desire for participation in process safety-related
issues. Fuzzy risk assessments for leading indicators revealed that
emergency arrangements and permit to work were perceived to be
the greatest risk by experts from Iran, whereas experts in the West

considered fatigue risk management and mechanical integrity to
be the greatest risks. Higher risk perceptions can result in more
protective behavior (Xia et al., 2017).

In addition, FBWM used in the current work, as a recently
developed method, gives managers and process safety practition-
ers in both developing and developed countries the opportunity
to establish effective strategies for enhancing process safety by
identifying the most influential factors and indicating where atten-
tion and effort should be placed. In comparison to existing MCDM
approaches, FBWM needs less data and a full pairwise comparison
matrix is not needed. The structured pairwise comparison system
in the Best Worst Method produces more consistent results (Guo
& Zhao, 2017; Salimi & Rezaei, 2018).

This study has a number of limitations. Only the experts’ opin-
ions and judgments about process safety indicators were consid-
ered and the actual data from specific facilities were not taken
into account. Future work could compare site-specific information
and process safety indicators in actual facilities from both develop-
ing and developed countries to show differences and similarities in
the application of process safety indicators in actual facilities. Fur-
thermore, the data in relation to developing countries were gath-
ered only from Iran. Therefore, the representativeness of data is
insufficient and the generalizability of the conclusions to other
developing countries may be limited. Further studies in other
developing countries can increase the generalizability of the
results (e.g., future research might compare Southeast Asia or
South America where risk perceptions differ).

4.1. Practical implications

The results suggest that some lagging indicators such as the
number of incidents or unexpected disruption of process due to
insufficient staff competence and failure in instrumentation and
alarms are important from the perspectives of process safety
experts of both developing and developed countries. So, continued
attention needs to be given to these lagging indicators to prevent
future incidents and adverse events.

In terms of leading indicators, the study has yielded some inter-
esting results. Important leading indicators common to both con-
texts were safety training and competency, and instrumentation
and alarms. Attention should continue to be given to these indica-
tors irrespective of location. Experts in the two settings also iden-
tified other important leading indicators, but these differed.
Experts in the West identified fatigue risk management, while
those in Iran noted permit to work. One explanation for this differ-
ence might be in the evolution of indicators of process safety. As
some indicators, evidently more proximal to the specific task or
process, are routinely taken care of, others might become more
salient. In this way permit to work precede fatigue risk manage-
ment in the evolution of leading safety indicators in process
industries.

Assigning different weights to different process safety indica-
tors helps to identify the most important process safety indicators
and to define a small and effective number of indicators for process
facilities in both developing and developed countries. This gives
opportunities for managers and safety professionals in process
industries to have a good view of effective indicators and allows
them to focus on more important ones (Salimi & Rezaei, 2018).
Fuzzy Best Worst Method as the methodology used in the current
study can help determine the weight and importance of process
safety indicators. Identifying the most important process safety
indicators is essential for organizations in developed and develop-
ing countries to define effective indicators to improve process
safety performance, create a safer process industry, and prevent
losses and process safety incidents.
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5. Conclusion

Besserman and Mentzer (2017) pointed out that developing and
developed countries occupy different stages in the application of
process safety indicators and have areas of improvement in process
safety that could help to enhance the safety performance in pro-
cess facilities globally. In process industries, for improvement of
process safety performance, the challenge is to define a small
and effective number of process safety indicators (lagging and
leading indicators). Developing a framework that differentiates
the importance of process safety indicators based on the opinions
of safety professionals helps to identify the most important process
safety indicators. This can also be used to highlight the difference
in perception between developing and developed regions and pro-
vides a basis to define an effective number of process safety indica-
tors based on their importance (weight). This can lead to safety
improvements in process facilities globally. FBWM was used to
identify universally important lagging and leading indicators. In
both settings, these are the number of times processes do not pro-
ceed as planned due to insufficient staff competence and failure in
instrumentation and alarms (lagging indicators), and the percent-
age of successful process implementation due to appropriate pro-
cess safety training and competency and instrumentation and
alarms (leading indicators). This method has also shown differ-
ences in opinion between experts in Iran and the West. In terms
of leading indicators, the most obvious of these are the percentage
of successful process implementation due to plant design, action
items follow-up, permit to work, and emergency arrangements.
We suggest that these differences may be due to the experience
and cultural background of the respondents, but also to the level
of maturity/stage of evolution of the process industries in these
countries, respectively.
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a b s t r a c t

Introduction: In Maine, lane departure crashes account for over 70% of roadway fatalities. The majority of
roadways in Maine are rural. Moreover, Maine has aging infrastructure, houses the oldest population in
the United States, and experiences the third coldest weather in the United States. Methods: This study
analyzes the impact of roadway, driver, and weather factors on the severity of single-vehicle lane depar-
ture crashes occurring from 2017 to 2019 on rural roadways in Maine. Rather than using police reported
weather, weather station data were utilized. Four facility types: Interstates, minor arterials, major collec-
tors, and minor collectors were considered for analysis. The Multinomial Logistic Regression model was
used for the analysis. The property damage only (PDO) outcome was considered as the reference (or base)
category. Results: The modeling results show that the odds of a crash leading to major injury or fatality
(KA outcome) increases by 330%, 150%, 243%, and 266% for older drivers (65 or above) compared to young
drivers (29 or less) on Interstates, minor arterials, major collectors, and minor collectors, respectively.
During the winter period (October to April), the odds of KA severity outcome (with respect to the
PDO) decreases by 65%, 65%, 65%, and 48% on Interstates, minor arterials, major collectors, and minor col-
lectors, respectively, presumably due to reduced speeds during winter weather events. Conclusion: In
Maine, factors such as older drivers, operating under the influence, speeding, precipitation, and not wear-
ing a seatbelt showed higher odds of leading to injury. Practical Applications: This study provides safety
analysts and practitioners in Maine a comprehensive study of factors that influence the severity of
crashes in Maine at different facilities to improve maintenance strategies, enhance safety using proper
safety countermeasures, or increase awareness across the state.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Compared to other New England states, Maine has the highest
roadway fatality rate (Bouchard et al., 2020). Lane departure (in-
cluding run-off-road and head-on crashes) account for more than
70% of roadway fatalities in Maine. Maine is a rural state, with over
80% of the roadways being in rural areas. Maine has aging infras-
tructures, the oldest population in the United States, and experi-
ences significant number of extreme weather events during the
long winter season (often spanning from November to April).
Maine is unique in many ways and therefore an interesting case
study to better understand the impact of aging infrastructure, older
population, and extreme weather conditions on severity of lane
departure crashes.

In terms of infrastructure, the ASCE 2020 Annual Infrastructure
Report Card gave Maine a C- grade (Bouchard et al., 2020). The
report also gave roadways in Maine a D grade. The Annual Report
suggests that the Maine highway system managed by the state has
an annual gap in necessary funds of $135 million to make neces-
sary roadway upgrades on aging infrastructure, proper mainte-
nance, renovations, and improving safety. Maine also houses the
oldest population in the United States (Himes & Kilduff, 2019).
The population has been showing an aging trend since the 1990
census, where the median age was 33.9 years-old, and the U.S.
median was 32.9 years-old (Meyer, 2001). In 2020, the median
age was 45.0 in Maine, whereas the median age was 38.2 in the
United States.

The state experiences lengthy winter seasons and around six
months of winter precipitation, freezing temperatures, and several
extreme storm events. In fact, the state is the third coldest state in
the U.S. (World Population Review, 2021). The total precipitation
and snowfall totals vary by location in the state. From 2017 to
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2019 (duration used in this study), coastal Maine received an aver-
age of 51.6 inches of precipitation and 101.9 inches of snowfall.
Northern Maine received an average of 41.9 inches of precipitation
and 138.0 inches of snowfall in the same period. Despite its rela-
tively small size, due to the vast differences in terrain from the
coastline to the western mountain region, weather conditions
and temperatures vary substantially throughout the state.

Several studies have explored the impact of different demo-
graphic, weather, and roadway factors on crash severity. For
instance, drivers older than 65 were found to have a 64–105%
higher chance of involvement in a severe or fatal crash in New
Mexico and California (Wu, Zhang, Zhu, Liu & Tarefder, 2016;
Kim, Ulfarsson, Kim, & Shankar, 2013). The likelihood of being in
a severe crash was found to be 38–43% lower for drivers younger
than 25 in South Central States (Li et al., 2019). Female and older
male drivers experience increased likelihood of severe injury in
Indiana (Morgan & Mannering, 2011). Kim et al. (2013) found that
male drivers are 107% more likely to be in a fatal crash; however, Li
et al. (2019) found that male drivers are 6–17% less likely to be in
fatal crashes. When not wearing a seatbelt, studies showed that the
crash severity increases by 265–318% (Abdel-Aty, 2003; Li et al.,
2019). Fatalities decrease by 60% when wearing a seatbelt (Kim
et al., 2013). Speeding crashes are 105% more likely to result in
fatalities (Kim et al., 2013). Operating under the influence increases
the likelihood of severe and fatal crashes by 73–502% (Kim et al.,
2013; Li et al., 2019).

Researchers also found an average increase of 9% in fatality rate
during adverse weather conditions (Qiu & Nixon, 2008). Rain con-
ditions decrease the crash severity in England (Edwards, 1998).
Variables such as grade, curve, impaired driving, multiple lanes,
and not using a seatbelt increases probability of crashes being sev-
ere in rain conditions (Li et al., 2019). Snow days in the contiguous
48 states decrease fatalities by 16% (Eisenberg & Warner, 2005).
When road conditions were wet, the probability of severe crashes
decreased by 40% (Li et al., 2019). A minimum visibility decrease of
one unit leads to a 1% increase in the probability of non-injury
crashes on freeways in China (Zhang, Wen, Yamamoto, & Zeng,
2021). It was found that as wind speed increased by one unit, there
was a 0.9% decrease in severe and fatal crashes (Zhang et al., 2021).
It was found that there is a 70% higher chance of serious injury on
roadways that are dry and pavement temperature is above freezing
in Iowa (Shaheed, Gkritza, Carriquiry, & Hallmark, 2016). When
visibility was within six miles and surface condition was not dry,
the probability of a severe crash decrease by 45% (Shaheed et al.,
2016). Theofilatos (2017) concluded no correlation between
adverse weather and severe crashes on urban arterials in Athens.
Roadway grade was found to increase severe injury during rain
by 50% (Li et al., 2019). A 1% increase in grade was found to
increase severe and fatal crashes by 2.86% (Zhang et al., 2021).
The crash severity also increases by a range of 20–80% on curves
(Li et al., 2019).

Limited research has been done to explore contributing factors
on lane departure crashes considering the combination of driver,
roadway, and daily weather (rather than weather cited in crash
reports) in areas similar to the state of Maine. As noted earlier,
Maine is unique in many ways due to factors such as aging infras-
tructure, housing the oldest population in the United States, and
experiencing adverse weather conditions; it is hypothesized that
the combination of discussed factors contributes to the severity
of lane departure crashes, and a disproportionate number of lane
departure fatalities in Maine. This study uses the Multinomial
Logistic Regression model to understand the impact of various
roadway, driver, and weather factors on the severity of single-
vehicle lane departure crashes that occurred in the 3-year period
from 2017 to 2019. The analysis is divided based on four different
facility type including: (1) principal arterials – Interstates (referred

to as Interstates in this paper), (2) minor arterials, (3) major collec-
tors, and (4) minor collectors. The results of this study provide a
better understanding of contributing factors on severity of lane
departure crashes on different roadway facilities leading to
improved management, maintenance, and safety.

2. Data description

Maine is the only state in New England that is part of the High-
way Safety Information System (HSIS). The state actively collects
an abundance of reliable and useful data on highway safety,
including roadway, crash, and traffic data. Such reliable data on
rural roads are crucial for robust analysis. We gathered crash data
and contributing factors collected in Maine and created a uniform
dataset for each facility type. As discussed, four rural roadway
facility types were considered for the analysis: Interstates, minor
arterials, major collectors, and minor collectors. The range of speed
limits for these facilities are 50–75 mph for Interstates, 25–55 mph
for minor arterials, 25–55 mph for major collectors, and 25–50
mph for minor collectors. A total of 11,409 single-vehicle lane
departure crashes were reported from 2017 to 2019 in Maine.
The total crashes for Interstates, minor arterials, major collectors,
and minor collectors are 2,190, 1,994, 4,940, and 2,285, respec-
tively. It is important that these facilities are analyzed separately
due to the design, safety conditions, and differences in mainte-
nance strategies (as described above). Four injury severity cate-
gories were considered for analysis. Fatal-incapacitating injury
crashes (KA), non-incapacitating injury (B), possible injury (C),
and property damage only (PDO).

The contributing factors were classified in four major subcate-
gories. First, the driver factors. This subcategory includes vari-
ables such as driver age and sex, as well as behavioral factors
such as speeding, operating under the influence (OUI), and seat-
belt usage. Over 15 driver variables were considered, and
eventually-seven variables were included in the analysis. The sec-
ond subcategory included crash variables, such as time of day,
crash type, day of the week, or vehicle type. In total 20 variables
in this category were considered and eventually-four variables
were included in the analysis. The third subcategory included
roadway characteristics, such as curve presence, posted speed
limit, lane width, and more. Over 12 variables were considered,
and eventually-three variables were included in the analysis.
The fourth subcategory included weather variables, a total of
seven weather variables were considered and eventually-four
variables were selected in the analysis.

The weather data were extracted from the National Oceanic and
Atmospheric Administration (NOAA) for the day of crash from 16
weather stations (NOAA National Centers for Environmental
Information). As noted in previous studies, the number of weather
stations are limited (Zhao, Wang, Liu, & Jackson, 2019). To allocate
the weather variables to each crash record, Thiessen Polygons were
created around the 16 weather stations using ArcGIS Pro
(Environmental Systems Research Institute). Thiessen Polygons
are polygons created around a point (in this case a weather station)
so that each point within the polygon is closest to the respective
weather station. Therefore, it was assumed that the weather sta-
tion inside each polygon represents the weather in that area. The
map of the polygons is presented in Fig. 1 Sawtelle et al., 2022.
The southern and coastal region in the state have higher popula-
tion, higher density of roadway network, and consequently more
crashes; therefore, more weather stations were available and used.
However, the northern, and western areas in the state do not have
much population, roadway system, and consequently crashes
(these regions are mainly forests and woods.) Hence, fewer
weather stations exist in these areas and used in analysis.
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As noted previously, many variables or combination of variables
were considered, but not included in the final analysis (due to
exploring correlation, significant test, and statistical fit). These
variables include (but are not limited to) shoulder width, shoulder
pavement type, lighting condition, the presence of rumble strips,
vehicle type, hitting a fixed object, freezing temperatures, wind,
and more. The categorical variables were also created based on
extensive preliminary analyses. For example, for the driver age
variable, it was found that designating ‘‘young” to drivers under
the age of 30, ‘‘middle” to drivers from 30 and 64, and older to dri-
vers of 65-years or above is the best representation of age category
for this study. As another example, the variable ‘‘time of day” was
divided into peak and off-peak time after extensive investigations.
The peak time is between 6:00 AM-10:00 AM and 3:00PM-7:00PM
Monday-Friday; the off-peak is otherwise. The speed limit variable
differentiates between roadways with posted speed limits above
45mph on all facilities besides Interstates. The time between dawn
and dusk was considered as the nighttime variable. The seasonal
period variable represents the winter period from November to
April and the non-winter period from May to October. The season
variable accounts for factors during the winter that were not con-
sidered in the models. In this study, the surface conditions are con-
sidered as not dry if an officer noted the surface as wet, snow,
slush, etc. and dry otherwise. This variable is not the same as
weather variables as the surface condition may or may not neces-
sarily be dry after storms. The variable snow day was used to
describe if the area where a crash occurred experienced at least
one inch of snow accumulation on the day of the crash. The vari-
able precipitation describes if there was any precipitation accumu-

lation on the day the crash occurred. Tables 1–4 show the
summary of data used for the analysis for Interstates, minor arte-
rials, major collectors, and minor collectors, respectively.

3. Methodology

Crash severity is identified as one of the following five cate-
gories: property damage only (PDO), possible injury (C-Injury),
non-incapacitating injury (B-Injury), incapacitating injury (A-
Injury), and fatal (K) crash. For the analysis, K and A crash out-
comes were combined. To model crash severity, a Multinomial
Logistics (MNL) model was used (Hilbe, 2011; Shankar &
Mannering, 1996; Washington, Karlaftis, & Mannering, 2020;
Shirazi, Geedipally, & Lord, 2017; Geedipally, Gates, Stapleton,
Ingle, & Avelar, 2019; Zhao et al., 2021).

Similar to some of the previous studies (see, Geedipally at al.,
2019), the MNL model was found to be a more appropriate model
compared to the mixed logit for the data in hand. When using the
MNL model, one category is designated as the reference category,
and all other categories are compared to the reference; in this
study, the PDO severity outcome was considered as the reference
category. The probability of the i-th observation experiencing the
j-th output injury is defined as follows:

pij ¼
eUij

1þP
je

Uij

where, pij is the probability of the occurrence of crash severity ‘‘j”
for observation ‘‘i”, and Uij is the deterministic part of the crash type
likelihood. A linear function is used to link the crash severity with
the various contributing factors as follows:

Uij ¼ b0j þ
X

k

bkjXik

where b0j is the constant term for j-th category, Xik is the k-th vari-
able for the i-th observation and bkj is the coefficient for the k-th
variable j-th crash type. The coefficients are estimated using the
maximum likelihood approach. To interpret the results, the Odds
Ratio (OR) were also estimated (Rahman, Sun, Das & Khanal,
2021; Holdridge, Shankar & Ulfrsson, 2005) and reported in the
results section.

4. Results and discussion

A multinomial logit model was estimated for each facility type.
As noted before, the PDO severity outcome was used as the refer-
ence (or base) category in each model. Therefore, the modeling
results and the corresponding odds ratios discussed in this section
are with respect to the PDO crash outcome. Tables 5–8 show the
modeling results (e.g., the estimated coefficient of significant vari-
ables), and the corresponding odds ratios for Interstate, minor arte-
rials, major collectors, and minor collectors, respectively. The
tables also include the Akaike Information Criterion (AIC), Log-
Likelihood, and McFadden’s R2 to analyze the goodness of fit (GOF).

4.1. Interstates

Table 5 shows the modeling results for rural Interstate road-
ways in Maine. As discussed, the driver age variable was classified
into three groups (young, middle, and older). The young-driver cat-
egory, indicating drivers with an age of 29 or less, was used as the
reference (or base) group. The results show a positive correlation
between the age of middle and older drivers and the Level B and
Level KA severity outcomes. Given a crash, the odds of Level B
and Level KA severity outcomes estimated with respect to the
PDO increases by 36% and 79%, respectively, for middle aged dri-

Fig. 1. Thiessen polygons and weather station locations.
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vers when compared with young drivers. The results show that the
odds of Level B and Level KA severity outcomes estimated with
respect to the PDO increases, respectively, by 70% and about
330% for older drivers when compared with young drivers. The
modeling results show that the odds of a crash leading to a Level
C or Level B severity outcome is, respectively, 38% and 29% smaller
for male drivers. The results indicate that the odds of Level B and
Level KA severity outcomes is 105% and 154% higher for drivers
with a suspended driver license; these results are expected due
to the risky behavior of these drivers. Speeding (driving above
speed limit) often contributes to more severe crashes. The model-
ing results show that speeding increases the odds of Level KA
severity outcome by 238%. The modeling results indicate that the
odds of Level C severity outcome increases by 60% when the driver
is distracted.

The modeling results shows a significant association between
the severity of crashes and use of seatbelt. Given a crash, the odds
of Level C severity outcome increases by over 5.5 times, Level B
outcome by over 9.7 times, and Level KA outcome by over 27.4
times when a seat belt is not used. The odds of Level B and Level
KA severity outcomes estimated with respect to the PDO increases
by 330% and 229% respectively, when the vehicle rolls over. The
modeling results show that crashes that occur during the peak
hours have higher odds of resulting in Level C severity outcomes
(about 38% more). The interaction of nighttime and operating
under the influence was a significant variable for Level KA severity
outcome. The odds of a crash resulting in a Level KA severity out-
come is 232% higher when a driver is operating under the influence
in the nighttime (between dawn and dusk). The odds of resulting in
Level C injury outcome increases by 59% when the roadway is not
level, likely due to reduced visibility.

Given a crash, the odds of Level C, Level B, and Level KA severity
outcomes (with respect to the PDO), respectively, decreases by
27%, 38%, and 65% during the winter period (November-April).
These results are expected because in the winter Interstates expe-
rience over 2.5 times more PDO crashes. Despite the significant
increase in PDO crashes, the number of severe crashes remains
more or less the same. In other words, although the inclement
weather causes more PDO crashes, it does not increase the severity
of crashes, due to presumably more cautious driving behavior
under bad weather conditions. Given a crash, the odds of Level B
and Level KA severity outcomes estimated with respect to the
PDO decreases by 27% and 67%, respectively, when the surface is
not dry. This observation is likely due to cautious driving behavior.

4.2. Minor arterials

Table 6 shows the modeling results for rural minor arterial
roadways. The modeling results show that, given a crash, the odds
of Level B and Level KA severity outcomes is, respectively, 140%
and 150% higher for older drivers when compared with young dri-
vers. In addition, given a crash, the odds of Level C and Level B
crash outcomes are about 30% smaller for male drivers compared
to female drivers. As discussed, drivers with suspended licenses
are expected to be involved in more severe crashes due to their
risky behavior. This observation was reflected in modeling results
for minor arterials as well. The odds of Level C, Level B, and Level
KA severity outcomes estimated with respect to the PDO, respec-
tively, increases by 64%, 170%, and 287% for drivers with sus-
pended license. The modeling results also show that the odds of
Level C severity outcome increases by 42% when the driver is under
the influence. Not wearing a seatbelt has the largest impact on

Table 1
Count and frequency of variables for the Interstate facility.

Variables PDO C B KA

Count Ratio Count Ratio Count Ratio Count Ratio

Driver Age Young 679 31.0% 138 6.3% 103 4.7% 23 1.1%
Middle 735 33.6% 153 7.0% 148 6.8% 41 1.9%
Older 100 4.6% 28 1.3% 27 1.2% 15 0.7%

Male Driver Indicator Male 1,024 46.8% 183 8.4% 176 8.0% 58 2.6%
Not Male 490 22.4% 136 6.2% 102 4.7% 21 1.0%

Driver License Suspended 27 1.2% 10 0.5% 12 0.5% 7 0.3%
Active 1,487 67.9% 309 14.1% 266 12.1% 72 3.3%

Sobriety OUI 43 2.0% 8 0.4% 17 0.8% 15 0.7%
Not OUI 1,471 67.2% 311 14.2% 261 11.9% 64 2.9%

Distractions Distracted 74 3.4% 24 1.1% 17 0.8% 8 0.4%
Not Distracted 1,440 65.8% 295 13.5% 261 11.9% 71 3.2%

Driver Speed Speeding 13 0.6% 3 0.1% 4 0.2% 3 0.1%
Not Speeding 1,501 68.5% 316 14.4% 274 12.5% 76 3.5%

Seatbelt Not Wearing 18 0.8% 21 1.0% 30 1.4% 22 1.0%
Wearing 1,496 68.3% 298 13.6% 248 11.3% 57 2.6%

Crash Type Rollover 23 1.1% 8 0.4% 15 0.7% 3 0.1%
Not Rollover 1,491 68.1% 331 15.1% 263 12.0% 76 3.5%

Time of Day Peak 648 29.6% 163 7.4% 109 5.0% 34 1.6%
Not Peak 866 39.5% 156 7.1% 169 7.7% 45 2.1%

Night-time Night 696 31.8% 127 5.80% 117 5.3% 33 1.5%
Not Night 818 37.4% 192 8.77% 161 7.4% 46 2.1%

Curve Present 323 14.7% 72 3.3% 63 2.9% 12 0.5%
Not Present 1,191 54.4% 247 11.3% 215 9.8% 67 3.1%

Grade Not Level 346 15.8% 97 4.4% 69 3.2% 18 0.8%
Level 1,168 53.3% 222 10.1% 209 9.5% 61 2.8%

Season Winter 1,103 50.4% 211 9.6% 166 7.6% 29 1.3%
Not Winter 411 18.8% 108 4.9% 112 5.1% 50 2.3%

Surface Condition Not Dry 1,084 49.5% 212 9.7% 163 7.4% 23 1.1%
Dry 430 19.6% 107 4.9% 115 5.3% 56 2.6%

Snow > 1 inch 182 8.3% 40 1.8% 20 0.9% 1 0.0%
< 1 inch 1,332 60.8% 279 12.7% 258 11.8% 78 3.6%

Precipitation Present 488 22.3% 105 4.8% 82 3.7% 18 0.8%
Not Present 1,026 46.8% 214 9.8% 196 8.9% 61 2.8%
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severity of crashes for minor arterials as well. Failing to wear a
seatbelt increases the odds of Level C, Level B, or Level KA severity
outcomes by 1.9-, 3.8-, and 23.1-times, respectively. Crash severity
increases when a rollover crash occurs. Given a crash, vehicle roll-
over increases the odds of Level C, Level B, and Level KA severity
outcomes (with respect to the PDO) by 139%, 169%, and 273%,
respectively. For road segments with a posted speed limit of
greater than 45mph, the odds of a crash resulting in Level C sever-
ity outcome increases by 46%. When a crash occurs on a curved
segment, the odds of Level B severity outcome increases by 29%.

For minor arterials, the PDO crashes increase during the winter
period by about 2.7-times; however, severe crashes (KA, B, and C
outcomes) do not increase in proportion to PDOs. This observation
was reflected in modeling results as well. During the winter period,
the odds of Level C, Level B, and Level KA severity outcomes (with
respect to the PDO) decreases by 45%, 54%, and 65%, respectively.
On roadways with surface conditions that are described as ‘‘not
dry,” the odds of Level B and Level KA severity outcomes decreases
by 31% and 63%, respectively. For minor arterials, the odds of Level
C and Level B severity outcomes decreases by 27% and 49%, respec-
tively, during the days with at least one inch of snowfall. These
results are expected because, often, during snow days more PDO
(due to inclement weather) but less severe (due to cautious driving
behavior) crashes are expected.

4.3. Major collectors

Table 7 shows the modeling results for rural major collector
roadways. Given a crash, for middle-aged drivers, the modeling

results show increased odds of 47% in Level KA severity outcome
compared to younger drivers. Likewise, for older drivers, the odds
of Level C, Level B, and Level KA crash outcomes increases by 91%,
39%, and 243%, respectively, compared to young drivers. The
results show that, given a crash, the odds of Level C and Level KA
severity outcomes is, respectively, 38% and 29% smaller for male
drivers compared to female drivers. When drivers are under the
influence of drugs or alcohol, it is expected that they are involved
in more severe crashes due to more reckless or aggressive driving
behavior. The estimated model shows the same expectation. When
operating under the influence, the odds of Level C, Level B, and
Level KA severity outcomes (with respect to the PDO) increases
by 45%, 74%, and 131%, respectively. In addition, the odds of
crashes resulting in Level C and Level KA severity outcomes
increases by 100% and 390%, respectively, when it is both night-
time and the driver is speeding.

Like Interstates and minor arterials, there is a significant associ-
ation between injury/fatality outcomes (KA, B, and C outcomes)
and not wearing a seatbelt. When a seatbelt is not used, the odds
of Level C, Level B, and Level KA severity outcomes estimated with
respect to the PDO increases by 1.8-, 3.6-, and 22.0-times, respec-
tively. The vehicle rollover increases the odds of Level C, Level B,
and Level KA severity outcomes by 140%, 183%, and 289%, respec-
tively. The odds of Level B severity outcome decreases by 18% dur-
ing the peak hour, likely because of congestion and speed
reduction during peak hours. The odds of a crash leading to Level
C, Level B, and Level KA crash severity outcomes increases by
23%, 23%, and 125%, respectively, on roads with speed limit of
45mph or above. This observation is expected, as the vehicle speed

Table 2
Count and frequency of variables for the minor arterial facility.

Variables PDO C B KA

Count Ratio Count Ratio Count Ratio Count Ratio

Driver Age Young 524 26.3% 164 8.2% 77 3.9% 24 1.2%
Middle 652 32.7% 209 10.5% 88 4.4% 43 2.2%
Older 124 6.2% 42 2.1% 38 1.9% 9 0.5%

Male Driver Indicator Male 851 42.7% 250 12.5% 124 6.2% 53 2.7%
Not Male 449 22.5% 165 8.3% 79 4.0% 23 1.2%

Driver License Suspended 38 1.9% 20 1.0% 15 0.8% 8 0.4%
Active 1,262 63.3% 395 19.8% 188 9.4% 68 3.4%

Sobriety OUI 98 4.9% 55 2.8% 24 1.2% 20 1.0%
Not OUI 1,202 60.3% 360 18.1% 179 9.0% 56 2.8%

Distractions Distracted 130 6.5% 45 2.3% 24 1.2% 7 0.4%
Not Distracted 1,170 58.7% 370 18.6% 179 9.0% 69 3.5%

Driver Speed Speeding 20 1.0% 6 0.3% 1 0.1% 6 0.3%
Not Speeding 1,280 64.2% 409 20.5% 202 10.1% 70 3.5%

Seatbelt Not Wearing 49 2.5% 48 2.4% 35 1.8% 42 2.1%
Wearing 1,251 62.7% 367 18.4% 168 8.4% 34 1.7%

Crash Type Rollover 32 1.6% 19 1.0% 10 0.5% 5 0.3%
Not Rollover 1,268 63.6% 396 19.9% 193 9.7% 71 3.6%

Time of Day Peak 580 29.1% 162 8.1% 90 4.5% 36 1.8%
Not Peak 720 36.1% 253 12.7% 113 5.7% 40 2.0%

Night-time Night 581 29.14% 179 8.98% 84 4.21% 35 1.76%
Not Night 719 36.06% 236 11.84% 119 5.97% 41 2.06%

Speed Limit > 45mph 1,099 55.1% 365 18.3% 165 8.3% 64 3.2%
< 45mph 201 10.1% 50 2.5% 38 1.9% 12 0.6%

Curve Present 608 30.5% 192 9.6% 110 5.5% 39 2.0%
Not Present 693 34.8% 223 11.2% 93 4.7% 37 1.9%

Grade Not Level 469 23.5% 141 7.1% 76 3.8% 19 1.0%
Level 831 41.7% 274 13.7% 127 6.4% 57 2.9%

Season Winter 953 47.8% 232 11.6% 94 4.7% 26 1.3%
Not Winter 347 17.4% 183 9.2% 109 5.5% 50 2.5%

Surface Condition Not Dry 773 38.8% 184 9.2% 72 3.6% 15 0.8%
Dry 527 26.4% 231 11.6% 131 6.6% 61 3.1%

Snow > 1 inch 131 6.6% 14 0.7% 6 0.3% 2 0.1%
< 1 inch 1,169 58.6% 401 20.1% 197 9.9% 74 3.7%

Precipitation Present 348 17.5% 88 4.4% 41 2.1% 13 0.7%
Not Present 952 47.7% 327 16.4% 162 8.1% 63 3.2%
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is a major contributing factor to severity of crashes. When crashes
occur on curves, the odds of Level B or Level KA severity outcomes
increases by 23% and 37%, respectively.

During the winter period, major collectors experience 2.9-times
more PDO crashes than the non-winter period. However, the sev-
ere crash outcomes do not increase in proportion to the PDOs.
The odds of Level C, Level B, and Level KA severity outcomes esti-
mated with respect to the PDO decreases by 43%, 29%, and 65%,
respectively, during the winter period. The odds of Level B severity
outcome decreases by 38% when the surface is not dry. The sever-
ity of crashes decreases on days with at least one inch of snow
accumulation as well. During inclement weather, especially winter
conditions, drivers slow down due to slippery conditions and lower
visibility; therefore, the negative correlation with severe crashes is
expected. During snow days with more than 1 inch of snow, the
odds of Level C, Level B, and Level KA severity outcomes estimated
with respect to the PDO decreases by 20%, 58%, and 78%, respec-
tively. Precipitation increases the odds of level B-level crash sever-
ities by 21% compared to days without precipitation.

4.4. Minor collectors

Table 8 shows the modeling results for rural minor collector
roadways. Given a crash, the results show increased odds of 58%
in Level KA severity outcomes for middle-aged drivers compared
to young drivers. Likewise, the odds of level B and level KA crash
severity outcomes is, respectively, 68% and 266% higher for older
drivers compared to the younger drivers. The results show that,
given a crash, the odds of Level C and Level B severity outcomes
decreases by 48% and 22%, respectively, for male drivers compared

to female drivers. The ‘‘speeding” variable was found to be signifi-
cant for Level C, Level B, and Level KA severity outcomes for minor
arterials. These results are expected as speeding may result in los-
ing control of the vehicle; higher speeds also result in more severe
impact. The modeling results show that the odds of Level C, Level B,
and Level KA severity outcomes increases by 58%, 123%, and 148%,
respectively, when drivers are speeding (drive above speed limit).

Like previous facilities, not wearing a seat belt is the most influ-
ential factor in severity of crashes. The odds of a crash leading to
Level C, Level B, and Level KA severity outcomes (with respect to
the PDO) increases by 3.1-, 4-, and 13.3-times when the seatbelt
is not used. The odds of Level C severity outcome estimated with
respect to the PDO increases by 78% when the vehicle rolls over.
The modeling results show that, given a crash, the odds of Level
B and Level KA severity outcomes increases by 164% and 162%,
respectively, when it is nighttime, and the driver operates under
the influence. The results show that the odds of Level B and Level
KA severity outcomes increases by 46% and 153%, respectively,
when the speed limit is 45mph or greater. The odds of a crash lead-
ing to a Level KA severity outcome increases by 88% on curved seg-
ments. Likewise, the odds a crash leading to a Level C severity
outcome increases by 28% when the roadway segment is not level.

During the winter period, minor collectors experience 3.1-times
more PDO crashes than the non-winter season. However, the num-
ber of severe crashes remains relatively same. For minor collectors,
the modeling results indicate that during the winter period, the
odds of Level B and Level KA severity outcomes estimated with
respect to the PDO decreases by 44% and 48%, respectively. Like-
wise, the odds of Level C, Level B, and Level KA severity outcomes
is decreased by 32%, 38%, and 46%, respectively, when the surface is

Table 3
Count and frequency of variables for the major collector facility.

Variables PDO C B KA

Count Ratio Count Ratio Count Ratio Count Ratio

Driver Age Young 1,469 29.7% 436 8.8% 237 4.8% 78 1.6%
Middle 1,448 29.3% 461 9.3% 247 5.0% 108 2.2%
Older 241 4.9% 131 2.7% 51 1.0% 33 0.7%

Male Driver Indicator Male 1,994 40.4% 572 11.6% 361 7.3% 151 3.1%
Not Male 1,164 23.6% 456 9.2% 174 3.5% 68 1.4%

Driver License Suspended 108 2.2% 46 0.9% 36 0.7% 20 0.4%
Active 3,050 61.7% 982 19.9% 499 10.1% 199 4.0%

Sobriety OUI 210 4.3% 117 2.4% 95 1.9% 62 1.3%
Not OUI 2,948 59.7% 911 18.4% 440 8.9% 157 3.2%

Distractions Distracted 244 4.9% 116 2.3% 58 1.2% 16 0.3%
Not Distracted 2,914 59.0% 912 18.5% 477 9.7% 203 4.1%

Driver Speed Speeding 56 1.1% 31 0.6% 20 0.4% 32 0.6%
Not Speeding 3,102 62.8% 997 20.2% 515 10.4% 187 3.8%

Seatbelt Not Wearing 132 2.7% 117 2.4% 107 2.2% 123 2.5%
Wearing 3,026 61.3% 911 18.4% 428 8.7% 96 1.9%

Crash Type Rollover 78 1.6% 55 1.1% 32 0.6% 14 0.3%
Not Rollover 3,080 62.3% 973 19.7% 503 10.2% 205 4.1%

Time of Day Peak 1,454 29.4% 427 8.6% 197 4.0% 79 1.6%
Not Peak 1,704 34.5% 601 12.2% 338 6.8% 140 2.8%

Night-time Night 1378 27.89% 447 9.05% 248 5.02% 84 1.70%
Not Night 1780 36.03% 581 11.76% 287 5.81% 135 2.73%

Speed Limit > 45mph 2,486 50.3% 834 16.9% 429 8.7% 189 3.8%
< 45mph 672 13.6% 194 3.9% 106 2.1% 30 0.6%

Curve Present 1,635 33.1% 520 10.5% 306 6.2% 132 2.7%
Not Present 1,523 30.8% 508 10.3% 229 4.6% 87 1.8%

Grade Not Level 1,315 26.6% 418 8.5% 226 4.6% 86 1.7%
Level 1,843 37.3% 610 12.3% 309 6.3% 133 2.7%

Season Winter 2,339 47.3% 594 12.0% 293 5.9% 77 1.6%
Not Winter 819 16.6% 424 8.6% 242 4.9% 142 2.9%

Surface Condition Not Dry 2,067 41.8% 532 10.8% 221 4.5% 64 1.3%
Dry 1,091 22.1% 496 10.0% 314 6.4% 155 3.1%

Snow > 1 inch 332 6.7% 63 1.3% 16 0.3% 2 0.0%
< 1 inch 2,826 57.2% 965 19.5% 519 10.5% 217 4.4%

Precipitation Present 2,339 47.3% 594 12.0% 293 5.9% 77 1.6%
Not Present 819 16.6% 424 8.6% 242 4.9% 142 2.9%
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not dry (likely due to more cautious behavior of drivers). On snow
days with at least one inch of snow, the odds of Level C and Level
KA severity outcomes estimated with respect to the PDO decreases
by 33% and 71%, respectively.

5. Summary and conclusions

In Maine, lane departure crashes are the leading cause of crash
fatalities. A majority of these crashes occur on rural roadways.

Table 4
Count and frequency of variables for the minor collector facility.

Variables PDO C B KA

Count Ratio Count Ratio Count Ratio Count Ratio

Driver Age Young 762 33.3% 210 9.2% 109 4.8% 35 1.5%
Middle 662 29.0% 188 8.2% 102 4.5% 42 1.8%
Older 111 4.9% 32 1.4% 21 0.9% 11 0.5%

Male Driver Indicator Male 949 41.5% 208 9.1% 141 6.2% 57 2.5%
Not Male 586 25.6% 222 9.7% 91 4.0% 31 1.4%

Driver License Suspended 48 2.1% 22 1.0% 11 0.5% 8 0.4%
Active 1,487 65.1% 408 17.9% 221 9.7% 80 3.5%

Sobriety OUI 84 3.7% 41 1.8% 45 2.0% 21 0.9%
Not OUI 1,451 63.5% 389 17.0% 187 8.2% 67 2.9%

Distractions Distracted 121 5.3% 40 1.8% 29 1.3% 7 0.3%
Not Distracted 1,414 61.9% 390 17.1% 203 8.9% 81 3.5%

Driver Speed Speeding 41 1.8% 25 1.1% 21 0.9% 11 0.5%
Not Speeding 1,494 65.4% 405 17.7% 211 9.2% 77 3.4%

Seatbelt Not Wearing 52 2.3% 59 2.6% 43 1.9% 37 1.6%
Wearing 1,483 64.9% 371 16.2% 189 8.3% 51 2.2%

Crash Type Rollover 45 2.0% 24 1.1% 12 0.5% 6 0.3%
Not Rollover 1,490 65.2% 406 17.8% 220 9.6% 82 3.6%

Time of Day Peak 705 30.9% 198 8.7% 103 4.5% 34 1.5%
Not Peak 830 36.3% 232 10.2% 129 5.6% 54 2.4%

Nighttime Night 631 27.61% 183 8.01% 88 3.85% 35 1.53%
Not Night 904 39.56% 247 10.81% 144 6.30% 53 2.32%

Speed Limit > 45mph 1,069 46.8% 313 13.7% 174 7.6% 72 3.2%
< 45mph 466 20.4% 117 5.1% 58 2.5% 16 0.7%

Curve Present 870 38.1% 248 10.9% 128 5.6% 64 2.8%
Not Present 665 29.1% 182 8.0% 104 4.6% 24 1.1%

Grade Not Level 673 29.5% 209 9.1% 98 4.3% 37 1.6%
Level 862 37.7% 221 9.7% 134 5.9% 51 2.2%

Season Winter 1,161 50.8% 291 12.7% 127 5.6% 35 1.5%
Not Winter 374 16.4% 139 6.1% 105 4.6% 53 2.3%

Surface Condition Not Dry 1,049 45.9% 239 10.5% 108 4.7% 27 1.2%
Dry 486 21.3% 191 8.4% 124 5.4% 61 2.7%

Snow > 1 inch 174 7.6% 23 1.0% 21 0.9% 1 0.0%
< 1 inch 1,361 59.6% 407 17.8% 211 9.2% 87 3.8%

Precipitation Present 407 17.8% 81 3.5% 52 2.3% 12 0.5%
Not Present 1,128 49.4% 349 15.3% 180 7.9% 76 3.3%

Table 5
Modeling results for Interstate.

Variables Estimate (Std.) Odds Ratio

C B KA C B KA

Intercept �1.333 (0.194) �1.441 (0.188) �2.924 (0.368) - - -
Driver Age Middle �b 0.308 (0.144) 0.583 (0.288) - 1.361 1.791

Older - 0.528 (0.251) 1.458 (0.386) - 1.696 4.296
Male Driver Indicator Male �0.479 (0.130) �0.344 (0.142) - 0.620 0.709 -
Driver License Suspended - 0.719 (0.376)a 0.931 (0.524) a - 2.050 2.536
Driver Speed Speeding - - 1.218 (0.720) a - - 3.380
Distractions Distracted 0.471 (0.257) a - - 1.602 - -
Seatbelt Not Wearing 1.874 (0.334) 2.369 (0.313) 3.346 (0.381) 6.514 10.691 28.381
Crash Type Rollover - 1.459 (0.347) 1.192 (0.677) a - 4.303 3.293
Time of Day Peak 0.319 (0.127) - - 1.376 - -
Nighttime and OUI Yes - - 1.199 (0.451) - - 3.317
Grade Not Level 0.464 (0.139) - - 1.590 - -
Season Winter �0.310 (0.145) �0.467 (0.151) �1.062 (0.276) 0.733 0.627 0.346
Surface Condition Not Dry - �0.317 (0.154) �1.100 (0.292) - 0.728 0.333
AIC 3,810
Log-Likelihood �1,863.17
McFadden’s Rb 0.073

a Variable statistically significant at 90% otherwise significant at 95%.
b The empty cells show that the variable is not statistically significant to the respective model or not applicable.
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Table 6
Modeling results for minor arterials.

Variables Estimate (Std.) Odds Ratio

C B KA C B KA

Intercept �0.923 (0.220) �1.310 (0.273) �3.232 (0.483) - - -
Driver Age Older �b 0.875 (0.235) 0.918 (0.440) - 2.398 2.504
Male Driver Indicator Male �0.344 (0.120) �0.360 (0.163) - 0.709 0.698 -
Driver License Suspended 0.493 (0.290)a 0.994 (0.332) 1.354 (0.478) 1.637 2.702 3.871
Sobriety OUI 0.351 (0.192) - - 1.420 - -
Seatbelt Not Wearing 1.066 (0.221) 1.561 (0.250) 3.183 (0.296) 2.905 4.764 24.107
Crash Type Rollover 0.870 (0.307) 0.988 (0.394) 1.316 (0.568) 2.388 2.685 3.728
Speed Limit � 45mph 0.376 (0.175) - - 1.456 - -
Curve Present - 0.255 (0.158)a - - 1.291 -
Season Winter �0.591 (0.138) �0.784 (0.182) �1.039 (0.298) 0.554 0.456 0.354
Surface Condition Not Dry - �0.373 (0.190) �0.996 (0.357) - 0.689 0.369
Snow � 1 inch of snow �0.310 (0.187)a �0.679 (0.316) - 0.733 0.507 -
AIC 3,565
Log-Likelihood �1,743.62
McFadden’s Rb 0.092

a Variable statistically significant at 90% otherwise significant at 95%.
b The empty cells show that the variable is not statistically significant to the respective model or not applicable.

Table 7
Modeling results for major collectors.

Variables Estimate (Std.) Odds Ratio

C B KA C B KA

Intercept �0.694 (0.133) �1.748 (0.177) �3.691 (0.314) - - -
Driver Age Middle �b - 0.385 (0.171) - - 1.470

Older 0.645 (0.126) 0.327 (0.175)a 1.232 (0.250) 1.906 1.386 3.428
Male Driver Indicator Male �0.472 (0.076) - �0.346 (0.170) 0.624 - 0.707
Sobriety OUI 0.374 (0.131) 0.558 (0.147) 0.838 (0.203) 1.454 1.744 2.312
Nighttime and speeding Yes 0.694 (0.322) - 1.589 (0.405) 2.003 - 4.897
Seatbelt Not Wearing 1.023 (0.138) 1.517 (0.147) 3.137 (0.178) 2.781 4.558 23.039
Crash Type Rollover 0.875 (0.184) 1.040 (0.223) 1.358 (0.331) 2.398 2.830 3.886
Time of Day Peak - �0.195 (0.102)a - - 0.823 -
Speed Limit � 45mph 0.203 (0.094) 0.208 (0.122)a 0.812 (0.222) 1.225 1.231 2.253
Curve Present - 0.205 (0.098) 0.317 (0.159) - 1.228 1.372
Season Winter �0.565 (0.094) �0.340 (0.116) �1.041 (0.184) 0.568 0.712 0.353
Surface Condition Not Dry - �0.483 (0.122) - - 0.617 -
Snow � 1 inch of snow �0.230 (0.116) �0.868 (0.183) �1.511 (0.483) 0.795 0.420 0.221
Precipitation Yes - 0.193 (0.106)a - - 1.212 -
AIC 8,956
Log-Likelihood �4,432.92
McFadden’s Rb 0.095

a Variable statistically significant at 90% otherwise significant at 95%.
b The empty cells show that the variable is not statistically significant to the respective model or not applicable.

Table 8
Modeling results for minor collectors.

Variables Estimate (Std.) Odds Ratio

C B KA C B KA

Intercept �1.026 (0.190) �1.720 (0.247) �3.917 (0.458) - - -
Driver Age Middle �b - 0.458 (0.256)a - - 1.581

Older - 0.517 (0.268)a 1.298 (0.397) - 1.677 3.661
Male Driver Indicator Male �0.655 (0.114) �0.251 (0.151)a - 0.520 0.778 -
Drive Speed Speeding 0.455 (0.277)a 0.802 (0.300) 0.907 (0.409) 1.576 2.231 2.476
Seatbelt Not Wearing 1.423 (0.206) 1.618 (0.230) 2.659 (0.276) 4.149 5.043 14.276
Crash Type Rollover 0.576 (0.270) - - 1.779 - -
Nighttime and OUI Yes - 0.971 (0.259) 0.962 (0.360) - 2.641 2.616
Speed Limit � 45mph - 0.380 (0.170) 0.930 (0.301) - 1.462 2.534
Curve Present - - 0.634 (0.262) - - 1.884
Grade Not Level 0.243 (0.114) - - 1.275 - -
Season Winter - �0.573 (0.182) �0.663 (0.272) - 0.564 0.516
Surface Condition Not Dry �0.490 (0.142) �0.393 (0.188) �0.623 (0.292) 0.675 0.613 0.536
Snow � 1inch of snow �0.400 (0.161) - �1.245 (0.621) 0.671 0.288
AIC 4,012
Log-Likelihood �1,964.144
McFadden’s Rb 0.085

a Variable statistically significant at 90% otherwise significant at 95%.
b The empty cells show that the variable is not statistically significant to the respective model or not applicable.
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Maine is unique in many ways, such as aging infrastructure and
population, a challenging climate, and diverse terrain. This study
used Multinomial Logit Regression model to estimate severity out-
come models for four facility types (Interstates, minor arterials,
major collectors, and minor collectors) to analyze the impact of
roadway, driver, and weather factors on severity of crashes. The
PDO category was used as the reference (or base) category. There-
fore, odds ratio results are with respect the PDO outcome. Older
drivers (aging 65 and older) variable was significant for all ana-
lyzed facilities. Crashes that involved older drivers showed
increased odds of Level KA severity outcome by 330%, 150%,
243%, and 266% on Interstate, minor arterials, major collectors,
and minor collectors, respectively, compared to younger drivers.
Failure to use a seatbelt was the most influential variable causing
severe crashes. When the seatbelt is not used, the odds of Level
KA severity outcome estimated with respect to the PDO increases
by 27.4-, 23.1-, 23.0-, and 13.3- times higher on Interstate, minor
arterials, major collectors, and minor collectors, respectively. As
discussed during the winter period, there are significantly more
PDO crashes for each facility type (due to inclement weather).
However, the severity of crashes does not necessarily increase in
proportion to PDOs. During the winter period, the results show
that the odds of crashes resulting in Level KA severity outcome
estimated with respect to the PDO decreases by 65%, 65%, 65%,
and 48% for Interstate, minor arterial, major collectors, and minor
collector facilities, respectively. The crash data were also mapped
to daily weather data obtained from weather stations to use vari-
ous weather variables in the model. The modeling results show
that crashes that occur on snow days have decreased odds of
resulting in Level KA severity outcome by 78% and 71% on major
and minor collectors, respectively. When the surface is not dry,
the odds of Level KA severity outcome decreases by 67%, 63%,
and 46% on Interstates, minor arterials, and minor collectors,
respectively. Inclement weather or bad surface conditions result
in more PDO but less severe crash outcomes since drivers are more
cautious, use lower speeds, and are more aware in these
conditions.

6. Practical applications

In Maine, lane departure crashes account for over 70% of road-
way fatalities. The state of Maine experiences adverse winter
weather conditions, experiences the third coldest temperatures
in the United States, has varying geography, houses the oldest
population in the United States, and has old roadway infrastruc-
ture. These factors are also relatable to several other rural states
(e.g., Vermont, New Hampshire) and rural areas of more urban
states in the northeast where limited research considering crash
severity has been done due to gaps in reliable data collection.
In fact, Maine is the only state in New England that is part of
the Highway Safety Information System (HSIS). The state actively
collects an abundance of reliable and useful data on highway
safety, including roadway, crash, and traffic data. Such reliable
data on rural roads are crucial for robust analysis. This study
developed statistical models to analyze severity of lane departure
crashes in Maine, considering various driver, roadway, and
weather factors. The findings of this study provide insights for
safety analysts, practitioners, and agencies in Maine (as well as
other states in the northeast or Atlantic regions in Canada) to bet-
ter understand the factors impacting lane departure crash sever-
ities at four rural facility types (i.e., minor collectors, major
collectors, minor arterials, principal arterials-Interstates) in order
to allocate necessary funds to develop countermeasures or
improve safety across the state.
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a b s t r a c t

Introduction: Drugged driving, the operation of a vehicle under the influence of any illegal drugs and alco-
hol, is a growing problem, but remains understudied among adolescents. The purpose of this article is to
estimate past-year driving under the influence of alcohol, marijuana, and other drugs among a large sam-
ple of U.S. adolescents and potential associations (e.g., age, race, metropolitan status, sex). Design: A cross-
sectional secondary data analysis of the 2016–2019 National Survey on Drug Use and Health among
17,520 adolescents ages 16–17-years old was conducted. Weighted logistic regression models were built
to determine potential associations to drugged driving. Results: An estimated 2.00% of adolescents drove
under the influence of alcohol in the past year, 5.65% drove under the influence of marijuana in the past
year, and an estimated 0.48% drove under the influence of other drugs other than marijuana in the past
year. Differences were based on race, past-year drug use, and county status. Conclusions: Drugged driving
is a growing problem among adolescents and interventions are greatly needed to mitigate these behav-
iors among youth.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Nearly 258,000 adolescents in the United States were treated in
the emergency department from injuries resulting in automobile
accidents in 2019 (Centers for Disease Control and Prevention
(CDC), 2021), placing significant burdens on healthcare facilities
and structures. Globally, more than 1.2 million people are killed
due to road traffic injuries and nearly 50 million are injured,
increasing hospitalizations and treatment costs (World Health
Organization, 2009). Furthermore, road traffic injuries are a signif-
icant indicator of morbidity and mortality among younger popula-
tions. In 2019, an estimated 2,400 adolescents in the United States
died due to vehicle car collisions, making it the leading cause of
death among adolescents (Blum & Qureshi, 2011).

Use of alcohol and other drugs (e.g., marijuana, prescription opi-
oids) are significant risk factors for these crashes (Brookoff, Cook,
Williams, & Mann, 1994). Known as ‘‘drugged driving,” several con-
sequences can result from drugged driving including impairment
in driving performance, perceptions of distance, increased risk for
crashing/injury, and inaccurate time perceptions (Brookoff et al.,
1994; Compton, 2017; Sewell, Poling, & Sofuoglu, 2009). This is
of concern, considering that in 2015 more people were killed from

drugged driving in the United States than drunk driving (43% vs
37%, respectively). (Hedlund, 2017).

Risk factors for drugged driving are complex, but evidence
points toward a multi-level framework (e.g., cultural, psychosocial)
to explain why individuals engage in these risky behaviors. For
example, one study found that sensation seeking, negative emo-
tional driving, and impulsivity were significant associations to
driving under the influence of cannabis (Richer & Bergeron,
2009). Another study of individuals in Spain found that greater
family problems/disruptions, prior drug use, and identifying as
male were strong predictors of driving under the influence
(Tomas Dols et al., 2010).

There are limited data on drugged driving among adolescents
from national databases (DuPont, Logan, & Shea, 2011; O’Malley
and Johnston, 2007, 2013; Terry-McElrath, O’Malley, & Johnston,
2014). Moreover, there is a paucity of recent literature on drugged
driving among adolescents. It is important to provide the most
recent estimates for harm reduction and behavioral initiatives
(e.g., interventions, education classes). Further, to inform preven-
tion efforts and strategies to bolster primary care, a call for more
studies on drugged driving among adolescents has been noted
(Knight et al., 2018). To our knowledge, this is one of the first stud-
ies to examine alcohol use, marijuana use, and ‘other drug’ use
while driving among a large, nationally representative sample of
youth using recent national data. The National Institute on Drug
Abuse (DuPont et al., 2011) has commissioned a white paper and
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has warranted more research into drugged driving by using data
from national sources/databases, specifically the National Survey
on Drug Use and Health, to track the prevalence and correlates of
drugged driving. Using four years of nationally representative data,
the purpose of the present study was to examine the prevalence of
drugged driving (use of alcohol, marijuana, and illicit drugs such as
methamphetamine and cocaine) among adolescents (ages 16–17)
and potential associations (e.g., race, metropolitan status, depres-
sion status, biological sex, past-year substance use).

2. Methods

Pooled data from the 2016–2019 National Survey on Drug Use
and Health (NSDUH) were analyzed. Briefly, the NSDUH is a
cross-sectional, annual, nationally representative survey con-
ducted in the United States to assess substance use, behavioral
health utilization, and mental health prevalence among individuals
12 years or older. The NSDUH utilizes a complex sampling design
to ensure adequate representation and probability selection of
individuals. Other details of the NSDUH are detailed elsewhere
(Substance Abuse and Mental Health Services Administration,
2015). The present analysis was restricted to 16–17 year olds, as
most U.S. states grant driver licenses at age 16 and this age group
will likely be licensed. Further, the analysis was a complete case
analysis, given the small proportion of missingness and the nature
of categorical coding implemented to our variables (Allison, 2005;
Audigier, Husson, & Josse, 2017).

3. Outcomes

3.1. Driving under the influence of alcohol or marijuana

Past-year driving under the influence of alcohol was assessed by
the question: ‘‘Did you drive a car or vehicle while under the influ-
ence of alcohol in the past-12 months?” Past-year driving under
the influence of marijuana was assessed by the question: ‘‘Did
you drive a car or vehicle while under the influence of marijuana
in the past-12 months?” Responses were binary in nature (1 =
‘‘Yes,” 0 = ‘‘No”).

3.2. Illicit drugged driving

Several questions were asked to the participants of whether
they operated a vehicle while under the influence of cocaine, inha-
lants, methamphetamine, heroin, or hallucinogens, and the NSDUH
survey combined this into an ‘‘illicit” drugged driving variable (e.g.,
‘‘Did you drive under the influence of illicit drugs in the past
year”?). Answer responses were binary in nature (1 = ‘‘Yes,” 0 =
‘‘No”). Previous research has shown these drugs to be used co-
morbidly with alcohol or marijuana while driving (Robertson,
Mainegra Hing, Pashley, Brown, & Vanlaar, 2017).

4. Depression

Self-reported past year major depressive episode was assessed,
since previous research (Karjalainen, Lintonen, Joukamaa, &
Lillsunde, 2013) has found an association between mental disor-
ders and drugged driving. Response options were (1 = ‘‘Yes,” 0 =
‘‘No”).

4.1. Demographics

Participants’ self-reported sex (male, female), race (Non-
Hispanic White, Non-Hispanic African American, Hispanic, and
Other) and county (large metro, small metro, and non-metro) were

used. Here, ‘Other’ is a combination of Pacific Islander, Native
American, and mixed race.

5. Analysis

The use of multiple-imputed variables, when available, pro-
vided by NSDUH were utilized to limit the amount of missing data.
Frequencies and descriptive statistics with appropriate 95% confi-
dence intervals were calculated to capture the sample characteris-
tics. Bivariate associations were made with Rao-Scott chi-square.
We calculated adjusted prevalence ratios (aPRs) (Cummings,
2009) with a multivariable generalized linear model using Poisson
and log link for each covariate. All analyses were conducted in
Stata 17.0 (College Station, TX) and used the ‘svy’ commands, were
two-tailed, weighted to be representative of the U.S. population,
and were designed-based (Heeringa, West, & Berglund, 2017).
We included survey year to control for the random intercept of
the variable. Analyses took place in Stata (version 17.0). A Univer-
sity Institutional Review Board deemed the present analyses not to
be human subjects research and was therefore exempt from
review.

6. Results

6.1. Sample characteristics and drugged driving prevalence

The analytic sample consisted of 17,520 adolescents aged 16–
17-years old. The sample consisted of nearly equal percentages of
boys and girls (50.7 vs 49.4%, respectively). Within the past year,
an estimated 2.00% of adolescents drove under the influence of
alcohol, 5.65% drove under the influence of marijuana, and 0.48%
drove under the influence of other drugs other than marijuana.

6.2. Driving under the influence of alcohol

Compared to 2016, adolescents in 2019 were less likely to drive
under the influence of alcohol in the past year (aPR: 0.63, 95% CI
0.42, 0.93). Adolescents living in non-metro areas were 1.45 times
(95% CI 1.06, 1.97) more likely to drive under the influence of alco-
hol, compared to adolescents living in metro areas. Adolescents
who used marijuana (aPR: 8.55, 95% CI 5.97, 12.2) or illicit drugs
other than marijuana (aPR: 2.81, 95% CI 2.11, 3.74) in the past year
were more likely to drive under the influence of alcohol in the past
year. No other differences were found.

6.3. Driving under the influence of marijuana

Compared to males, females were less likely to drive under the
influence of marijuana (aPR: 0.82, 95% CI 0.71, 0.96). Adolescents
who reported a major depressive episode in the past year were
1.21 times (95% CI 1.03, 1.43) more likely to drive under the influ-
ence of marijuana in the past year. Adolescents who reported past
year use of alcohol (aPR: 15.3, 95% CI 1.3, 20.8) or use of illicit drugs
other than marijuana (aPR: 3.75, 95% CI 3.22, 4.37) were more
likely to drive under the influence of marijuana within the past
year. No other differences (e.g., race, county status) were found.

6.4. Driving under the influence of illicit drugs other than marijuana

The only significant predictors of driving under the influence of
illicit drugs other than marijuana were past year use of alcohol and
marijuana. Specifically, adolescents who used alcohol in the past
year were 4.93 times more likely [95% CI 1.62, 15.0] to drive under
the influence of illicit drugs other than marijuana within the past
year. Further, adolescents who used marijuana in the past year

R. Andrew Yockey and C.S. Barroso Journal of Safety Research 84 (2023) 1–6

2



Table 1
Demographic Characteristics.

Variable Full Sample
(n = 17,520)

No Driving Under the
Influence of Alcohol
(n = 17,113)

Driving Under the
Influence of Alcohol
(n = 407)

No Driving Under the
Influence of Marijuana
(n = 16,442)

Driving Under the
Influence of
Marijuana
(n = 1,078)

No Driving Under the Influence
of Illicit Drugs (n = 17,433)

Driving Under the
Influence of Illicit Drugs
(n = 87)

Survey Year
2016 24.8 (24.0,

25.6)
97.9 (97.4, 98.4) 2.06 (1.60, 2.65)* 94.4 (93.5, 95.2) 5.60 (4.82, 6.51) 99.6 (99.3, 99.8) 0.42 (0.24, 0.72)

2017 25.5 (24.7,
26.3)

97.8 (97.2, 98.3) 2.19 (1.73, 2.77) 94.2 (93.4, 95.0) 5.77 (4.99, 6.65) 99.4 (99.0, 99.8) 0.60 (0.36, 0.99)

2018 25.5 (24.7,
26.4)

97.6 (96.9, 98.2) 2.36 (1.81, 3.08) 94.2 (93.2, 95.1) 5.79 (4.92, 6.81) 99.6 (99.3, 99.8) 0.38 (0.21, 0.69)

2019 24.3 (23.4,
25.1)

98.6 (98.1, 99.0) 1.37 (1.00, 1.87) 94.6 (93.6, 95.4) 5.41 (4.59, 6.37) 99.5 (98.9, 99.7) 0.53 (0.27, 1.02)

Sex
Male 50.7 (49.7,

51.6)
98.1 (97.7, 98.5) 1.88 (1.55, 2.28) 94.1 (93.4, 94.7) 5.91 (5.31, 6.58) 99.5 (99.3, 99.7) 0.47 (0.31, 0.73)

Female 49.4 (48.4,
50.3)

97.9 (97.5, 98.2) 2.13 (1.78, 2.55) 94.6 (94.0, 95.2) 5.38 (4.80, 6.01) 99.5 (99.3, 99.7) 0.49 (0.33, 0.72)

Race
Non-Hispanic White 53.0 (52.1,

54.0)
97.5 (97.1, 97.9) 2.50 (2.14, 2.93)*** 93.1 (92.5, 93.7) 6.87 (6.26, 7.53)*** 99.5 (99.2, 99.6) 0.54 (0.38, 0.78)

Non-Hispanic
African American

13.6 (12.9,
14.2)

99.2 (98.6, 99.6) 0.78 (0.44, 1.37) 96.8 (95.8, 97.5) 3.25 (2.48, 4.24) 99.8 (99.2, 99.9) 0.24 (0.07, 0.78)

Hispanic 23.8 (22.9,
24.7)

98.4 (97.8, 98.8) 1.63 (1.18, 2.25) 95.4 (94.3, 96.2) 4.65 (3.80, 5.67) 99.6 (99.1, 99.8) 0.41 (0.19, 0.86)

Multi-Racial/ Other 9.63 (9.08,
10.2)

98.1 (97.0, 98.8) 1.89 (1.20, 2.96) 95.2 (93.9, 96.3) 4.77 (3.69, 6.15) 99.4 (98.7, 99.7) 0.65 (0.31, 1.36)

County Status
Large metro 56.9 (56.0,

57.9)
98.3 (97.9, 98.6) 1.71 (1.39, 2.11)* 94.8 (94.1, 95.3) 5.25 (4.69, 5.88)** 99.6 (99.4, 99.7) 0.41 (0.26, 0.64)

Small metro 29.2 (28.3,
30.0)

97.7 (97.1, 98.1) 2.34 (1.87, 2.91) 93.4 (92.5, 94.2) 6.64 (5.85, 7.52) 99.5 (99.1, 99.7) 0.55 (0.33, 0.90)

Non-metro 13.9 (13.3,
14.5)

97.5 (96.9, 98.0) 2.50 (1.99, 3.13) 94.8 (93.8, 95.7) 5.19 (4.35, 6.18) 99.4 (98.9, 99.6) 0.63 (0.36, 1.10)

Past-Year Major
Depressive
Episode

No 81.5 (80.8,
82.3)

98.4 (98.1, 98.6) 1.65 (1.40, 1.94)*** 95.2 (94.7, 95.6) 4.83 (4.40, 5.31)*** 99.6 (99.5, 99.8) 0.37 (0.25, 0.54)***

Yes 18.5 (17.8,
19.3)

96.4 (95.5, 97.2) 3.57 (2.85, 4.47) 90.8 (89.4, 91.9) 9.24 (8.06, 10.6) 99.0 (98.5, 99.4) 0.98 (0.62, 1.54)

Past-Year Drug Use
Alcohol 38.4 (37.5,

39.3)
– – 86.3 (85.2, 87.3) 13.7 (12.7, 14.8)*** 98.8 (98.4, 99.1) 1.16 (0.86, 1.57)***

Marijuana 23.6 (22.8,
24.4)

93.2 (92.2, 94.2) 6.77 (5.85, 7.81)*** – – 98.1 (97.5, 98.6) 1.87 (1.38, 2.52)***

Illicit drugs other
than marijuana

10.5 (9.89,
11.1)

90.9 (89.2, 92.4) 9.08 (7.57, 10.9)*** 73.8 (71.2, 76.2) 26.2 (23.8, 28.9)*** – –

CI: confidence interval.
*Behaviors are not mutually exclusive – e.g., can drink drive and drive under influence of marijuana.
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were 16.4 times more likely [95% CI 5.18, 51.9] to drive under the
influence of illicit drugs other than marijuana in the past year. No
other significant differences were found (see Table 1 and Table 2).

7. Discussion

7.1. Principal findings

Differences in drugged driving were found based on age, race,
and metro status. An estimated 2.0% of adolescents drove under
the influence of alcohol in the past year, and greater than 1 in 30
adolescents drove under the influence of marijuana and other
drugs (e.g., non-medical prescription drugs, illegal drugs). More-
over, racial minorities were less likely to report drugged driving.
Further, adolescents who self-reported major depression were
more likely to engage in driving under the influence of cannabis,
while adolescents who also used other drugs were more likely to
engage in drugged driving.

7.2. Findings in context

Our findings are consistent with previous literature that racial
minorities are at a lower risk of drunk driving (Yockey, Vidourek,
& King, 2020), compared to White adolescents (O’Malley &
Johnston, 2013). Moreover, for driving under the influence of mar-

ijuana, we found the opposite from previous literature (O’Malley &
Johnston, 2013) mainly that racial minorities were less likely to
report driving under the influence of marijuana and other drugs.
Although not explicated, our findings may provide the necessary
frameworks for an intersectionality approach (Gattamorta,
Salerno, & Castro, 2019)(e.g., overlapping identities) regarding
self-reported drugged driving, given that intersectionality may
inform screening procedures for at-risk youth and bolster preven-
tion services such as education classes and community resources13

aimed at curbing drugged driving.
The use of other drugs in the past year had strong associations

toward driving under the influence. This may be because attitudes
toward substances such as marijuana are changing, with previous
research highlighting several views among adolescents indicating
that driving under the influence may lead to less social conse-
quences (McCarthy, Lynch, & Pederson, 2007) and impairment in
driving behaviors (Swift, Jones, & Donnelly, 2010). A developmen-
tal approach to risky behaviour (Arnett, 1992) in adolescence may
prove useful in answering these trends – namely, that if left
unchecked, risky behaviors culminate in adolescence and increase
in severity and form over time, with a focus on sensation seeking,
peer influence, and adolescent egocentrism (i.e., inability to distin-
guish between their perception of what others think about them
and what people think). In the context of driving and the use of
drugs, our findings suggest that a sizeable percentage of U.S. ado-
lescents engage in these behaviors. Moreover, adolescents are

Table 2
Adjusted Prevalence Ratios and 95% CI with Drugged Driving.

Variable Driving Under the Influence of
Alcohol (aPR)

95% CI Driving Under the Influence
of Marijuana
(aPR)

95% CI Driving Under the Influence of
Illicit Drugs (aPR)

95% CI

Survey Year
2016 1.00 Ref. 1.00 Ref. 1.00 Ref.
2017 1.01 [0.72,

1.41]
0.98 [0.81,

1.19]
1.32 [0.63,

2.74]
2018 1.13 [0.79,

1.61]
1.07 [0.87,

1.32]
0.82 [0.37,

1.84]
2019 0.63 [0.42,

0.93]*
0.97 [0.79,

1.18]
1.10 [0.47,

2.56]
Sex
Male 1.00 Ref. 1.00 Ref. 1.00 Ref.
Female 1.09 [0.83,

1.43]
0.82 [0.71,

0.96]**
0.84 [0.46,

1.51]
Race
Non-Hispanic White 1.00 Ref. 1.00 Ref. 1.00 Ref.
Non-Hispanic African

American
0.41 [0.23,

0.74]
0.87 [0.67,

1.14]
0.73 [0.21,

2.54]
Hispanic 0.79 [0.55,

1.12]
0.80 [0.75,

1.23]
0.97 [0.42,

2.23]
Multi-Racial/ Other 0.94 [0.60,

1.48]
0.96 [0.75,

1.23]
1.76 [0.78,

3.94]
County Status
Large metro 1.00 Ref. 1.00 Ref. 1.00 Ref.
Small metro 1.21 [0.90,

1.62]
1.17 [1.00,

1.37]
1.28 [0.65,

2.52]
Non-metro 1.45 [1.06,

1.97]*
0.97 [0.79,

1.18]
1.70 [0.81,

3.59]
Past-Year Major

Depressive Episode
No 1.00 Ref. 1.00 Ref. 1.00 Ref.
Yes 1.28 [0.96,

1.73]
1.21 [1.03,

1.43]*
1.77 [0.97,

3.23]
Past-Year Drug Use
Alcohol – – 15.3 [11.3,

20.8]***
4.93 [1.62,

15.0]***
Marijuana 8.55 [5.97,

12.2]***
– – 16.4 [5.18,

51.9]***
Illicit drugs other than

marijuana
2.81 [2.11,

3.74]***
3.75 [3.22,

4.37]***
–

***p <.0001, **p <.001, *p <.05.
PR: prevalence ratio.
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more likely to engage in other reckless driving behaviors behind
the wheel such as speeding, not wearing seatbelts, and infrequent
use of seatbelts, even when not under the influence (Jonah, 1986).
The use of several strategies (e.g., media campaigns, state sanc-
tions) may deter current and future drugged driving behaviors at
an early age (Razaghizad et al., 2021).

Although only significant for driving under the influence of
marijuana, the finding that reporting a major depressive episode
points to multifaceted approaches when treating driving under
the influence. This finding is concerning, given the increased crash
risk while driving under the influence of marijuana (Hill et al.,
2017). Further, it is well established that poor mental health has
a strong association with risky behaviors (Johnson & Taliaferro,
2012). Associated consequences of poor mental health (e.g., poor
sleep) may worsen driving performance and, simultaneously, lead
to impaired decision making, (Rubinsztein, Michael, Underwood,
Tempest, & Sahakian, 2006) which may increase proneness to
engaging in these types of behaviors.

Our findings also highlight county differences in drunk driving,
but not driving under the influence of marijuana or other drugs.
Specifically, unadjusted results showed adolescents who lived in
small or non-metro counties were more likely to report driving
under the influence of alcohol; adjusted results showed that ado-
lescents who lived in small counties were more likely to report
driving under the influence of alcohol. The place and environment
where adolescents live are a strong influence on future psychoso-
cial health behaviors and trajectories. Rural environments may
predispose adolescents towards engaging in unhealthy behaviors
(e.g., drugged driving) and may shape behaviors, attitudes, and
beliefs about these behaviors (Veitch, 2009). The specific determi-
nants of counties and their influence of drugged driving among
adolescents remains a fruitful area for further research for harm
reduction efforts and behavioral health initiatives.

8. Limitations

The strong national, probability-based sampling in the NSDUH
and large number of participants in this study must be balanced
against its limitations. Data were self-reported; thus, under/over
enhancement of answers may be present. We did not assess
past-month drugged driving; more studies are needed to deter-
mine recentness of drugged driving. Data are cross-sectional in
nature; therefore, causality cannot be determined. Future research
is also warranted on trends in drugged driving to examine an inter-
sectionality approach towards elucidating within-racial differ-
ences. Wide confidence intervals within our estimates were
present, therefore, caution is warranted when interpreting results.

9. Conclusions

Drugged driving among adolescents is an understudied, but a
growing problem that warrants further attention. Although cross-
sectional data were assessed, differences were found based on
race/ethnicity, age, and locality. These differences are critical and
should be considered for interventions (e.g., educational classes)
when examining these relationships.
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a b s t r a c t

Introduction: Mobile phones are used universally due to their versatility and easy-to-use features; this
includes when users are walking and when crossing streets. At intersections, using a mobile phone is a
secondary task that can distract from the primary task of scanning the road environment and ensuring
it is safe to traverse. Such a distraction has been shown to increase risky pedestrian behavior compared
to non-distracted behavior. Developing an intervention to make distracted pedestrians aware of immi-
nent danger is a promising approach to refocus pedestrians on their primary task and avoid incidents.
Interventions have already been developed in different parts of the world, such as in-ground flashing
lights, painted crosswalks, and mobile phone app-based warning systems. Method: A systematic review
of 42 articles was performed to determine the effectiveness of such interventions. This review found that
three types of interventions are currently developed, with differing evaluations. Interventions based on
infrastructure tend to be evaluated based on behavioral change. Mobile phone-based apps tend to be
evaluated on their ability to detect obstacles. Legislative changes and education campaigns are not cur-
rently evaluated. Further, technological development often occurs independently of pedestrians’ needs,
reducing the likely safety benefits of such interventions. The interventions related to infrastructure
mainly focus on warning pedestrians without considering pedestrian mobile phone use, potentially lead-
ing to numerous irrelevant warnings and reduced user acceptance. The lack of a comprehensive and sys-
tematic approach to evaluating these interventions is also an issue requiring consideration. Practical
Applications: This review demonstrates that despite significant recent progress surrounding pedestrian
distraction, more work is required to identify the most effective interventions to implement. Future stud-
ies with a well-designed experimental framework are necessary to compare the different approaches, and
warning messages, and ensure the best guidance for road safety agencies.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

More than one-fifth of fatally injured road users do not travel by
car, motorcycle, or cycle; they are pedestrians (WHO, 2013). Pedes-
trians are the most vulnerable road users of the transportation sys-
tem (Zegeer & Bushell, 2012). They are at a higher risk than drivers
and passengers at the time of collision due to their slow move-
ment, vulnerability, and higher impact after the crash (Moudon
et al., 2011). Narváez et al. (2019) found that one in five of 1,536
surveyed pedestrians were involved in at least one incident as a
pedestrian in the previous five years, and 21% of these incidents
resulted in pedestrian injuries. Approximately half of these injuries
were severe. In fact, pedestrian fatalities due to a crash in the Uni-

ted States increased 3.9% in comparison with 2019, the highest
number since 1989 according to the U.S. Department of Trans-
portation’s National Highway Traffic Safety Administration
(NHTSA) recently published annual traffic crash data
(Transportation, 2022).

Distraction is one of the contributing factors to pedestrian inju-
ries (Pešić et al., 2016; Thompson et al., 2013). Distraction inter-
feres with the decision-making process in a critical situation, and
pedestrians fail to notice important visual and auditory informa-
tion (Lennon et al., 2017) while walking or crossing streets. The
most common distractive activities that pedestrians engage in
are: using mobile phones, eating, smoking, group talking, drinking,
and carrying bags (Hamann et al., 2017; Shaaban et al., 2018;
Thompson et al., 2013). Advances in technology see the number
of mobile phone users increasing steadily, and statistics show that
in 2016 users numbered 4.70 billion and in 2020, 5.22 billion
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(Chang, 2022). Smartphone ownership varies from country to
country, with research indicating 9 out of 10 people use a mobile
phone in most developed countries. The ratio varies to 4 out of
10 in developing countries, especially in India where only 24%
reported having a smartphone (Silver, 2019). In the United States,
96% of young adults aged 18–29 have a smartphone with only 61%
of people over 65 having one. Though there is a technology dispar-
ity between different communities and age groups (Center, 2021),
studies found mobile phone distraction while walking is increasing
significantly (Byington & Schwebel, 2013; Chen et al., 2018; Jain &
Gruteser, 2019). And mobile phone use at pedestrian crossings is a
growing concern because it contributes to pedestrian-related
crashes. An observational study conducted in Melbourne found
that 20% of pedestrians used mobile phones when crossing roads
(Osborne et al., 2020). Researchers found that more than one quar-
ter of pedestrians are distracted while crossing roads (Basch et al.,
2014; Solah et al., 2016; Thompson et al., 2013), whereas other
studies indicated the amount was one-third compared to total
pedestrians (Basch et al., 2015; Horberry et al., 2019; Scopatz &
Zhou, 2016). Some researchers found almost half the pedestrians
are distracted while crossing roads (Thompson et al., 2013), and
an experiment conducted by Syazwan et al. (2017) in Malaysia
found 84.8% of people using a mobile phone while crossing roads,
followed by drinking, eating, and reading. In the United States in
2012, 1,500 pedestrians nationwide treated in the hospital were
distracted by mobile phone conversations when crossing roads.
This number was more than double the figures recorded in 2005
(Scopatz & Zhou, 2016).

The use of mobile phones causes at least three types of distrac-
tion for their users: visual distraction (e.g., texting, browsing, gam-
ing, and reading articles), auditory distraction (e.g., listening to
music and talking), and cognitive distraction that can be caused
by a combination of visual and auditory distraction. Several studies
determined the effect of these three types of phone distraction at
road intersections (Alejalil & Davoodi, 2017; Courtemanche et al.,
2019; Simmons et al., 2020), and it was Jiang et al. (2018) and
Thompson et al. (2013) who found that texting was the most sig-
nificant form of distraction at signalized intersections, followed
by talking and listening to music. Visual distractions such as tex-
ting or browsing were found to cause a delay for pedestrians to ini-
tiate their crossing and a reduced visual scan of the surrounding
environment (Tapiro et al., 2018). Texting at the time of crossing
intersections reduces the walking speed of pedestrians, increasing
their crossing time by 18% (Thompson et al., 2013), and diverts a
large proportion of their visual attention from the road to their
phone screen (Russo et al., 2018). Pedestrians who use their mobile
phone for talking purposes are less likely to show careful behavior
than pedestrians listening to music, however, those who listen to
music are more likely to look straight ahead, failing to look left
and right (Aghabayk et al., 2021). Talking over the phone causes
a reduction in attention to the surroundings, and pedestrians only
notice vehicles when they are close to them (Davis & Barton, 2017).

Different intervention techniques have been developed in dif-
ferent parts of the world to ensure the safety of mobile phone dis-
tracted pedestrians, and these can be categorized as
infrastructural, technological, legislative, and public awareness.
The legislative intervention includes rules, regulations, fines, and
warnings (Osborne et al., 2020). For example, the Utah Transit
Authority (UTA) implemented a fine of $100 for distracted walking
in 2012, though it failed to be applied statewide (Davidson, 2012).

Public awareness related interventions, on the other hand,
include education, posters, and campaigns (Osborne et al., 2020).
Safety warning cards were also handed out in New York as part
of a safety campaign in 2013 (Seeing Eye People, 2013), and the
Ontario police department distributed pamphlets for pedestrians
warning against distraction (Law, 2013). In Australia, the Pedes-

trian Council of Australia conducted a similar safety campaign to
find that only a small proportion of road users consider distracted
walking as an issue (PCA, 2012), indicating a limited impact on
pedestrian behavior (Mwakalonge et al., 2015).

Infrastructure-based interventions are incorporated with road
infrastructure, including inbuilt technology such as road marking
and flashing lights to be used to warn phone distracted pedestri-
ans. Other types of infrastructure-related interventions enforce
pedestrians to use a particular type of intervention, such as pedes-
trian road separation and safety barriers (Osborne et al., 2020). The
infrastructure-based interventions have been trialed and examined
separately in different studies worldwide with several countries,
for example, trialing solutions based on LED lights at ground level.
One intersection in Melbourne was illuminated with flashing lights
at ground level, and synchronized with the traffic lights to increase
the awareness of distracted pedestrians of their surroundings
(Wong, 2017); another study was conducted by Larue and
Watling (2021) at a rail crossing with flashing LEDs to ensure the
safety of phone distracted pedestrians. Other infrastructure-
based interventions include warning signs, reminders at the inter-
section such as ‘‘Heads Up Phones Down” (Barin et al., 2018), and
safety road marking (Osborne et al., 2020).

Technology based interventions are mostly related to road user
devices. Phone-based technologies have been developed utilizing
phone sensors such as a phone camera, accelerometer, gyroscope,
magnetometer, and proximity sensor for obstacle detection and
warning (Won et al., 2020; Zhuang & Fang, 2020), or obstacle
detection with the help of external sensors and warnings using
phone apps. Phone apps based on interconnecting with the sur-
rounding infrastructure either utilize vehicle-to-pedestrian (V2P)
communication or infrastructure to pedestrian (I2P) communica-
tion (Lewandowski et al., 2013; Rahimian et al., 2018) in accor-
dance with critical location identification using GPS or Bluetooth
beacon technology. Warning techniques on mobile phone devices
themselves include a pop-up window, screen border color change,
screen color transparency, audio warning, vibration, and a picture
replicating a traffic light on the phone screen (Holländer et al.,
2020; Kim et al., 2018; Kim et al., 2015). External road user devices
have also been tested including caps, sunglasses (Gruenefeld et al.,
2018), and helmets (Marsalia et al., 2016), for obstacle detection
and warning.

Given the breadth of interventions currently being developed for
distracted pedestrians, it is essential to understand how effective
such interventions are and provide guidance on the most effective
approach to reduce risky behaviors from phone-distracted pedes-
trians at road intersections. In this study, a systematic review was
conducted of the literature to understand the effectiveness of these
interventions and identify current research gaps.

2. Methods

A PRISMA (Preferred Reporting Items for Systematic Reviews
and Meta-Analyses) based systematic review (Moher et al., 2009)
was conducted to identify studies related to the interventions for
phone distracted pedestrians. The PRISMA-based flow diagram is
presented in Fig. 1.

2.1. Data sources

The databases used for the systematic review were PubMed,
Scopus, Embase, and Web of Science. These databases were
selected to provide a wide variety of data from different disciplines
related to the topic of interest. English language articles with full
text were considered for the review, and the time frame for
selected articles was the last 10 years (2012- December 2021).
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2.2. Study selection

Only articles published in English were considered for this
review. Furthermore, the publication date was required to be
within the last 10 years (2012–2021). The period was selected
based on the emerging influence of mobile phones and their evolv-
ing effects on road users.

The database search results, including the title, abstracts, and
full text articles were exported to the bibliography software End-
Note. Duplicate articles were removed before further screening.
The screening and selection were done independently by two
authors and then validated by a third author. The final selection
of articles was achieved through discussion and consensus
between all three authors.

2.3. Eligibility criteria

Articles that only considered mobile phone distraction without
considering the effects of any interventions were excluded from
the review. Studies not related to pedestrians’ (driver, cyclists,
biker, rideshare, and scooter) injury model, navigation, and local-
ization were also excluded. Moreover, meta-analyses, literature
reviews, author opinions, and articles without full text were
excluded (Bruyneel & Duclos, 2020).

In stage one, the search technique started using the filters of the
English language and a 10 year period. The search technique com-
prised three groups of keywords. The first group was related to the
type of road user and used the keywords ’pedestrian’ and ’vulner-
able road user.’ The second group related to distraction and
included ’phone’ [and synonyms], ’personal electronic device,’ ’mo-
bile device,’ ’hand-held device,’ and ’smartphone.’ The last group
related to interventions and included the following keywords ’in-
tervention,’ ’countermeasure,’ ’warning alert,’ ’prevention,’
’safety,’ ’ mitigation,’ ’education,’ and ’media campaign.’

The articles from each group were then combined for further
analysis. The final search results were transferred to the EndNote
software with the abstract for additional screening. Duplicate arti-
cles were removed, and further screening was conducted manu-
ally. The abstracts and full text articles were screened to identify
the articles not related to pedestrians, distraction, warning, or
interventions, or focusing only on navigation, which were
excluded.

2.4. Data extraction

The data extraction was performed by two authors and further
validated by the third author. The information extracted from the
selected studies included: location; experiment area; obstacle

Fig. 1. PRISMA flow diagram identifies the retrieval process for studies that evaluate interventions for distracted pedestrians.
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detection technology; type of distraction; warning type; distrac-
tion identification technique; and participant numbers. The articles
related to cyclists, two-wheelers, rideshare and drivers, unrelated
to safety or distraction, focusing solely on modeling injury, naviga-
tion, or localization, were excluded from the review. A total of 247
articles containing pedestrian, mobile phone distraction, and syn-
onyms were found. Then, full text articles were reviewed for fur-
ther screening, and 205 articles were removed as they did not
include an intervention. Forty-two articles satisfied all the inclu-
sion criteria of pedestrian, distraction, and intervention, and were
included in the review.

3. Results

Articles related to the legislation category did not satisfy the
inclusion criteria of this review, and just one study related to pub-
lic awareness was found. Therefore, these two categories are com-
bined for discussion in the remainder of the article. Consequently,
the interventions related to mobile phone distracted pedestrians
are divided into three categories presented in Fig. 2: infrastructural
(related to infrastructure); technological (i.e., road user devices);
and legislation and public awareness.

The characteristics of the studies that were selected in this
review are summarized in Fig. 3. Fig. 3 provides an overview of
where the study was conducted, the number and types of partici-
pants included, and the type of distraction and warning.

The interventions pertaining to the infrastructure included in-
ground flashing lights, painted crosswalks, and audio signals.
Warning methods focused on road user devices categorized into
two subcategories: phone app (e.g., audio signal, pop-up window,
vibration, screen transparency, and screen lock) and external
devices (e.g., helmet, smart cap, and sunglasses).

The intervention effectiveness evaluations identified in the lit-
erature focused on three distinctive dimensions: behavioral evalu-
ations, technological evaluations, and user perceptions. Behavioral
evaluation focused on the influence of the intervention on pedes-

trian road crossing behavior such as considering behavior change
using the Pedestrian Behavior Scale (PBS) (Larue & Watling,
2021), mobile phone use tendency before and after intervention
(Barin et al., 2018), reaction time after warning (Kim et al., 2015),
head turns before starting to cross (Chen et al., 2012), and choice
of proper safety gap between traffic while crossing (Rahimian
et al., 2018). Technological evaluations focused on the technologi-
cal side of the interventions, such as accuracy of obstacle detection,
energy efficiency in terms of phone battery life, the latency of
obstacles and distracted pedestrian detection, and timeliness of
the warning message. User perceptions gauged user preferences
through surveys and questionnaires, as technology acceptance is
critical to ensure predicted benefits occur in practice (Kim et al.,
2018). These three metrics provide an overall assessment of the
efficacy of interventions to reduce risks related to pedestrian
phone distraction and are therefore used as the basis for evaluating
the impact of these different interventions.

Table 1 displays the 42 studies included in the final analysis. Of
these 42 studies, 7 were infrastructure-based interventions and
highlighted in blue (two papers by Larue et al. (2021) and Larue
and Watling (2021) and were combined because they used the
same sample. Thirty-two articles were related to road user devices
and presented in variations of yellow. Nineteen studies (high-
lighted in dark yellow) were related to phone apps using phone
sensors to detect danger and provide a warning message. Four
studies (highlighted in light yellow) considered external sensors
such as ultrasonic and infrared sensors attached with the phone
for danger detection and phone apps for warning. Two studies
(highlighted in the color cream) utilized beacon technology for
positioning the distracted pedestrian and provided a warning on
the mobile phone. Three studies (highlighted in beige), and two
papers by Rahimian et al. (2018) and Rahimian et al. (2016), were
combined because they used the same sample used V2P technol-
ogy for danger detection and provided a warning on the mobile
phone. Four studies (highlighted in green) used external road user
devices for danger detection and warning, and one study (high-

Fig. 2. Key interventions for each category (interventions with blue, yellow, and green borders were considered in different studies, whereas interventions with gray borders
at the bottom did not evaluate in any studies except one study related to the campaign).
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lighted in grey) considered public awareness as an intervention.
The effectiveness of interventions was categorized as behavior
evaluation, technology evaluation, and user acceptance (Table 1).

3.1. Studies’ characteristics

Articles considered in this review were primarily experimental
(Fig. 4). Almost 50% of studies were conducted in a laboratory or
inside a university campus in a controlled environment. Laboratory
studies that utilized a virtual environment to simulate the inter-
sections are categorized as a virtual environment in Fig. 4 (Chen
et al., 2012; Gruenefeld et al., 2018; Rahimian et al., 2016;
Rahimian et al., 2018; Schwebel et al., 2017; Sobhani & Farooq,

2018). In some cases, treadmills were used to offer a walking expe-
rience (Gruenefeld et al., 2018; Kim et al., 2021; Marsalia et al.,
2016). And 41% (16 articles) experimented in the real environment
outside, such as at intersections, rail crossings, and busy roads. A
few studies occurred in both the laboratory and outdoor environ-
ments (Jain, 2015; Schwebel et al., 2017), while three studies did
not identify the experiment locations.

The study designs considered in this review were within-
subjects designs, between-subjects designs, observational studies,
and technology performance studies. Within-subjects designs con-
sidered control conditions (i.e., without distraction or without
intervention), with distraction and with intervention, and com-
pared the effect of intervention in a particular group of people

Fig. 3. The pie charts indicate the percentage of studies with location of experiment, experiment environment, participants number, identification of mobile phone use, and
technology for danger detection. The bar graphs show (considering duplication of studies in multiple categories) distraction types and warning types considered.
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(Goh et al., 2020; Kim et al., 2021; Larue & Watling, 2021). On the
other hand, between-subjects designs considered the same condi-
tion as the within-subjects design but considered a different group
of people for each condition (Rahimian et al., 2018). Moreover,
observational studies considered the pre and post effect of their
intervention and, in some cases, follow-up after four months
(Barin et al., 2018) or five months (Schwebel et al., 2017). Finally,
technology performance studies mostly related to the mobile
phone app based interventions and focused on an experiment with

a particular technological characteristic (e.g., object detection
accuracy, battery life etc.) and determining the technological effi-
ciency (Kang & Han, 2020; Zhuang & Fang, 2020).

3.2. Demographics

Among the 42 studies, 14 studies were conducted with under-
graduate, postgraduate, or college students (Kang & Han, 2020;
Larue & Watling, 2021; Rahimian et al., 2016; Rahimian et al.,

Table 1
Details of the reviewed studies, including demographics, study setting, distraction andwarning types, mobile phone use detection and effectiveness of the intervention
(See above-mentioned references for further information).
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Larue and 

Watling 

(2021)

N=34,

mean 

age: 33.6

Within-

subjects design

V,
A

V,
A,
B

No √ - √

Kim et al. 

(2021)

N= 38,

mean age 

23.8

Within-

subjects design

V,
A

V No √ - -

Larue et 

al. (2020)

N=24,

mean age

30.4

Within-

subjects design

V V No √ - -

Barin et 

al. (2018)

N=11,53

3

Observational 

study (pre-post 

intervention)

V,
A

V No √ - -

Sobhani

and

Farooq

(2018)

N= 42,

age

range 18-

45

Between-

subjects design

V V No √ - -

Sobhani et 

al. (2017)

N= 20,

age-

range 20-

45

Within-

subjects design

V V Yes √ - -

(continued on next page)
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Table 1 (continued)
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Kang and 

Han

(2020)

N= 20, 

age-

range 22-

32

Technology 

performance 

study

V V,
A,
T

No - √ √

Won et al. 

(2020)

N= 1 Technology 

performance 

study

V NS Yes - √ -

Zhuang

and Fang 

(2020)

N= 20 Technology 

performance 

study

V V,
T

Yes - √ -

Holländer 

et al. 

(2020)

N= 24, 

age

range 19-

36

Within-

subjects design

V V Yes √ - √

Malathy et 

al. (2019)

N/A NS NS NS No - √ -

Jain and 

Gruteser 

(2019)

N= 9 Technology 

performance 

study

V NS No - √ -

Sun et al. 

(2019)

N= 100 Technology 

performance 

study

NS T No - √ -

Ou et al. 

(2019)

N= 25, 

age-

range 18-

30

Technology 

performance 

study

V V No - √ -

Kang et al. 

(2019)

N= 20, 

age-

range 21-

30

Technology 

performance 

study

V V,
A,
T

No - - √

Tung and 

Shin

(2018)

N= 21 Technology 

performance 

study

NS A Yes - √ √

Kim et al. 

(2018)

N= 74, 

age-

range 20-

39

User study V V,
A

No - - √
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Table 1 (continued)
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(2019)
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No - √ -
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V A Yes - √ -
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study
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Schwebel

et al. 

(2021)

N= 437, 

age-

range 17 

years or 

more

Cross over 

design and 

Observational 

study (pre-post 

intervention)

V,
A

V,
A,
B

Yes √ - √

Goh et al. 

(2020)

N= 73, 

age-

Within-

subjects design

V V,
A,
T

Yes √ √ √
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2018; Sobhani et al., 2017). Nine articles did not mention partici-
pant type or demographic information but indicated the sample
size. Five articles did not mention the participants’ number and
type (Kalra et al., 2017; Liu et al., 2015; Malathy et al., 2019;
Wang et al., 2012; Xia et al., 2019).

Eight studies considered only young adults (i.e., 18–30 years).
Ten studies did not include age as a participation criterion (Kang
& Han, 2020; Larue & Watling, 2021). One study included eight
children participants and four young adults (Barin et al., 2018).
Twenty-three studies did not report participants’ age.

3.3. Distraction types

Different types of distraction were considered in the various
studies. Visual distraction was the most prominent (e.g., texting,
browsing, playing a video game, and watching a video; Goh
et al., 2020; Hwang et al., 2017; Larue & Watling, 2021;
Schwebel et al., 2017), followed by auditory distractions (e.g., lis-
tening to music and responding to an auditory task; Barin et al.,
2018; Larue & Watling, 2021; Larue et al., 2020; Ou et al., 2019),
and talking (Barin et al., 2018; Violano et al., 2015). However, stud-
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(2018)
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d et al. 

(2018)

N= 8, 

age-

range 22-
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Technology 

performance 

study

V V No - - √

Kalra et 

al. (2017)

N/A NS NS T No - √ -

Marsalia 

et al. 

(2016)

N= 27, 

age-

range 20-

39

Within-

subjects design

V,
A

T No √ √ -

Kumar et 
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Observational 
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1Distraction types considered were categorised as visual, auditory and not specified and indicated as ‘‘V”, ‘‘A”, and ‘‘NS” respectively.
2Warning types are ‘‘V” for visual, ‘‘A” for auditory, ‘‘T” for tactile, and ‘‘NS” for not specified (i.e., studies mentioned that an alert was provided without further
details), and ‘‘B” for both types (i.e., visual and auditory).
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ies focused on the intervention techniques mostly considered
visual or auditory distraction when experimenting rather than con-
sidering cognitive distraction. For that reason, cognitive distraction
was considered out of scope for this review.

3.4. Effectiveness

There are discrepancies in the level of assessment of the differ-
ent interventions. Infrastructural interventions mainly focus on
behavioral evaluation (e.g., Larue et al., 2021; Sobhani & Farooq,
2018), while technology based interventions primarily focus on
evaluating the technology itself (e.g., Sun et al., 2019; Won et al.,
2020). Fig. 5 presents the evaluation types currently reported in
the literature for the different types of interventions. Details for
each intervention type are then presented in the following sub-
sections.

3.4.1. Infrastructure-based interventions
The evaluation of infrastructure-based interventions focused on

visibility in terms of easily noticed by pedestrians or not, and
behavior change. Infrastructure-based interventions can be catego-
rized into two types. The first impacts pedestrian behavior by pro-
viding a warning reminder such as in-ground flashing lights or
safety road marking. In contrast, the second ensures pedestrian
safety through physical structure changes such as road separation
or safety barriers. Since no studies used this latter type of interven-
tion, it was omitted from the scope of the study. Larue and Watling
(2021) found that in-ground LEDs increased the frequency of
checking rail tracks from 70% (without LEDs) to 78% (with LEDs)
during auditory distraction, and established that the LED detection
rate was 90% for distracted pedestrians, and easily recognizable in
a horizontal plane, in-ground, compared to the vertical position of
wall-mounted, while walking (Larue et al., 2020). However, Kim
et al. (2021) found that the use of LEDs decreased participant
detection rates of identifying LEDs when visual cues showed up
by 74.1% and increased the reaction time, or response time, after
noticing the LEDs from 0.90 s to 1.15 s while experimenting with
and without LEDs. Sobhani et al. (2017) indicated that pedestrians
took a longer time to choose safer gaps for crossing safely and took

more time to check traffic at unsignalised intersections with in-
ground LEDs.

Barin et al. (2018) found that painted crosswalks with safety
messages initially reduced phone distraction, but the effects were
short-term, with behavior returning to normal after four months.
Violano et al. (2015) indicated that painted crosswalks with a
safety message were not adequate for changing the distracted
behavior of the mass community.

3.4.2. Device-based interventions
3.4.2.1. Mobile phone. Phone based interventions focused mainly on
technological evaluation of obstacle detection accuracy, battery
consumption due to use of the app, and timeliness of warning
and obstacle detection, with limited research on behavior change
and user acceptance. Fig. 6 indicates the obstacle detection accu-
racy for the mobile phone app-based interventions and used sen-
sors for detecting the obstacles. Fig. 6 also indicates that using a
camera sensor is more prominent for detecting obstacles than
other types of sensors, with an average obstacle detection accuracy
of more than 80%. Kang et al. (2019) developed a phone camera
based obstacle detection technique, identified obstacles using the
feature point extraction method, and reported their app could
detect static obstacles with the precision of 91%. Jain and
Gruteser (2019) also developed a phone camera based obstacle
detection method using the material recognition technique called
TerraFirma and warned distracted pedestrians when they entered
roads from the sidewalks, and found it could detect sidewalks with
a false positive rate of 1%. Sun et al. (2019) also developed a phone
camera-based sidewalk detection technique capturing the side-
walk images, compared them with the wide-view dataset called
PESID and identified the user movement using the phone sensors
of a gyroscope, gravity sensor, and GPS to indicate their system
could detect sidewalks and static objects with an accuracy of
70%. The app developed by Tung and Shin (2018) worked using
phone sensors and followed the module of the motion detector (ac-
celerometer for user movement), acoustic detector (speakers and
microphones for measuring the distance between obstacle and
user), visual detector (rear camera for obstacle detection) and the
fusion algorithm (vibration motor for increasing the efficiency),
established these tasks were all interrelated. Malathy et al.

Fig. 4. Percentage of studies conducted in different experimental environments. Note that percentages are not provided as numbers for multiple parts of the figure. Can you
fix it. Use the word document attached in the email.
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(2019) developed an app with an accuracy of 95%, based on the
Tung and Shin (2018) framework to identify static obstacles. A
mobile phone camera based sidewalk detection technique devel-
oped by Tang et al. (2016) captured the image of the sidewalk
using a phone camera, classified those images using the KNN and
Bayes Classifier, and found that detection accuracy increased with

the frequency of the detection algorithm where if the algorithm
runs 2 or 3 times, detection accuracy will increase simultaneously.
Hwang et al. (2016) also developed a sidewalk detection technique
using the rear phone camera, a feature extraction technique for
image classification, and context recognition and that technique
was used to identify sidewalks, roadways, and intersections and

Fig. 6. Obstacle detection accuracy considered in mobile phone app based studies.

Fig. 5. Effectiveness of interventions with three distinctive dimensions examined in different studies based on intervention types.
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indicated their technique could detect obstacles at 80% accuracy.
Foerster et al. (2014) also examined the phone’s rear camera for
obstacle detection and analyzed the image background (i.e.,
smartphone-based pixel scanning process) to determine the dis-
tance between the obstacle and the user before sending an alert.
They found their system could identify static obstacles with an
accuracy of 85%. Wang et al. (2012) developed a technique using
the phone’s rear camera to capture images of the front and rear
views of vehicles and classified tying with the built-in dataset
using the machine learning approach. The phone app then pro-
vided a warning based on vehicle detection and identification of
auditory distraction. They indicated their technology could detect
the front and rear view of cars with a true positive rate of 77%
and 76%, respectively. Wang et al. (2016) considered a GPS sensor
for identifying overpass, underpass, and traffic lights using the
crowdsensing technique. Chen et al. (2012) developed a web-
based vulnerable location identification app that worked with
the help of Google Maps, API and Google Web Toolkit SDK to iden-
tify the intersection locations and risk factors (i.e., previous acci-
dent data) before providing a warning.

In some studies, obstacles were detected using external sensors
and warnings were provided to the mobile phone. The external
sensors of a headset mounted audio sensor used by Xia et al.
(2019) could detect moving cars with 62–78% accuracy. Wen
et al. (2015) developed mobile phone app-based intervention used
a three-step method: first, identified pedestrians’ phone use by
checking the phone screen status, whether the phone screen was
on or off; the second step was danger detection, conducted using
an ultrasonic sensor; and finally, a warning based on user aware-
ness detection, phone holding pattern, and walking speed. Liu
et al. (2016) followed this same technique, instead using an infra-
red sensor rather than the ultrasonic sensor. Results showed an
ultrasonic sensor could detect obstacles (i.e., sudden change of
ground) with an accuracy of 94%, while an infrared sensor could
detect sudden ground change with an accuracy of 80%. Jain et al.
(2015) found their technology using some obstacle detection tech-
niques with shoe sensors could detect sidewalks with an accuracy
of 90% and a false positive rate of 0.7%.

Some studies used the timeliness of the app warning system to
alert distracted pedestrians as a dimension for technological eval-
uation identifying distracted pedestrians and latency of warning.
Schwebel et al. (2021) used Bluetooth beacon technology for
pedestrian position detection, and the K-Nearest Neighbour
(KNN) algorithm detected pedestrian phone use before delivering
a warning. Goh et al. (2020) also developed a situational-
awareness-based warning technique using a Bluetooth beacon for
identifying the pedestrian location and collected other sensor data
(e.g., accelerometer and barometer), and checked the phone status
before warning. Won et al. (2020) improved their GPS location
identification module using a Hidden Markov model (HMM), iden-
tified the pedestrian phone viewing data from the accelerometer
reading, and developed communication between phone users and
cars using Wi-Fi direct. They found their app could detect dis-
tracted pedestrians with an accuracy of 90% and provided a warn-
ing with an error rate of 1.6 sec. Zhuang and Fang (2020) also used
GPS sensors to identify the vulnerable locations of the pedestrian,
accelerometer and gyroscope sensor were used to identify the
pedestrians’ phone orientation, and proximity sensor data were
used to measure the distance between an obstacle and user before
warning. They also indicated their app could identify smartphone
zombies with more than 90% accuracy. Li et al. (2018) developed
a phone camera based facial recognition technology that could
identify distracted pedestrians who looked at their phone for more
than 6 secs, with a true positive rate of 91%. Tang et al. (2016)
developed a system to alert distracted walkers with an average
accuracy up to 98%. Zhou (2015) developed a warning technique

considering the pedestrians’ gait pattern using accelerometer and
gyroscope sensors, and a warning was provided based on the
phone usage detection and found their intervention technique
could warn distracted pedestrians with a false negative rate of less
than 3%; and Wen et al. (2015) showed their app could reduce
unnecessary warning alarm by 90%.

Phone battery consumption ratewas also used in some studies to
evaluate phone app effectiveness. The energy efficiency of the app
depends on phone sensors (e.g., accelerometer, gyroscope, magne-
tometer, GPS, and proximity sensor), cameras, microphones, speak-
ers, and system computation (Abdesslem et al., 2009). Won et al.
(2020) developed an app with an energy efficiency of 52%, while
Zhuang and Fang (2020) claimed their system consumed 1% of bat-
tery energy per hour. Tung and Shin (2018) experimented with an
app and found it consumed 8% of battery energy per hour. Liu et al.
(2016) andWen et al. (2015) experimentedwith infrared and ultra-
sonic sensors, respectively, in conjunction with the mobile phone
app and found these systems only consumed 20% of battery energy
compared to other technologies based on the mobile phone.

Several warning techniques, such as a pop-up window, screen
border color change, screen color transparency, audio warning,
vibration, and replicating a traffic light on the phone screen were
used in different studies. The suitability and usability of these
warning categories depend on participant perceptions. Holländer
et al. (2020) found that sidebar warning techniques achieved a suc-
cess rate of 85% after 144 trials followed by a notification message.
Kim et al. (2018) found that 74% of participants considered flashing
screen borders unobstructive, followed by vibration (67%). Kim
et al. (2015) used Dedicated Short-Range Communication (DSRC)
and 4G-LTE for vehicle to pedestrian communication before pro-
viding warning to distracted pedestrians and indicated the red
warning bar was more effective than the yellow one, and partici-
pants preferred 100% or 50% transparent screen with warning mes-
sages rather than no transparency.

Alternatively, Kang et al. (2019) found that auditory (alert
sound) and tactile (vibration) warnings were the most effective
for visual distraction. Schwebel et al. (2021) also showed that using
mobile phone based interventions reduced distraction by 64% ini-
tially, which increased again during the post-intervention stage
without warning. Rahimian et al. (2018) and Rahimian et al.
(2016) found that auditory warnings on the phone reduced the
time crossing a road, helped to find a suitable gap between traffic
to cross a road, and increased the mean gap chosen time in an
unsignalised intersection.

3.4.2.2. External device-based interventions. External device based
intervention techniques work on using external devices for obsta-
cle detection and warning. Marsalia et al. (2016) developed an
intervention technique with a vibrating helmet, with results show-
ing the false alarm rate was 30.3% for providing a warning alarm.
Kalra et al. (2017) developed a solar cap that could detect objects
effectively and provided a warning, while Kumar et al. (2015) also
developed a smart cap that could detect obstacles with a 96% effi-
ciency and motor power consumption while working was 471mW.
Gruenefeld et al. (2018) developed sunglasses with LED strips and
found participants preferred moving LEDs compared with static
LEDs.

3.4.3. Legislation and public awareness
Countermeasures related to changes in legislation and public

awareness campaigns are not mentioned in the literature. Only
Schwebel et al. (2017) conducted an experiment considering a
public awareness campaign using face-to-face and electronic com-
munication and promoted the slogan ‘‘Pocket and Walk It.” They
also created a virtual reality environment to explain the risk of dis-
tracted walking. The post-intervention effect was evaluated after
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10 weeks, and six months after the campaign, through a survey.
They found it caused some change in behavior intentions in self-
reported cases. However, at the community level, it did not cause
significant behavior change. None of the studies considers the leg-
islation and public awareness as a mode of intervention, and it is
currently not possible to report on their effectiveness.

3.5. Effect size

Effect sizes of well-designed studies were considered using
Cohen’s d statistic. This section reports effect sizes as reported in
the literature, or as estimated from the information reported in
the literature. The directionality of the effect is recorded in the sign
of Cohen’s d, with positive values for positive effects of the inter-
vention, and negative values otherwise.

Larue andWatling (2021) used a within-subjects design to eval-
uate the effectivity of in-ground flashing lights, audiowarnings, and
both for mobile phone distracted pedestrians in rail crossing envi-
ronments using Technology Acceptance Model. They found that
in-ground flashing lights have a large effect size (1.22) compared
to the audio warning (0.70) and both together (0.22) for actual
behavior change (i.e., look for the trainbefore starting crossingwhen
distracted). Kim et al. (2021) also used a within-subjects design.
They found that visual distraction reduced the detection of visual
cues with a large effect size of negative value 1.43 and increased
the reaction time of detecting the visual cues with a large effect of
negative 1.28. Larue et al. (2020) conducted a laboratory-based
study using a within-subjects design and indicated that the detec-
tion of LED lights was higher in walking conditions than in standing
conditions when visually distracted, with a large effect size of 1.74.
Furthermore, Sobhani and Farooq (2018) conducted a between-
subjects design study in a virtual reality environment and founddis-
tracted pedestrians with an alert wait more, compared to the
distraction-only condition, with a very small effect size (0.004)
and decreased the number of head turns with an effect size of nega-
tive 0.2. Two of the device-based studies also considered effect size.
For example, Rahimian et al. (2018) conducted a between-subjects
design in a virtual reality environment considering an unsignalized
intersection and found that the waiting time before start crossing
increased from the distraction condition with a large effect size of
0.83, aswell as themeangap taken timealso increasedwith aneffect
size of 0.8.However, road crossing timedecreasedwith a small effect
size of 0.3. Chen et al. (2012) also conducted a between-subjects
design in a virtual reality environment considering a signalized
intersection. They found thatwaiting timeandnumberof head turns
before starting crossing were higher in warning conditions than in
the only distraction condition with an effect size of more than one.

4. Discussion

This systematic review aimed to consolidate the literature’s
current findings regarding the effectiveness of the interventions
currently developed, tested, and implemented to mitigate the risks
of mobile phone use as a pedestrian. This review found three types
of interventions: interventions based on the deployment of new
infrastructure; interventions based on technological capabilities
of the devices that pedestrians have when they walk; and legisla-
tive and awareness campaigns. Overall, the evaluation of such
interventions is highly variable between studies, limiting the abil-
ity to evaluate the effects of these different interventions on mul-
tiple dimensions and limiting the ability to compare such effects.
Studies evaluating infrastructure-based interventions focused
mainly on behavior change, whereas technology-based interven-
tions focused on technological capability. Legislation and public
awareness approaches have not been largely evaluated.

4.1. Limited evaluations of the effectiveness

This review study found that the interventions based on mobile
phone apps were evaluated in terms of their ability to detect obsta-
cles. Such research primarily reported detection accuracy, often
failing to consider effects on pedestrian behavior. On the other
hand, infrastructure-based interventions focused mainly on behav-
ioral change, with limited focus on technology accuracy. Conse-
quently, each intervention is evaluated on a particular
dimension, but without a comprehensive evaluation of its effects,
or the likelihood that an intervention would be viable as an
approach to reduce pedestrian distraction risk.

This review has also identified an extensive variability in
assessing intervention effectiveness, even within a particular
dimension. Mobile phone app related interventions primarily
focused on phone cameras for obstacle detection and found com-
paratively higher efficiency. The outcomes from these techniques
(Sun et al., 2019; Wang et al., 2012) largely depend on the image
database and consume more battery energy due to capturing
images without considering object type; whereas phone cameras
for material recognition (Jain & Gruteser, 2019) and object color
and texture identification (Hwang et al., 2016) can be more energy
efficient. Despite such promising results, Kim et al. (2018) high-
lighted that the vision-based approach using a phone camera is
challenging for detecting the distance between the obstacle and
the user, suggesting that such approaches may face significant
challenges before successful deployment in the field. While the
V2P technology seems promising, it is also challenging to imple-
ment because it largely depends on vehicle properties (such as
speed, distance, and communication devices, and technological
development) in terms of introducing new sensors or developing
autonomous vehicles. The sensor-based technologies can be imple-
mented effectively when we move entirely to the automated vehi-
cle era.

In some cases, the mobile phone app-related technologies used
GPS and Bluetooth beacon technology to identify vulnerable loca-
tions. While these two approaches can be used for providing the
functionalities necessary for a distracted pedestrian intervention,
they show different performances in terms of energy efficiency,
cost, and localization precision. With only a few milliseconds of
transaction latency, Bluetooth beacon technology can identify
pedestrian location immediately and precisely with a low power
consumption. On the other hand, GPS provides less precision for
the localization of the pedestrian and a higher phone battery con-
sumption rate, which suggests that that option may lead to missed
or delayed warnings. It is therefore unlikely that a technical solu-
tion based on the pedestrian phone would be viable, without the
addition of some infrastructure at intersections. Overall, while
such technologies look promising, only a few studies exceeded
90% accuracy, which arguably would be the minimum for an inter-
vention to be perceived as useful by pedestrians.

Given that the various interventions were evaluated based on
different parameters, it is challenging to compare the effects of dif-
ferent interventions and identify the most promising approach. It is
crucial that evaluations can be compared given the large number of
interventions currently developed and trialed. This range of inter-
ventions covers the technology being used but also the type of
message provided to road users. In order to consolidate the
research, it is necessary to develop a set of metrics to evaluate
the effectiveness of interventions. Such metrics need to be related
to the risky behavior needing to be mitigated. However, the param-
eters indicated in different studies can be considered the founda-
tion for the future modification and development of such
interventions for an evaluation taking into account the multiple
dimensions required when evaluating an intervention.

M.E. Arafat, Grégoire S. Larue and S.G. Dehkordi Journal of Safety Research 84 (2023) 330–346

342



Finally, the intervention techniques related to legislation and
public awareness campaigns may have been implemented in dif-
ferent parts of the world. However, the effects of implementing
such countermeasure techniques were only considered in one
study conducted by Schwebel et al. (2017), except that there has
been no scientific review regarding the impact of such interven-
tions for mobile phone distracted pedestrians. Such an approach
is widely used in road safety (Mwakalonge et al., 2015; Osborne
et al., 2020) and will likely result in positive changes, as previously
shown by the implication of fines having a positive effect on dis-
tracted pedestrians (Mwakalonge et al., 2015). In addition to pub-
licity campaigns (Savolainen et al., 2011), road safety campaigns
and social advertisements showed positive effects for phone dis-
tracted pedestrians. Wundersitz and Hutchinson (2011) and
Schwebel et al. (2017) also found behavior change in self-
reported cases after conducting a public awareness campaign,
making it critical to evaluate such interventions to understand
whether these traditional approaches are also relevant to the
emerging issue of pedestrian distraction.

4.2. Limited scope of evaluations

The age group reflected in most articles was the young adult
population aged 18–29 years. Very few studies considered other
age groups. While mobile phone distraction emerged as an issue
with younger adults, such devices are now pervasive and used by
all age groups, including when walking as a pedestrian (Hou
et al., 2021; Lennon et al., 2017). This suggests a need for research
to expand the age of participants included in evaluations of inter-
ventions for distracted pedestrians.

Further, the majority of the studies considered a limited num-
ber of participants (i.e., 20–40 participants) and, in some cases,
experimented with single-digit (i.e., 1 to 10) participants
(Gruenefeld et al., 2018; Hwang et al., 2016; Jain & Gruteser,
2019; Tang et al., 2016; Won et al., 2020). Almost half the experi-
ments were conducted on a university campus, either in the labo-
ratory or controlled outdoor area. The participants were primarily
undergraduates, postgraduate students, or staff. Overall, such con-
ditions are unlikely to be representative of a real-world scenario,
and further research with ecological validity is necessary to con-
firm whether the positive effects found in the literature are likely
to translate into improved behavior and reduced risk in the field.

The distractions considered in all the studies were either visual
(texting, browsing, playing a video game) or auditory (listening to
music, talking) or, in some cases, both at the same time (Schwebel
et al., 2021) and interventions based on the distraction type. The
infrastructure-related warning system primarily suggested either
visual (flashing light) or auditory warning. In the case of mobile
app warning systems, alerts could be visual (pop up window, bor-
der flashing), auditory (alert signal, siren) or tactile (vibration). If
the distraction occurs due to visual activity, it indicates visual
intervention and the same for auditory distraction. Studies mostly
considered the effect of auditory warning at the time of visual dis-
traction or vice versa, whereas Liu et al. (2015) and Schwebel et al.
(2021) considered both types of distraction simultaneously. Liu
et al. (2015) evaluated both types of distraction simultaneously
and implemented the visual and auditory warning together to
compare the effectiveness of the combined effect, and Schwebel
et al. (2021) measured the level of distraction and provided both
warnings at the same time if both types of distraction were pre-
sent. Despite this, none of the studies considered the impact of
warnings in cases where both types of distraction occurred.

The cost of implementing these interventions in the real world
must be determined. However, no researcher has done so except
Xia et al. (2019) who developed a device called PAWS, a wearable
headset modifiedwith a BLE transceiver, mics, amplifiers, and regu-

lators to identify the surrounding car horn and tire noises and alert
distracted pedestrians. The estimated cost was US$18–20. Although
there is limited research about cost, the literature does identify that
infrastructure-related interventions (e.g., in-ground flashing lights,
road marking) will cost more compared to mobile phone app based
interventions because these types of interventions are based on a
mobile phone’s built-in sensors (e.g., camera, accelerometer, gyro-
scope and proximity sensor; Won et al., 2020; Zhuang & Fang,
2020). Costs may vary due to use of external sensors, vehicle-to-
pedestrian communication devices, and pedestrian-to-
infrastructure communication devices. Liu et al. (2016) considered
infraredsensors, andWenet al. (2015) consideredultrasonic sensors
for obstacle detection or a Bluetooth beacon for identifying critical
locations (Schwebel et al., 2021) before providing a warning to dis-
tracted pedestrians. These external sensors will incur extra costs
rather than using built-in phone sensors. External devices such as
helmets, smart caps, and sunglasses with LED strips will also cost
more depending on material type and additional equipment
requirements. Therefore, it can be concluded that although none of
the studies considered the economic perspective, from a general
point of view, it can be predicted that infrastructure-related inter-
ventions will cost more to implement compared to phone app and
external device-based interventions.

The studies considered for the review were either conducted by
engineers, computer scientists, or behavioral scientists. In the
majority of the cases, research conducted by engineers or com-
puter scientists focused on the technological development of the
intervention techniques, whereas behavior scientists focused on
behavior evaluation. However, the common goal is to introduce
an intervention technique to ensure distracted pedestrian safety.
That goal can be achieved by conducting multidisciplinary research
and collaboration between different disciplines, methods, and the-
ories. The collaboration between different groups of people from
different fields can make discoveries or find new solutions to the
problem at stake (Proctor & Vu, 2019).

4.3. Relevance of the evaluations to distraction risks

This review has identified gaps between the current research on
interventions for distracted pedestrians and the effects of distrac-
tion as reported in the literature.

Initially, significant technological improvements have occurred
in intervention techniques. The research is then incremental from
phone sensors to V2P technology and, finally, Bluetooth beacon
technology. We are moving towards a new public health challenge
that was not an issue two or three decades ago. With the advance-
ment of technology, numerous interventions have been intro-
duced, but sometimes such technology fails to consider the type
of risks that need to be targeted. This results in the development
of interventions based on technical capability rather than pedes-
trian needs. For example, obstacle detection, pedestrian phone
use status check, and pedestrian movement identification are par-
ticularly important to reduce false alarms. However, focusing on
pedestrian behavioral change after implementing such an inter-
vention is essential rather than purely focusing on technological
development. This is particularly apparent in interventions being
developed for detecting obstacles. Indeed, such evaluations often
focus on static obstacle detection (Kang & Han, 2020; Kang et al.,
2019; Malathy et al., 2019; Sun et al., 2019), sidewalk detection,
and sudden ground-level change detection (Ashqar et al., 2019;
Goh et al., 2020). Few studies considered the detection of moving
objects such as moving cars (Wang et al., 2012; Xia et al., 2019).
That also indicates that the majority of the study considers dis-
tracted pedestrians on sidewalks, or in off-road environments,
rather than on roadways. Even when trying to detect vehicles, such
moving vehicle detection approaches focus on detecting the front
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and back of vehicles. However, it is necessary to acknowledge that
a large portion of the risk to a pedestrian is from a vehicle
approaching the pedestrian perpendicularly at road intersections.
Most of the time, such evaluations focus on detecting the vehicle,
failing to consider the vehicle’s location, its trajectory compared
to the pedestrian, and the likelihood of a crash occurring. Overall,
such approaches are found effective in simple conditions compared
to what would occur on the road and are therefore prototypes
rather than technologies ready for deployment.

Studies related to the interventions considered two types of dis-
traction such as visual and auditory during the experiment. How-
ever, it is also necessary to evaluate the effect of the intervention
during cognitive distraction activities, which reduce situational
awareness behavior (Erkan, 2017), as required intervention tech-
niques may be different. The findings related to the intervention
could also be different if the distraction task (e.g., visual or audi-
tory) demands more or less cognitive attention.

The current evaluations, while providing high accuracy levels,
focus on metrics that are not the most relevant to a safety–critical
situation. Indeed, it is crucial to identify the vehicle’s position com-
pared to the pedestrian, their likely collision, and the timing to pro-
vide awarning. Theobstacledetection techniquesmainly focusedon
the phone camera sensors and other sensors and identified the dan-
gerous locations by using GPS sensors or Bluetooth beacons. How-
ever, which technique (i.e., obstacle detection or danger location
detection) was more effective was not evaluated in any study and
comparison between different phone sensors would also need to
be evaluated. The technology-related interventions that depend on
vehicle-to-pedestrian communication largely depend on vehicle
properties (i.e., speed, distance, and communication devices). It is
also unlikely that such communication would encompass all vehi-
cles and pedestrians. Therefore, V2P communication-based inter-
ventions largely rely on the level of penetration of the technology,
which significantly impacts the performance of the system. For that
reason, it may sometimes be preferable to rely on infrastructure-
related interventions, though these are not as tailored to the pedes-
trian specific conditions and have some limitations as well, such as
not considering phone distraction before warning and targeting all
users of an intersection. All these are necessary to ensure that the
technology would be useful and accepted by road users, which is
required if such technologies are to result in reduced risks.

Articles evaluating behavioral change found pedestrian behav-
ior change after implementing the interventions. However, inter-
ventions do not necessarily focus on the intersections known to
result in risks when being distracted by a mobile device or evalu-
ation metrics relevant to the type of impairments observed at such
intersections. Such interventions also tend to provide a warning
independently of the distraction of the pedestrian, potentially lead-
ing to large amounts of warning messages irrelevant to the road
user. This likely limits the relevance of the effects reported in the
literature, most probably resulting in overestimating the benefits
of such interventions. It is also necessary to know why some
research only found short term effects (Barin et al., 2018).

Further work is, therefore, necessary to ensure interventions are
developed based on known risks for pedestrian distraction rather
than on the capabilities of the technology. The evaluation of such
technologies (on the technology side) should also focus on metrics
relevant to an effective warning message being provided to the
road user and should examine the long-term effects of such inter-
ventions. Research on the cost-benefit ratio of such interventions is
also required to ensure that such intervention approaches are
viable. It is also essential to conduct a comparison study between
infrastructure-related interventions and road-user-device related
interventions considering the randomized design or cross over-
design to assess which type of intervention can be utilized in the
real world for phone-distracted-pedestrian safety.

4.4. Limitations

Given the broad field, and huge number of advancements in
intervention techniques, creating a concise document, synthesis-
ing, and synopsis of all data is challenging. To make the process
achievable, the considered timeframe was restricted to 10 years.
This should be considered as a limitation since studies outside this
time frame were omitted. However, most interventions targeting
pedestrian distraction are recent, and it is unlikely that this crite-
rion resulted in missing important interventions.

This systematic review only considered articles published in
English. This exclusion criterion implies that interventions trialed
in non-English speaking countries, or those not published in Eng-
lish, were not identified. Moreover, four databases were used in
this review. While these databases are well recognized in this
research area, some intervention evaluations may have been pre-
sent in other databases and may have been missed. However, it
is unlikely that major interventions would have been missed, as
references cited in the selected articles were examined to ensure
no relevant interventions were missed. Finally, only publically
available peer-reviewed publications were considered. A number
of the trialed interventions were likely evaluated by transport
agencies or companies trialing such interventions. However, such
information is not available for analysis and cannot be included
in this review. Also, the scientific merits of such evaluations could
be difficult to assess given the lack of peer-review of such
evaluations.

5. Conclusion

Mobile phones can cause a distraction to road users, leading to
serious road injuries. This systematic review showed current inter-
ventions are primarily focused on infrastructure, road user devices,
legislation, and public awareness. The evaluation of these interven-
tions covered three dimensions: effects on behavior; evaluation of
the capabilities of the technology; and user acceptance. The
infrastructure-related interventions mainly focused on behavior
evaluation. These studies found such interventions increase visual
screening before crossing and help with choosing a safe gap. Alter-
natively, road-user devices focused on technology evaluation and,
in some cases, user acceptance. Road-user devices currently help
detect static and dynamic objects (e.g., cars) with more than 80%
efficiency. Some interventions can also detect whether pedestrians
are using their mobile phones, resulting in fewer false alarms. User
acceptance highlights participants’ preference for particular inter-
ventions, such as adding flashing borders on mobile phone screens,
considered less obstructive than phone vibrations. However, it is
clear there is a lack of comprehensive assessments of these inter-
ventions, and some interventions have not been extensively evalu-
ated (e.g., legislation and public awareness). This review highlights
the gap in knowledge between different intervention techniques
for mobile phone distracted pedestrians and the intervention tech-
niques’ effectiveness. Such findings make it challenging to compare
the safety benefits of each type of intervention. In turn, this leads
to limited information currently available to identify the most
effective approach to recommend to policymakers for implementa-
tion in the field. Thus, substantial opportunity for future research
to develop the most suitable type of intervention for mobile phone
distracted pedestrians is ensured.
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a b s t r a c t

Introduction: This paper presents a re-analysis of a previous study of the effects on accidents of technical
inspections of heavy vehicles in Norway and a replication of the study using more recent data. Method:
Increasing the number of technical inspections is associated with a reduction in the number of accidents.
Reducing the number of inspections is associated with an increase in the number of accidents. The rela-
tionship between changes in the number of inspections and changes in the number of accidents is well
described by means of logarithmic dose–response curves. Results: These curves show that inspections had
a larger effect on accidents in the recent period (2008–2020) than in the first period (1985–1997). Based
on recent data, a 20% increase in the number of inspections is associated with a 4–6% reduction in the
number of accidents. A 20% reduction of the number of inspections is associated with a 5–8% increase
in the number of accidents.
� 2022 The Author(s). Published by the National Safety Council and Elsevier Ltd. This is an open access

article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Heavy goods vehicles that have technical defects have a higher
rate of accident involvement than heavy goods vehicles that do not
have technical defects. Jones and Stein (1989) found a relative risk
of about 1.7, and a population attributable risk of 0.32, meaning
that by eliminating technical defects, the number of accidents
could be reduced by 32%. Teoh, Carter, Smith, and McCartt
(2017) found a relative risk of 3.1 and a population attributable risk
of 0.51. Technical defects are therefore an important risk factor for
heavy goods vehicles.

In accordance with EU Directive 2014/47, Norway has imple-
mented technical roadside inspections of heavy goods vehicles.
Vehicles are inspected by vehicle experts employed by the Public
Roads Administration. Vehicles are inspected in roadside inspec-
tion stations that have equipment for measuring, for example,
vehicle weight and braking performance. Defects are graded as
minor, major, or dangerous. A defect graded as dangerous results
in vehicle impoundment, that is, the vehicle is out of service until
the defect has been repaired.

The number of technical inspections varies from year to year
but has been between 0.8 and 1.2 per registered heavy goods vehi-
cle per year in recent years. Thus, on average, a heavy goods vehicle
can expect to be inspected about once per year. Elvik (2002) eval-
uated the effects on accidents of technical inspections carried out

in Norway between 1985 and 1997. He found a statistically non-
significant association between the number of inspections per
vehicle per year and accident rate. The association indicated that
by doubling the number of inspections, accident rate would decline
by 5–10%.

The statistical technique used by Elvik (2002) was ordinary
least-squares linear regression, using various indicators of accident
rate as dependent variable. Technical inspections, as well as other
variables, were measured in terms of annual percentage changes,
that is, increases or decreases from the year before. This approach
may have had low statistical power, resulting in non-significant
findings.

This paper has two objectives. The first is to re-analyze the
2002-study, using a more appropriate count regression model
(negative binomial regression). The second is to replicate the study,
by doing a similar analysis of data covering the years from 2008 to
2020.

2. Previous studies

The study published in 2002 (Elvik, 2002) is one of very few
studies of the effects on accidents of technical inspections of heavy
vehicles. Some studies, notably Jones and Stein (1989), Moses and
Savage (1992), and Teoh et al. (2017) have estimated the increase
in the risk of accidents associated with technical defects. These
studies suggest that by eliminating or reducing technical defects,
the number of accidents can be reduced. However, the studies
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say nothing about the type or intensity of technical inspections
needed to substantially reduce technical defects.

A Canadian study (Gou, Clément, Birikundavyi, Bellavigna-
Ladoux, & Abraham, 1999) estimated that technical defects con-
tributed to about 15% of accidents involving heavy goods vehicles.
An American study (Thakuriah, Yanos, Lee, & Sreenivasan, 2001)
found a weak tendency for vehicles that had many technical
defects when inspected to be more often involved in accidents
the following year, compared to vehicles that had no technical
defects when inspected. A recent Spanish study (Diaz Lopez,
2019) estimated that periodic motor-vehicle inspections prevent
about 7% of all injury accidents. This estimate, however, did not
include heavy goods vehicles.

Elvik (2002) estimated that doubling the number of roadside
technical inspections per vehicle could reduce the number of acci-
dents involving heavy vehicles (both buses and trucks) by about
7%. This estimate was associated with large uncertainty (95% con-
fidence interval from �18.4% to +5.1%).

3. Re-analysis of previous study

The data used in the study by Elvik (2002) are reproduced in
Table 1. The table does not include data on light vehicles, as these
are not used in the re-analysis presented in this paper. Heavy vehi-
cles include both buses and trucks.

To estimate the effect of technical inspections on the number of
accidents, a negative binomial regression model was developed.
The model was fitted in four stages. The first stage included only
the constant term and a term for technical inspections. In the next
three stages, other variables were added to the model. Estimated
coefficients are shown in Table 2.

The final model (model 4) contained four independent vari-
ables. With only 13 units of observation, it was not possible to
include more variables.

The coefficient for technical inspections was negative and sta-
tistically significant in all model specifications, suggesting that
inspections reduce the number of accidents. The final model
explained 94.75% of the systematic variation in the number of acci-
dents according to the Elvik-index of goodness-of-fit (Fridstrøm,
Ifver, Ingebrigtsen, Kulmala, & Krogsgård Thomsen, 1995). There
was no statistically significant autocorrelation of the residual
terms for lags from 1 to 11. Fig. 1 shows the data and model
predictions.

There was a downward trend in the number of accidents until
about 1990 and a weak upward trend after 1990. To identify the
contribution of variations in the number of technical inspections
to the annual changes in the number of accidents, annual changes

were computed under two conditions: (1) Based on the number of
accidents predicted by the model including technical inspections;
(2) Based on the number of accidents predicted by a model not
including technical inspections. The latter model is intended to
establish the counterfactual (i.e., describe the annual changes in
the number of accidents that would have occurred if technical
inspections did not exist). The differences between the annual dif-
ferences identifies the contribution to changes in the number of
accidents from year N to year N + 1 from changes in the number
of technical inspections per vehicle from year N to year N + 1.
Table 3 shows these computations.

The first column in Table 3 shows the recorded number of acci-
dents. The next two columns show the number of accidents pre-
dicted with and without technical inspections. The fourth and
fifth columns show the annual differences in the number of acci-
dents as predicted with and without technical inspections. In the
sixth column, the differences between differences are computed
in order to identify the annual contribution of technical inspec-
tions. It is seen that this contribution is sometimes negative (i.e.,
a reduction of the number of accidents) and sometimes positive
(i.e., an increase in the number of accidents).

One would expect an increase in the number of inspections to
be associated with a reduction in the number of accidents and a
reduction in the number of inspections to be associated with an
increase in the number of accidents. The last two columns of
Table 3 provide information to assess whether there is such an
association. These columns state the relative change in the number
of inspections and the relative change in the number of accidents.
The latter was computed relative to the predicted number of acci-
dents in the model, including technical inspections. Values above 1
indicate increases, values below 1 indicate decreases.

The data in the two rightmost columns of Table 3 are plotted in
Fig. 2. Fig. 2 shows the association between annual changes in the
number of technical inspections and annual changes in the number
of accidents.

The association between changes in the number of technical
inspections and changes in the number of accidents is well
described by a logarithmic function. The function passes straight
through the equilibrium point for effects of enforcement, that is,
no change in enforcement is associated with no change in acci-
dents (Bjørnskau & Elvik, 1992). The standard error of the coeffi-
cient for the logarithmic term is 0.015. It is highly statistically
significant. A 95% confidence interval for the estimated effect on
accidents of a 20% reduction in the number of inspections is
(+0.9%; +2.2%). For a 20% increase in the number of inspections,
the 95% confidence interval is (–0.8%; –1.8%).

The curve in Fig. 2 is strongly influenced by the data point in the
upper left corner. Would the results be different if this data point is

Table 1
Data used in original study.

Year Number of
Inspections

Accidents
involving heavy

Number of
vehicles

Million vehicle
kilometers

New
drivers

All
drivers

Inspections per
vehicle

New drivers as
proportion

Change (%) in
GDP/capita

1985 39,134 1180 90,270 2486 9214 304,416 0.434 0.030 5.2
1986 42,940 1232 94,963 2971 9838 317,250 0.452 0.031 3.6
1987 47,708 1202 98,203 3182 10,818 331,992 0.486 0.033 2.0
1988 69,039 1064 98,131 3387 10,631 353,696 0.704 0.030 �0.1
1989 93,490 974 96,587 3475 3805 345,678 0.968 0.011 0.9
1990 113,259 943 95,505 3552 7952 367,262 1.186 0.022 2.0
1991 128,920 1027 95,412 3634 8238 375,938 1.351 0.022 3.1
1992 182,768 995 97,028 3728 7766 383,344 1.884 0.020 3.3
1993 58,310 1008 97,494 3820 7350 389,496 0.598 0.019 2.7
1994 55,990 1046 98,257 3957 6932 395,519 0.570 0.018 5.5
1995 50,143 1074 100,219 4127 7026 400,730 0.500 0.018 3.8
1996 48,340 1082 103,331 4197 11,167 407,403 0.468 0.027 4.9
1997 42,543 1068 107,763 4636 8502 409,593 0.395 0.021 4.7
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omitted? If omitted, there is still a negative relationship between
the number of inspections and the number of accidents. The rela-
tionship is, however, considerably weaker. The coefficient for the
logarithmic function is –0.035 (–0.071 when all data points are
included), with a standard error of 0.032.

As the data in Table 1 show, there was a sharp reduction of the
number of technical inspections from 1992 to 1993 and an increase
in the number of accidents. It is therefore concluded that the data
point referring to changes from 1992 to 1993 should be included,
although it is located far from the other data points.

4. Replication

The replication copied the re-analysis presented above as far as
possible. The data used in the replication are shown in Table 4. The
replication included only heavy goods vehicles.

The variables of principal interest are the number of accidents
and the number of technical inspections per vehicle. The number
of technical inspections per vehicle per year fluctuates between
about 0.85 and 1.20. This variation is considerably smaller than
during 1985–1997.

Table 2
Negative binomial regression of data for 1985–1997. Regression coefficients and standard errors.

Regression coefficients. Standard errors in parentheses. P-value in square brackets

Term Model 1 Model 2 Model 3 Model 4

Constant term 7.061 (0.0196) [0.000] 7.307 (0.0655) [0.000] 6.993 (0.1271) [0.000] 6.978 (0.1153) [0.000]
Inspections per vehicle �0.115 (0.0227) [0.000] �0.114 (0.0225) [0.000] �0.082 (0.0265) [0.002] �0.070 (0.0251) [0.005]
Million vehicle kilometers 0.000068 (0.000017) [0.000] 0.000029 (0.000023) [0.209] 0.000037 (0.000021) [0.084]
Proportion of new drivers 6.348 (2.1304) [0.003] 6.271 (1.9357) [0.001]
Change in GDP per capita 0.011 (0.0062) [0.082]
Elvik-index of goodness-of-fit 0.9475

Fig. 1. Number of accidents involving heavy vehicles in Norway 1985–1997 and model prediction of number of accidents.

Table 3
Differences-in-differences estimate of effects on accidents of technical inspections 1985–1997.

Year Accidents Predicted with
inspections

Predicted without
inspections

Annual differences
with inspections

Annual differences
without inspections

Difference in
differences

Relative change in
inspections

Relative change
in accidents

1985 1180 1216.43 1206.03
1986 1232 1178.12 1167.28 �38.31 �38.75 0.44 1.043 1.000
1987 1202 1157.34 1146.43 �20.79 �20.85 0.06 1.074 1.000
1988 1064 1088.09 1079.78 �69.25 �66.65 �2.60 1.448 0.998
1989 974 955.27 933.71 �132.82 �146.07 13.25 1.376 1.014
1990 943 1015.13 1035.84 59.86 102.13 �42.27 1.225 0.958
1991 1027 1014.28 1053.80 �0.85 17.96 �18.81 1.139 0.981
1992 995 965.88 1039.91 �48.39 �13.89 �34.50 1.394 0.964
1993 1008 1037.29 1015.66 71.40 �24.25 95.65 0.318 1.092
1994 1046 1057.54 1045.61 20.25 29.95 �9.70 0.953 0.991
1995 1074 1036.58 1013.18 �20.96 �32.43 11.47 0.878 1.011
1996 1082 1115.92 1117.06 79.34 103.88 �24.54 0.935 0.978
1997 1068 1056.33 1040.61 �59.59 �76.45 16.86 0.844 1.016
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A negative binomial regression model was developed in four
stages, as in the re-analysis. Exploratory analysis found that when
kilometers driven was entered, the coefficient for technical inspec-
tions indicated an implausibly large effect. Kilometers driven was
therefore replaced by number of trucks. Estimated coefficients
are presented in Table 5.

The coefficient for technical inspections was negative in three of
the four models, but was not statistically significant in any of mod-
els 2–4. It nevertheless approached statistical significance in model
4. Fig. 3 shows how the model fits the data. There was a large
decline in the number of accidents from 2008 to 2020, and the
model captures this decline. It explained 94.21% of the systematic
variation in the number of accidents (Elvik-index).

There was some autocorrelation of residual terms. It was statis-
tically significant at the 5% level for lags 4–8, but not for lags 1–3
and 9–11. The contribution of technical inspections to the annual
changes in the number of accidents was estimated the same way
as in the re-analysis. The number of accidents predicted by models
including and not including technical inspections was estimated
and annual differences taken. Differences between differences
show the annual contribution of changes in the number of techni-
cal inspections (see Table 6).

The data in the two rightmost columns of Table 6 serve as the
basis for the data presented in Fig. 4. Fig. 4 shows a dose–response
curve for the association between technical inspections and the
number of accidents during 2008–2020.

Fig. 2. Dose-response curve for effect on accidents of technical inspections of heavy vehicles in Norway (1985–1997).

Table 4
Data used in replication study.

Year Number of
vehicles

Million vehicle
kilometers

Technical
inspections

Inspections per
vehicle

Change (%) in
GDP/capita

Proportion of young
drivers

Accidents involving
heavy

2007 84,742 1722 1.0 0.007 786
2008 84,350 1886 82,032 0.973 �0.8 0.007 675
2009 82,694 1737 76,783 0.929 �3.0 0.008 581
2010 81,330 1799 83,784 1.030 �0.5 0.008 602
2011 80,160 1832 68,181 0.851 �0.3 0.012 521
2012 79,857 1938 73,409 0.919 1.4 0.011 551
2013 79,437 1950 69,824 0.879 �0.2 0.014 459
2014 78,668 1909 86,571 1.100 0.8 0.013 384
2015 77,120 1883 70,404 0.913 0.9 0.013 312
2016 75,238 1818 83,160 1.105 0.2 0.014 335
2017 73,808 1855 88,313 1.197 1.5 0.014 327
2018 72,405 1760 82,611 1.141 0.5 0.014 333
2019 72,078 1798 77,734 1.078 0.1 0.014 319
2020 70,670 2035 79,042 1.118 �1.3 0.014 251

Table 5
Negative binomial regression of data for 2008–2020. Regression coefficients and standard errors.

Regression coefficients. Standard errors in parentheses. P-value in square brackets

Term Model 1 Model 2 Model 3 Model 4

Constant term 7.841 (0.6459) [0.000] 0.398 (0.5092) [0.435] 3.219 (1.0691) [0.003] 4.058 (1.1768) [0.001]
Inspections per vehicle �1.752 (0.6316) [0.006] 0.123 (0.1829) [0.502] �0.208 (0.2136) [0.331] �0.339 (0.2262) [0.134]
Number of heavy goods vehicles 0.000071 (0.0000047) [0.000] 0.000045 (0.0000099) [0.000] 0.000038 (0.000011) [0.000]
Proportion of young drivers �38.148 (12.7529) [0.003] �52.698 (15.3647) [0.001]
Change in GDP per capita 0.027 (0.0157) [0.089]
Elvik-index of goodness-of-fit 0.9421
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Fig. 3. Number of accidents involving heavy goods vehicles in Norway 2008–2020 and model prediction of number of accidents.

Table 6
Differences-in-differences estimate of effects on accidents of technical inspections 2008–2020.

Year Accidents Predicted with
inspections

Predicted without
inspections

Annual differences
with inspections

Annual differences
without inspections

Difference in
differences

Relative change in
inspections

Relative change
in accidents

2007 786 688.08 709.23
2008 675 599.41 596.39 �88.67 �112.84 24.17 0.955 1.040
2009 581 575.62 588.22 �23.79 �8.17 �15.62 1.109 0.973
2010 602 478.18 468.41 �97.44 �119.81 22.37 0.826 1.047
2011 521 519.75 515.47 41.57 47.06 �5.49 1.081 0.989
2012 551 429.39 425.98 �90.36 �89.49 �0.87 0.956 0.998
2013 459 419.32 441.72 �10.07 15.74 �25.81 1.252 0.938
2014 384 411.53 401.01 �7.79 �40.71 32.92 0.830 1.080
2015 312 337.58 344.78 �73.95 �56.23 �17.72 1.211 0.948
2016 335 320.62 333.18 �16.96 �11.60 �5.36 1.083 0.983
2017 327 302.18 302.01 �18.44 �31.17 12.73 0.954 1.042
2018 333 296.68 289.64 �5.50 �12.37 6.87 0.945 1.023
2019 319 271.56 262.72 �25.12 �26.92 1.80 1.037 1.007

Fig. 4. Dose-response curve for effects of technical inspections of heavy goods vehicles – replication (2008–2020).
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A logarithmic function fits the data well. The curve passes close
to the general equilibrium point for effects of enforcement (i.e., the
intersection of the lines showing no change in number of inspec-
tions and no change in number of accidents). The standard error
of the coefficient for the logarithmic term is 0.032. A 95% confi-
dence interval for the estimated effect of a 20% reduction in the
number of inspections is (+5.4%; +8.2%). A 95% confidence interval
for the estimated effect of a 20% increase in the number of inspec-
tions is (–4.4%; –6.3%).

5. Discussion

The re-analysis found a somewhat smaller effect on technical
inspections of heavy vehicles than the original study. The original
study estimated that doubling the number of inspections would
reduce the number of accidents by 6.7% (95% CI: –18.4%; +5.1%).
The re-analysis estimated that doubling the number of inspections
would reduce the number of accidents by 4.9% (95% CI: –2.9%; –
5.0%). The confidence interval is much smaller in the re-analysis
than in the original analysis.

The replication indicates a larger effect of technical inspections.
According to the replication, doubling the number of inspections
would reduce the number of accidents by 21.2% (95% CI: –16.8%;
–25.6%). It is reasonable to believe that technical inspections have
becomemore effective in recent years. The roadside inspection sta-
tions have been upgraded with more advanced technology for
measuring, for example, the performance of braking systems. Leaks
and uneven braking forces between axles can be detected more
easily than in the past.

Nevertheless, the current level of technical inspections in Nor-
way is insufficient to eliminate technical defects. To achieve a
reduction of accidents consistent with an elimination of the risk
attributable to technical defects, as indicated by the population
attributable risks based on Jones and Stein (1989) and Teoh et al.
(2017), the number of inspections would have to increase by a fac-
tor of nine. While inspections were at a higher level than now in
some years of the first period, they were never close to nine times
the current level.

6. Conclusions

Technical inspections of heavy goods vehicles are associated
with a reduction in the number of accidents. If inspections did
not exist, there would be a higher number of accidents involving

heavy goods vehicles. Most years, the number of technical inspec-
tions varies within plus or minus 20% from the previous year. Vari-
ations in this range are associated with a variation in the number of
injury accidents involving heavy goods vehicles of about +8% (for a
20% reduction) to –7% (for a 20% increase).
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a b s t r a c t

Introduction: This study aims to increase the prediction accuracy of crash frequency on roadway segments
that can forecast future safety on roadway facilities. A variety of statistical and machine learning (ML)
methods are used to model crash frequency with ML methods generally having a higher prediction accu-
racy. Recently, heterogeneous ensemble methods (HEM), including ‘‘stacking,” have emerged as more
accurate and robust intelligent techniques providing more reliable and accurate predictions. Methods:
This study applies ‘‘Stacking” to model crash frequency on five-lane undivided (5 T) segments of urban
and suburban arterials. The prediction performance of ‘‘Stacking” is compared with parametric statistical
models (Poisson and negative binomial) and three state-of-the-art ML techniques (Decision tree, random
forest, and gradient boosting), each of which is termed as the base-learner. By employing an optimal
weight scheme to combine individual base-learners through stacking, the problem of biased predictions
in individual base-learners due to differences in specifications and prediction accuracies is avoided. Data
including crash, traffic, and roadway inventory were collected and integrated from 2013 to 2017. The
data are split into training (2013–2015), validation (2016), and testing (2017) datasets. After training five
individual base-learners using training data, prediction outcomes are obtained for the five base-learners
using validation data that are then used to train a meta-learner. Results: Results of statistical models
reveal that crashes increase with the density (number per mile) of commercial driveways whereas
decrease with average offset distance to fixed objects. Individual ML methods show similar results – in
terms of variable importance. A comparison of out-of-sample predictions of various models or methods
confirms the superiority of ‘‘Stacking” over the alternative methods considered. Conclusions and practical
applications: From a practical standpoint, ‘‘stacking” can enhance prediction accuracy (compared to only
one base-learner with a particular specification). When applied systemically, stacking can help identify
more appropriate countermeasures.

� 2022 Published by the National Safety Council and Elsevier Ltd.

1. Introduction

Safety performance functions (SPFs) or crash prediction models
are extensively used to predict the expected level of safety on
specific roadway types. These models help evaluate the safety per-
formance of specific countermeasures on a particular type of road-
way or intersection. These practices are well discussed in the
Highway Safety Manual (HSM, 2010), which presents SPFs for var-
ious roadway types (AASHTO, 2010). HSM (2010) was developed
by AASHTO to provide a coherent and rigorous methodology to
evaluate the safety performance on national roads (AASHTO,

2010). HSM SPFs were developed using data from specific states
- and given the variations in geographical conditions, driving
behaviors, and design practices nationally (AASHTO, 2010;
Khattak, Ahmad, Mohammadnazar, Mahdinia, Wali, & Arvin,
2020), HSM highly recommends calibration of HSM SPFs to local
conditions or developing jurisdiction-specific SPFs (AASHTO,
2010).

Traditionally, count data models (Poisson and negative bino-
mial models) have been extensively used to model the relation-
ships between crash frequency and key correlates, such as annual
average daily traffic (AADT) and segment length (Abdel-Aty &
Radwan, 2000; Caliendo, Guida, & Parisi, 2007; Hauer, Council, &
Mohammedshah, 2004; Khattak et al., 2020; Mohammadnazar,
Mahdinia, Ahmad, Khattak, & Liu, 2021; Shankar, Mannering, &
Barfield, 1995; Srinivasan & Carter, 2011; Thakali, Fu, & Chen,
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2016; Wali et al., 2018, 2020; Zhong, Sisiopiku, Ksaibati, & Zhong,
2011). Compared to Poisson models, negative binomial variants are
well-suited to capture potential over-dispersion in crash data.
These models provide rich inferential insights into the mechanisms
through which associated factors correlate with safety outcomes.
However, given the intrinsic parametric nature of the models and
the subsequent assumptions, the prediction accuracy of count data
models is often a concern. Growing evidence of the role of more
accurate crash predictions in designing more appropriate safety
countermeasures has led to an increased interest in machine learn-
ing methods. Unlike count data models, machine learning methods
do not place strong restrictions on the specifications of the model
(Pan, Fu, & Thakali, 2017). Machine learning methods are more
adequate for modeling complex non-linear relationships that fre-
quently arise in crash data modeling. Tree-based regression (TBR)
is one of the most popular and widely-used machine learning
methods that does not require variable transformations and para-
metric assumptions (Breiman, Friedman, Stone, & Olshen, 1984;
Saha, Alluri, & Gan, 2015). TBR determines significant non-linear
relationships among various predictor variables as well as com-
putes the relative influence of predictors on response outcome
(Karlaftis & Golias, 2002; Saha et al., 2015). However, the TBR tech-
nique is prone to instability leading to estimation results with
higher variance (Saha et al., 2015; Zhang, Xu, Daeyaert, Lewi, &
Massart, 2005). Ensemble methods like random forest regression
(RFR) and gradient boosting regression (GBR) combine the esti-
mates of numerous trees compared to a single tree, leading to
improved stability and prediction accuracy (Das, Abdel-Aty, &
Pande, 2009; De’ath, 2007; Saha et al., 2015). GBR technique
ensembles numerous trees in a sequential way with a slower
learning rate that captures a higher variance in data compared to
the RFR method (Saha et al., 2015). While the prediction accuracy
of machine learning methods usually is greater than the count data
models, it lacks a holistic inferential framework providing little to
no information about the safety mechanisms that link unsafe out-
comes with key risk factors. Also, almost all of the machine learn-
ing (ML) methods explicitly relate to the bias-variance trade-off
contour with different methods minimizing bias or variance. There
is no escaping the relationship between bias and variance in
machine learning models. Thus, the use of the single supervised
or the unsupervised ML method could lead to relatively less accu-
rate predictions.

While traditional count data models and MLmethods have been
extensively used in the safety literature, studies that combine the
predictive (and inferential) strengths of both paradigms or the
strengths of multiple ML methods are rare. The prediction perfor-
mance of ML methods can be further improved by using more
robust and heterogeneous ensemble methods (HEM), such as com-
posite systems, stacking, or blending (Bhatt et al., 2017; Dietterich,
2000; Sigletos, Paliouras, Spyropoulos, & Hatzopoulos, 2005;
Tewari & Dwivedi, 2020; Thapa, Gupta, Gupta, Reddy, & Kaur,
2018). HEMs including ‘‘stacking” have emerged as more accurate
and reliable intelligent techniques in pattern recognition issues.
The idea of ‘‘Stacking” essentially helps in harnessing the gains
simultaneously from less biased and low-variance predictions
offered by different ML methods. For example, the gradient-
boosting regression method builds on so-called ‘‘weak classifiers”
- reducing prediction error mainly by reducing bias (and to some
extent variance, by aggregating the predictions from many trees).
Through heterogeneous ensemble methods such as ‘‘Stacking,”
predictive gains from different methodologies can be combined.
For example, the predictive gains from low bias in the gradient
boosting method can be combined with predictive gains from low-
ering variance through the random-forest method via stacking.
Studies also suggest other sophisticated approaches like the infor-
mation Entropy-Bayesian network method to enhance crash sever-

ity prediction (Zong, Chen, Tang, Yu, & Wu, 2019). In recent years,
the stacked generalization approach – a more robust and accurate
ML method, has been used in transportation safety (Bugusa & Patil,
2019; Ghandour, Hammoud, & Al-Hajj, 2020; Tang, Liang, Han, Li, &
Huang, 2019; Zahid et al., 2020). However, very few studies have
applied this robust ML method to solve problems related to road
safety (Bugusa & Patil, 2019; Ghandour et al., 2020; Tang et al.,
2019; Zahid et al., 2020). Note that the stacking approach can be
used in the contexts of both regression and classification problems.
However, most of the aforementioned studies applied the stacking
approach to solving classification (e.g., injury severity analysis)
problems (Ghandour et al., 2020; Tang et al., 2019). For instance,
Tang et al. (2019) applied the stacked generalization approach to
predict crash severity with the severity levels of no injury, invisible
injury, no-capacitating injury, and highest injury severity. The pre-
dictions obtained from three individual ML classifiers like the ran-
dom forest, adaptive boosting, and gradient boosting decision tree
were combined via a stacked model using logistic regression in the
second layer (Tang et al., 2019). The prediction accuracy of the
stacked model was significantly higher compared to individual
ML methods such as random forest classifier (Tang et al., 2019).
A similar stacked classification approach was used in one of the
recent studies, which adopted a hybrid combination of homoge-
neous and heterogeneous ensemble methods to explore factors
associated with fatal road crashes (Ghandour et al., 2020). That
study reveals that prediction accuracy can significantly improve
via the stacked generalization approach (Ghandour et al., 2020).
Studies also reveal that crash risk prediction can be significantly
improved via stacking predictions from individual ML algorithms
(Bugusa & Patil, 2019). In another recent study, it was found that
the prediction of risky and aggressive driving behavior among taxi
drivers can significantly improve via stacked generalization
approach compared to individual ML classifier (Zahid et al.,
2020). It can be seen that stacking approach was mostly applied
to solve classification problems related to transportation safety
(Bugusa & Patil, 2019; Ghandour et al., 2020; Tang et al., 2019;
Zahid et al., 2020).

Note that ensembles including RFR, GBR, and stacking are used
to improve out-of-sample prediction accuracy and can be classified
into (a) Homogeneous ensembles, and (b) Heterogeneous ensem-
bles (Chali, Hasan, & Mojahid, 2014; Fernández-Alemán, Carrillo-
De-Gea, Hosni, Idri, & García-Mateos, 2019; Rooney, Patterson,
Anand, & Tsymbal, 2004; Sabzevari, Martínez-Muñoz, & Suárez,
2018). The homogeneous ensemble (e.g., RFR and GBR) uses the
same feature selection algorithmwith different training or learning
datasets distributed over various nodes (Chali et al., 2014; Rooney
et al., 2004). Instead, the heterogeneous ensemble (i.e., stacking)
uses different feature selection algorithms (e.g., Poisson, Negative
binomial, TBR, RFR, and GBR) where the stacking meta-learner
(which can be any statistical or ML method) blends the optimal
combinations of predictions by base-learners and acts as a single
decision-maker in the second-stage (Chali et al., 2014; Elish,
Helmy, & Hussain, 2013; Sabzevari et al., 2018). Both homoge-
neous and heterogeneous ensembles can be used in regression as
well as classification contexts. Compared to homogeneous ensem-
bles, heterogeneous ensembles typically show significant perfor-
mance gains (Chali et al., 2014; Sabzevari et al., 2018). Both
types of ensembles are used in diverse fields (such as medicine)
where their application provides more accurate and reliable pre-
dictions of a specific disease in patients (Fernández-Alemán et al.,
2019; Osareh & Shadgar, 2013; Petrakova, Affenzeller, &
Merkurjeva, 2015). Studies suggest that heterogeneous ensembles
not only outperform the conventional statistical models and other
ML methods but also show superior prediction performance com-
pared to homogeneous ensembles (Fernández-Alemán et al., 2019;
Osareh & Shadgar, 2013; Petrakova et al., 2015). In transportation
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safety, homogeneous ensembles have been widely used for pre-
dicting crash frequency (Farid, Abdel-Aty, & Lee, 2019; Saha
et al., 2015; Wang, Simandl, Porter, Graettinger, & Smith, 2016)
and the severity given a crash (Iranitalab & Khattak, 2017; Yu &
Abdel-Aty, 2014). Some studies used heterogeneous ensembles
(e.g., stacking) in a classification context to predict injury severity
(Ghandour et al., 2020; Tang et al., 2019). However, the application
of heterogeneous ensemble (stacking) to predict crash frequency
on roadways has not been or is very lightly explored to the best
of the authors’ knowledge. Given the prevalent gaps in the litera-
ture discussed above, this study contributes by:

� Applying a rigorous and robust HEM scheme to model and pre-
dict crash frequency on five-lane (5 T) undivided segments on
urban and suburban arterials, including two-way left-turn lanes
(2WLTL)

� Comparing the prediction performance of ‘‘Stacking” with tradi-
tional statistical models and three state-of-the-art machine
learning techniques (decision trees, random forest, and gradient
boosting regression).

The statistical (Poisson and negative binomial models) and ML
models used in this study are considered ‘‘base-learners.” To obtain
valid search ranges and optimal values of corresponding tuning
parameters for individual base- and stacked learners, grid-search
optimization and 10-fold cross-validation procedures are used. It
is shown that using more accurate, reliable, and robust intelligent
techniques can extract more useful information compared to indi-
vidual count data or ML methods. To achieve the study objectives,
detailed crash and roadway geometric data are extracted from the
Enhanced Tennessee Roadway Information Management System
(ETRIMS).

2. Methodology

2.1. Conceptual architecture: Heterogeneous ensemble methods
(STACKING)

The idea of HEM, including ‘‘Stacking” was first introduced
almost 30 years ago (Wolpert, 1992). In stacked regression, predic-
tions from various individual models (base-leaners) are combined
and used as input in second-stage learning (Günes�, Wolfinger, &
Tan, 2017). Stacking generally provides higher prediction accuracy
compared to base-learners (Günes� et al., 2017). Suppose Y is the
response outcome, X is the set of predictors used in individual
models (briefly discussed in subsequent sections), and
g1; g2; � � � ; gL are the predictions obtained using base-learners
(Günes� et al., 2017). The prediction function for the linear ensem-
ble (stacked) model can be given as (Günes� et al., 2017):

b gð Þ ¼ w1 � g1ð Þ þ w2 � g2ð Þ þ � � � þ wL � gLð Þ ð1Þ
Note that wi indicates the weight assigned to an individual

model in the stacking technique (Günes� et al., 2017). The model
weights wið Þ are used to minimize MSE between actual response
variable yið Þ and prediction outcome of meta-learner (stacked
ensemble technique) as shown (Günes� et al., 2017):

min
XN
i¼1

yi � w1 � g1i þw2 � g2i þ � � � þw1 � gLiÞÞ2
��

ð2Þ

The conceptual design of this study is presented in Fig. 1. First,
we manually extracted crash, traffic, and roadway geometry data
using various software made available by the Tennessee Depart-
ment of Transportation (TDOT) for a randomly selected subsample
containing 304 roadway segments of 5 T urban and suburban arte-
rials for a period of five years (2013–2017). Next, we split data into

training (2013–2015), validation (2016), and testing (2017) data-
sets (Fig. 1). Note that in all the three datasets, only crashes and
average annual daily traffic may change while all other factors
remain the same. We follow this splitting procedure to develop a
crash prediction model that can be reused with updated data to
forecast crashes in the future. First, five individual base-learners
are trained using training data to model crash frequency per year
(2013–2015). Next, prediction outcomes obtained from these five
base-learners using the validation dataset are obtained and com-
bined with actual crashes reported in 2016, which generates a
new training dataset for the meta-learner (stacking). Note that
grid-search optimization and 10-fold cross-validation procedures
are used to obtain valid search ranges and optimal values of corre-
sponding tuning parameters for individual machine learning tech-
niques and stacking (Fig. 1). In the 10-fold cross-validation
procedure, an algorithm splits the available data (used to train
the model) into 10 subsamples of equal sizes, and nine of those
subsamples are used for training, while one subsample is used
for testing to determine the optimal model for prediction accuracy.
The algorithm repeats the process 10 times, during which each of
the subsamples is once used as a testing subsample. The results
are finally averaged to get a single estimation. Note that studies
commonly use a 10-fold cross-validation procedure for the tuning
of the machine learning models (Mclachlan, Do, & Ambroise, 2005).
Finally, we apply individual base-learners (trained using the train-
ing dataset) and meta-learners or the stacked model (trained using
validation dataset) to the new data (2017) to accurately compare
their prediction performance (Fig. 1).

This study applies stacking where a meta-learner is used to
combine multiple predictions obtained from various base-
learners, as explained below.

� Base-learner: Stacking is a two-stage process where individual
statistical models and/or ML methods are applied in the first
stage. Any statistical model or ML method when applied in
the first stage of stacking is termed a ‘‘base-learner” in this
study. For instance, this study applies five base-learners, which
include two statistical models (Poisson and Negative binomial)
and three ML methods (TBR, RFR, and GBR). The base-learners
applied in this study also include homogeneous ensembles
(RFR and GBR), which use the same feature selection algorithm
with different training datasets. In homogeneous ensembles,
the results and/or predictions are averaged.

� Meta-learner: The stacking meta-learner algorithm is an
ensemble technique that combines predictions from two or
more than two base-learners specifically to further enhance
prediction accuracy. This study uses three ML methods includ-
ing TBR, RFR, and GBR as meta-learners to combine predictions
for the five base-learners (Poisson, negative binomial, TBR, RFR,
and GBR). Finally, after comparing the out-of-sample RMSE and
MAE of all the base-learners and three meta-learners, one
model was selected that has the lowest out-of-sample RMSE
and MAE. Note: that stacking is termed as a ‘‘heterogeneous
ensemble” that combines different feature selection procedures
(Poisson, Negative binomial, TBR, RFR, and GBR). In stacking, a
meta-learner can also be termed a super-learner (Van Der
Laan, Polley, & Hubbard, 2007).

2.2. Count data models: Poisson and negative binomial regression

Studies suggest using count data (Poisson and negative bino-
mial regression) models to explore the relationship of the crash
frequency with explanatory variables (Anastasopoulos &
Mannering, 2009; Wali et al., 2018, 2020). Poisson regression
was first introduced by a French mathematician named Siméon-
Denis Poisson in 1830. The mathematical formula of Poisson
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regression is given below (Washington, Karlaftis, & Mannering,
2010).

P nið Þ ¼ exp �kið Þkni
ni!

ð3Þ

where P nið Þ is the probability of a crash occurring on a specific road
segment ið Þ, nð Þ is the frequency of a crash on a specific road seg-
ment at a particular time, and kið Þ is the expected number of crashes
occurring on a particular road segment ið Þ in a specific duration. The
expected number of crashes kið Þ is linked to its key contributing fac-
tors as below (Washington et al., 2010; Wali, Khattak, Waters,
Chimba, & Li, 2018; Wali, Ahmad, Khattak, & Nazar, 2020):

ln kið Þ ¼ b Xið Þ ð4Þ
where Xi indicates a set of explanatory variables, and b are their
associated parameter estimates.

The equations (3) and (4) can be maximized using the standard
maximum likelihood procedure (Washington et al., 2010; Wali
et al., 2018):

L bð Þ ¼
Yn

i

exp �exp bXið Þ½ � exp bXið Þ½ �ni
ni!

ð5Þ

In the case of over-dispersion, Poisson regression is not prefer-
able due to violation of its basic assumption, therefore negative
binomial regression is suggested as below (Washington et al.,
2010; Wali et al., 2018).

ln kið Þ ¼ b Xið Þ þ 2i ð6Þ
where exp 2ið Þ is an error term with gamma distribution ‘‘mean
equals one and variance að Þ” (Washington et al., 2010; Wali et al.,
2018). The conditional probability for crashes can be given as
(Poch & Mannering, 1996; Wali et al., 2018):

P 2ð Þ ¼ exp �kiexp 2ið Þ½ � kiexp 2ið Þ½ �ni
ni!

ð7Þ

The error term 2ið Þ can be integrated out to determine the
unconditional distribution of ni as given below (Poch &
Mannering, 1996; Wali et al., 2018):

P nið Þ ¼ C hþ nið Þ
C hð Þ:ni!½ � :u

h
i 1� uið Þni ð8Þ

where ui equals h hþ kið Þ and h ¼ 1
a, and C is a gamma function. In

the case of að Þ approaching zero, the negative binomial simply
becomes a Poisson regression (Washington et al., 2010). Negative
binomial regression is preferred over Poisson regression when it
is significantly different from zero (Anastasopoulos & Mannering,
2009; Washington et al., 2010; Saeed, Hall, Baroud, & Volovski,
2019). To evaluate the goodness of fit performance of the count data
models, McFadden R2 value (Wali et al., 2018), Akaike Information
Criteria (Akaike, Petrov, & Csaki, 1973; Bozdogan, 1987; Wali
et al., 2018), and Bayesian Information Criteria (Schwarz, 1978;
Wali et al., 2018) can be used.

2.3. Machine learning methods

2.3.1. Decision-tree regression
The decision tree uses a fast algorithm that recursively splits

training data into smaller subsets (Torgo, 1999). However, insta-
bility and reliability issues are key weaknesses of this method
(Breiman, 1996; Torgo, 1999). The algorithm searches to deter-
mine a splitting point with the lowest value of mean square
error (MSE). At the optimal splitting point, the parent node is
further split into two child nodes and the process continues until
the optimal tree length is determined (reducing impurity associ-
ated with the terminal node). The algorithm chooses the best
splitter S�ð Þ considering deviance Dð Þ or MSE at a particular node
as:

D tð Þ ¼
X
x2t

Yn � bl� �2 ð9Þ

Fig. 1. Conceptual Design of Stacking Ensemble Utilized for Crash Frequency Modeling. Notes: In Fig. 1, NB indicates a negative binomial model, TBR indicates a Tree-based
regression, RFR indicates a random forest regression, and GBR indicates a gradient boosting regression. P1, P2, P3, P4, and P5 are the prediction outcomes obtained while
applying Poisson, NB, TBR, RFR, and GBR models to the validation dataset, respectively. V and T indicate validation and testing datasets, respectively
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where, bl is a sample mean y
�� �

or mean estimate, t indicates a

specific node, and X indicates a set of predictors. Referring to the
generalized linear models, deviance Dð Þ is also termed log-
likelihood ratio statistics and can be written as:

D ¼ 2 � l lmax; y
� �� l bl : y

� � ð10Þ
where, lmax is the maximum likelihood estimate. Deviance of a tree
Tð Þ can be determined as below:

D Tð Þ ¼
X

t2T
Â�D tð Þ ¼

X
t2T

Â�

X
x2t Yn � y

�
tð Þ

� �2
ð11Þ

where T is the tree, T
Â�
is a set of terminal nodes of T. For a binary par-

tition via splitter sð Þ, the difference is:

DD s; tð Þ ¼ D tð Þ � D tLð Þ � D tRð Þ ð12Þ
where tL and tR indicate left and right child of the parent node tð Þ
respectively. The difference is maximized to determine the best
splitter s�ð Þ as:
DD s�; tð Þ ¼ maxs2SDD s; tð Þ ð13Þ

Note size selection and tree pruning are carried out using 10-
fold cross-validation to select the optimal tree size with the lowest
MSE.

2.3.2. Random forest regression
Studies suggest ensemble methods like RFR and GBR to mitigate

instability issues related to a single decision (Louppe, Wehenkel,
Sutera, & Geurts, 2013; Malekipirbazari & Aksakalli, 2015). The
RFR algorithm works on a similar principle to the single decision
tree; however, the key difference is that RFR assembles an enor-
mous number of trees. The RFR algorithm selects a predictor at
each node to maximize homogeneity at successive nodes (Hastie,
Tibshirani, & Friedman, 2009; Liaw & Wiener, 2002). Regulariza-
tion parameters considered for RFR include (Chung, 2013; Heung,
Bulmer, & Schmidt, 2014; Liaw & Wiener, 2002):

� Number of predictors selected at each node for split-up mtry
� �

� Number of trees in the forest ntreeð Þ
� Number of maximum nodes in the forest

Studies suggest using the following trials to select the optimal
number of predictors mtry

� �
at each node (Breiman, 1996):

� mtry ¼ p
3

� mtry ¼ 1
2 � p

3

� mtry ¼ 2 � p
3

While p is the total number of predictor variables considered in
RFR regression. Note that mtry indicates the number of variables/
predictors available for splitting at each node. It is considered an
important regularized or tuning parameter (Strobl, Boulesteix,
Kneib, Augustin, & Zeileis, 2008). To determine the optimal value
of mtry , we use an extended grid-search optimization and 10-fold
cross validation procedure. To select an optimal pair of ntree and
mtry , two performance criteria including MSE and R2 values are
usually used (Liaw & Wiener, 2002):

MSE � MSEOOB ¼ 1
n

X
i2OOB

yi � byi

� �2 ð14Þ

R2 ¼ 1�MSEOOB

Var yið Þ ð15Þ

where MSEOOB is the MSE for the out-of-bag OOBð Þ sample, yi is the

observed number of crashes occurring on ith roadway segment in

OOB sample, byi is predicted crashes on ith road segment in OOB sam-
ple, n is the number of roadway segments in OOB sample, Var yið Þ is
the variance of response outcomes yð Þ determined as
1
n

P
i2OOB yi � y

�Þ2
�

, while y
�
is the mean value of yi in the OOB sample.

Similar to the TBR approach, variable importance relates to the
reduction in node impurity at each split; however, the RFR tech-
nique uses the average reduction of all trees in the forest to deter-
mine the overall reduction in impurity. Importance Imp Xmð Þ of any
particular predictor variable Xm, is computed while summing the
weighted reduction in node impurities, Di s; tð ÞXm

, for all nodes t
where Xm is used for splitting (Louppe et al., 2013):

Imp Xmð Þ ¼ 1
NT

X
T

X
t2T

Nt

N
Di s; tð ÞXm

ð16Þ

where NT is the number of trees, Nt is the number of data points at a
specific node tð Þ, and N is the sample size.

2.3.3. Gradient boosting regression
Similar to the RFR approach, GBR is a pool procedure to

enhance prediction accuracy (De’ath, 2007; Elith & Leathwick,
2017; Hastie et al., 2009). The algorithm calculates residuals after
fitting the first tree to the l} due to which the GBR algorithm
assigns more weight to such observations while fitting the next
tree and so on (Saha et al., 2015). In this straightforward and
stagewise process, the GBR algorithm keeps the existing tree
unchanged while re-estimating residuals for every observation
to reveal contributions to the new tree (Elith & Leathwick,
2017; Saha et al., 2015). Let f xð Þ be an approximation function
of response outcome yð Þ as predicted by a set of predictor vari-
ables xð Þ. In GBR approach, an additive expansion of the basic
functions x : cmð Þ can be given as:

f xð Þ ¼
X
m

fm xð Þ ¼
X
m

bmb x : cmð Þ ð17Þ

Note that bm m ¼ 1;2;3; � � � ;Mð Þ indicates the expansion coeffi-
cients, b x : cmð Þ indicates single regression trees having parameter
cmð Þ as a split variable, and bm are the weights assigned to every
tree (Saha et al., 2015). The algorithm estimates parameters like
bm and cm to minimize loss function L y f sð Þð Þð indicating prediction
performance in term of deviance (Saha et al., 2015). Note that
while GBR may nicely fit the data, it can also lead to overfitting
(Saha et al., 2015). To cure this issue, studies suggest selecting
appropriate regularization parameters including the number of
trees, shrinkage (learning rate), the minimum number of observa-
tions in the tree’s terminal nodes, and complexity which help in
achieving a balance between variance and bias (Saha et al.,
2015). The learning rate is usually smaller ranging from 0.0001
to 0.1 (Saha et al., 2015). Note that smaller values of shrinkage
parameters are good but require more trees. The complexity
parameter refers to tree depth which shows interactions among
predictor variables (Saha et al., 2015).

2.4. Model performance

To evaluate the prediction performance of individual models
(Poisson, negative binomial, TBR, RFR, and GBR) and stacked
regression, we compare their Root Mean Square Error (RMSE)
(Wali et al., 2018) and Mean Absolute Error (MAE) (Wali et al.,
2018; Washington, Karlaftis, & Mannering, 2010) based on the
testing dataset (2017):
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RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

f i � yið Þ2
vuut ð18Þ

MAE ¼ 1
n

Xn

i¼1

f i � yij j ¼ 1
n

Xn
i¼1

ej j ð19Þ

The value of n is the total number of roadway segments, and f i
and yi indicate predicted and observed crash frequency, respec-
tively. Low values of RMSE and MAE indicate higher prediction
accuracy.

3. Results and discussion

3.1. Data processing and descriptive statistics

Data used in this research was extracted from the Enhanced
Tennessee Roadway Information Management System (ETRIMS),
which is a roadway inventory and crash database maintained by
the Tennessee Department of Transportation (TDOT). We identified
the five-lane (5 T) roadway segments of urban and suburban arte-
rials by selecting the attributes of interest including the number of
through lanes (five lanes), the presence of two-way-left-turn lanes
(2WLTL), and functional class (urban arterials). The roadway seg-
ments are pre-defined in ETRIMS where a segment refers to a por-
tion of the roadway that either connects two nodes (i.e.,
intersections) or has uniform features (e.g., lane width, shoulder
width, number of lanes, and median width) as compared to neigh-
boring (proceeding and succeeding) roadway segments. ETRIMS
showed a total of 3,208 (753.97 miles) segments of state-
maintained 5 T urban and suburban arterials in Tennessee. Fig. 2
shows the distribution of the total 5 T roadway segments
(N = 3,208) of urban and suburban arterials in TN identified in
ETRIMS, which was first cleaned and then a random sample
(N = 304) was selected for analysis.

Following the HSM guidelines (AASHTO, 2010), segments
shorter than 0.1 mile were removed leading to a reduced dataset
containing 1,519 segments (totaling 523.93 miles). First, we deter-
mined the sample size to be selected from the population (1,519
segments) using 95 % confidence level criteria. A random sample
of 317 segments (105.78 miles) was selected for which crash
(2013–2017), roadway geometry, and traffic data (2013–2017)
were extracted using ETRIMS and TDOT Traffic History Application.
Finally, 304 (103.27 miles) segments with complete data are con-
sidered in the analysis. The distribution of roadway segments of
5 T urban and suburban arterials (random sample ‘‘N = 304”) in
Tennessee based on the total number of crashes that have occurred

on these segments during the five-year (2013–2017) period is
shown in Fig. 3. The segments with a higher number of total
crashes during the five years are mostly located in Region 3, which
contains the Nashville area (Fig. 3). Notably, segments with a low
number of crashes over the 5 years are mostly located in the sub-
urbs of the major cities or other urban areas and small cities
(Fig. 3). Note that each circle refers to a roadway segment of 5 T
urban and suburban arterials in TN, and the size of the circle
depicts the total number of crashes that have occurred on a road-
way segment during the five-year (2013–2017) period.

A study by AASHTO revealed that factors like density (number
per mile) of major/minor driveways based on various land uses
(e.g., commercial and industrial) and average offset distance to
fixed objects significantly influence crash frequency on a roadway
segment (AASHTO, 2010). Fixed objects (utility poles, traffic signs,
trees, and billboards) along roadway segments are considered
potential safety risks (Albuquerque & Awadalla, 2019;
Albuquerque & Awadalla, 2020; Safety, 2011; Wolf, 2006). Such
objects are more prevalent along with urban roadway segments
(Albuquerque & Awadalla, 2019, 2020; Wolf, 2006). Distance to
fixed objects along roadway segments is critical as the risk of
fixed-object collisions increases as the offset distance to roadside
fixed objects decreases (AASHTO, 2010). In HSM (2010), SPFs for
all types of urban roadways include offset to roadside fixed objects
as an important factor to predict crashes on specific roadway seg-
ments (AASHTO, 2010). We consider it important to include the
average offset distance to fixed objects along with the roadway
segments of 5 T urban and suburban arterials in the models. The
offset distance (measured in feet) to every fixed object along the
roadway segment may vary; therefore, we calculated and used
the average of the offset distances to fixed objects along with the
roadway segments in the models.

To achieve the study objective, the data are split into three sub-
sets: training, validation, and testing. Table 1 presents descriptive
statistics of key variables. Statistics reveal an average of 11.026
crashes (standard deviation of 14.020) across the three years on
5 T segments of urban and suburban arterials. Crash distributions
for validation (2016) and testing (2017) are shown in Table 1,
revealing similar distributions across the three (training, valida-
tion, testing) streams. Statistics for traffic measures and roadway
geometric features are provided in Table 1. Table 1 provides the
distribution of AADT in the three subsamples including training,
validation, and test samples; however, we have computed the
vehicle miles traveled (VMT) in millions (=segment
length*AADT*365*10�6), which is used in the analyses. In 2017,
the mean AADT was 19,903, which is slightly higher than the
yearly AADT in 2016 and the average AADT per year from 2013

Fig. 2. Distribution of the Overall 5 T roadway segments of Urban and Suburban arterials in TN. Note: Tennessee has 95 counties, which are divided into four TDOT regions, as
shown on the map.
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to 2015 (Table 1). This shows that, on average, AADT per year has
increased slightly compared to the previous years. The sample
statistics show the mean segment length to be 0.340 miles, includ-
ing no segment with a length less than 0.1 miles (Table 1). Refer-
ring to VMT (millions), the mean VMT (millions) per year in the
training sample is found to be 2.326, which is lower than the cor-
responding values in the validation (2.390) and test (2.414) sam-
ples. The mean offset distance to roadside fixed objects is found
to be 14.26 feet (Table 1). Referring to the density (i.e., frequency
per mile) of driveways based on various land uses, the density of
industrial (including both minor and major) driveways was found
to be the highest density with a mean value of 1.747 driveways per
mile (along both sides of the roadway segment) followed by resi-
dential (including both minor and major) driveways (1.243 per
mile) and commercial driveways (1.214 per mile), as shown in
Table 1. The density of minor and major driveways (for each of

the three types) in Tennessee was not extensive due to which this
study has considered the density of total (including both minor and
major) driveways for each of the three land uses (residential, com-
mercial, and industrial) without splitting them into minor and
major categories. The descriptive statistics seem reasonable
because the dataset contains little to no outliers.

3.2. Estimation results

3.2.1. Count data models: Poisson and negative binomial regression
As a first step, we apply Poisson and negative binomial models

to explore the average three-year (2013–2015) crash frequency.
Both models come from a series of trials evaluated based on statis-
tical significance, parsimony, and intuition. To select more appro-
priate models (with superior fit), several trials were made based
on the specifications of explanatory variables. Initially, Poisson

Fig. 3. Distribution of 5 T Urban and Suburban Arterial Segments based on Five-Year (2013–2017) Crashes in TN.

Table 1
Descriptive statistics of key variables: 5 T segments of urban and suburban arterials.

Variables Obs. Mean Std. Dev. Min Max

Average Three-years Crashes (2013–15) 304 11.026 14.020 0.000 72.000
Total Crashes (2016) 304 11.010 14.651 0.000 90.000
Total Crashes (2017) 304 11.072 14.618 0.000 100.000

AADT Per Year (2013–15) 304 19,098 8937.771 3182 49,766
AADT (2016) 304 19,644 9209.835 3613 54,360
AADT (2017) 304 19,903 9153.563 3811 54,564
Segment length (mile) 304 0.340 0.279 0.100 1.809

VMT Per Year (2013–15) (in Millions) 304 2.326 2.359 0.116 19.823
VMT (2016) (in Millions) 304 2.390 2.409 0.132 19.769
VMT (2017) (in Millions) 304 2.414 2.439 0.139 20.989

Density (frequency per mile) of Commercial Driveways 304 1.214 1.941 0 12
Density (frequency per mile) of Industrial Driveways 304 1.747 2.167 0 12
Density (frequency per mile) of Residential Driveways 304 1.243 2.992 0 30

Average Offset Distance (feet) to Roadside Fixed Objects 304 14.266 8.188 0.000 30.000

Note: In Table 1, AADT and VMT stands for annual average daily traffic and vehicle miles travelled respecitvley both of which have already been defined in the texts above.
Furthemore, obs., Std. Dev., Min, and Max refer to number of observations, standard deviation, minimum, and maximum, respectively.
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and negative binomial models were estimated including all the sig-
nificant variables (including VMT in millions) in their original
forms (Model 1 and Model 2). Next, logarithmic forms of VMT (in
millions) were included while keeping all other covariates (e.g.,
the density of commercial and residential driveways and average
offset to roadside fixed objects) in their original forms (Model 3
and Model 4). Finally, logarithmic forms of all significant variables
were tested. Including logarithmic forms of all variables in the
model did not lead to improvements (results not shown for brev-
ity). Poisson and Negative Binomial models with log-transformed
VMT (in millions) variables (Model 3 and Model 4) outperformed
their counterparts with untransformed variables based on AIC,
BIC, and log-likelihood values at convergence (Table 2). Thus,
Model 3 and Model 4 (including logarithmic forms of VMT in mil-
lions) were selected as the best models compared to their counter-
parts. Similar specifications for the key variables (ln forms of VMT)
were used while training machine learning methods. To quantify
the effects of significant variables on crash frequency, we present
marginal effects (MEs) in Table 2. According to the estimation
results, VMT (2013–2015) per year was positively correlated with
the average three-years crash frequency (Table 2). In terms of geo-
metric factors, density (number per mile) of commercial (including
both minor and major) driveways is also positively correlated with
crash frequency on 5 T segments of urban and suburban arterials
(Table 2). On other hand, the density of residential driveways
showed a negative correlation with crash frequency on 5 T seg-
ments of urban and suburban arterials (Table 2). It is important
to mention that the density of industrial or institutional driveways
was also tried in the model, but it did not show any statistical sig-
nificance and was therefore excluded. We also found that the aver-
age offset distance (feet) to fixed objects along these segments is
negatively associated with average three-years (2013–2015) crash
frequency (Table 1). The over-dispersion parameter in negative
binomial models is found to be statistically significant, indicating
that the negative binomial model is preferred over the Poisson
regression (Table 2).

To understand the relationship between key variables and crash
frequency, we discuss the marginal effects of variables for the best
statistical model (negative binomial model with VMT (millions) in
ln forms), which has the best in-sample fit (Table 2). Our findings

indicate that yearly crash frequency increases by almost 6.851
units with a unit increase in yearly VMT in millions (ln form) while
keeping all other variables at their means (Table 2). The estimation
results of the best-fit model suggest that commercial driveways
have a stronger association with crash frequency (i.e., a unit
increase in density of commercial driveways is associated with
an increase in yearly crashes by 0.728 units; Table 2). Moreover,
yearly crash frequency is lower by 0.375 with a unit increase in
the density of residential driveways (Table 2). Other studies sug-
gest similar findings (AASHTO, 2010; Dixon, Avelar, Brown,
Mecham, & Van Schalkwyk, 2012; Khattak et al., 2020). These find-
ings were expected as an increase in commercial driveways
increases potential conflict points and creates a potential for gap
acceptance errors. On other hand, the findings related to the den-
sity of residential driveways were expected as there could be lower
traffic coming from these driveways (compared to commercial
driveways) thus having a lower chance of potential crashes with
the through traffic compared to commercial driveways. These find-
ings highlight the need for investigating proactive access manage-
ment strategies that can potentially reduce crashes specifically on
5 T roadway segments of urban and suburban arterials. Our find-
ings indicate that a higher offset distance to roadside fixed objects
is associated with fewer crashes. Crash frequency is lower by 0.229
with a unit increase in average offset distance (feet) to roadside
fixed objects (Table 2). This was expected as fixed objects (i.e., util-
ity poles, traffic signs, trees, and billboards) along roadway seg-
ments are potential safety risks specifically for errant vehicles
(Albuquerque & Awadalla, 2019; Albuquerque & Awadalla, 2020;
Safety, 2011; Wolf, 2006). Such objects are more prevalent along
with urban roadway segments (Albuquerque & Awadalla, 2019,
2020; Wolf, 2006). The distance to fixed objects along the roadway
segments is a critical factor because the risk of fixed-object colli-
sions is lower with higher offset distances to roadside fixed objects
(AASHTO, 2010).

3.2.2. Machine learning techniques
3.2.2.1. Single decision tree regression. First, we apply a single TBR to
predict average crash frequency per year on 5 T urban and subur-
ban arterials using a training dataset (2013–2015). Using one
standard-error rule, we do not observe a significant reduction in

Table 2
Estimation results of Poisson and negative binomial models.

Variables Poisson (Model 1) Negative Binomial (Model
2)

Poisson (Model 3) Negative Binomial (Model
4)

Data (2013–2015) Data (2013–2015) Data (2013–2015) Data (2013–2015)

Coeff. t-stat MEs Coeff. t-stat MEs Coeff. t-stat MEs Coeff. t-stat MEs

Constant 2.229 54.81 – 1.854 15.26 – 2.169 50.23 – 1.996 17.79 –
VMT Per Year (2013–15) in Millions 0.155 32.38 1.402 0.256 10.67 2.149 – – – – – –
Density (frequency per mile) of Commercial

Driveways
0.103 16.58 0.931 0.129 4.61 1.084 0.053 8.05 0.421 0.093 3.51 0.728

Density (frequency per mile) of Residential
Driveways

�0.032 �5.15 �0.289 �0.042 �2.19 �0.353 �0.039 �6.64 �0.307 �0.048 �2.74 �0.375

Average Offset Distance (feet) to Roadside fixed
objects

�0.033 �12.96 �0.298 �0.030 �4.46 �0.250 �0.038 �14.72 �0.302 �0.029 �4.60 �0.229

Key Variables (ln form)
VMT Per Year (2013–15) in Millions(ln form) – – – – – – 0.875 35.93 6.912 0.873 12.58 6.851
Over-dispersion Parameter – – – 1.446 10.33 – – – – 1.743 10.08 –
Summary
Sample Size 304 304 304 304
Log likelihood at Convergence �1707.267 �963.620 �1465.016 �939.771
AIC 3424.533 1939.241 2940.032 1891.542
BIC 3443.118 1961.543 2958.617 1913.844

Note: AIC is Akaike Information Criterion, BIC is Bayesian Information Criterion, while MEs indicate marginal effects. Furthemore, Coeff. Refers to the coefficients. The variance
inflation factor (VIF) for each of the predictor variables in Model 4 was computed which shows no significant sign of multicollinearity among the predictor variables. The VIF
for VMT (millions) (ln form), the density of commercial driveways, the density of residential driveways, and offset distance to fixed objects is found to be 1.3191, 1.2397,
1.1361, and 1.0608, respectively.
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error after a tree size of 7 (with cost complexity � 0.01328895).
Using the mentioned optimal values of tuning parameters, an opti-
mal tree is grown as shown on the right side in Fig. 4. The key pre-
dictor variables used in developing the optimal tree include VMT
(2013–2015) per year in millions (ln form), the density of commer-
cial driveways, and offset distance to fixed objects (Fig. 4). Note
that the single decision tree is easily interpretable. For instance,
it can be seen that if VMT (2013–2015) is lower than 1.00*106

(e0:0032 = 3.74 VMT in millions), the estimated number of crashes
on average is 3.13 (Fig. 4). The optimal TBR model may assign only
1 of the 12 values (3.13, 6.57, 9.60, 4.83, 18.54, 13.58, 29.57, 56,
18.86, 40, 50, 53.1) of crashes to roadway segments based on the
attributes (mean VMT (millions), the density of commercial drive-
ways, and average offset distance to fixed objects) selected by the
optimal tree-based regression model. Note that logarithmic forms
of VMT (millions) along with other key covariates (e.g., the density
of commercial driveways and average offset distance to fixed
objects) in their original forms were used to train the tree-based
model. Once the results from tree-based regression were obtained,
we took the anti-log of the values of VMT (millions) to interpret the
results – as shown in Fig. 4).

Note: In Fig. 4, the values with which ‘‘in millions” is written
refer the values already converted and shown on a million scale
e.g., 1.00 ‘‘in millions” refers to a value of 1,000,000 on an actual
scale which when multiplied with 10�6 results into 1.00 ‘‘in
millions.”

3.2.2.2. Random forest regression. To select optimal values of tuning
parameters including the number of predictors considered at each
split, the number of trees, and the maximum number of nodes in
the random forest, an extended grid-search optimization and 10-
fold cross-validation procedure were used (Fig. 5). In the grid
search, we assigned different values to each of the tuning parame-
ters, that is, different values of predictors considered at each split,
number of maximum nodes, and number of trees assigned were 2
to 4 (with an increment of 1), 1 to 31 (with an increment of 2), and
250 to 1,000 (with an increment of 50) leading to 768 different
combinations of the three tuning parameters. Based on RMSE,
our comprehensive grid search for all 768 different combinations
of the three tuning parameters indicates that optimal values for
the number of predictors considered in each split, number of max-
imum nodes, and number of trees are found to be 2, 23, and 900,

respectively (Fig. 5). Fig. 5 shows the RMSE only for the top 20 best
combinations of the three tuning parameters (mtry, number of
maximum nodes, and number of trees), which showed smaller
RMSE compared to the remaining 748 combinations of the three
tuning parameters. Using these tuning parameters, we apply the
RFR model to predict crash frequency per year using training data
(Fig. 5).

The relative importance of predictor variables used in the final
random forest model is illustrated in Fig. 6. On basis of relative
importance, VMT per year (2013–2015) and density of commercial
driveways are found to be the most important predictor variables
(Fig. 6). Similarly, average offset distance to fixed objects and den-
sity of residential driveways are ranked 3rd and 4th as per the final
RFR model using their relative importance (Fig. 6).

3.2.2.3. Gradient boosting regression. As discussed earlier, GBR is
prone to overfitting, which can be minimized while achieving a
balance between variance and bias through the selection of opti-
mal regularization parameters, such as the number of trees, learn-
ing rate (shrinkage), the minimum number of observations in trees’
terminal nodes, and complexity parameter (interaction depth).
Again, extended grid search and 10-fold cross-validation proce-
dures are used to select optimal values of the regularized parame-
ters. After conducting a grid search with all possible combinations
of the number of trees, shrinkage, and interaction depth, a mini-
mum RMSE is achieved when the number of trees, shrinkage,
and complexity parameters are equal to 100, 0.1, and 3, respec-
tively (Table 3). The performance of some key combinations of reg-
ularization parameters is shown in Table 3.

Once the optimal values of the regularization are determined, a
final GBR model is trained. The relative importance of key variables
in predicting crash frequency per year on 5 T segments of urban
and suburban arterials is shown in Fig. 7. Similar to the RFR model,
average three-year VMT (2013–2015) in millions and density of
commercial driveways are the most important predictor variables
(Fig. 7). Moreover, average offset distance to roadside fixed objects
and density of residential driveways are ranked 3rd and 4th in
terms of their relative importance in predicting crash frequency
(Fig. 7).

Note that GBR (the best performing base-learner) provides vari-
able importance but does not show the magnitude or nature of the
relationship between the response outcome and specific explana-

Fig. 4. Illustration of Cross validation (Regularization) and Optimal Decision-Tree Regression.
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Fig. 5. Selecting Optimal Values of Regularization Parameters for Random Forest.

Fig. 6. Variables Relative Importance Plot: Optimal RFR (Base-learner).

Table 3
Selecting optimal combination of regularization parameters for gradient boosting.

Shrinkage Interaction Depth Minimum Number of Observations in Trees’ Terminal Nodes Number of Trees RMSE

0.1 3 10 100 10.4056
0.1 1 10 100 10.4818
0.1 3 5 100 10.5222
0.1 10 10 100 10.5307
0.1 7 10 100 10.5344
0.1 1 5 100 10.5702

Note: The above six combinations are the combinations with smaller RMSE (root mean square error) compared to all other combinations. Note that in our grid search, we
assigned a range of values to shrinkage (0.1 to 1 with an increment of 0.2), interaction depth (1, 3, 7, and 10), the minimum number of observations in trees’ terminal nodes (2,
5, 10) and the number of trees (100, 300, 500, 1000).
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tory variables (Friedman, 2001). We present the partial depen-
dence plots, which are similar to marginal effects in statistical
models, for the two key variables, AADT and segment length
(Fig. 8). For consistency with the best statistical model (details
can be found in Section 3.2.1 and Table 2), we used the natural

log form of VMT per year (in millions), respectively, in all statistical
and ML base-learners. The partial dependence plots reveal a non-
linear association of average yearly VMT (millions) with average
yearly crash frequency (Fig. 8). For instance, there is a sharp
increase in crash frequency beyond a VMT of 0.67*106 (Fig. 8). With

Fig. 7. Variables Relative Importance Plot: Optimal GBR (Base-learner). Note: In the figure above, the GBR refers to gradient boosting tree regression.

Fig. 8. Yearly Predicted Crashes by GBR (best performing base-learner) for VMT and Other Predictor Variables.
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a higher average yearly VMT, the frequency of average crashes (in-
cluding both injury and non-injury crashes) per year increases.
While previous studies reveal that total crash frequency increases
with VMT (Jovanis & Chang, 1986), the interesting aspect of the
current study is that it captures non-linearities in such a relation-
ship through ML methods. Referring to the partial dependence
plots of VMT (millions), the values of �2.000 and 2.000 along the
x-axis indicate a VMT of 0.1353 (=e�2.000) and 7.3890 (=e2.000) in
millions respectively (Table 1). From the plots, predicted crashes
per year (GBR) increase with an increase in yearly VMT between
0.67*106 (=e�0.4) and 6.69*106 (=e1.9). Interestingly, if yearly AADT
decreases or increases beyond the values of 0.6703*106 and
6.69*106, respectively, the number of predicted crashes by optimal
GBR base-learners remain constant (�4 and � 35 crashes per year,
respectively) (Fig. 8). Similarly, the relationship of predicted
crashes by GBR with change in density of commercial driveways,
average offset distance to fixed objects, and density of residential
driveways can be seen in Fig. 8.

3.2.3. Stacking
After the five individual count data and machine learning-based

models are developed using training data (2013–2015), the perfor-
mance is evaluated using a validation dataset (2016). In the next
step, the stacked model is trained on the validation dataset
(2016) for which observed crash frequency (2016) is used as a
response variable. Eventually, the predictions obtained from the
five base-learners applied to the validation dataset are used as
inputs (predictors) to train the stackedmodel. Descriptive statistics
of predicted and observed crashes for the validation dataset are
shown in Table 4. Note that the mean number of crashes (2016)
predicted by individual models such as count data models (Poisson
and Negative Binomial model) and machine learning models such
as TBR, RFR, and GBR (P3, P4, and P5, respectively) are very similar
to the mean number of observed crashes occurred during 2016
(Table 4). While using the validation dataset including five new
predicted values (P1, P2, . . ., P5) and observed crashes, we train an
RFR model as a meta-learner (stacked ensemble model) in
second-stage regression. Several techniques ranging from simple
linear regression to more robust ensemble methods like RFR and
GBR can be used to train the stacked model.

The three ML methods (TBR, RFR, and GBR) were used as stack-
ing meta-learners in the second-stage regression to predict crashes
using the optimal combination of the base-learners. Our findings
suggest that all of the three ML-based stacking meta-learners
including RFR, GBR, and TBR significantly reduced the out-of-
sample RMSE, and MAE compared to homogeneous ensembles
(RFR and GBR) used as base-learners (Table 5). As mentioned, we
used the three ML methods (TBR, RFR, and GBR) as meta-learners
to predict crashes; however, we present and discuss the results
of RFR as a meta-learner (stacked ensemble method) because it
led to maximum improvement in out-of-sample prediction
accuracy.

Similar to individual machine learning models (TBR, RFR, and
GBR), grid search optimization and 10-fold cross-validation proce-

dures were used to select optimal values for regularization param-
eters of the Stacked model (RFR meta-learner). The tuning
parameters in the random forest model include the number of pre-
dictors considered at each split, the number of trees, and the max-
imum number of nodes in the random forest, which were found to
be 2, 450, and 15, respectively (Fig. 9). To select the best combina-
tion of tuning parameters with the lowest RMSE, different values of
the three tuning parameters were assigned, which include: 2 to 5
(with an increment of 1) for the number of predictors considered
at each split, 1 to 31 (with an increment of 2) for the maximum
number of nodes, and 250 to 1,000 (with an increment of 50) for
the number of trees. Based on the values of the tuning parameters,
1,024 different combinations of the three tuning parameters were
considered in the grid-search procedure. We illustrate RMSE for
only the 20 best combinations of the tuning parameters that result
in smaller RMSE compared to the remaining 1,004 combinations
(Fig. 9). The optimal stacked RFR model was fitted using the values
of 2, 15, and 450, which are found to be the optimal values of num-
ber predictors considered for splitting at each node, the maximum
number of nodes, and the number of trees, respectively.

The relative importance plot of the predictors (obtained from
the five base-learners) for meta-learner (stacked ensemble model)
is shown in Fig. 10. The predicted crashes obtained from the indi-
vidual RFR model (P4) are found to be the most important predictor
variable followed by those predicted via gradient boosting (P5)
(importance = 99.24 %), Poisson model (P1), negative binomial
model (P2), and TBR model (P1) (Fig. 10).

3.2.4. Comparing out-of-sample prediction performance
For evaluating the out-of-sample prediction performance of the

stacked versus un-stacked models, crash data in 2017 are used –
these data were neither used to train base-learners nor the meta-
learner (stacked model). Before comparing the out-of-sample pre-
diction performance of various stacking meta-learners, it should be
noted that each of the three ML methods (TBR, RFR, and GBR) were
used as stacking meta-learners. To select optimal values of regular-
ization parameters for a particular ML meta-learner, we used the
same procedure when the method was used as an ML base-
learner. Using the optimal values of specific regularization param-
eters obtained through 10-fold cross-validation and extended grid-
search, the three ML methods including TBR, RFR, and GBR were
trained as stacking meta-learners. To compare the predictive per-
formance of the five base-learners and meta-learners based on
the new dataset, we computed out-of-sample RMSE and MAE
(Table 5). Our findings indicate that GBR has the lowest out-of-
sample RMSE and MAE among all base-learners (Table 5). Referring
to the predictive performance of meta-learners, all of the three
stacking meta-learners including RFR, GBR, and TBR further
reduced out-of-sample RMSE and MAE compared to the best per-
forming base-learner (GBR) (Table 5). To conclude, RFR, as stacking
meta-learner, is found to have the lowest out-of-sample RMSE and
out-of-sample MAE among all the base-learners and meta-learners
and is selected as the best performing model for out-of-sample
crash prediction (Table 5). Among all the meta-learners, the results

Table 4
Descriptive statistics of predicted and observed crashes (Validation Dataset: 2016).

Variables Obs. Mean Std. Dev. Min Max

Total Crashes (2016) 304 11.010 14.651 0.000 90.000
Predicted Crashes via Poisson Model (P1) 304 11.257 10.580 1.079 70.126
Predicted Crashes per Negative Binomial Model (P2) 304 11.508 12.215 1.086 90.125
Predicted Crashes per Decision Tree Model (P3) 304 11.416 11.919 3.127 56.000
Predicted Crashes per Random Forest Model (P4) 304 11.244 9.465 1.242 45.631
Predicted Crashes per Gradient Boosting Model (P5) 304 11.078 10.482 0.740 57.647

Note: Furthemore, obs., Std. Dev., Min, and Max refer to number of observations, standard deviation, minimum, and maximum, respectively.
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Table 5
Comparison Prediction Performance (Out-of-Sample): RMSE and MAE.

Model Type RMSE % Difference in RMSE compared to GBR Model MAE % Difference in MAE compared to GBR Model

TBR Meta-learner 8.96 �9.40 5.88 �8.55
Gradient Boosting Meta-learner 8.83 �10.72 5.84 �9.18
Random Forest Meta-learner 8.34 �15.67 5.41 �15.86
Poisson Base-learner 10.39 5.06 6.60 2.64
Negative Binomial Base-learner 11.21 13.35 6.87 6.84
TBR Base-learner 10.69 8.09 6.66 3.58
Random Forest Base-learner 9.99 1.01 6.44 0.16
Gradient Boosting Base-learner 9.89 Base 6.43 Base

Note: % Difference in RMSE compared to GBR Model ¼ RMSEModel X�RMSEGBR Modelð Þ
RMSEGBR Model

� 100%.
% Difference in MAE compared to GBR Model ¼ MAEModel X�MAEGBR Modelð Þ

MAEGBR Model
� 100%.

Note: Meta-learner refers to the model when it is applied in the second stage to use predictions from the optimal combinations of different base-learners. In stacking, a
‘‘meta-leaner” is also termed a ‘‘super-learner” (Van Der Laan et al., 2007). As defined in the texts earlier, RMSE, MAE, and GBR refer to root mean square error, mean absolute
error, and gradient boosting tree regression, respectively.

Fig. 9. Selecting Optimal Tuning Parameters for Stacked RFR Model (Second-Stage Regression). Note:Mtry and RMSE in the figure above refer to number of predictors used in
the stacked RFR (random forsest regression) at each split and root mean square error, respectively.

Fig. 10. Variables Relative Importance Plot: Optimal Stacked RFR Model (Meta-Learner).
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of RFR as a stacking meta-learner (with the lowest out-of-sample
RMSE and MAE among all meta-learners and base-learners) are
only discussed in the paper.

To have a deeper understanding of the out-of-sample prediction
errors, we also provide distributional statistics of out-of-sample
absolute prediction errors (Table 6). RFR as a stacking meta-
learner leads to the lowest out-of-sample absolute prediction error
(Table 6). The standard deviations of absolute prediction errors for
all three stacking meta-learners including RFR, GBR, and TBR are
found to be smaller, indicating less spreading-out around the mean
value of the error (Table 6).

To visualize and compare the out-of-sample prediction perfor-
mance of individual models (base-learners) and the stacked
ensemble technique (meta-learner), we present plots of predicted
versus observed crashes based on the testing data (2017)
(Fig. 11). It can be seen that the RFR ensemble model, when used
as a meta-learner, shows the best fit, followed by GBR (meta-
learner) and TBR (meta-learner) as shown in Fig. 11. Similar find-
ings are obtained in other fields where prediction accuracy for
the stacked ensemble model (used for classification) improved by
2 %–4% (Günes� et al., 2017). To conclude, we found that the appli-
cation of the stacked ensemble technique can help in obtaining

more accurate crash predictions in the future. Forecasting error is
composed of the inversely related bias and variance errors of the
underlying model parameters. The stacked ensemble technique
can help achieve a desirable trade-off between bias and variance
– pooling predictions from traditional (low bias, high variance)
and machine learning (high bias, low variance) models, ultimately
leading to more accurate forecasts. Note that none of the studies
evaluated the applicability of more accurate, reliable, and intelli-
gent heterogeneous ensemble procedures to determine the crash
frequency. Similar rigorous stacked ensemble techniques can be
used to predict crash frequency on other types of roadway using
local data.

The plot of predicted versus actual crash frequency for the tree-
based regression model seems unusual compared to the other five
regression models. Note that tree-based regression models only
assign a specific number of values to response outcomes for indi-
vidual observations (roadway segments in this case) based on their
attribute values and conditions (for details, refer to Fig. 4) assigned
by the optimal tree-based regression model. In our case, the opti-
mal tree-based regression model indicates that 1 of the 12 values
(3.13, 6.57, 9.60, 4.83, 18.54, 13.58, 29.57, 56, 18.86, 40, 50, 53.1)
of crashes may be assigned to any segment based on its attributes

Table 6
Summary of Absolute Prediction Errors (Out-of-Sample) for Base and Meta-learners.

Model Type (used as) N Absolute (observed crashes - predicted crashes)

Mean Std. Dev. Minimum Maximum

TBR Meta-learner 304 5.88 6.78 0.17 59.00
Gradient Boosting Meta-learner 304 5.84 6.63 0.02 59.95
Random Forest Meta-learner 304 5.41 6.35 0.01 52.43
Poisson Base-learner 304 6.60 8.03 0.00 77.25
Negative Binomial Base-learner 304 6.87 8.87 0.04 77.58
TBR Base-learner 304 6.66 8.37 0.12 81.12
Random Forest Base-learner 304 6.44 7.66 0.01 73.31
Gradient Boosting Base-learner 304 6.43 7.50 0.03 64.23

Note: Meta-learner refers to the model when it is applied in the second stage to use predictions from the optimal combinations of different base-learners. In stacking, a
‘‘meta-leaner” is also termed a ‘‘super-learner” (Van Der Laan et al., 2007). In Table 6, TBR, N, and Std. Dev. refer to tree-based regression, number of observations, and
standard deviation, respectively.

Fig. 11. Out-of-sample prediction: Observed versus Predicted Crashes.
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(mean VMT, density of commercial driveways, and average offset
distance to fixed objects) based on which the optimal TBR model
was developed. Hence, it can be seen in Fig. 11 that crashes are
spotted at a few specific points by TBR models (both as base-
learner and meta-learner), which seems unusual compared to the
remaining models.

4. Limitations and future directions

This study uses 5 T segments of urban and suburban arterials in
Tennessee and may not be extended to other states due to varia-
tions in driving behavior, socio-demographic, and roadway condi-
tions. Compared to individual machine learning techniques, we
recommend using heterogeneous ensemble methods like stacking,
which are more accurate, reliable, and intelligent techniques and
can help in accessing crash forecasts in the future. While stacking
may significantly improve the out-of-sample prediction accuracy,
it does not provide the variable importance for the actual predictor
variables (e.g., VMT, average offset distance to fixed objects). Note
that in this study, stacking is applied to combine multiple predic-
tions (as opposed to combining distributions of coefficients, such
as in the Bayesian setup). Thus, the inference is not relevant in
Stage 2. However, the inferences are provided in Stage-1 by indi-
vidual base-learners that include statistical models (like Poisson
and negative binomial) and ML methods including TBR, RFR, and
GBR. Note that based on our study objectives, we split five years
of crash data into training (2013–2015), validation (2016), and
testing (2017) datasets - indicting that only crash frequency and
VMT (due to AADT) may vary across the datasets while roadway
geometry remains similar. In the future, data splitting can also be
done using standard splitting procedures rather than the year-
wise split, depending on the study design and objectives. The
application presented herein is based on year-wise splits, assuming
temporal transferability of the models over years. As part of future
work, variants of the methods presented herein that relax this
assumption can be examined.

5. Conclusions

Safety performance functions are core tools necessary for the
accurate prediction of crashes and subsequent development of
place-based countermeasures. Traditional count data models and
machine learning methods have been extensively used in the
safety literature for the development of statistical relationships
between crash frequency and associated factors. This study con-
tributes by presenting a rigorous and novel heterogeneous ensem-
ble methods (HEM) scheme to ‘‘stack” predictions from competing
frequentist and ML models – eventually leading to a more accurate
prediction of crashes. By using a more accurate and reliable intel-
ligent pattern recognition scheme, the ‘‘Stacking” methodology
harnesses the inferential framework provided by traditional count
data models and the predictive power offered by ML methods. The
objectives are achieved using five-year crash, traffic, and roadway
geometric data for urban and suburban arterials extracted from the
Enhanced Tennessee Roadway Information Management System
(ETRIMS). To the best of the authors’ knowledge, no study to date
has applied heterogeneous ensemble methods to pool multiple
predictions from frequentist and ML methods.

The results suggest the significant potential of ‘‘Stacking” in
providing more accurate predictions by heterogeneously assem-
bling crash forecasts from individual statistical (Poisson and nega-
tive binomial) and machine-learning-based base-learners (tree-
based regression, random forests, and gradient boosting regres-
sion). Using out-of-sample prediction performance, the gradient
boosting model led to the lowest RMSE and MAE values among

all the individual base-learners. While individual ML-based base-
learners can provide greater predictive accuracy, there is no escap-
ing the relationship between bias and variance underpinning most
machine learning models. In other words, using a single supervised
or unsupervised ML method could lead to relatively less accurate
predictions due to the compromised bias or variance. By superim-
posing the best machine-learning-based meta-learner on predic-
tions obtained from the five statistical and ML-based base-
learners, the RMSE and MAE values of crash forecasts were further
reduced by 15.67 % and 15.86 %, respectively, compared to the pre-
diction accuracy of the best-fit gradient boosting based individual
base-learner. From an inferential standpoint, the individual base-
learners offer insights into the links between crash frequency
and associated factors. Count data models show that besides expo-
sure variables (VMT), higher accessibility in commercial areas cor-
relates with higher crash frequency. Contrarily, a larger offset
distance to a fixed object correlates with lower crash frequency.
In terms of variable importance, the three ML-based base-
learners rank VMT, density of commercial driveways, and average
offset distance to fixed objects as the three top predictors of crash
frequency.

The results of this study have important implications. By using
heterogeneous ensemble methods such as Stacking, even more,
accurate crash forecasts can be obtained compared to those
obtained from individual frequentist or ML methods. With more
accurate crash forecasts, roadway segments can be better priori-
tized in terms of the need for place-based safety countermeasures.
From a practical standpoint, the straightforward heterogeneous
ensemble method technique can be easily automated for more
accurate crash prediction. From a research perspective, the
methodology can be expanded by other researchers to include an
even broader set of ML methods or consider more rigorous
simulation-assisted statistical methods accounting for method-
ological issues like observed and unobserved heterogeneity.
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a b s t r a c t

Introduction: While micromobility vehicles offer new transport opportunities and may decrease fuel
emissions, the extent to which these benefits outweigh the safety costs is still uncertain. For instance,
e-scooterists have been reported to experience a tenfold crash risk compared to ordinary cyclists.
Today, we still do not know whether the real safety problem is the vehicle, the human, or the infrastruc-
ture. In other words, the new vehicles may not necessarily be unsafe; the behavior of their riders, in com-
bination with an infrastructure that was not designed to accommodate micromobility, may be the real
issue. Method: In this paper, we compared e-scooters and Segways with bicycles in field trials to deter-
mine whether these new vehicles create different constraints for longitudinal control (e.g., in braking
avoidance maneuvers). Results: The results show that acceleration and deceleration performance changes
across vehicles; specifically, e-scooters and Segways that we tested cannot brake as efficiently as bicycles.
Further, bicycles are experienced as more stable, maneuverable, and safe than Segways and e-scooters.
We also derived kinematic models for acceleration and braking that can be used to predict rider trajec-
tories in active safety systems. Practical Applications: The results from this study suggest that, while new
micromobility solutions may not be intrinsically unsafe, they may require some behavior and/or infras-
tructure adaptations to improve their safety. We also discuss how policy making, safety system design,
and traffic education may use our results to support the safe integration of micromobility into the trans-
port system.
� 2022 The Author(s). Published by the National Safety Council and Elsevier Ltd. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

New micromobility vehicles (SAE Committee, 2018), compact
and electrically powered, are on the rise worldwide (6t-bureau
de recherche, 2019; Chang et al., 2019; Fitt & Curl, 2020; O’Hern
& Estgfaeller, 2020; Portland Bureau of Transportation, 2018). A
few years ago, e-bicycles (i.e., assisted cycles, pedelecs [SAE
Committee, 2018]) were a new transport phenomenon that created
some concerns in the safety research community (Huertas-Leyva
et al., 2018; MacArthur et al., 2014; Schleinitz et al., 2017; Twisk
et al., 2021). Today, e-bicycles are conventional, while new micro-
mobility (e-)vehicles with different geometries, number of wheels,
and number of tracks present new challenges for the transport sys-
tem (Abduljabbar et al., 2021; O’Hern & Estgfaeller, 2020). While
monowheels, e-skates, and Segways are not very popular yet
and, maybe, they will never be, e-scooters are; they outnumber
e-bicycles in many urban centers. It is hard not to see a trend

toward electrical vehicles, and it is not a given that e-scooters
are the peak of this transformation. In any case, micromobility is
here to stay (Gössling, 2020), and it may indeed solve some con-
gestion and pollution issues (6t-bureau de recherche, 2019;
Abduljabbar et al., 2021; Portland Bureau of Transportation,
2018; Sharkey et al., 2020). Unfortunately, the safety toll that
new micromobility vehicles—and e-scooters specifically—take
may be hard to mitigate (Santacreu et al., 2020).

Several studies have shown that riding e-scooters is unsafe: the
crash risk is 10 times higher than riding a bicycle (Fearnley et al.,
2020). E-scooters also cause major injuries (Badeau et al., 2019;
Bekhit et al., 2020; Ishmael et al., 2020; Namiri et al., 2020) that
are different from the ones experienced by (e-)cyclists (Beck
et al., 2020; Cicchino et al., 2021; B. Trivedi et al., 2019; T. K.
Trivedi et al., 2019; Wüster et al., 2020). Several factors may con-
tribute to explain these injury variations, including the different
demographics and attitudes in wearing helmets between the
cyclist and e-scooterist population. However, some differences
(e.g., the higher prevalence of lower extremity injuries for e-
scooterists compared to cyclists; Cicchino et al., 2021) suggest that
the vehicle geometry and control also play a role.
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Today, we know very little about the causes of e-scooter
crashes. The vehicles often take the blame, although road-user
behavior and infrastructure may play more important roles in
crash causation. Most of the research on e-scooter safety makes
use of data collected after the crash has happened, either by the
police, hospitals, or insurance companies (Stigson et al., 2020).
While these data describe the consequence of a crash, they do
not show what happened just before the crash; in other words,
they may not show what caused the crash. Data collected in the
field, on the other hand, either naturalistically (Dozza &
Werneke, 2014) or in controlled experiments (Kovácsová et al.,
2016), may complement the crash data collected a posteriori and
help us understand why micromobility crashes occur—and how
to avoid them (Dozza et al., 2022).

The same data may help educate micromobility riders; after all,
33 % of the injuries happen during the very first trip of novice rid-
ers (Austin Public Health, 2019), suggesting that the crash was
caused by the riders’ inexperience. In addition, field data may con-
tribute to the development of active safety systems, such as emer-
gency braking, which need to predict the rider behavior in order to
provide timely and acceptable interventions (Boda et al., 2018).
Finally, today’s policy making, in the form of bans or geo-fencing,
responds to general and static requirements, rather than dynami-
cally changing in time and space according to the actual crash risk
at a given moment. However, geo-fencing may have this ability if a
sufficiently large amount of field data are available.

In this paper, we follow the procedure proposed by Dozza et al.
(2022) for field data collection and analysis, and compare longitu-
dinal control (i.e., acceleration and braking) among e-scooters, Seg-
ways, and bicycles (with and without assisted pedaling). Our main
hypotheses were that: (1) as urgency increases, riders may be able
to achieve larger acceleration and decelerations with all vehicles;
(2) not all vehicles may exhibit the same acceleration and braking
performance; and (3) braking and acceleration trajectories may be
accurately predicted with simple linear models for all micromobil-
ity vehicles. By modeling micromobility kinematics, we can
improve the threat assessment of active safety systems and pro-
mote a better understanding of how new micromobility vehicles
differ from bicycles from a safety point of view.

2. Methods

The data collection and analyses in this study adapted the pro-
cedure from Dozza et al. (2022) by comparing acceleration (in
addition to braking) and including a Segway (in addition to bicy-
cles and e-scooters).

2.1. Participants

Nine female and 25 male subjects participated to this experi-
ment by maneuvering an e-scooter, a Segway, and a bicycle in field
trials. The participants’ mean age (±standard deviation) was 23.5
y ± 4.2, mean height (±standard deviation) 1.75 m ± 0.08, and mean
weight (±standard deviation) 71.5 kg ± 9.5. Participants shorter
than 160 cm or heavier than 85 kg were excluded from the study
to comply with the suggested heights and weights from the vehicle
manufacturers. The inclusion criteria made sure that participants
could ride a bicycle, were between 18 and 50 years old, had no dis-
abilities, and had never been in a severe road crash. These criteria
were set to control for possible biases in the results as indicated in
(Dozza et al., 2022). Participants who had any symptoms of COVID-
19 in the two weeks prior to the experiment were not allowed to
take part. The maneuvers required the participant to longitudinally
control (e.g., accelerate and brake) the vehicles in different condi-
tions. Each subject signed a consent form before the experiment.

The study was approved by the Swedish Ethical Review Authority
(Etikprövningsmyndigheten; Ref. 2019–04547). An ad-hoc health
insurance covered the participants during the experiment.

2.2. Equipment

The e-scooter (Ninebot ES2), Segway (Ninebot S), and bicycle
(Monark Karin 3-VXL) were equipped with a logger and sensors
for the collection of vehicle kinematics (Fig. 1). Specifically, the log-
ger was based on a Raspberry Pi 3 model B, and kinematics were
collected with an inertial measurement unit (IMU: PhidgetSpatial
3/3/3 1044_B). In addition, a light detection and ranging sensor
(LiDAR: HOKUYO UXM 30LAH EWA), installed on the proving
ground, was used to track the vehicles during the experiment.
The data from the IMU and the LiDAR were combined to achieve
a more accurate estimation of the vehicle kinematics than either
sensor alone could provide. In particular, the longitudinal acceler-
ation from the IMU and the trace of the centroid of the vehicles
from the LiDAR were combined to estimate the position and speed
of the rider during each maneuver. A Rauch-Tung-Striebel
smoother made this combination possible (Rauch et al., 1965).
More details about the processing are presented in the work by
Billstein and Svernlöv (2021).

2.3. Protocol

After a period of training so the participants could get
acquainted with the vehicles’ operation, all participants were
asked to accelerate and brake the three vehicles in five different
tasks.1 Two acceleration tasks required the participants to bring
the vehicle to a constant speed of 17–20 km/h from a standstill
either comfortably (comfort task) or harshly (harsh task). There were
three braking tasks that all required braking from a constant 17–
20 km/h speed. In the comfort braking task, they were asked to brake
comfortably. In the harsh planned task, the participant was supposed
to brake as late and hard as possible, stopping just before a line on
the ground. In the unexpected task, the experimenter gave a com-
mand to stop at a random time and the participant was asked to
respond by braking as hard as possible. These different braking con-
ditions were chosen to simulate planned and unplanned braking
maneuvers (Huertas-Leyva et al., 2018, 2019); the difference
between them would help identify the role of expectation on
response time (Dozza et al., 2022). The order of the vehicles and
tasks was randomized for each subject, but all trials were completed
for each of the vehicles before a new vehicle was ridden. The exper-
imental conditions are shown on Fig. 2. The bicycle was used both as
an e-bicycle and a conventional bicycle; in other words, each partic-
ipant performed the experiment on the bicycle twice, with and with-
out electrical assistance. Therefore, although only three vehicles
were tested in this study, we present results for four different riding
conditions: the e-scooter, the Segway, and the two bicycle configura-
tions (assisted and unassisted).

2.4. Subjective data

After completing the tasks, the participants were asked to fill in
a questionnaire that assessed: (1) how much previous experience
they had with the different vehicles in the experiment and (2) their
opinions of the performance of the vehicles during the experiment.
For this second part, taken from works by (Dozza et al., 2022;
Rasch et al., 2016), the participants ranked the four vehicles on a
7-level Likert scale (from 1 = Very poor, to 7 = Exceptional). The fol-
lowing riding six categories were ranked: mounting and dismount-

1 https://www.youtube.com/watch?v=FWWfsQrtDQY.
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ing, maintaining balance at low speed, maintaining balance at high
speed, braking at low speed, braking at high speed, and accelerat-

ing from a standstill. The following four categories were ranked:
stability, maneuverability, comfort, and safety.

2.5. Analyses

The accelerations and decelerations in the five tasks were
modeled with linear regressions similar to those in previous
studies (Kovácsová et al., 2016; Lee et al., 2020). We also com-
puted the coefficient R2 to verify the goodness of fit of the linear
models. For the braking maneuvers, the distance covered to
achieve a full stop was also computed. In addition, we compared
the difference between the marked line and the actual position
where the participants stopped, to determine how accurately
they could estimate their braking distance. Finally, we computed
the response time (i.e., the time passed between when the
experimenter issued the stop command and when the vehicle
started decelerating) for the unexpected braking task, to estab-
lish whether the vehicle type affected braking response time
(Huertas-Leyva et al., 2018, 2019). The braking maneuver was
defined as beginning when the vehicle speed dropped below
16 km/h (12 km/h for the Segway) and ending when it dropped
below 2.5 km/h. The acceleration maneuver was defined to begin
when the vehicle speed exceeded 2.5 km/h and end when it
exceeded 16 km/h (12 km/h for the Segway). The reaction time
in the unexpected-braking maneuver was defined to begin when
the experimenter gave the stop command and end when the
speed had dropped by 1 km/h.

Several generalized linear mixed-effect models (including the
participant ID as a random effect and gender, vehicle, and maneu-
ver type as fixed factors) were created to verify the significance of
the results. Post-hoc tests were run on the results of the model
whenever a factor with more than two categories was significant.
The threshold for statistical significance was set to a = 0.05 and
adjusted with the Bonferroni correction to control for multiple
tests across different analyses with uncorrelated measures. (All
statistical analyses used the Statistics and Machine Learning Tool-
box in Matlab and specifically the functions fitglme and coefTest.).

Fig. 1. Instrumented vehicles with data loggers and inertial measurement units
(IMUs).

Fig. 2. Experimental protocol. Panel A: accelerating and braking comfortably. Panel B: accelerating and braking harshly. Panel C: braking harshly in response to a command
from the experimenter; in this condition the ridden distance was larger than in the other conditions (100 m vs 50 m) to increase the variability of the braking command time.
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3. Results

3.1. Dataset

Although we recruited 34 participants, only 25 of them felt
comfortable riding the Segway and only 14 out of these 25 pro-
vided reliable sensor data for modeling acceleration and braking.
Therefore, while the comparisons across the bicycle, e-bicycle,
and e-scooter use the same population, the data for the Segway
only include a subset of the population (significantly smaller for
the kinematics analysis and slightly smaller for the questionnaire
analysis). We also experienced other minor data losses. For
instance, one of the participants crashed during the experiment;
it was then stopped and none of the data were used for the analy-
sis. Data were also excluded from the analysis when the participant
did not reach the desired speed before starting braking. It is worth
noting that we experienced a significant data loss for technical
issues only on the Segway. This was mainly the consequence of a
malfunctioning USB drive in the Segway installation.

All participants were very used to riding a conventional bicycle
and much less experienced riding with the other vehicles (Table 1).
An issue with the Segway was winning the fear of falling when
stepping on the vehicle, which is necessary to start riding. In fact,
to ride the Segway, the participants had to step with both feet on
the vehicle within a short time and balance longitudinally. This
action may be uncomfortable (even for experienced riders)
because it creates some forward and backward sway that may feel
like losing equilibrium. Nine participants did not win, or did not
want to try to win, this fear of falling and just refused to ride the
Segway; however, most of the data loss was the consequence of
technical issues. In the training phase, participants could practice
with any vehicle as long as they wanted and, on average, this train-
ing phase took 15 min per participant.

3.2. Acceleration maneuvers

Fig. 3 shows the average acceleration across all subjects for
comfort and harsh acceleration maneuvers. It can be observed that
the assisted bicycle enabled greater accelerations (up to 20 km/h)
than the other vehicles; further, the Segway stopped accelerating
as it approached 15 km/h, possibly because its design felt unstable
at higher speed, so people backed off. Table 1 reports the angular
coefficients from the regression models, representing the average
acceleration during the trials. Harsh maneuvers resulted in statis-
tically significantly larger accelerations than comfort maneuvers
(t = 7.5; p�0.01; Appendix Table A), suggesting that the partici-
pants understood the instructions and could control the vehicles
accordingly. While accelerations were not statistically significantly
different across gender or age, they were different across vehicles
(F = 16.4; p � 0.001; Appendix Table A). Specifically, the assisted
bicycle accelerated significantly faster than the e-scooter or the
conventional bicycle. The acceleration of the Segway was also very
high in the beginning of the maneuver. (Table 2 shows the average
acceleration of the Segway until it reached 12 km/h, which may
not be directly comparable with that of the other vehicles, which
were able to reach 17–20 km/h as instructed.).

3.3. Braking maneuvers

The average speeds over time for each of the three braking
maneuvers are presented in Fig. 4. Table 3 complements Fig. 4 by
presenting the linear coefficients from the regression models for
all vehicles and braking maneuvers. In all maneuvers, the Segway
achieved a lower deceleration compared to the other vehicles
and the deceleration started at a lower speed. It is very important

to keep these differences in mind, especially when comparing the
Segway’s braking distances with those of the other vehicles.

When riding the bicycle (in both assisted and unassisted
modes), the participants were able to brake with larger decelera-
tions than when riding the other vehicles, and this result was sta-
tistically significant (F = 39; p � 0.001; Appendix Table B1). The
participants’ braking performance when riding the Segway was
poorer (i.e., deceleration was lower) than for the other vehicles.
As expected, the two harsh braking maneuvers resulted in statisti-
cally significantly larger braking decelerations for all vehicles
(F = 8.87; p � 0.001). What was somewhat surprising is that the
unexpected harsh braking task resulted in slightly greater deceler-
ations than the planned harsh braking. No statistically significant
difference in braking deceleration was found across ages or gen-
ders (Appendix Table B1).

While the braking distances were similar for the assisted and
unassisted bicycle modes, the braking distance was statistically
significantly longer for the e-scooter than for the bicycle in the
harsh braking conditions (Fig. 5; Appendix Table B2-B4). The brak-
ing distance was also shorter for Segways than for e-scooters.
However, this is not a valid comparison, as participants on the Seg-
way were only able to reach 15 km/h (despite the Segway design
allowing for higher speeds), and therefore the shorter distance is
likely a consequence of the lower speed (Fig. 5). No statistically sig-
nificant effect of gender or age was found on the braking distance
(Appendix Table B2-B4). The response times were not only similar
across gender and age, but also across all vehicles—with the excep-
tion of the e-scooter, which induced statistically significantly lar-
ger response times (Fig. 6; F = 6.7; p � 0.01; Appendix Table B5).
Further, during the harsh (planned) braking task, participants rid-
ing the e-scooter crossed the stop line marked on the ground
61% of the time, while this line was exceeded only 18% and 14%
of the time for the assisted and unassisted bicycle, respectively.
Finally, while they were riding the Segway, they crossed the line
in 71% of the trials.

3.4. Subjective data

Table 4 shows some of the results from the questionnaire prob-
ing the participants’ opinions of the vehicles’ performance in dif-
ferent situations. The electrified vehicles, possibly because they
required less physical effort, were perceived as more comfortable
than the unassisted bicycle when accelerating from a standstill
(this result was statistically significant; Appendix Table S1-S6).
The assisted and unassisted bicycle tasks were scored similarly in
all other situations. The Segway scored statistically significantly
lower than the other vehicles for mounting and dismounting,
maintaining balance at high speed, and braking at high speed
(Appendix Table S1-S6). While all vehicles were similarly rated
by the participants at low speed, the e-scooter and the Segway
were perceived as less stable as speed increased (both for simply
balancing and for braking). Gender did not statistically signifi-
cantly influence any of the categories in Table 4 (Appendix
Table S1-S6). However, age did: the older the subject, the lower
the ratings (Appendix Table S1-S6). Nevertheless, the effect of
age was small compared to the effect of vehicle type (Appendix
Table S1-S6).

The Segway also scored lower than the other vehicles for overall
stability, maneuverability, comfort, and safety (Table 4); these dif-
ferences, too, were statistically significant (Appendix Table S7-
S10). The e-scooter was also perceived as less stable and safe than
the assisted and unassisted bicycle; however, this result was on the
border for statistical significance. The effect of gender was not sta-
tistically significant for comfort, stability, maneuverability, or
safety, but the effect of age was (Appendix Table S7-S10). Specifi-
cally, the older the subject, the less comfortable, stable, maneuver-
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able, and safe the vehicle ranking. (Notably, these effects were
most pronounced for the safety category and for the Segway.)
Table 5 reports the correlation matrix for the four categories pre-
sented at the bottom of Table 4; it may be observed that the corre-
lation was high among all categories, particularly between safety
and stability.

4. Discussion

In this study, we applied the procedure for data collection and
analysis from Dozza et al.’s (2022) field study to the comparison
of the longitudinal control of a bicycle (with and without assisted
pedaling), an e-scooter, and a Segway. Our results show that,
indeed, the same participant may demonstrate different accelera-
tion and braking performance depending on the vehicle. Neverthe-
less, we also verified that, independently of the vehicle and of the
emergency of the maneuver, riders braked with a constant deceler-
ation (this is evident from the very large R2 coefficients in all mod-
els; see Tables 2 and 3). This finding, in line with previous work on
bicycle dynamics (Lee et al., 2020), is important for the application
of our models to active safety: the linear coefficients from our
regression analysis can accurately predict micro-mobility
kinematics—specifically, stopping distance. In other words, an (au-
tomated) vehicle using our models may estimate whether a rider

approaching an intersection is still able to brake and stop in time
to avoid a collision and, once the rider starts braking, what the tra-
jectory is going to be (Boda et al., 2020). The data collected from
the comfort maneuvers in our experiment may provide a lower
bound for these predictions for the threat assessment of an active
safety system, and the harsh maneuvers may estimate a higher
bound. Further, this paper shows that vehicle classification is
essential for an accurate prediction, because the braking and accel-
eration performances vary largely across the micromobility vehi-
cles tested.

Riders could accelerate almost twice as fast and brake twice as
hard when they compromised comfort for urgency (i.e., comfort vs
harsh conditions). While this is the first study, to our knowledge,
presenting acceleration data frommicromobility vehicles, previous
studies assessed braking performance. In particular, Dozza et al.
(2022) presented results from six cyclists/e-scooterists braking in
the same conditions as in this study (i.e., comfort, harsh, and unex-
pected), and the results are very similar, although the (unassisted)
bicycle’s harsh braking in their study resulted in a somewhat
higher deceleration rate than was found in this study. Because this
study had a larger number of subjects, the average value given here
is likely to be more accurate than the one presented there. In any
case, their results are still well within one standard deviation of
this study’s, and even this small difference may be explained by
the small data sample. Interestingly, both studies found that, in
unexpected braking, riders achieve slightly larger deceleration
than in planned braking. It is, however, unknown whether the lar-
ger deceleration is caused by suggestion (from the expectation of
the experimenter’s command) or by some other mechanism. The
results for bicycle expected braking in this study were similar to
those already reported by Lee et al. (2020) from 16 riders, while
the results for e-scooter braking were in line with those reported
from eight riders by Garman et al. (2020).

Braking performance, in terms of decelerations and braking dis-
tances, was similar for the assisted and unassisted bicycle tasks

Table 1
Experience of the participants with riding vehicles. (For the Segway, we reported the
data only from the 25 subjects that contributed to the questionnaire analysis.).

Bike e-bike e-scooter Segway

Never 2 27 12 24
Few days per year 7 4 7 0
Few days per month 8 2 8 1
Few days per week 9 1 4 0
Everyday 8 0 3 0

Fig. 3. Average speed for comfort and harsh accelerating maneuvers for all vehicles.

Table 2
Average accelerations (M) with standard deviations (SD) expressed in m/s2. N indicates the number of trials available for computing averages and standard deviations. We also
report the average R2 coefficients to show the goodness of fitness of the linear models.

maneuver bicycle (M ± SD) e-bicycle (M ± SD) e-scooter (M ± SD) Segway (M ± SD)

Comfort 0.45 ± 0.11
(N = 22; R2 = 0.96)

0.70 ± 0.12
(N = 26; R2 = 0.98)

0.56 ± 0.19
(N = 25; R2 = 0.94)

0.67 ± 0.36
(N = 13; R2 = 0.93)

Harsh 0.76 ± 0.28
(N = 25; R2 = 0.96)

0.95 ± 0.14
(N = 26; R2 = 0.95)

0.70 ± 0.25
(N = 28; R2 = 0.93)

1.01 ± 0.34
(N = 13; R2 = 0.95)
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and poorer for the e-scooter and Segway. Both objective and sub-
jective data suggest that the Segway is less stable and harder to

maneuver than the other vehicles. Further, e-scooters seem to be
harder to control than bicycles, both because 61% of riders were
not able to halt before the stop line and because response times
for braking were longer for e-scooters than for all other vehicles.
Although steering performance (which is not addressed in this
paper) may redeem e-scooters’ maneuverability, when it comes
to longitudinal control (i.e., crash avoidance by braking), e-
scooters and Segways perform much more poorly than bicycles,
which raises some concerns about their safety. Riders seem to be
aware of these limitations, because the questionnaire data clearly
indicate that riders perceive e-scooters and Segways as less stable
and safe than bicycles. This result is positive, because riders may be
able to use their awareness to compensate for the inferior braking
performance by braking in anticipation (earlier), for instance, or
using other crash-avoidance strategies.

This study verified that accelerative and braking maneuvers on
micromobility vehicles are highly predictable because riders tend
to control the vehicles by maintaining constant accelerations.
Although the accelerations may change depending on the vehicle
and the urgency of the maneuvers, the constancy may make it pos-
sible for active safety systems (and automated vehicles) to predict
cyclist trajectories. This may be particularly critical at an intersec-
tion: a vehicle may estimate the probability that a crossing cyclist
will stop at the intersection in time and use this information to
warn the driver or apply automated interventions, such as emer-
gency steering and braking (Thalya et al., 2020). Further, by includ-
ing our models in the threat assessment for warning and
intervention systems (SAE J3063), current systems intended to
avoid crashes with motorized vehicles (e.g., frontal collision warn-
ing, automated emergency braking) may be adapted to also avoid
crashes with micromobility vehicles (Boda et al., 2018). As con-
sumer rating programs such as Euro NCAP include new test scenar-
ios with new vulnerable-road-users (Van Ratingen et al., 2016), the
results in this paper may be used to derive test scenarios that spec-
ify the safety-relevant differences between micromobility solu-
tions. Finally, dynamic geofencing (i.e., algorithms that can
remotely control micromobility, for example, by limiting speed)
may make use of the data from this study to determine which
speeds are safe for different vehicles, depending on the time of
day and the location of the rider.

Experience is fundamental for safe riding, especially for new
micromobility vehicles (Austin Public Health, 2019). Similarities
across vehicles may help a rider to master a new vehicle in a short
time. For instance, our participants were much more experienced
with traditional bicycles than with electrical bicycles; neverthe-
less, they perceived the two vehicles similarly and mastered the
bicycle equally well with and without assistance. Previous experi-
ence from riding a bicycle may not have ported equally well to e-
scooters, because the controls and the geometry are very different.
Indeed, riding a bicycle is an overlearned skill that required a rel-
atively long time to develop, and we do not know whether riding
an e-scooter for the first time would be equally challenging for a
rider who does not know how to ride a bicycle. Future studies
should investigate the extent to which experience from riding a
bicycle may transfer to e-scooter riding and whether, in critical sit-
uations, such previous experience may lead to suboptimal avoid-
ance maneuvers (Adams, 1987).

If cycling skills transferred to e-scooter riding, they certainly did
not help much with riding a Segway. Only 25 participants com-
pleted the experiment with the Segway, and none of them reached
the 17–20 km/h speed set by the experimental protocol (although
it should have been possible for the Segway to reach this range,
according to the specifications from the manufacturer). All partic-
ipants rated this vehicle lower than all the others for comfort, sta-
bility, maneuverability, and safety. Although our correlation
analysis shows that these categories are not orthogonal at all, this

Fig. 4. Average speed for comfort, harsh, and unexpected braking maneuvers for all
vehicles.
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result is reasonable because the Segway has a different geometry
compared to the other vehicles, and its pitch fluctuations may take
a while to get used to. None of the participants were acquainted
with this vehicle before the experiment, and we do not know
whether their inexperience may have affected our results. Never-
theless, this example shows the importance of training on new
micromobility vehicles that may look intuitive to ride but are still
dangerous, especially on the very first rides, as the report from
Austin Public Health (2019) showed for e-scooters. The results pre-
sented in this paper suggest that practicing braking to a line
marked on the ground and using the possible overshoot distance
as feedback may be an easy and useful training for novice Segway
users (and possibly for any kind of micromobility vehicle).

E-scooters are mainly ridden by young males (6t-bureau de
recherche, 2019; Bjerkan et al., 2020); however, the number of
female riders is not negligible. Our study failed to show any statis-
tically significant difference in how female and male riders longitu-
dinally controlled the bicycle, e-bicycle, e-scooter, or Segway.
Further, braking distances and response times were similar across
gender, and the percentage of females that completed the experi-
ment with the Segway was similar to that of the other vehicles.
All in all, we could not verify the common hypothesis that males
ride more aggressively or take higher risks than female riders.
We did, however, find some effect of age on the subjective data;
specifically, the older the subjects were, the lower their ratings

were for the e-scooter and the Segway. Although the age span in
this study was not large and the effect of age was minor when
compared to the effect of vehicle type, our results suggest that
younger people are more positive about new micromobility vehi-
cles than older people. This result appears to be in line with previ-
ous studies that showed that elderly people are particularly averse
to e-scooters (Portland Bureau of Transportation, 2018).

In this study, we lost about 50% of the data from the Segway, in
part because the participants were not able to master it; we also
lost up to 20% of the data from the other vehicles, mainly because
participants had difficulty controlling the speed as they were
instructed to. Although this amount of data loss is common in field
trials, it may have biased the dataset toward a particularly athletic
or daring sub-population of participants, especially for the Segway.
It is also worth noting that the experiment was challenging; the
one participant who crashed reported a minor injury. While we
still believe that the value of this experiment justifies the crash risk
that we asked the participants to take, we recommend that the
research community not underestimate the risks in these experi-
ments and make sure that the participants are insured.

Although we are not aware of any other study with a larger
number of subjects for e-scooter field trials, our sample of 34 par-
ticipants may not be representative of all ages and geographical
locations. In addition, because we collected data in a controlled

Table 3
Average acceleration (M) with standard deviations (SD) expressed in m/s2. N indicates the number of trials available for computing averages and standard deviations. We also
report the average R2 coefficients to show the goodness of fitness of the linear models.

maneuver bicycle (M ± SD) e-bicycle (M ± SD) e-scooter (M ± SD) Segway (M ± SD)

Comfort �1.50 ± 0.51
(N = 18; R2 = 0.97)

�1.65 ± 0.66
(N = 26; R2 = 0.98)

�1.28 ± 0.42
(N = 20; R2 = 0.98)

�0.93 ± 0.40
(N = 11; R2 = 0.96)

Harsh planned �3.00 ± 1.29
(N = 25; R2 = 0.98)

�3.10 ± 1.25
(N = 26; R2 = 0.97)

�2.21 ± 0.59
(N = 28; R2 = 0.98)

�1.65 ± 0.59
(N = 14; R2 = 0.93)

Unexpected �3.60 ± 1.28
(N = 24; R2 = 0.97)

�3.66 ± 1.07
(N = 24; R2 = 0.99)

�2.23 ± 0.71
(N = 28; R2 = 0.99)

�1.60 ± 0.49
(N = 11; R2 = 0.94)

Fig. 5. Boxplots of braking distances for all vehicle types. Circles indicate outliers,
whiskers are set by the non-outlier minima and maxima of the distribution, and the
center line represents the median, while the horizontal edges of the box are the
25th and 75th percentiles. The notches, highlighted with shading, indicate the
confidence intervals. (These boxplots were generated with the boxchart command
in Matlab; please refer to its documentation for more detailed information.) The
data from the Segway are surrounded by a box to remind the reader that a direct
comparison with the other vehicles may be misleading in this specific analysis
because the Segway started braking at a lower speed compared to the other
vehicles and only few subjects were included in the analysis.

Fig. 6. Response time in unexpected braking across vehicles. Circles indicate
outliers, whiskers are set by the non-outlier minima and maxima of the distribu-
tion, and the center line represents the median, while the horizontal edges of the
box are the 25th and 75th percentiles. The notches, highlighted with shading,
indicate the confidence intervals. (These boxplots were generated with the boxchart
command in Matlab; please refer to its documentation for more detailed informa-
tion.) The data from the Segway are surrounded by a box to remind the reader that a
direct comparison with the other vehicles may be misleading in this specific
analysis because the Segway started braking at a lower speed compared to the other
vehicles and only few subjects were included in the analysis.
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environment and in repetitive tasks, our results may be biased by
the lack of other road users in the surroundings, as well as by the
expectancy and habituation that the participants may have devel-
oped during the experiment. We presented results for e-bicycles
and bicycles; however, we tested the same bicycle with and with-
out electrical assistance. While this choice preserved the vehicle
geometry across trials, the e-bicycle was heavier than a conven-
tional bicycle (because of the battery and the motor) and therefore
may have been less maneuverable. The e-scooter in this study is
representative of the e-scooters that individuals purchase for per-
sonal use in Sweden; however, it differs from most of the e-
scooters available in sharing systems. Such differences include:
suspensions, wheel size, and brakes. Future studies should com-
pare different e-scooter models to determine whether the differ-
ence in components affects safety. For instance, the longer
response time for e-scooters compared to the other vehicles in this
study may be a consequence of the electric braking system of the
particular type of e-scooter used.

5. Conclusions and Practical Applications

This study provides further evidence that field data can support
the safe integration of micromobility in the transport system. Field
data show that different micromobility solutions affect rider
behavior in multiple ways and create different constraints for vehi-
cle control. Because e-scooters may brake more poorly than bicy-
cles, steering maneuvers may be a better crash-avoidance
strategy for e-scooterists than braking even in situations when a
cyclist would be safer braking. Consequently, infrastructure that is
forgiving of vehicles that run off the road may increase e-
scooterists’ safety.

The Segway vehicle employed in this study performed poorly in
the field trials, and the participants ranked this vehicle as the least
comfortable, stable, maneuverable, and safe. Nevertheless, Seg-
ways and other two-track vehicles with two wheels are popular,
possibly because some of the issues with their safety and stability
may disappear with enough training. Therefore, it may be impor-
tant to educate novice users of micromobility vehicles and make
sure they ride in real traffic only after a sufficient period of train-
ing. The design of the required training to facilitate learning and
controlling the new micromobility solutions may be supported
by field data such as were presented in this paper.

Because crash avoidance is the best way to avoid injuries when
cars share the infrastructure with vulnerable road users, active
safety systems, and automated emergency braking specifically,
should make use of the models from this paper in their threat
assessment. This study proved that riders keep accelerations (and
decelerations) constant in comfortable and harsh maneuvers;
therefore, their trajectories can be reliably predicted by (auto-
mated) vehicles. The models presented in this paper provide an
indication of the longitudinal control performances (and their vari-
ability) that vehicles may expect from micromobility users.

Consumer rating programs, such as the one run by Euro NCAP,
may use the models from this study to design the experimental
protocols to test crash avoidance systems, such as emergency brak-
ing and steering. Further, as tests move toward simulations, the
models from this paper may inform the behavior of the virtual
micromobility users that Euro NCAP may introduce in future test
simulations.

As novel micromobility vehicles hit the market and join a trans-
port system where vehicles are increasingly automated and con-
nected, it becomes increasingly important to model human
behavior so that vehicles may understand and predict it, improving
safety for all road users.
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Table 4
Average values and ranges of the subjective data for all vehicles (from 1 = Very poor to 7 = Exceptional).

Bike E-Bike E-Scooter Segway

Accelerating from standing still 4.36 (1–7) 5.64 (2–7) 5.46 (2–7) 5.16 (3–7)
Braking at low speed 5.64 (2–7) 5.70 (2–7) 5.12 (2–7) 4.92 (2–7)
Braking at high speed 5.21 (2–7) 5.33 (2–7) 4.03 (1–7) 3.48 (1–6)
Mounting and dismounting 4.91 (2–7) 5.03 (2–7) 5.67 (2–7) 3.60 (1–7)
Keeping balance at high speed 6.15 (4–7) 6.27 (4–7) 5.70 (3–7) 4.88 (1–7)
Keeping balance at low speed 5.18 (2–7) 5.24 (2–7) 5.30 (2–7) 5.12 (2–7)
Overall comfort 5.33 (2–7) 5.85 (3–7) 5.36 (3–7) 4.60 (2–7)
Overall stability 5.88 (3–7) 5.82 (3–7) 5.33 (3–7) 4.28 (1–7)
Overall maneuverability 5.27 (3–7) 5.46 (3–7) 5.33 (3–7) 4.64 (2–7)
Overall safety 5.85 (3–7) 5.64 (3–7) 4.82 (2–7) 3.80 (1–6)

Table 5
Correlation matrix among the subjective ratings for comfort, stability, maneuverabil-
ity, and safety. (All coefficients are statistically significant.).

Measure 1 2 3

1.Comfort —
2.Stability 0.70 —
3.Maneuverability 0.66 0.72 —
4.Safety 0.68 0.75 0.61
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a b s t r a c t

Problem: Sideswipe collisions in the opposite direction often result in more severe injuries than the typ-
ical same-direction crashes, especially when light trucks are involved. This study investigates the time-
of-day fluctuations and temporal volatility of potential factors that affect the injury severity of reverse
sideswipe collisions. Methods: A series of random parameters logit models with heterogeneous means
and heteroscedastic variances are developed and utilized to explore unobserved heterogeneity inherent
in variables and preclude biased parameter estimation. The segmentation of estimated results is also
examined through temporal instability tests. Results: Based on crash data in North Carolina, a number
of contributing factors are identified that have profound associations with obvious and moderate injuries.
Meanwhile, significant temporal volatility is observed in the marginal effects of several factors such as
driver restraint, alcohol or drugs impact, Sport Utility Vehicle (SUV) at fault, and adverse road surface
across three different periods. Fluctuations in the time of day indicate that restraint with belts is more
effective in mitigating the obvious injury in the nighttime, and high-class roadway sustains a higher
probability of resulting in more serious injury compared to the daytime. Practical Applications: The find-
ings of this study could help further guide the implementation of safety countermeasures related to atyp-
ical sideswipe collisions.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Sideswipe collision refers to the sides of two vehicles sustaining
engagement in a parallel path. Typically, it occurs when drivers
attempt to change lanes and merge onto a highway in the same
direction (Fitch et al., 2009) and result in lane drift or departure
through an unintentional manner. Different from the front and rear
bumpers that can absorb the collision energy in head-on or rear-
end crashes, the exposed sides lack protection, which makes colli-
sions more intense in a lateral manner. According to National High-
way Traffic Safety Administration (NHTSA, 2018) statistics, nearly
863,000 sideswipe collisions occurred that year, accounting for
12.8% of all types of crashes. On average, 200 out of 1,000 side-
swipe collisions result in varying degrees of injuries.

The potential hazard of sideswipe can be exacerbated in the
opposite direction because opposing vehicles often have higher rel-

ative speeds (Kusano & Gabler, 2013). Despite accounting for only
20% of the whole sideswipe collisions, such atypical sideswipe
occurs unexpectedly and is extremely severe, owing to its unpre-
dictability and seriousness. This impact may be responsible for
the initial impetus for a chain reaction where vehicles swerve over
the centerline and hit other automobiles or fixed objects. The situ-
ation can be aggravated if light trucks (such as the Pickups and
SUVs) are involved. Those larger vehicles generally suffer
obstructed visibility due to the presence of blind spots, and large
inertia makes collisions more intense. Fig. 1 shows the sideswipe
collisions in reverse directions involving pickups and SUVs from
2008 to 2016. In general, the fatality or disabled rate for opposite
and same direction sideswipe is 2.5% and 0.5%, respectively. How-
ever, the opposite direction can cause more evident injuries than
the same direction (11% and 3%, respectively).

Previous studies emphasized predicting highway sideswipe-
same-direction collision potential that arise from overtaking and
lane changing maneuvers (Qu, Wang, Wang, & Liu, 2013). A major-
ity of them utilized traffic parameters as variables in a general
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model (Pande & Abdel-Aty, 2006). Few studies have been under-
taken on the modeling of injury severity in sideswipe-opposite-
direction collisions, with even less exploration of unobserved
heterogeneity among factors such as driver, vehicle, roadway,
and environment characteristics. Mannering, Shankar, and Bhat
(2016) pointed out that neglecting heterogeneous effects across
observations may result in biased parameter estimation and inac-
curate interpretation of explanatory variables.

Additionally, Mannering (2018) mentioned that peculiar tem-
poral instability across various periods needs to be addressed.
Ignoring such temporal volatility in the effects of contributing fac-
tors from year to year may lead to biased results. Another crucial
problem is the fluctuations associated with time-of-day. Several
studies employing segmented data have clearly revealed such vari-
ations in the factors affecting injury severity, including pedestrian-
involved crashes (Mokhtarimousavi, 2019), driving under the influ-
ence (DUI) of alcohol/drugs crashes (Song, Fan, & Li, 2021), and
truck involved crash (Zou, Wang, & Zhang, 2017). Silverstein,
Schorr, and Hamdar (2016) indicated that daytime has potential
effects in increasing the sideswipe collisions injury severities.
However, time-of-day fluctuations for sideswipe collisions are still
limited. Moreover, segmenting specific time-of-day and time peri-
ods is essential rather than just considering them as a variable in
the single model. Such segmentation could reduce the temporal
heterogeneity among the dataset due to the accumulation over
time (Al-Bdairi, Behnood, & Hernandez, 2020; Islam, Alnawmasi,
& Mannering, 2020).

The main objective of this study is to investigate the significant
factors influencing injury severities of sideswipe-opposite-
direction collisions and associated magnitudes involving pickups
and SUVs. To study the time-of-day fluctuations and temporal
volatility of factors, a case study of North Carolina is conducted
based on the police-reported data during three periods. A series
of random parameters logit models with heterogeneous mean
and heteroscedastic variance are developed and employed to fur-
ther explore unobserved heterogeneity and identify the injury
severity determinants. The remainder of the paper is organized
as follows: Section 2 summarizes the existing literature on the
sideswipe collisions and introduces the state-of-art approaches
on the injury severity analysis. Section 3 describes the data statis-

tics and empirical settings. Section 4 describes the methodology
used to model crash-injury severity. Section 5 presents the tempo-
ral instability results of the crash data. Section 6 discusses the
model results and marginal effects of several factors. Finally, the
insightful findings and implications are concluded in Section 7.

2. Literature review

This section illustrates the significance of this research from
three aspects: (a) existing studies on sideswipe crashes in different
collision directions; (b) explorations of temporal instability in the
analysis of injury severity; and (c) approaches used in modeling
the crash injury severity. Table 1 presents the literature reviewed
in chronological order, details containing authors and years of pub-
lication, models, directions of collision, and corresponding key
findings. Much effort has been put into investigating the same
direction sideswipe collisions (Adanu et al., 2021; Khattak,
Kantor, & Council, 1998; Kim, Washington, & Oh, 2006; Park &
Ritchie, 2004; Silverstein et al., 2016), but a scarcity of studies con-
sidered the opposite direction scenario. Moreover, most previous
studies utilized traffic parameters such as the volume, upstream
or downstream speed, and density of adjacent lanes to forecast
sideswipe crashes potential (Lee, Abdel-Aty, & Hsia, 2006; Li,
Wang, Chen, & Liu, 2014); the effects of contributing factors asso-
ciated with injury severities have not been fully explored. Actually,
factors such as driver characteristics (gender, age, and years of
experience), location and surrounding conditions (junction, light,
and road surface), and roads feature (road type, number of lanes,
and speed limit) should be paid more attention (Shawky, 2020).
Hence, this study mainly focuses on various determining factors
that might contribute to the establishment of feasible countermea-
sures that could avert the risky circumstances.

Currently, numerous studies have revealed potential temporal
instabilities (if contributing factors vary over years) in crash
records (Al-Bdairi et al., 2020; Islam et al., 2020; Mannering,
2018). Although variations in peak and off-peak hours have been
examined (Lee et al., 2006; Wang, Zhang, Wang, Weng, & Yan,
2016), there is still a gap in the injury severity analysis of side-
swipe collisions considering time-of-day fluctuations embedded
in factors, especially for reverse scenarios. Furthermore, limited

Fig. 1. Comparisons between sideswipe same-direction (left) and opposite-direction (right) from 2008 to 2016 with Highway Safety Information System data.
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investigation has been dedicated to the combination of specific
time-of-day fluctuations and temporal volatility of potential fac-
tors. Song et al. (2021) have indicated that merging temporal insta-
bility with time-of-day variations could result in accurate model
estimations and discover extra details that might not be identified.

As is shown in Table 1, extensive research has employed the
logistic regression model to model the crash injury severity since
the effectiveness in parameter estimations and proper inferences.
In terms of the unobserved heterogeneity in variables that impact
injury severity, the most commonly applied method is the random
parameter logit (RPL) model (Mannering et al., 2016). Nevertheless,
parameter overestimation or underestimation may occur, reducing
effectiveness when compared to RPL with heterogeneous mean
and heteroscedastic variance (Islam et al., 2020). Varying the ran-
dom parameters’ means and variances has been proven statisti-
cally superior to the RPL-only method (Al-Bdairi et al., 2020).
According to the abovementioned issues, by developing and utiliz-
ing a series of RPL models with heterogeneous means and
heteroscedastic variances, this research combines the time-of-
day fluctuation and temporal volatility of potential factors to ana-
lyze the injury severity of reverse sideswipe collisions.

3. Data descriptions and empirical settings

The crash data are extracted from the Highway Safety Informa-
tion System (HSIS) and North Carolina is selected as a case study; a

total of 22,295 observations are obtained. According to the ‘Injury
Classification Scale and Definitions’ by the Federal Highway
Administration (FHWA, 2019), this study divides injury severity
into three levels (i.e., obvious injury [OI], moderate injury [MI],
and no injury [NI]). Due to the relatively small sample size of the
fatal or disabling injury, they are combined with the evident injury
into the obvious injury, which is all serious enough at the scene.
The drivers who were suffering the most serious injury are utilized
to determine the severity in all crashes.

In this study, nine years (2008–2016) are retrieved from the
database and three periods are defined (2008–2010, 2011–2013,
and 2014–2016). Different from the economic cycles based seg-
mentation in Behnood and Mannering (2016), this study is qualita-
tively based on the consistent fluctuation of crash patterns over
time. Furthermore, transferability test results in section 5 and mar-
ginal effects of most significant factors in section 6 suggest that the
3-year clustering has robust temporal volatility in a quantitative
way. This classification method can not only ensure that volatility
will not be ignored due to time accumulation, but also could avoid
the insufficient data issue caused by shorter periods. Fig. 2 demon-
strates significant time-of-day fluctuations in reverse sideswipe
collisions involving pickups and SUVs in North Carolina. The three
curves for different periods show apparent variations during the
peak hours in the morning and evening, which is similar to the
traffic volume pattern in rush hours. According to the crash fre-
quency and two peak hours, the time of day is divided into daytime
(7:00 A.M.-6:00 P.M.) and nighttime (6:00 P.M.-7:00 A.M.). How-

Table 1
A summary of the literature on the sideswipe collisions.

Author, year Model Direction Findings
Abdel-Aty, Keller, and

Brady (2005)
Tree-based regression Same and

opposite
Daily traffic volume on both major and minor road, number of lanes, presence of
median, and exclusive left-turn lane on major road were found important.

Pande and Abdel-Aty
(2006)

Neural network based classification
models

Same Difference in occupancy on adjacent lanes, average speeds upstream and downstream
of crash site, standard deviation of volume have an impact on the crash occurrence.

Kim et al. (2006) Poisson and negative binomial
regression

Same Sideswipe is adversely related to median width on major roadways, whereas the
existence of a left-turn lane and the density of surrounding driveways have higher
frequencies.

Lee et al. (2006) Logistic regression models Same Overall average flow ratio (OAFR) was generally higher for sideswipe than rear-end
crashes, variation in flow and peak and off-peak periods were also important.

Kim, Lee, Washington, and
Choi (2007)

Hierarchical binomial logistic Same and
opposite

The same direction is less common at junctions with shoulders and horizontal curves,
but more frequent at right-angled intersections than skewed ones. The opposite-
direction collisions are less likely in the daytime. Clear weather, wet roads, horizontal
bends, and vertical curves are less likely to engage.

Ye, Pendyala, Washington,
Konduri, and Oh (2009)

Multivariate Poisson regression model
with multivariate normal heterogeneity

Same and
opposite

For opposite-direction sideswipe, average daily traffic on minor road and number of
right turn lanes on major roads were related. For same-direction sideswipe, speed limit,
shoulder width, number of left-turn lanes, and sum of absolute change of grade on
major road affected the frequency.

Geedipally, Patil, and Lord
(2010)

Multinomial logit Model Same and
opposite

Sideswipe-passing crashes increased with lane width increased and decreased as AADT
increased. Sideswipe-opposite decreased with AADT increased, but opposite for lane
width.

Bham, Javvadi, and
Manepalli (2012)

Multinomial logistic regression Same and
opposite

On undivided and divided roads, the probability of sideswipe-same-direction crashes
increases while changing lanes and merging. Vision obstruction, night-time, horizontal
curve, wet surface, weekends, and alcohol were negatively with sideswipe-same-
direction.

Islam and Hernandez
(2013)

Random-parameter ordered-probit
model

Same Sideswipes in the same direction are significant and are likely to result in less severe
large truck collisions.

Silverstein et al. (2016) Negative binomial regression and
multinomial logit

Same Work zones are more likely to result in fatalities than nonwork zones. Clear weather,
daylight, and straight highways may enhance the likelihood.

Wang et al. (2016) Case-control logistic regression Same It is more common during off-peak hours on straight and flat parts of multilane
motorways. In crowded circumstances, high average occupancy, low volume flow, and
speed variation upstream of collision spots can enhance the probability.

Chen, Qin, and Shaon
(2018)

Case-control logistic regression Same The first downstream average flow into the target lane, the second downstream flow
ratio, and snow conditions were related.

Shawky (2020) Binary logistic regression Same Gender, nationality, and experience, as well as non-junction, light, and road conditions
(road type, number of lanes, and speed limit), all have a substantial impact.

Adanu et al. (2021) Mixed (random parameter) logit Same The darkness, elderly, female, and commercial vehicle drivers all enhance the likelihood
of serious injury. Interstates with a greater number of travel lanes have a lower risk of
major injury.
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ever, the time distribution may not be in accord with the intuition
that daytime visibility is clearer and therefore safer. One possible
reason for this divergence might be differences in driving behav-
iors and the external environment, and the precise explanation
can be explored by the model results.

Based on the examination of the temporal features, the whole
dataset is split into six subgroups: 2008–2010 daytime, 2008–
2010 nighttime, 2011–2013 daytime, 2011–2013 nighttime,
2014–2016 daytime, and 2014–2016 nighttime. Table 2 presents
the percentage distribution by injury severity for each time of
day and time period. It also describes the statistics of explanatory
variables, which are classified into driver, vehicle, roadway, and
environment characteristics, and 17 categories with 60 parameters
are applied. Also, variables marked in bold are chosen as the base
in the estimated model.

4. Methodology

The model used to analyze the injury severity of reverse side-
swipe collisions is the random parameters logit model with hetero-
geneous mean and heteroscedastic variance, which is an extension
of the random parameter logit model (also known as mixed logit
model). The crash-injury-severity function is determined in a lin-
ear structure that identifies the severity k (k = 1,2,3) for observa-
tion i as:

Uki ¼ bkXki þ eki ð1Þ
where Uki represents the utility function,Xki denotes a vector value
of variables, and bk is the estimated parameters for Xki. In the multi-
nomial logit model, bk is assumed to be a constant that remains
fixed across all observations. eki indicates error term for the unob-
served effect on the injury severity k, and eij is supposed to follow
a Gumbel distribution, the probability of severity k for individual i
is (McFadden & Train, 2000):

PiðkÞ ¼
Z

exp bkXkið ÞPk
i¼1exp bkXkið Þ

f bjuð Þdb ð2Þ

where PiðkÞ is the probability of observation i with the severity k,
f bjuð Þ denotes the probability density function (PDF) of random
parameter b, and u is the mean and variance of the normal distribu-
tion for PDF. Moreover, the conventional random parameter models
can be further extended by allowing for heterogeneity in the means
and variances, based on the assumption that random parameters
are distributed randomly across observations (Behnood &
Mannering, 2017). The model can be defined as:

bki ¼ bþ dkiZki þ rkiexpðxkiWkiÞcki ð3Þ
where b represents the mean and determined over all observations.
Zki is the variable vector that defines the heterogeneous means, and
dki is the vector of estimated coefficient for Zki. For the
heteroscedasticity in variances, Wki is used to represent the vari-
able vector with standard deviation rki, xki indicates the vector of
estimated coefficient linked with Wki, and cki is the disturbance
term. All the significant variables can be defined in the Zki and
Wki. If no variable is found statically significant in Wki, the model
will be collapsed into the random parameter logit model (RPL) with
heterogeneity in means only. Further, if no heterogeneous mean is
found in the Zki, the model will fall into the conventional RPL model,
or the multinomial logit model if no random parameter is identified.

In this study, the parameters are estimated using a simulation-
based maximum likelihood method, and 500 Halton draws are
used due to the effectiveness. The normal distribution is used to
explain the random parameters in the model because it has a bet-
ter performance at convergence than the lognormal, uniform, and
triangular distributions (Moore, Schneider, Savolainen, &
Farzaneh, 2011).

In addition, the sign of the coefficients does not always indicate
the direction of the intermediate results. Therefore, the marginal
effect is utilized to explain the effects of significant variables on
the injury severity, which is expressed as follows:

EPki
Xkij

¼ Pij Xkij ¼ 1
� �� Pij Xkij ¼ 0

� � ð4Þ

When the j-th binary indicator variable and Xkij are identified,
the probability related to each severity k for individual i is calcu-
lated. For the variables with random parameters, only the mean
value of the coefficients is used across all samples.

5. Temporal instability tests

To examine the temporal instability of significant variables that
affect the injury severity of reverse sideswipe collisions across the
time-of-day and different time ranges, three types of likelihood
ratio (LR) transferability tests are utilized (Washington, Karlaftis,
& Mannering, 2011). First, equation (5) is used to test the necessity
of segmentation between daytime and nighttime,

X2 ¼ �2½LL bwholeð Þ � LL bdaytime

� �� LL bnighttime

� �� ð5Þ

where LL bwholeð Þ represents the log-likelihood with the entire time-
of-day dataset in the converging model including converged param-
eters. LL bdaytime

� �
and LL bnighttime

� �
have the same expression to indi-

Fig. 2. Time-of-day fluctuations of reverse sideswipe collisions.
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Table 2
Descriptive statistics for reverse sideswipe collisions injury severities.

Variable Description Injury severity % Total

Obvious Moderate No

Overall Time Segmentation
Daytime 2008–2010 15.17% 20.31% 64.52% 4278

2011–2013 15.12% 17.87% 67.01% 4550
2014–2016 12.30% 20.05% 67.64% 8144

Nighttime 2008–2010 16.07% 20.90% 63.03% 1282
2011–2013 12.88% 18.06% 69.05% 1312
2014–2016 12.31% 23.16% 64.53% 2729

Driver characteristic
Gender Female 13.63% 21.97% 64.40% 6444

Male 13.70% 19.15% 67.14% 15,851
Age Young (<25) 15.36% 19.51% 65.13% 3860

Mid-Age (25–50) 13.31% 20.65% 66.04% 12,031
Old (>50) 13.37% 18.96% 67.68% 6404

Restraint None 34.42% 20.10% 45.48% 398
Lap Belt 12.76% 19.87% 67.37% 15,991
Lap and Shoulder Belt 14.77% 20.64% 64.59% 5354
Shoulder Belt 14.86% 16.12% 69.02% 552

Behavior None 15.00% 21.85% 63.16% 11,397
Inattention and Disregarded (Sign or Signal) 10.67% 16.91% 72.42% 834
Exceeded Speed 13.58% 22.97% 63.45% 788
Improper or Reckless Manner (Turn, Yield, Swerved, Oversteer) 14.50% 23.58% 61.92% 1145
Wrong Lane Use 16.42% 23.33% 60.25% 3703
Alcohol or Drugs 28.69% 30.64% 40.67% 359
Other (Passing, Follow Closely, Defective Equipment) 6.59% 9.73% 83.68% 4069

Vehicle Characteristic
Vehicle Type Pickup 13.02% 18.10% 68.89% 12,862

SUV 14.59% 22.52% 62.90% 9433
Roadway Characteristic
Road Class Interstate 23.70% 22.22% 54.07% 135

Us Route 17.70% 24.07% 58.23% 2480
Nc Route 19.23% 21.68% 59.09% 4498
Secondary 11.72% 17.95% 70.34% 11,667
Local Street 10.25% 21.99% 67.76% 3365
Other (Public or Private Road) 1.33% 10.67% 88.00% 150

Road Surface Dry 14.51% 19.58% 65.91% 17,891
Wet 12.11% 22.09% 65.80% 3088
Road Adverse (Watery, Icy, Snowy, Sandy, Muddy, Dirty, Or Graveled) 6.08% 20.29% 73.63% 1316

Road Align Straight Level 12.73% 19.96% 67.31% 11,120
Straight Adverse (Bottom, Grade, Hillcrest) 15.90% 21.27% 62.84% 3202
Curve Level 13.83% 19.58% 66.59% 4142
Curve Adverse (Bottom, Grade, Hillcrest) 14.41% 19.34% 66.25% 3831

Road Configuration One-Way, Not Divided 8.59% 22.70% 68.71% 163
Two-Way, Not Divided 13.68% 19.42% 66.90% 20,367
Two-Way, Divided 14.11% 26.06% 59.83% 1765

Road Pavement Concrete 13.28% 21.77% 64.94% 271
Smooth Asphalt 13.72% 20.59% 65.69% 13,525
Coarse Asphalt 13.96% 19.34% 66.70% 8240
Other (Gravel, Sand, Soil) 3.47% 5.41% 91.12% 259

Speed Limits 0–35 Mph 10.58% 19.15% 70.28% 4586
36–55 Mph 14.40% 20.19% 65.41% 17,571
56–70 Mph 25.36% 18.84% 55.80% 138

Traffic Control No Control 13.86% 19.65% 66.49% 20,171
Partial Control 13.35% 24.81% 61.84% 1161
Full Control 10.28% 20.87% 68.85% 963

Environment characteristic
Region Urban 11.58% 22.04% 66.38% 4601

Rural 14.23% 19.43% 66.34% 17,694
Development FWP (Farms, Woods, Pastures) 14.76% 18.53% 66.71% 12,124

Residential 13.15% 21.93% 64.92% 6151
Commercial 11.08% 21.40% 67.52% 3873
Other (Institutional, Industrial) 14.97% 19.05% 65.99% 147

Terrain Flat 14.05% 20.14% 65.81% 4969
Rolling 14.67% 20.97% 64.36% 13,745
Mountainous 9.35% 15.89% 74.76% 3581

Weather Clear 14.11% 19.54% 66.36% 16,086
Cloudy 14.22% 19.71% 66.07% 3790
Rain 11.38% 24.07% 64.55% 1687
Other (Snow, Fog, Smog, Smoke, Sleet, Hall, Drizzle) 6.83% 21.31% 71.86% 732

Light Daylight 14.20% 19.72% 66.08% 16,097
Dusk, Down 11.44% 18.91% 69.65% 883
Dark 12.49% 20.88% 66.62% 5315
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cate log-likelihood of the respective subsets. The degree of freedom
is determined by the number of significant parameters in the whole
dataset. The X2 denotes the v2 distribution in the null hypothesis
that parameters value are equal, which is 163.46 in this study. This
illustrates a 99.99% confidence level to reject the null hypothesis
under 88 degrees of freedom, which means that distinct fluctua-
tions between the daytime and nighttime exist.

A further LR test is employed to verify the segmentation effi-
ciency of the three time periods (2008–2010, 2011–2013, 2014–
2016), which is presented as follows,

X2 ¼ �2½LL b2008�2016ð Þ � LL b2008�2010ð Þ � LL b2011�2013ð Þ
� LL b2014�2016ð Þ� ð6Þ

where LL b2008�2016ð Þ represents the log-likelihood with the entire
periods from 2008 to 2016 in the converging model. It has the same
expression to denote the log-likelihood of the other three seg-
mented periods. The X2 value is 343.74, also illustrates a 99.99%
confidence level to reject the null hypothesis, which indicates the
distinct temporal volatility across the three periods.

Finally, a series of LR test are applied to test the temporal insta-
bility of both time-of-day and three periods as follows,

X2 ¼ �2½LL bt2t1

� �� LL bt1

� �� ð7Þ

where LL bt2t1

� �
denotes the log-likelihood in the converging model

with the estimated parameters from t2, using the data in t1. LL bt1

� �
denotes the log-likelihood in the converging model with data in t1.
The reversed test is also conducted by substituting t1 or t2 for each
other. The X2 value is v2 distributed (with a degree of freedom
equals to the number of parameters in t2) and applied to accept
or reject the null hypothesis that the parameters of t1 and t2 are
equal. The results of the temporal instability tests for all period
pairs are presented in Table 3 (X2value with degrees of freedom
in parenthesis and confidence level in brackets). Only 2 of these
30 runs show that confidence level is relatively small, but neither
of the two reversed X2 value accepts the null hypothesis concur-
rently, which indicates a comparatively high confidence to verify
the temporal instability. Although one of the confidence levels does
not reach 95% (e.g., the 2008–2010 daytime vs 2011–2013 night-
time, which gives a 94.38%), it is still high enough to reject the null
hypothesis. Therefore, it is necessary to segment the whole dataset
based on the time of day and different time periods to explore the
potential factors that impact the injury severity of reverse side-
swipe collisions.

6. Model results and discussions

The results for the six period combinations are presented in
Tables 4–9 (with Obvious injury [OI]; Moderate injury [MI]; No
injury [NI] as the base) by three types of RPL models. Notably,
RPL models with heterogeneous means and heteroscedastic vari-
ances are obtained in the 2011–2013 daytime, 2014–1016 day-

time, and 2014–2016 nighttime. Meanwhile, heterogeneity in
means is found in the 2008–2010 daytime. However, there is
no random parameter statistically significant in the 2008–2010
nighttime and 2011–2013 nighttime, and therefore, the two mod-
els are collapsed into the multinomial logit model. Table 10 dis-
plays the marginal effects of each model, which is utilized to
explain the potential factors that affect the injury severity of
reverse sideswipe collisions. The fluctuations between daytime
and nighttime and volatility across different periods can also be
observed in Table 10. Detailed results of estimated parameters
are discussed in Tables 4–9.

6.1. Driver characteristics

The male driver has been identified as a significant variable in
2008–2010 daytime and 2014–2016 nighttime. From marginal
effects in Table 10, both the two periods demonstrate that the male
driver slightly increases the probability of obvious injury (0.0045
and 0.0025, respectively) compared to the female. In contrast,
the older driver whose age is over 50 slightly decreases the possi-
bility of obvious injury by 0.0045, which indicates that older dri-
vers are more prudent and experienced than aggressive young
drivers. The effects of gender and age on the sideswipe injury
severity can also be found in the same direction crashes when
making lane changes (Bates, Davey, Watson, King, & Armstrong,
2014).

The restraint with belts is statistically significant in all period
combinations excluding 2014–2016 daytime. A typical fluctuation
between daytime and nighttime and temporal volatility is
revealed, and various belt protections significantly reduce the like-
lihood of obvious injury to varying degrees except in 2014–2016
nighttime. As for the model structure in Table 9 during that time,
the lap belt is a random parameter sensitive to the heterogeneity
in means and variances, and the residential factor lessens its mean
and the male driver expands its variances in obvious injury. Varia-
tions in social environment changes are possible reasons for the
temporal volatility (Mannering, 2018). Besides, the time-of-day
difference is observed in 2008–2010, and the lap and shoulder belt
manifest a higher probability of mitigating the obvious injury in
nighttime (0.1768) than in daytime (0.0590). This variation also
exists in the shoulder-only belt during 2011–2013 with 0.1179 in
nighttime and 0.0014 in the daytime.

Regarding the primary behaviors that contribute to the colli-
sions, inattention and ignoring signs or signals could modestly
increase the probability of obvious injury by 0.0003 in 2011–
2013 daytime and 0.0005 in 2014–2016 nighttime. Exceeding
speed limits and improper or reckless manner such as wrong turn-
ing, failing to yield or swerve, and oversteering intensify the possi-
bility of obvious injury by 0.1744 and 0.1066, respectively, in
2008–2010 nighttime. Using the wrong lane could also result in
the increment of moderate injury in 2008–2010 nighttime by
0.0709 and obvious injury in 2014–2016 nighttime by 0.0026.
Remarkable variations in period pairs can be observed in the dri-

Table 3
Transferability test results between period pairs.

t1 t2
2008–2010
daytime

2008–2010
nighttime

2011–2013
daytime

2011–2013
nighttime

2014–2016
daytime

2014–2016
nighttime

2008–2010 daytime (26) - 113.20 [99.99%] 88.71 [99.99%] 139.85 [99.99%] 111.16 [99.99%] 96.17 [99.99%]
2008–2010 nighttime (15) 59.42 [99.98%] - 49.69 [99.30%] 60.17 [99.99%] 40.11 [96.19%] 42.57 [98.44%]
2011–2013 daytime (28) 119.19 [99.99%] 178.17 [99.99%] - 129.44 [99.99%] 97.68 [99.99%] 128.67 [99.99%]
2011–2013 nighttime (17) 38.35 [94.38%] 59.92 [99.99%] 20.37 [14.95%] - 20.72 [24.39%] 39.67 [96.85%]
2014–2016 daytime (26) 134.90 [99.99%] 272.95 [99.99%] 82.73 [99.99%] 198.52 [99.99%] - 208.86 [99.99%]
2014–2016 nighttime (25) 82.21 [99.99%] 156.46 [99.99%] 59.72 [99.99%] 129.14 [99.99%] 89.53 [99.99%] -

C. Hua and Wei (David) Fan Journal of Safety Research 84 (2023) 74–85

79



Table 4
Estimated coefficients of significant variable in 2008–2010 daytime.

Variable Description Coefficient z-value

Intercept Constant [OI] 0.166 �2.73
Constant [MI] �0.698 �7.80

Driver Characteristic
Gender Male [MI] �0.273 �3.18
Restraint Lap and Shoulder Belt [OI] �0.688 �2.73
Behavior Other (Passing, Follow Closely, Defective Equipment) [OI] �1.402 �6.25

Other (Passing, Follow Closely, Defective Equipment) [MI] �0.897 �7.02
Alcohol or Drugs [MI] 1.111 3.07

Vehicle Characteristic
Vehicle type SUV [OI] 0.336 2.86
Roadway Characteristic
Road class NC Route [OI] 0.597 3.88

Us Route [MI] 0.403 3.41
NC Route [MI] 0.312 3.14

Road Surface Road Adverse (Watery, Icy, Snowy, Sandy, Muddy, Dirty, or Graveled) [OI] �1.371 �4.41
Road Align Curve Adverse (Bottom, Grade, Hillcrest) [OI] 0.313 2.02
Road Pavement Smooth Asphalt [OI] �1.735 �2.76

Standard deviation 2.008 2.85
Coarse Asphalt [OI] �0.954 �2.76
Coarse Asphalt [MI] �0.219 �2.55
Other (Gravel, Sand, Soil) [OI] �1.610 �2.54
Other (Gravel, Sand, Soil) [MI] �2.060 �2.84

Environment characteristic
Development Commercial [OI] �3.451 �1.42

Standard deviation 3.866 1.67
Commercial [MI] �0.341 �3.13

Terrain Mountainous [OI] �0.595 �3.36
Mountainous [MI] �0.461 �4.37

Light Dusk, Down [MI] �0.957 �3.08
Heterogeneity in means of random parameters
Commercial [OI]: Curve Adverse (Bottom, Grade, Hillcrest) 2.819 1.80

Model statistics: number of observations: 4278, Log-likelihood constant only: �3818.570, Log-likelihood at convergence: �3653.911, Akaike information criterion (AIC):
7359.800.

Table 5
Estimated coefficients of significant variable in 2011–2013 daytime.

Variable Description Coefficient z-value

Intercept Constant [OI] 0.589 0.21
Constant [MI] �0.715 �4.71

Driver Characteristic
Restraint Lap Belt [OI] �1.346 �4.78

Shoulder Belt [OI] �1.797 �3.82
Shoulder Belt [MI] �0.839 �2.19

Behavior Inattention and Disregarded (Sign or Signal) [OI] �1.054 �3.24
Other (Passing, Follow Closely, Defective Equipment) [OI] �0.977 �6.98
Inattention and Disregarded (Sign or Signal) [MI] �0.833 �3.5
Other (Passing, Follow Closely, Defective Equipment) [MI] �1.357 �8.14

Vehicle Characteristic
Vehicle type SUV [MI] �0.214 �0.55

Standard deviation 1.248 1.66
Roadway Characteristic
Road Class Us Route [OI] 0.623 4.47

NC Route [OI] 0.599 5.47
NC Route [MI]

Road Surface Wet [OI] �0.438 �2.94
Road Adverse (Watery, Icy, Snowy, Sandy, Muddy, Dirty, or Graveled) [OI] �1.308 �3.92
Road Adverse (Watery, Icy, Snowy, Sandy, Muddy, Dirty, or Graveled) [MI] �0.563 �2.27

Road Configuration Two-Way, Not Divided [MI] �0.588 �3.96
Environment characteristic
Development Residential [MI] 0.242 2.47

Commercial [OI] �2.385 �1.53
Standard deviation 2.824 1.86

Terrain Mountainous [OI] �0.675 �4.88
Mountainous [MI] �0.697 �4.19

Weather Cloudy [MI] 0.258 2.26
Light Dark [MI] �0.359 �1.85
Heterogeneity in means of random parameters
Commercial [OI]: Road Adverse (Watery, Icy, Snowy, Sandy, Muddy, Dirty, Or Graveled) 2.421 2.15
Commercial [OI]: Cloudy 1.095 1.86
Heteroscedasticity of random parameters
SUV [MI]: Mountainous 0.752 1.79

Model statistics: number of observations:4550, Log-likelihood constant only: �3920.362, Log-likelihood at convergence: �3734.886, Akaike information criterion (AIC):
7525.800.
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vers who are alcohol or drugs impaired. The magnitude of severity
shifts from moderate injury in the daytime to obvious injury in
nighttime during 2008–2010, and the severity level is reversed
between daytime and nighttime during 2014–2016. Although
actions like improper passing, following closely, and so forth, only
cause property damage including unsightly scrapes and dented
doors in sideswipe collisions, psychological impairment and men-
tal anguish resulting from the crash still cannot be neglected.

6.2. Vehicle characteristics

Concerning the vehicle types, this study mainly examines the
light trucks involving the pickup and sport utility vehicle owing
to higher proportions in reverse sideswipe collisions. Apparent
temporal instability is demonstrated, SUVs at fault are more likely
to result in obvious injury in 2008–2010 daytime (0.013) and
2011–2013 nighttime (0.0477), but contribute to more moderate

Table 6
Estimated coefficients of significant variable in 2014–2016 daytime.

Variable Description Coefficient z-value

Intercept Constant [OI] �3.090 �7.24
Constant [MI] �0.804 �5.95

Driver characteristic
Age Old (>50) [OI] �0.155 �1.97
Behavior Inattention and Disregarded (Sign or Signal) [MI] �1.029 �3.84

Alcohol or Drugs [OI] 0.970 3.69
Other (Passing, Follow Closely, Defective Equipment) [OI] �1.184 �10.01
Other (Passing, Follow Closely, Defective Equipment) [MI] �1.604 �12.09

Vehicle Characteristic
Vehicle Type SUV [MI] �1.794 �2.64

Standard deviation 4.118 4.00
Roadway Characteristic
Road Class Us Route [OI] 0.605 5.63

NC Route [OI] 0.541 6.59
Road Surface Road Adverse (Watery, Icy, Snowy, Sandy, Muddy, Dirty, Or Graveled) [OI] �1.143 �5.31
Road Align Straight Adverse (Bottom, Grade, Hillcrest) [OI] 0.351 3.58

Curve Adverse (Bottom, Grade, Hillcrest) [OI] 0.245 2.54
Road Configuration Two-Way, Not Divided [MI] �0.537 �4.07
Road Pavement Smooth Asphalt [OI] 1.193 2.82

Coarse Asphalt [OI] 1.210 2.86
Speed Limits 36–55 Mph [OI] 0.368 3.85

36–55 Mph [MI] 0.367 3.51
Environment characteristic
Terrain Mountainous [OI] �0.890 �7.34

Mountainous [MI] �0.490 �0.60
Standard deviation 3.662 3.31

Weather Rain [MI] 0.495 3.63
Heterogeneity in means of random parameters
Mountainous [MI]: Curve Adverse (Bottom, Grade, Hillcrest) �1.19295 �2.45
Mountainous [MI]: Two-Way, Not Divided �2.3572 �2.23
Heteroscedasticity of random parameters
Mountainous [MI]: Coarse Asphalt 0.35022 0.13585

Model statistics: number of observations: 8144, Log-likelihood constant only: �6876.940, Log-likelihood at convergence: �6519.633, Akaike information criterion (AIC):
13091.300.

Table 7
Estimated coefficients of significant variable in 2008–2010 nighttime.

Variable Description Coefficient z-value

Intercept Constant [OI] 0.478 1.24
Constant [MI] �1.055 �11.63

Driver characteristic
Restraint Lap and Shoulder Belt [OI] �1.417 �3.82

Shoulder Belt [OI] �1.692 �3.33
Behavior Exceeded Speed [OI] 1.397 3.73

Improper or Reckless Manner (Turn, Yield, Swerved, Oversteer) [OI] 0.854 2.8
Wrong Lane Use [MI] 0.440 2.54
Alcohol or Drugs [OI] 1.447 4.12
Alcohol or Drugs [MI] 0.867 2.44
Other (Passing, Follow Closely, Defective Equipment) [OI] �0.756 �2.85
Other (Passing, Follow Closely, Defective Equipment) [MI] �0.915 �3.67

Roadway Characteristic
Road Class Local Street [OI] �0.774 �2.83
Road Surface Road Adverse (Watery, Icy, Snowy, Sandy, Muddy, Dirty, or Graveled) [OI] �0.731 �2.03
Environment Characteristic
Terrain Mountainous [MI] �0.566 �2.17
Light Dark [OI] �0.595 �3.47

Model statistics: number of observations: 1282, Log-likelihood constant only: �1169.085, Log-likelihood at convergence: �1110.061, Akaike information criterion (AIC):
2250.100.
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injury from 2014 to 2016 with 0.0242 in the daytime and 0.0312 in
the nighttime. In comparison with pickups, SUVs lead to more seri-
ous injury. This is in accord with Adanu et al. (2021) in that risks of
crashes could diminish when SUVs are not involved, especially for
young drivers. One possible reason for this is that pickup has a
more robust structure to absorb more energy in a reverse side-
swipe collision.

From Table 5, the SUV factor is a random parameter with a
mean of �0.214 and a standard deviation of 1.248 in 2011–2013
daytime. This implies that this factor reduces the probability of
moderate injury for 43.19% of reverse sideswipe collisions and
enhances the possibility of moderate injury for 56.81% of collisions.
It is noted that the mountainous factor shows heteroscedasticity in

Table 8
Estimated coefficients of significant variable in 2011–2013 nighttime.

Variable Description Coefficient z-value

Intercept Constant [OI] �0.875 �2.42
Constant [MI] �1.516 �14.56

Driver characteristic
Restraint Lap Belt [OI] �1.400 �3.99

Shoulder Belt [OI] �1.121 �2.09
Behavior Alcohol or Drugs [MI] 0.698 2.26

Other (Passing, Follow Closely, Defective Equipment) [OI] �1.056 �3.56
Other (Passing, Follow Closely, Defective Equipment) [MI] �0.676 �3.11

Vehicle Characteristic
Vehicle Type SUV [OI] 0.453 2.65
Roadway Characteristic
Road Class Us Route [OI] 0.896 3.40

Us Route [MI] 0.471 2.11
NC Route [OI] 0.692 3.46

Road Align Straight Adverse (Bottom, Grade, Hillcrest) [OI] 0.869 3.92
Straight Adverse (Bottom, Grade, Hillcrest) [MI] 0.557 2.78
Curve Adverse (Bottom, Grade, Hillcrest) [OI] 0.790 2.99
Curve Adverse (Bottom, Grade, Hillcrest) [MI] 0.463 2.13

Road Configuration Two-Way, Divided [MI] 0.529 2.30
Terrain Mountainous [OI] �0.940 �2.64

Model statistics: number of observations: 1312, Log-likelihood constant only: �1087.379, Log-likelihood at convergence: �1031.438, Akaike information criterion (AIC):
2096.900.

Table 9
Estimated coefficients of significant variable in 2014–2016 nighttime.

Variable Description Coefficient z-value

Intercept Constant [OI] �1.628 �3.53
Constant [MI] �1.692 �7.99

Driver characteristic
Gender Male [MI] �0.227 �2.08
Restraint Lap Belt [OI] �2.715 �2.48

Standard deviation 2.800 2.40
Behavior Wrong Lane Use [OI] 0.892 2.70

Wrong Lane Use [MI] 0.356 2.50
Alcohol or Drugs [MI] 0.582 2.39
Other (Passing, Follow Closely, Defective Equipment) [OI] �1.875 �3.03
Other (Passing, Follow Closely, Defective Equipment) [MI] �0.807 �5.33

Vehicle Characteristic
Vehicle Type SUV [MI] 0.342 3.28
Roadway Characteristic
Road Class NC Route [OI] 1.270 3.47

Secondary [MI] �0.249 �2.45
Road Surface Wet [OI] �1.209 �2.57

Road Adverse (Watery, Icy, Snowy, Sandy, Muddy, Dirty, Or Graveled) [OI] �3.246 �2.35
Road Align Curve Level [MI] �0.366 �2.43
Speed Limits 36–55 Mph [MI] 0.287 2.35
Development Residential [MI] 0.240 2.22

Commercial [OI] �1.703 �3.39
Weather Cloudy [OI] 0.725 1.96
Light Dusk, Down [MI] 0.667 2.83

Dark [OI] 0.843 2.36
Dark [MI] 0.654 4.06

Heterogeneity in means of random parameters
Lap Belt [OI]: Residential �0.664 �1.83
Heteroscedasticity of random parameters
Lap Belt [OI]: Male 0.180 1.92

Model statistics: number of observations: 2729, Log-likelihood constant only: �2399.681, Log-likelihood at convergence: �2256.915, Akaike information criterion (AIC):
4563.800.
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Table 10
Marginal effects of factors for reverse sideswipe collisions during time-of-day and three periods.

Period 2008–2010 daytime 2011–2013 daytime 2014–2016 daytime 2008–2010 nighttime 2011–2013 nighttime 2014–2016 nighttime

Variable OI MI NI OI MI NI OI MI NI OI MI NI OI MI NI OI MI NI

Driver Characteristics
Male 0.0045 �0.0293 0.0249 0.0025 �0.0250 0.0225
Old (>50) �0.0045 0.0008 0.0037
Lap Belt �0.1472 0.031 0.1162 �0.1473 0.0341 0.1132 0.0117 �0.0015 �0.0103
Lap and Shoulder Belt �0.0590 0.0155 0.0436 �0.1768 0.0462 0.1306
Shoulder Belt �0.0014 �0.0005 0.0019 �0.2112 0.0552 0.1560 �0.1179 0.0273 0.0906
Inattention and Disregarded (Sign or Signal) 0.0003 �0.0037 0.0034 0.0005 �0.0025 0.0021
Exceeded Speed 0.1744 �0.0456 �0.1288
Improper or Reckless Manner (Turn, Yield,

Swerved, Oversteer)
0.1066 �0.0279 �0.0787

Wrong Lane Use �0.0144 0.0709 �0.0565 0.0041 0.0026 �0.0067
Alcohol or Drugs �0.0005 0.0022 �0.0016 0.0018 �0.0004 �0.0014 0.0762 0.0463 �0.1225 �0.0170 0.1008 �0.0838 �0.0006 0.0040 �0.0034
Other (Passing, Follow Closely, Defective

Equipment)
�0.0055 �0.0067 0.0122 �0.0059 �0.0069 0.0128 �0.0054 �0.0085 0.0138 �0.0323 �0.0614 0.0937 �0.0474 �0.0360 0.0833 �0.0047 �0.0072 0.0119

Vehicle Characteristics
SUV 0.0130 �0.0036 �0.0094 �0.0047 0.0266 �0.0219 �0.0039 0.0242 �0.0203 0.0477 �0.0110 �0.0367 �0.0030 0.0312 �0.0282
Roadway Characteristics
Us Route �0.0011 0.0087 �0.0076 0.0095 �0.0019 �0.0076 0.0086 �0.0015 �0.0071 0.0414 0.02315 �0.06455
NC Route 0.0058 0.0033 �0.0091 0.0073 0.0027 �0.0100 0.0152 �0.0029 �0.0123 0.0390 0.0297 �0.0686 0.0204 �0.0064 �0.0140
Secondary Route 0.0016 �0.0185 0.0169
Local Street �0.0966 0.0253 0.0714
Wet Surface �0.0053 0.0012 0.0041 �0.0072 0.0021 0.0051
Road Adverse (Watery, Icy,

Snowy, Sandy, Muddy, Dirty, or Graveled)
�0.0056 0.0014 0.0042 �0.0015 �0.0010 0.0025 �0.0033 0.0006 0.0027 �0.0912 0.0238 0.0674 �0.0021 0.0006 0.0015

Straight Adverse (Bottom, Grade, Hillcrest) 0.0060 �0.0011 �0.0049
Curve Level 0.0007 �0.0073 0.0067
Curve Adverse (Bottom, Grade, Hillcrest) 0.0063 �0.0015 �0.0048 0.0045 �0.0007 �0.0037 0.0359 0.0239 �0.0598
Two-Way, Not Divided 0.0128 �0.0653 0.0525 0.0087 �0.0488 0.0401
Two-Way, Divided �0.0129 0.0764 �0.0636
Smooth Asphalt Pavement �0.0151 0.0049 0.0103 0.0745 �0.0131 �0.0614
Coarse Asphalt Pavement �0.0170 �0.0012 0.0182 0.0471 �0.0084 �0.0387
Other (Gravel, Sand, Soil) �0.0007 �0.0004 0.0011
36–55 Mph 0.0127 0.0121 �0.0248 �0.0038 0.0377 �0.0339
Environment Characteristics
Residential �0.0019 0.0092 �0.0073 �0.0011 0.0121 �0.0110
Commercial 0.0026 �0.0047 0.0022 0.0068 �0.0016 �0.0052 �0.0101 0.0029 0.0071
Mountainous Terrain �0.0037 �0.0053 0.0091 �0.0042 �0.0049 0.0091 �0.0046 0.0015 0.0032 0.0185 �0.0912 0.0727 �0.0989 0.0229 0.0760
Cloudy �0.0012 0.0064 �0.0052 0.0058 �0.0017 �0.0042
Rainy �0.0008 0.0045 �0.0037
Dusk, Down light 0.0003 �0.0023 0.0020 �0.0006 0.0083 �0.0077
Dark light 0.0005 �0.0026 0.0021 �0.0742 0.0194 0.0548 0.0149 0.0392 �0.0541
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random parameters, indicating a subtle growth (0.752) in the vari-
ance that makes moderate injury involving SUVs more likely.

6.3. Roadway characteristics

Compared to the interstate highway, the U.S. and North Caro-
lina routes have similar effects on exacerbating the obvious injury.
This distinguishes it from Adanu et al. (2021), who primarily con-
sidered sideswipe crashes in the same direction involving commer-
cial vehicles. Collisions that occurred in nighttime (with 0.414 for
U.S. route and 0.039 for NC route) have a higher likelihood than
in daytime (with 0.0095 for U.S. route and 0.073 for NC route) in
2011–2013, and the same situation can also be found in 2014–
2016 for NC route. However, obvious injuries are less likely as
the road class downgrades. There is a slight increase in secondary
route with merely 0.0016 compared to NC route with 0.0204 in
2014–2016 nighttime, and local street decline the probability of
obvious injury by 0.0966.

Compared with the dry road surface, wet surface lessens the
drivers’ risk of suffering from the obvious injury (with 0.0053 in
2011–2013 daytime and 0.0072 in 2014–2016 nighttime). Actu-
ally, hydroplaning on adverse roads such as snowy, icy, sandy,
muddy, or graveled might not result in a higher likelihood of more
serious injuries. One possible explanation for this counterintuitive
outcome is that drivers are usually more cautious under slippery
conditions.

For the road alignment that reflects the horizontal curvature,
both hillcrest, grade or bottom design, and curve roadway indicate
a modest increase of the obvious injury by 0.006 in 2014–2016
daytime and by 0.0007 in 2014–2016 nighttime, respectively. It
is even worse when drivers encounter the curve and adverse road-
way simultaneously. Meanwhile, two-way without divided config-
uration is found to be positively associated with obvious injury.
However, the probability could decline by 0.0129 when installing
the separation facility (e.g., buffer median barriers), which could
minimize the impact of opposite-direction crashes (Chitturi,
Ooms, Bill, & Noyce, 2011).

In terms of pavement that is classified based on the texture of
materials, smooth asphalt is found to be a random parameter with
a mean of �1.735 and standard deviation of 2.008 in Table 4. It
implies that this factor decreases the probability of obvious injury
for 19.38% of collisions and increases the possibility of obvious
injury for 56.81% of collisions. Nevertheless, it is insensitive to
the possible heterogeneous means and heteroscedastic variances.
The reverse effects of smooth and coarse asphalt can be observed
between 2008–2010 daytime and 2014–2016 daytime, which
reveals the necessity of segmentation across varied periods.

Speed limit with 36–55 mph is statistically significant only in
2014–2016. It is more likely to result in the obvious injury by
0.0127 in the daytime, and a slight growth in moderate injury from
0.0121 in the daytime to 0.0377 in nighttime is identified.

6.4. Environment characteristics

Compared to the land use developed for FWP (farms, woods,
and pastures), the residential area slightly decreases the probabil-
ity of obvious injury by 0.0019 in 2011–2013 daytime and by
0.0011 in 2014–2016 nighttime. However, the commercial area is
more likely to result in the obvious injury in the daytime of
2008–2010 and 2011–2013. Moreover, in Tables 4 and 5, the com-
mercial area is a random parameter in that two periods (with a
mean of �3.451 and �2.385, a standard deviation of 3.866 and
2.824, respectively), which implies that obvious injury is less likely
for 18.60% and 19.92% of the collisions and more likely for 81.40%
and 80.08% of crashes, correspondingly. Meanwhile, curve adverse
align, adverse road surface, and cloudy are found to produce

heterogeneous means of commercial area, increasing its mean that
make the crash injury more severe.

For the terrain that reflects the vertical undulation, mountain-
ous terrain has the potential to be risky since steep hillsides make
novice drivers harder to maintain the vehicle. However, almost all
models except nighttime of 2008–2010 and 2014–2016 present a
negative association with obvious injury. One explainable reason
for that is that due to the lower speed limits, drivers are more
attentive in those graded and hilly roadways.

The weather condition with rain is statistically significant only
in 2014–2016 daytime, which has a higher likelihood of sustaining
moderate injury with 0.0045. Additionally, distinct temporal vari-
ations are observed in the effects of cloudy, dusk, and dark lighting
conditions. The cloudy weather modestly increases the probability
of moderate injury by 0.0064 and results in relatively less obvious
injury by 0.0012 in 2011–2013 daytime; but makes obvious injury
more likely by 0.0058 and leads to less moderate injury by 0.0017
in 2014–2016 nighttime. This reverse effect can also be recognized
for the dusk light between the 2008–2010 daytime and 2014–2016
nighttime, which again supports the segmentation across different
time periods.

7. Conclusions and implications

This study investigates the time-of-day fluctuations and tempo-
ral volatility of potential factors that impact the injury severity of
reverse sideswipe collisions between daytime and nighttime
across three time periods (a segmentation every-three years from
2008 to 2016). With data from the HSIS in North Carolina, an
extension of random parameters logit (RPL) models considering
the heterogeneous means and heteroscedastic variances are devel-
oped and employed to estimate the significant parameters. The
transferability tests verify the temporal instability during the time
of day and three different time ranges. The variations in the com-
binations of them have also been explored in the model results.
In terms of model structures, the method further reveals the unob-
served heterogeneity among the significant variables and makes
better fitting performance compared to the conventional RPL
model.

A wide variety of contributing factors are identified to have pos-
itive associations with the obvious injury, including the male dri-
ver, improper or reckless manner (e.g. exceeding speed limit),
curve and adverse roadway, and two-way not divided configura-
tion. Nevertheless, factors such as the older driver, residential area,
wet road surface, and mountainous terrain could mitigate the
injury severity. Meanwhile, significant temporal volatility of the
marginal effects over time is observed for belts with various
degrees of protection, intoxicated drivers, SUVs at fault, and slip-
pery road surface. Evidence of time-of-day fluctuations is also
detected in this study. For instance, restraint with belts is more
effective in reducing obvious injury in the nighttime, but it is more
likely to result in more severe injury on the higher road class com-
pared to the daytime. Additionally, the reverse effects of asphalt
pavement, cloudy weather, and dim lighting conditions can also
demonstrate the necessity for the segmentation of the dataset.

Countermeasure for alleviating the injury severity of reverse
sideswipe collisions contains the installation of centerline rumble
strips. This facility could deliver tactile and acoustic signals when
vehicles transgress the centerline with an undulating surface,
which can reduce by 44% the fatal or incapacitating injury caused
by sideswipe-opposite-direction collisions in rural area (Torbic
et al., 2010). Currently, intelligent vehicles equipped with lane
departure warning and forward collision avoidance technology
could also effectively lessen the risk of conflicts (Adanu et al.,
2021).
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The findings of the study may provide instructive solutions for
engineers and policymakers to enhance sideswipe-related safe-
guards, establish the safety evaluation system, and clarify the acci-
dent liability. Given that this study mainly examines the temporal
features of sideswipe injury severity, future work could take the
spatiotemporal patterns and hotspot distribution of sideswipe into
account. Besides, the socio-economic reasons behind traffic acci-
dents deserve more exploration.

Declaration of Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

The authors want to express their deepest gratitude for the
financial support by the United States Department of Transporta-
tion, University Transportation Center through the Center for
Advanced Multimodal Mobility Solutions and Education
(CAMMSE) at The University of North Carolina at Charlotte (Grant
Number: 69A3551747133).

References

Abdel-Aty, M., Keller, J., & Brady, P. A. (2005). Analysis of types of crashes at
signalized intersections by using complete crash data and tree-based
regression. Transportation Research Record, 1908(1), 37–45.

Adanu, E. K., Lidbe, A., Tedla, E., & Jones, S. (2021a). Factors associated with driver
injury severity of lane changing crashes involving younger and older drivers.
Accident Analysis & Prevention, 149, 105867.

Adanu, E. K., Lidbe, A., Tedla, E., & Jones, S. (2021b). Injury-severity analysis of lane
change crashes involving commercial motor vehicles on interstate highways.
Journal of Safety Research, 76, 30–35.

Administrations, F. H. (2019). KABCO Injury Classification Scale and Definitions.
Online at: https://safety. fhwa. dot. gov/hsip/spm/conversion_tbl/pdfs/kabco_
ctable_by_state.pdf. Accessed on November, 30.

Al-Bdairi, N. S. S., Behnood, A., & Hernandez, S. (2020). Temporal stability of driver
injury severities in animal-vehicle collisions: A random parameters with
heterogeneity in means (and variances) approach. Analytic Methods in Accident
Research, 26, 100120.

Bates, L. J., Davey, J., Watson, B., King, M. J., & Armstrong, K. (2014). Factors
contributing to crashes among young drivers. Sultan Qaboos University Medical
Journal, 14(3), e297.

Behnood, A., & Mannering, F. (2017). Determinants of bicyclist injury severities in
bicycle-vehicle crashes: A random parameters approach with heterogeneity in
means and variances. Analytic Methods in Accident Research, 16, 35–47.

Behnood, A., & Mannering, F. L. (2016). An empirical assessment of the effects of
economic recessions on pedestrian-injury crashes using mixed and latent-class
models. Analytic Methods in Accident Research, 12(1–17), 1.

Bham, G. H., Javvadi, B. S., & Manepalli, U. R. (2012). Multinomial logistic regression
model for single-vehicle and multivehicle collisions on urban US highways in
Arkansas. Journal of Transportation Engineering, 138(6), 786–797.

Chen, Z., Qin, X., & Shaon, M. R. R. (2018). Modeling lane-change-related crashes
with lane-specific real-time traffic and weather data. Journal of Intelligent
Transportation Systems, 22(4), 291–300.

Chitturi, M. V., Ooms, A. W., Bill, A. R., & Noyce, D. A. (2011). Injury outcomes and
costs for cross-median and median barrier crashes. Journal of Safety Research, 42
(2), 87–92.

Fitch, G. M., Lee, S. E., Klauer, S., Hankey, J., Sudweeks, J., & Dingus, T. (2009). Analysis
of lane-change crashes and near-crashes. US Department of Transportation,
National Highway Traffic Safety Administration.

Geedipally, S. R., Patil, S., & Lord, D. (2010). Examination of methods to estimate
crash counts by collision type. Transportation Research Record, 2165(1), 12–20.

Islam, M., & Hernandez, S. (2013). Large truck–involved crashes: Exploratory injury
severity analysis. Journal of Transportation Engineering, 139(6), 596–604.

Islam, M., Alnawmasi, N., & Mannering, F. (2020). Unobserved heterogeneity and
temporal instability in the analysis of work-zone crash-injury severities.
Analytic Methods in Accident Research, 28, 100130.

Khattak, A. J., Kantor, P., & Council, F. M. (1998). Role of adverse weather in key
crash types on limited-access: Roadways implications for advanced weather
systems. Transportation Research Record, 1621(1), 10–19.

Kim, D. G., Lee, Y., Washington, S., & Choi, K. (2007). Modeling crash outcome
probabilities at rural intersections: Application of hierarchical binomial logistic
models. Accident Analysis & Prevention, 39(1), 125–134.

Kim, D. G., Washington, S., & Oh, J. (2006). Modeling crash types: New insights into
the effects of covariates on crashes at rural intersections. Journal of
Transportation Engineering, 132(4), 282–292.

Kusano, K. D., & Gabler, H. C. (2013). Characterization of opposite-direction road
departure crashes in the united states. Transportation Research Record, 2377(1),
14–20.

Lee, C., Abdel-Aty, M., & Hsia, L. (2006). Potential real-time indicators of sideswipe
crashes on freeways. Transportation Research Record, 1953(1), 41–49.

Li, Z., Wang, W., Chen, R., & Liu, P. (2014). Conditional inference tree-based analysis
of hazardous traffic conditions for rear-end and sideswipe collisions with
implications for control strategies on freeways. IET Intelligent Transport Systems,
8(6), 509–518.

Mannering, F. L., Shankar, V., & Bhat, C. R. (2016). Unobserved heterogeneity and the
statistical analysis of highway accident data. Analytic Methods in Accident
Research, 11, 1–16.

Mannering, F. (2018). Temporal instability and the analysis of highway accident
data. Analytic Methods in Accident Research, 17, 1–13.

McFadden, D., & Train, K. (2000). Mixed MNL models for discrete response. Journal
of Applied Econometrics, 15(5), 447–470.

Mokhtarimousavi, S. (2019). A time of day analysis of pedestrian-involved crashes
in California: Investigation of injury severity, a logistic regression and machine
learning approach using HSIS data. Institute of Transportation Engineers. ITE
Journal, 89(10), 25–33.

Moore, D. N., Schneider, W. H., IV, Savolainen, P. T., & Farzaneh, M. (2011). Mixed
logit analysis of bicyclist injury severity resulting from motor vehicle crashes at
intersection and non-intersection locations. Accident Analysis & Prevention, 43
(3), 621–630.

National Center for Statistics and Analysis. Traffic Safety Facts 2018: A Compilation
of Motor Vehicle Crash Data from the Fatality Analysis Reporting System and
the General Estimates System. https://crashstats.nhtsa.dot.gov/Api/Public/
Publication/812981.

Pande, A., & Abdel-Aty, M. (2006). Assessment of freeway traffic parameters leading
to lane-change related collisions. Accident Analysis & Prevention, 38(5), 936–948.

Park, S., & Ritchie, S. G. (2004, January). Exploring the relationship between freeway
speed variance, lane changing, and vehicle heterogeneity. In 83rd Annual
Meeting of Transportation Research Board.

Qu, X., Wang, W., Wang, W., & Liu, P. (2013). Real-time freeway sideswipe crash
prediction by support vector machine. IET Intelligent Transport Systems, 7(4),
445–453.

Shawky, M. (2020). Factors affecting lane change crashes. IATSS Research, 44(2),
155–161.

Silverstein, C., Schorr, J., & Hamdar, S. H. (2016). Work zones versus nonwork zones:
Risk factors leading to rear-end and sideswipe collisions. Journal of
Transportation Safety & Security, 8(4), 310–326.

Song, L., Fan, W. D., & Li, Y. (2021). Time-of-day variations and the temporal
instability of multi-vehicle crash injury severities under the influence of alcohol
or drugs after the Great Recession. Analytic Methods in Accident Research, 32
(670), 100183.

Torbic, D. J., Hutton, J. M., Bokenkroger, C. D., Bauer, K. M., Donnell, E. T., Lyon, C., &
Persaud, B. (2010). Guidance on design and application of rumble strips.
Transportation Research Record, 2149(1), 59–69.

Wang, J., Zhang, Q., Wang, Y., Weng, J., & Yan, X. (2016). Analysis of sideswipe
collision precursors considering the spatial-temporal characteristics of freeway
traffic. Journal of Transportation Engineering, 142(12), 04016064.

Washington, S., Karlaftis, M., & Mannering, F. (2011). Statistical and Econometric
Methods for Transportation Data Analysis. Boca Raton, FL: Chapman and Hall/
CRC.

Ye, X., Pendyala, R. M., Washington, S. P., Konduri, K., & Oh, J. (2009). A simultaneous
equations model of crash frequency by collision type for rural intersections.
Safety Science, 47(3), 443–452.

Zou, W., Wang, X., & Zhang, D. (2017). Truck crash severity in New York city: An
investigation of the spatial and the time of day effects. Accident Analysis &
Prevention, 99, 249–261.

Chengying Hua is a Ph.D. student in the Infrastructure and Environmental Systems
(INES) program at the University of North Carolina at Charlotte, Charlotte, NC, U.S.A.
He is with the Center for Advanced Multimodal Mobility Solutions and Education
(CAMMSE). His research topics include transportation safety data analysis and
connected and autonomous vehicles.

Wei (David) Fan currently serves as a full professor in the Department of Civil and
Environmental Engineering at The University of North Carolina at Charlotte (UNC
Charlotte). He is the Director of the USDOT Tier I University Transportation Center
for Advanced Multimodal Mobility Solutions and Education (CAMMSE). Dr. Fan
holds a Ph.D. (May 2004) in Civil Engineering - Transportation from the University
of Texas at Austin (Hook ’em Horns!). His primary research interests include
operations research, transportation network modeling & optimization, multimodal
transportation systems planning and operations, traffic operations and simulation,
transportation safety and crash analysis, intelligent transportation systems (ITS),
and computer software development.

C. Hua and Wei (David) Fan Journal of Safety Research 84 (2023) 74–85

85

http://refhub.elsevier.com/S0022-4375(22)00161-X/h0005
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0005
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0005
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0010
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0010
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0010
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0015
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0015
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0015
https://safety.+fhwa.+dot.+gov/hsip/spm/conversion_tbl/pdfs/kabco_ctable_by_state.pdf
https://safety.+fhwa.+dot.+gov/hsip/spm/conversion_tbl/pdfs/kabco_ctable_by_state.pdf
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0025
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0025
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0025
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0025
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0030
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0030
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0030
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0035
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0035
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0035
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0040
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0040
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0040
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0045
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0045
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0045
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0050
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0050
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0050
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0055
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0055
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0055
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0065
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0065
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0070
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0070
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0075
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0075
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0075
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0080
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0080
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0080
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0085
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0085
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0085
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0090
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0090
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0090
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0095
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0095
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0095
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0100
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0100
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0105
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0105
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0105
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0105
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0110
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0110
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0110
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0115
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0115
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0120
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0120
http://refhub.elsevier.com/S0022-4375(22)00161-X/h9005
http://refhub.elsevier.com/S0022-4375(22)00161-X/h9005
http://refhub.elsevier.com/S0022-4375(22)00161-X/h9005
http://refhub.elsevier.com/S0022-4375(22)00161-X/h9005
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0125
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0125
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0125
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0125
https://crashstats.nhtsa.dot.gov/Api/Public/Publication/812981
https://crashstats.nhtsa.dot.gov/Api/Public/Publication/812981
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0135
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0135
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0145
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0145
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0145
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0150
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0150
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0155
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0155
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0155
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0160
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0160
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0160
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0160
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0165
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0165
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0165
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0170
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0170
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0170
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0175
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0175
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0175
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0180
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0180
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0180
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0185
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0185
http://refhub.elsevier.com/S0022-4375(22)00161-X/h0185


Measuring base-rate bias error in workplace safety investigators

Carla L. MacLean a,⇑, Itiel E. Dror b
aKwantlen Polytechnic University, Department of Psychology, 12666 72 Avenue, Surrey, B.C, Canada
bUniversity College London, London, United Kingdom

a r t i c l e i n f o

Article history:
Received 19 April 2022
Received in revised form 25 July 2022
Accepted 18 October 2022
Available online 28 October 2022

Keywords:
Cognitive bias
Workplace Investigation
Human error bias
Context effects
Expert decision making

a b s t r a c t

Introduction: This study explored the magnitude of professional industrial investigators’ bias to attribute
cause to a person more readily than to situational factors (i.e., human error bias). Such biased opinions
may relieve companies from responsibilities and liability, as well as compromise efficacy of suggested
preventative measures. Method: Professional investigators and undergraduate participants were given
a summary of a workplace event and asked to allocate cause to the factors they found causal for the event.
The summary was crafted to be objectively balanced in its implication of cause equally between two fac-
tors: a worker and a tire. Participants then rated their confidence and the objectivity of their judgment.
We then conducted an effect size analysis, which supplemented the findings from our experiment with
two previously published research studies that used the same event summary. Results: Professionals
exhibited a human error bias, but nevertheless believed that they were objective and confident in their
conclusions. The lay control group also showed this human error bias. These data, along with previous
research data, revealed that, given the equivalent investigative circumstances, this bias was significantly
larger with the professional investigators, with an effect size of dunb = 0.97, than the control group with an
effect size of only dunb = 0.32. Conclusions: The direction and strength of the human error bias can be
quantified, and is shown to be larger in professional investigators compared to lay people. Practical
Applications: Understanding the strength and direction of bias is a crucial step in mitigating the effects
of the bias. The results of the current research demonstrate that mitigation strategies such as proper
investigator training, a strong investigation culture, and standardized techniques, are potentially promis-
ing interventions to mitigate human error bias.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Incident investigations are conducted in the wake of workplace
events that claim the health and lives of workers. Regulatory and
industry-based industrial investigators work to establish how
and why events occur so that preventative measures can be imple-
mented to minimize such events from occurring again in the
future. Investigations reach direct conclusions regarding who and
what was causal with implication to safety, liability, and
compensation.

Investigative decisions are often made in evolving, complex
and, at times, ambiguous investigative environments. Therefore,
the cognitions of workplace investigators play a critical role in
guiding the investigative process. Given the importance of investi-
gators’ judgments, it is disconcerting that research shows that
workplace investigation professionals harbor a human error bias

in which they tend to allocate more cause to workers in an event
than the evidence dictates (e.g., DeJoy, 1987; LaCroix & DeJoy,
1989; MacLean, Brimacombe, & Lindsay, 2013; MacLean & Read,
2019; c.f., Woodcock, 1995).

The attribution literature demonstrates that all people, not just
investigators, are inclined to attribute more cause to individuals
involved in an event than the evidence would support
(Gawronski, 2004; Nisbett & Ross, 1980). However, additional fac-
tors, often present in the workplace investigation, may increase the
magnitude of this human error bias for professional investigators.
Indeed, research has revealed a significant difference in human
error bias between professionals and the lay population
(MacLean & Read, 2019; MacLean et al. 2013), but the research
does not provide details about the magnitude of this difference.

Kahneman and colleagues, in their book ‘Noise’ (2021) state
that unidirectional and targeted corrective debiasing strategies
can be helpful in circumstances where there is a clear likelihood
that the bias is present and the direction and magnitude can be
anticipated. The difference of human error bias between the pro-
fessional and lay population indicates a systematic difference in
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the base-rate expectations (the predicted probability) of human
error for events in these two populations. However, research that
directly demonstrated the effects of biased base-rates on profes-
sional investigative judgment is scarce (see Meissner & Kassin,
2002). The goal of the current research is to examine the magni-
tude of the human error bias in professional investigation and pro-
vide concise, empirical evidence of the biasing effect of base-rates
on professional judgments.

1.1. Sources of bias

Cognitive bias may undermine honest investigators’ good inten-
tions and hard work (e.g., MacLean & Dror, 2016; MacLean, Smith,
& Dror, 2020). Bias is not random error, it is the systematic devia-
tion from evidence-based objective judgment (Kahneman, Sibony,
& Sunstein, 2021). Dror (2020) provides a taxonomy of eight
sources of bias. It shows how sources of bias range from the archi-
tecture and constraints of the human brain, to contextual factors
that are both environmental and event specific. Inaccurate base-
rates are the fourth source of bias presented in the sources of bias
hierarchy. Base-rate knowledge is an understanding and expected
probability of the event, that is, the rate of occurrence of some fea-
ture in a population. The intuitive understanding of base-rates can
be helpful and informative when drawing conclusions, however
they can also distort decision-making by leading people to believe
something is more or less likely to have occurred than is true in
their present circumstance (Wickens et al., 2009).

1.2. Base-rate expectation

When determining how an event occurred, it is appropriate to
consider both how well the evidence represents the event and also
the base-rate frequency of that outcome, that is, its probability.
Information in the workplace investigation is often ambiguous
and incomplete (Hofmann & Stetzer, 1998). In investigative cir-
cumstances that include little diagnostic information, it is logical
for investigators to draw on appropriate base-rate information to
suggest a cause. For instance, investigators faced with a tire explo-
sion event may think about base-rates of the causes of tire explo-
sions and use this as a data point in the investigation process.
Biased judgments can occur when population base-rates (the
actual frequency of an occurrence) are inconsistent with the inves-
tigators’ beliefs (see classic work on the availability and represen-
tativeness heuristics; Tversky & Kahneman, 1974).

1.2.1. Human error bias
In the case of workplace investigators, a number of factors may

converge to develop biased base-rate expectations of human error.
People are not skilled at rationally considering the effect of situa-
tional variables on the behavior of others, and instead tend to attri-
bute an actor’s actions to his/her/their disposition (e.g., lazy,
careless, inattentive, reckless; fundamental attribution error,
Nisbett & Ross, 1980; correspondence bias, Gawronski, 2004;
Gilbert & Malone, 1995). We use the term human error bias to refer
to this cognitive tendency in workplace situations where people
overemphasize worker action as causal for an event.

Unique to industrial investigation is that investigators encoun-
ter contextual and motivational factors that work to enhance their
natural human inclination to overemphasize operator error. For
instance, investigators are often employees of the company in
which they are conducting the investigation and thus have knowl-
edge of the workers and workplace (Vincoli, 1994). A bias toward a
worksite employee can be introduced via an investigator’s expecta-
tions about a worker’s behavior if an investigator is familiar with
that worker’s unsafe history (MacLean & Read, 2019; MacLean
et al., 2013). Human error bias may also be enhanced because

industry investigators, who are employees of the organization,
may have motivational allegiances to protect the company they
work for (Murrie, Boccaccini, Guarnera, & Rufino, 2013;
Steensma, den Hartigh, & Lucardie, 1994).

Although the investigation literature endorses the need for
unbiased investigations (Sklet, 2002), it also acknowledges that
past recommendations have been skewed to be consistent with
self interests, focus on those features that were preventable, and/
or result in legal liability, rather than inclusive of all investigative
findings (Hancock, 2020; Hopkins, 2000). Explicit or implied orga-
nizational pressure to find ‘‘human error” may guide (perhaps
unconsciously) investigators’ conclusions about the responsibility
of the worker.

Once an investigator has a theory of worker fault, confirmation
bias demonstrates how this hypothesis can shape information col-
lection and interpretation to endorse his/her/their predominant
perspective (Nickerson, 1998). For investigators, finding additional
evidence to endorse their theory of worker cause is not difficult, as
workers often deviate from the specific working protocol sug-
gested by the organization and use more common, established
practical and pragmatic practices adopted by that worksite’s
employees (Leveson, 2004). Moreover, the industrial investigation
is a feedback impoverished environment that makes it difficult for
investigators to hone their decision-making ability. Investigators
may never know if their recommended changes, that focused on
worker behavior, produced the future ‘‘non-event” or if it was sim-
ply the extremely low probability of a similar event reoccurring
that led to it not occurring again (Woodcock, 1995).

For workplace investigators, the features discussed above
should culminate in a rich network of cognitive associations that
link different workplace events with operator error. These associa-
tions would generate an inflated understanding of the rate of
human error in worksite events and ultimately, robust human
error base-rate expectations. Thus, the first goal of this research
was to investigate the effect that professionals’ base-rates may
have on their decisions about event cause compared to the under-
graduate population.

1.3. Meta-cognitive evaluations of performance

People do not have direct access to their thoughts and because
of this, when asked about their accuracy or objectivity, they rely on
available cues to make inferences about their performance
(Dunlosky & Tauber, 2014). People may rely on the imprecise cue
of retrieval fluency to inform them of how confident they should
be about their decisions. Information that is deeply learned or
encountered recently facilitates access (Benjamin & Bjork, 1996).
Thus, the familiarity professional investigators have with industrial
events should result in them having relatively higher confidence
levels than those in the lay population. People’s ability to estimate
their objectivity is equally flawed. When asked to estimate how
objective they have been, people tend to turn inward and seek resi-
due of bias in their decision making; any residue is largely unde-
tectable (Wilson, Centerbar, & Brekke, 2002). Hence, in addition
to being confident, investigators likely see their choices as more
objective than they really are. The second goal of this research
was to explore the confidence participants had in their decisions
and their impressions about their objectivity.

1.4. Research questions

Do individuals have a bias to perceive people involved in events
as causal? Would this tendency be demonstrated by participants
allocating more cause to a worker than other factors when given
industrial event information in which the evidence did not favor
the equipment or worker as more causal (Experiment)? We also
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wanted to know whether professional workplace investigators
would have a stronger human error bias than the undergraduate
population, given equivalent investigative scenarios (Effect size
analysis)? Last, we wanted to know whether participants would
believe that they were objective and, also, how confident they were
in their assessment of incident information.

To answer our research questions, we first explored the extent
to which professional investigators and undergraduate partici-
pants allocated cause to a worker, versus an equally salient situa-
tional factor, when given a summary of a workplace event. The
summary was crafted to be objectively balanced in its implication
between two causal factors: a worker and tire (see Appendix A for
the incident summary). The information given to the participants
contained no diagnostic information that implicated either the
worker or the tire as causing the event (Experiment). Participants
in our experiment also rated their confidence and objectivity of
their judgment.

Second, in addition to the data collection in our experiment, we
conducted an effect size analysis that combined the findings from
our experiment with two published research studies that used the
same event summary. This was done to obtain a more robust mea-
sure of the extent to which the undergraduate and professional
populations differed in the magnitude of the human bias.

Findings from these analyses reveal, in tangible terms, the mag-
nitude of the human error bias that can be brought to an event sce-
nario by professionals compared to those in the lay population.
They will also examine the awareness individuals have for how
their tendencies affect their judgments.

2. Method

Participants read a summary of a workplace event and devel-
oped an initial hypothesis of what most likely caused the event.
They then reported their confidence in their cause allocation judg-
ments and their level of objectively when making the judgment.

2.1. Participants

Participants were undergraduate students, N = 50 (20 males, 28
females, 2 undisclosed) and professional industrial incident inves-
tigators from the forestry industry, N = 15 (12 males and 3
females). All participants were fluent English speakers. Undergrad-
uates ranged in age from 18 to 28 years (M = 20.40, SD = 2.62) and
professional investigators from 29 to 62 years (M = 43.80,
SD = 9.34). Our sample size of 15 professional participants was
reached after 9 were removed (three because they had previously
taken part in an experiment that used the materials, three because
they did not consent to include their data in the data set, and three
who misunderstood the industrial event to be the bystander’s
injury and not the tire explosion). See Table 1 for demographic
information of professionals.

2.2. Materials and procedure

Participants completed testing booklets that contained the
experimental task. The procedure was as follows: (a) participants

provided consent; (b) watched a brief PowerPoint presentation
outlining the types of judgments that they would be asked to make
in the experiment; (c) read an summary of an industrial event
(Appendix A) and were provided with two pieces of non-
probative information about the event; (d) reported their demo-
graphic information; (e) hypothesized what cause the incident
and then allocated a percentage of cause to each causal factor they
indicated; (f) rated their level of objectivity and the likelihood that
their hypothesis was correct; and (g) were debriefed about the pur-
pose of the research.

2.2.1. Introductory presentation
A PowerPoint presentation showed participants the difference

between underlying and direct incident cause. Direct cause(s) were
described as worksite factors that immediately contributed to the
event’s occurrence such as a worker’s action, faulty equipment,
or environmental conditions. Underlying causes were described
as the factors that underlie the direct causes (e.g., poor mainte-
nance, housekeeping, management, funding, supervision or inade-
quate training). Participants were informed that their task was to
provide their most likely hypothesis of what directly caused the
event. We sought only direct causes in this research because they
illuminate the conditions that were immediately responsible for
the incident (see Hollnagel, 2012; Leveson, 2004).

2.2.2. Industrial incident summary
The summary described an event in which a worker was chang-

ing a tire on a truck (i.e., the tire man). When the tire man moved
to the left to shut off the air flow to the tire the tire violently
exploded, hitting a bystander who sustained serious injuries from
the incident. The incident summary describes the environment,
equipment, and actions of the worker that preceded the tire explo-
sion. Initially developed for MacLean et al. (2013), the summary is
a modified incident report from the Forestry industry in British
Columbia and was refined with the support of a subject matter
expert in forestry investigation. Prior research demonstrates that
participants understand details of the event by reading the
summary.

Participants were to allocate cause for the tire explosion event,
not the injury of the bystander. The bystander’s injury was a con-
sequence of the tire explosion and this distinction was made clear
to participants at the time of testing. The event description did not
provide the necessary detail investigators require to determine tire
or tire man cause. For instance, an example of diagnostic informa-
tion that the tire man caused the tire to explode would have been
information indicating that the tire man engaged in actions incon-
sistent with the manufacturer’s instructions for tire and rim servic-
ing prior to mounting and filling the tire. A tire cause for the
explosion would have been information that indicated that the
structure and function of the tire was compromised. No such diag-
nostic information was shared in the incident summary.

The summary included an image of the tire man, tire, truck, and
bystander. Two different pictures of the tire man and two different
pictures of the truck/tire were combined to create four event sum-
mary documents. The four event summaries were counterbalanced
across participants. See Appendix A for one version of the incident
summary.

Table 1
Professional-investigator demographic information.

N Mean Median Range SD

Number of Years Investigating 13 15.69 15 2–30 7.39
Number of Investigations a Year 12 16.92 7.75 1–100 27.49
Number of Serious Investigations a Year 12 2.10 1.75 0–5 1.64
Number of Employees in Organization 14 864.07 87.5 25–5000 1401.64
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Participants also received two pieces of additional information.
This new information did not implicate or exonerate the tire or tire
man as causal and was provided to enhance the resolution of the
activity. The additional information about the tire man stated that
‘‘blood screening done after the incident demonstrated that there
was no indication of drugs or alcohol in the Tire Man’s blood
stream.” The additional tire information stated that ‘‘the rim of
the tire had no visible cracks, dents or signs of metal fatigue.”
The order of evidence was counterbalanced across participants.

2.2.3. Demographics and filler activity
Participants reported their gender and age. Professionals were

also asked if they had previously taken part in an experiment that
used these materials and to state their level of experience in inves-
tigation. See Table 1 for professional-investigator demographic
information. The experience questions we asked of professionals
increased the number of items on their demographic questionnaire
compared to undergraduates. To maintain a consistent 3–5 min-
utes interlude between receiving the event information and mak-
ing their investigative judgments, undergraduates were given
three short word games prior to making their judgments.

2.2.4. Ratings of event cause
Participants used an open-ended box to state their hypothesis

of what directly caused the workplace event and then allocated
the cause of the event between the factors they identified as causal
(e.g., tire man 50%; tire 20%; tire cage 30%). Identifying something
as mostly versus marginally causal at an initial stage of an investi-
gation has implications for focusing subsequent information col-
lection and decision making (e.g., Carlson & Russo, 2001; Jolley &
Douglas, 2017). Using the percentage breakdown informed us
about how causal participants perceive each worksite factor they
identified. The purpose of the experimental activity was to assess
individuals’ base-rate tendency to infer worker causality when
there is limited information; hence, participants were encouraged
to develop an initial theory of event cause rather than respond ‘‘I
don’t know.”

The researchers then allocated the percentages associated with
participants’ responses into three direct cause categories: (1) tire
man fault, (2) tire fault, and/or (3) other fault. Any responses that
described the root cause of tire man’s actions were coded as ‘‘tire
man cause.” Tire man causes were: overinflating the tire, not fol-
lowing procedures, not properly trained, lack of supervision, not
inflating the tire in a cage, lack of procedure, inadequate risk
assessment, not perceiving tire damage or, the most frequently sta-
ted and general cause provided by participants, substandard tire
man action. Tire causes were: wear and tear, lack of maintenance,
defect in tire, sidewall failure, or the generally category of defective
tire. Other causes were: location of bystander, substandard equip-
ment (e.g., pressure gauge, tire cage), environmental factors, or
location of the vehicle. Two, independent, raters obtained 82%
agreement in categorizing 20% of undergraduate and 40% of profes-
sional participants’ statements into cause categories. All inconsis-
tent categorizations were resolved through discussion and
referencing the categorization criteria.

2.2.5. Meta-cognitive reports
Participants used 9-point Likert scales to make their meta-

cognitive judgments. They rated the likelihood that their hypothe-
sis would be proven correct (1 = extremely unlikely to 9 = ex-
tremely likely) and the number that best reflected how objective
they believe they were in their evaluation of the evidence
(1 = not objective to 9 = extremely objective).

3. Results

3.1. Causal attributions

Given equal information about the tire and the tire man, all of
which was non-diagnostic, both undergraduates and professionals
allocated greater cause to the tire man compared to the tire (see
Fig. 1). For undergraduates, the estimated difference between the
average amount of cause allocated to the tire and the worker
was 44.2% (95% CI [29.37, 59.03]). For professionals, the estimated
difference between the average amount of cause allocated to the
tire and the worker was larger than the undergraduates, 63%
(95% CI [37.07, 88.93]). The magnitude difference in the human
error bias between undergraduates and professionals, however,
was not explored in this research activity. The lack of exploration
was due to our small professional sample size, yet, mean differ-
ences suggest a stronger effect in the professional sample. The
meta-analyses we present below have adequately robust sample
sizes to inform us of the between-group differences on the human
error bias.

3.2. Meta-cognitive reports of causal conclusions

Participants reported that it was likely that their hypothesis
would be proven correct and that they were somewhat objective
in their assessment of the incident information (See Table 2). Pro-
fessionals did not demonstrate greater confidence in their hypoth-
esis than the control undergraduates.

To explore the relationship between participants’ metacognitive
reports and their cause allocation a difference score was calculated.
This difference score calculated the percentage of cause allocated
to the tire subtracted from the percentage of cause allocated to
the worker. Undergraduates’ difference scores ranged from �90
to 100 (M = 44.2, SD = 52.17) and professionals difference scores
ranged from �60 to 100 (M = 63, SD = 46.82). There was no corre-
lation between participants difference scores and their (i) confi-
dence that their hypothesis would be proven correct,
undergraduates r(49) = 0.16, p =.26; professionals, r(15) = 0.26,
p =.34 or (ii) level of objectivity, undergraduates r(49) = 0.22,
p =.13; professionals, r(15) = 0.16, p =.56.

4. Discussion

Our experiment revealed a robust human error bias in both the
undergraduate and the professional-investigator samples. Partici-
pants provided with the basic details of a serious industrial inci-
dent, and no information that indicated cause for the event,
tended to a priori hypothesize that the worker was more causal
than other factors. This human error bias is fueled by the cognitive
tendencies discussed in the attribution literature. Investigators’
conclusions may also be supported by one or more of the cognitive
and/or motivational factors that reinforce causal conclusions of
human error in the workplace environment.

Our findings were consistent with the metacognitive literature
that has demonstrates that people have difficulty monitoring their
cognitive processes (e.g., Benjamin & Bjork, 1996; Ehrlinger,
Gilovich, & Ross, 2005). Participants rated themselves as fairly
objective and fairly confident that their hypothesis would be pro-
ven correct; their ratings were unrelated to their cause allocations.
Interestingly, we did not find a difference in the level of confidence
demonstrated by professional investigators and the undergradu-
ates. The importance of confidence in the investigation is that it
can be used as a cue to third-party observers to assess credibility
of a person’s information (Weinsheimer, Coburn, Chong,
MacLean, & Connolly, 2017). Our findings demonstrate that partic-
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ipants’ confidence was not calibrated to their cause allocation pat-
tern. The implications of this miscalibration between judgments
and confidence is that safety initiatives could proceed based more
on the persuasiveness and confidence of the investigator rather
than on the quality of their findings. In interpreting our findings,
one must be careful, as professionals differ from undergraduates
in a number of ways that make professionals not only susceptible
to biases due to wrong or misapplied base-rates, but also due to
organizational culture, loyalties, ideology, motivations, age
(although individuals who are middle-aged generally score lower
on the fundamental attribution error than younger adults; Follett
& Hess, 2002), and other factors that distinguish them from non-
professionals.

5. Effect size meta-analyses with previous research

The central aims of this paper were to explore if professional
investigators are more inclined to allocate cause to the worker, ver-
sus an equally salient situational factor, and whether such an effect
of professionals is comparable to that of lay population when given
equivalent investigative circumstances. We addressed these aims
by conducting two small random effects model, meta-analyses.
One meta-analysis was conducted for undergraduate participants
and the other meta-analysis for professional investigators. For each
of the meta-analyses we used the data from three experiments, the
current experiment, MacLean et al. (2013), and MacLean and Read
(2019). These three experiments were all conducted with both
undergraduate and professional populations; used the same tire
explosion event stimuli; and asked participants to allocate cause to

the factors that they perceived as directly responsible for the inci-
dent. In each one of the three experiments, both undergraduate
and professional participants experienced the same experimental
protocol. Collectively these three studies represent the reporting of
471 undergraduates and 118 professional industrial investigators,
which are adequate sample sizes to derive measures of effect size.

These three experiments, however, also differed in three ways.
We detail the experimental differences below for transparency and
for showing the contribution of the present study above. These differ-
ences do not preclude the three studies from being combined in our
two meta-analyses. First, in MacLean et al. (2013) and MacLean and
Read (2019), prior to learning about the industrial event, half of the
participants received information that the tire had a history of unsafe
behavior and the other half that the tire man had a history of unsafe
behavior. In the experiment presented above we did not provide par-
ticipants with such additional biasing contextual information prior to
reading about the event and allocating cause.

Second, in all three experiments, participants were provided with
a balanced amount of information about the causality of both the tire
and worker. However, in MacLean et al. (2013) and MacLean and
Read (2019) participants were given evidence that indicated that
both the tire and the tire man were equally causal for the event prior
to allocating cause. In the experiment presented above, participants
did not receive any information that indicated cause.

Third, all three studies educated participants about direct cause
and asked that they only allocate cause to factors immediately
causal for the event. However, in MacLean et al. (2013) and
MacLean and Read (2019) participants indicated the category that
the percentage of cause should be allocated to (tire man, tire or a
number of other factors categorized as "other"). In the present exper-
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Fig. 1. Cause allocation. Figure from ESCI Data paired showing means and 95% CIs of percentage of cause allocated to the tire and the tire man. Undergraduates: The mean
paired difference of 44.2 is shown with its 95% CI against a floating axis, whose zero is lined up with the tire mean. Undergraduate N = 50. Professionals: The mean paired
difference of 63 is shown with its 95% CI against a floating axis, whose zero is lined up with the tire mean. Professional N = 15.

Table 2
Metacognitive reporting.

N Likert Scale Mean SD

Likelihood that your hypothesis will be proven correct. 1 (extremely unlikely) to 9 (extremely likely)
Undergraduates 49 1 to 9 5.79 1.68
Professionals 15 1 to 9 5.80 2.88

Objectivity in your assessment of the evidence. 1 (not objective) to 9 (extremely objective)
Undergraduates 49 1 to 9 5.96 1.50
Professionals 15 1 to 9 5.93 1.94
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iment, participants provided percentages with open-ended responses
and researchers categorized those responses as ‘‘tire man cause,”
‘‘tire cause,” or ‘‘other cause.” As stated above, despite the differences
in experiment format, they are appropriate to be included in our two
meta-analyses. All experiments compared the amount of cause allo-
cated to the tireman and tire in participant samples, which were bal-
anced on the diagnosticity and amount of information that they
received about the tire and tire man.

The difference in cause allocated to the tire man and the tire
was calculated for both undergraduates and professional investiga-
tors by computing Cohen’s d effect size (see Cummings, 2012). For
a paired design Cummings recommends computing Cohen’s d by
dividing the mean difference by Sav (See Fig. 2 for Sav formula).
Once computed, the calculated Cohen’s d values were used in the
Single Group Meta-Analysis of d page in the ESCI software. We
reported the unbiased estimate of d, dunb , in our analysis, which
is calculated from Cohen’s d (See Fig. 2 for the d to dunb conversa-
tion formula, and Cummings (2012) for more information on dunb).
A positive dunb represent a greater amount of cause being allocated
to the worker compared to the tire.

Cohen’s d effects sizes are considered weak if below 0.20 and
strong above 0.80 (Rubin, 2013). The undergraduate data random
effects meta-analysis showed a cumulative dunb of 0.32 (CI
[�0.23, 0.86]), which reflects that undergraduates demonstrated
a relatively weak tendency to allocate cause to a worker (when
given information equal in its probative value, about the worker
and tire involved in the event). In contrast, the professional ran-
dom effects meta-analysis showed a cumulative dunb of 0.97 (CI
[0.31, 1.63]), demonstrating that professionals had a much stron-
ger bias to report that the worker is causal when given the same
information about the tire and worker (see Fig. 2 for the full
meta-analyses results).

The heterogeneity calculations for the undergraduate meta-
analysis revealed a significant (p <.001) I2 value of 96.7
(Q = 91.51, T = 0.54), illustrating considerable heterogeneity
between studies. The heterogeneity calculations for the profes-
sional meta-analysis also revealed heterogeneity with a significant
(p <.001) I2 value of 87.5 (Q = 15.39, T = 0.52). These sizeable
heterogeneity results support our use of the random effects model
as it is appropriate to assume that the variability demonstrated
between studies is larger than what could be reasonably accounted
for by sampling variability.

6. Overall discussion

The current paper aimed to empirically examine the biasing
effect of base-rates on professional judgments, and reveal the rel-
ative strength of the human error bias in the professional investi-
gation population. The cumulative results of the experimental
activity and meta-analyses showed that both undergraduates and
professionals are inclined to allocate cause to a worker, over other
factors, given the same workplace event, but professionals signifi-
cantly more so. This significantly higher effect in the professional
population illuminates the effect of biasing factors, such as experi-
ence and expectation in judgments of event cause.

A method suggested to manage the effect of neglected, misap-
plied or misunderstood base-rates in decision making is to find
the most up-to-date population rates for the event individuals
are judging and to use those rates as a comparison point
(Kahneman, 2011; Neal & Grisso, 2014). Decision makers are
encouraged to assess the strength and credibly of the evidence
they are evaluating by comparing it to the population base-rate.
Unfortunately for professional investigators, human error bias is
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Fig. 2. Two random effects meta-analyses for the strength of the human bias in investigator reporting, with separate meta-analyses according to expertise level (lay
undergraduate investigator vs professional investigator). The size of the study marker corresponds to the study weight. 95% confidence interval (CI) is represented by error
bars. Cohen’s d was computed for the paired designs by dividing the mean difference by Sav ¼
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xd The positive dunbs represent a greater percentage of cause being allocated to the worker than the tire. Two undergraduate samples were

included for MacLean and Read (2019) as the total sample size (N = 285) was larger than what ESCI could accommodate for one study.

C.L. MacLean and I.E. Dror Journal of Safety Research 84 (2023) 108–116

113



inherent to the population data investigators would use to estab-
lish the ‘‘objective” population base-rates. Investigator cognition
is the method by which the population data are generated. The
safety literature reports that 70%-80% of incidents are caused by
operator error (Leveson, 2004). Our results, which were produced
by using evidence that implicates a piece of machinery and the
worker equally, demonstrates how different investigator conclu-
sions may be from what would be an objective evaluation of the
evidence.

A potentially fruitful method of managing the effects of the bias
presented in this paper is to focus efforts on minimizing the human
error bias; which is the foundation of investigators’ base-rate
expectations. Because human cognitive tendencies make it quick
and efficient for people to conclude human error, investigators
must make an effortful second step to thoroughly consider the cir-
cumstantial factors that may have contributed to the incident
(Gilbert, Pelham, & Krull, 1988). This effortful second step is akin
to a strategy discussed in the debiasing literature which is to con-
sider alternatives. Considering alternatives has been moderately
successful at dislodging biased patterns of thought and expanding
professionals understanding the evidence (Anderson & Sechler,
1986; Chang, Berdini, Mandel, & Tetlock, 2018; Hirt & Markman,
1995; Lord, Lepper, & Preston, 1984).

Debiasing activities like considering alternatives require cogni-
tive investment from the decision maker. Hence, for these strate-
gies to work investigators must have the cognitive resources to
engage in a more effortful evaluation of the evidence, as well as
the motivation to do so. Professionals under time pressure or fati-
gued will be less likely to engage the second, more cognitively-
involved, step of considering the potential situational variables
affecting a worker’s behavior and will be at greater risk of over
attributing cause to a worker (see Danziger, Levav, & Avnaim-
Pessoa, 2011; Fraser-Mackenzie & Dror, 2011 for illustrations of
the effect of state on decision making).

Organizational culture also has a meaningful role in reducing
this human error bias. The effects of allegiance to protect the com-
pany will be reduced with professionals who work in an organiza-
tion that supports evidence-based decision making regardless of
outcome. Also, prioritizing accuracy versus efficiency in the inves-
tigation will lead to more comprehensive investigative judgments.
An emphasis on accuracy should offset the effect of quick and effi-
cient cognitive tendency to conclude human error and promote
deeper consideration of the evidence (see Ask, Granhag, &
Rebelius, 2011). Maintaining a balanced investigative practice,
however, is important. An emphasis on accuracy should be kept
in perspective and not propel investigators to over analyze. Inves-
tigators with a compulsion to be flawless would experience
increased stress and pressure.

Organizations that support comprehensive, data-driven investi-
gations will likely also support the use of standardized practices
and procedures. Standardization is a useful strategy as it reduces
the level of subjectivity in decision making. Reducing subjectivity
increases the reliability of the judgments and can support bias mit-
igation (Kahneman et al., 2021). Hence, it is beneficial to employ
protocols for information collection, triaging acquired evidence,
and employing a third-party independent investigator to have a
‘‘fresh look.” These organizations will also have a higher likelihood
of pursuing investigator training about cognitive bias.

Cognitively informed training, when done properly, is a valu-
able first step in mitigating bias as it educates individuals on
how sources can bias decision making and that bias occurs outside
of awareness, which then paves the way to accepting and adopting
steps to minimize bias. Our experimental data demonstrated the
lack of insight participants had regarding their behavior. Regard-
less of how they allocated cause, participants were consistently
confident in their decisions and believed their choices were based

on an objective assessment of the evidence. Investigators with
knowledge that bias is affecting and subversive will be motivated
to use strategies to mitigate its effects in their decision making.

The current research revealed interesting questions for future
study. For instance, research shows that individuals’ propensity to
demonstrate different biases varies (Gertner, Zaromb, Schneider, &
Matthews, 2016). Is it useful to obtain a finely-tuned understanding
of an individual investigator’s tendency to engage in the human error
bias? Perhaps this could be achieved via items imbedded in their
investigation tools. Once the magnitude of the bias is detected,
how might that information be integrated into the process and pro-
cedures of the investigation or future training?

Future research may also consider how an investigator’s organi-
zational culture affects their base-rate expectations of human
error. Person-centered theories of safety emphasis human traits
as a leading factor of event cause and this approach prevails in
many organizational settings. However, government and regula-
tory safety agencies are known to encourage a systems-centered
approach to investigation which teaches that events are caused
by multiple, interacting human and non-human factors (Holden,
2009). Agencies adopting a more systems-centered approach tend
to use information collection techniques that support broad can-
vassing of information. One such information collection model is
SHELL (Liveware, Software, Hardware, Environment; Edwards,
1972; Hawkins, 1993). SHELL encourages information collection
about the people involved (Liveware), procedures and resources
(Software), physical environment and workplace operations (Envi-
ronment), as well as physical structures and equipment (Hard-
ware). The professionals in our meta-analysis were largely from
industry. Future research should consider if the structure of
system-based investigations yields different levels of human error
bias at the initial stage of the investigation.

Future research may examine the generalizability of our find-
ings by conducting experiments that use a variety of industrial
incident scenarios and include those findings in the meta-
analyses shared in this research. We would also welcome research
that explores human error bias and investigative decision making
beyond the initial hypothesis stage of the industrial investigation.
This would expand the understanding of how numerous complex-
ities found in real-world investigations interact with base-line
biases (see Woodcock, Drury, Smiley, & Ma, 2005).

7. Conclusion

The current research provided evidence of the biasing effect of
professionals’ base-rate expectations on their judgments. People
have a general tendency to interpret an actor’s behavior more as
a function of the actor’s disposition than the evidence would sup-
port. The current research shows that professionals are not
immune from this bias –in fact, this human error tendency is actu-
ally amplified with professional investigators.

7.1. Practical Applications

The origins of professionals’ stronger bias to see the worker as
causal compared to the lay population may be multifaceted, but
the implication is singular. Allocating a disproportionate amount
of cause to a worker involved in an event undermines the safety
of work environments as the role of causal factors, other than the
worker, may be underreported and thus not given sufficient atten-
tion. Investigator cognitive training, a strong investigation culture,
and standardized techniques are directions to mitigating human
error bias in industrial investigation. Reducing the effect of human
error bias will support more complete and accurate understanding
of the factors that threaten worker safety and wellbeing.

C.L. MacLean and I.E. Dror Journal of Safety Research 84 (2023) 108–116

114



Conflict of Interest

None.

Acknowledgements

We would like to thank the workplace investigators who volun-
teered their time to participate in this research and the British
Columbia Forest Safety Council for their support of this work.

Appendix A

References

Anderson, C. A., & Sechler, E. S. (1986). Effects of explanation and
counterexplanation on the development and use of social theories. Journal of
Personality and Social Psychology, 50, 24–34. https://doi.org/10.1037/0022-
3514.50.1.24.

Ask, K., Granhag, P. A., & Rebelius, A. (2011). Investigators under influence: How
social norms activate goal-directed processing of criminal evidence. Applied
Cognitive Psychology, 25(4), 548–553. https://doi.org/10.1002/acp.1724.

Benjamin, A. S., & Bjork, R. A. (1996). Retrieval fluency as a metacognitive index. In L.
M. Reder (Ed.), Implicit memory and metacognition: The 27th Carnegie Symposium
on Cognition (pp. 309–338). Hillsdale, NJ: Erlbaum.

Carlson, K. A., & Russo, J. E. (2001). Biased interpretation of evidence by mock jurors.
Journal of Experimental Psychology: Applied, 7(2), 91–103. https://doi.org/
10.1037/1076-898X.7.2.91.

Chang, W., Berdini, E., Mandel, D. R., & Tetlock, P. E. (2018). Restructuring structured
analytic techniques in intelligence. Intelligence and National Security, 33(3),
337–356. https://doi.org/10.1080/02684527.2017.1400230.

Cumming, G. (2012). Understanding the new statistics: Effect sizes, confidence
intervals, and meta-analysis. Taylor & Francis Group: Routledge.

Danziger, S., Levav, J., & Avnaim-Pessoa, L. (2011). Extraneous factors in judicial
decisions. PNAS Proceedings of the National Academy of Sciences of the United
States of America, 108(17), 6889–6892.

DeJoy, D. M. (1987). Supervisor attributions and responses for multi-causal
workplace accidents. Journal of Occupational Accidents, 9, 213–223. https://doi.
org/10.1016/0376-6349(87)90013-7.

Dror, I. E. (2020). Cognitive and human factors in expert decision making: Six
fallacies and the eight sources of bias. Analytical Chemistry, 92(12), 7998–8004.
https://doi.org/10.1021/acs.analchem.0c00704.

Dunlosky, J., & Tauber, S. K. (2014). Understanding people’s metacognitive
judgments: An isomechanism framework and its implications for applied and
theoretical research. In J. Perfect & D. S. Lindsay (Eds.), The Sage Handbook of
Applied Memory (pp. 444–464). Thousand Oaks, CA: Sage.

Edwards, E. (1972). Man and machine: Systems for safety. In Proceedings of British
Airline Pilots Associations Technical Symposium (pp. 21–36). London: British
Airline Pilots Associations.

C.L. MacLean and I.E. Dror Journal of Safety Research 84 (2023) 108–116

115

https://doi.org/10.1037/0022-3514.50.1.24
https://doi.org/10.1037/0022-3514.50.1.24
https://doi.org/10.1002/acp.1724
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0015
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0015
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0015
https://doi.org/10.1037/1076-898X.7.2.91
https://doi.org/10.1037/1076-898X.7.2.91
https://doi.org/10.1080/02684527.2017.1400230
http://refhub.elsevier.com/S0022-4375(22)00165-7/h9000
http://refhub.elsevier.com/S0022-4375(22)00165-7/h9000
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0030
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0030
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0030
https://doi.org/10.1016/0376-6349(87)90013-7
https://doi.org/10.1016/0376-6349(87)90013-7
https://doi.org/10.1021/acs.analchem.0c00704
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0045
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0045
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0045
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0045
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0050
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0050
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0050


Ehrlinger, J., Gilovich, T., & Ross, L. (2005). Peering into the bias blind spot: People’s
assessments of bias in themselves and others. Personality and Social Psychology
Bulletin, 31(5), 680–692.

Follett, K. J., & Hess, T. M. (2002). Aging, cognitive complexity, and the fundamental
attribution error. The Journals of Gerontology. Series B, Psychological Sciences and
Social Sciences, 57(4), P312–P323. https://doi.org/10.1093/geronb/57.4.P312.

Fraser-Mackenzie, P. A. F., & Dror, I. E. (2011). Dynamic reasoning and time
pressure: Transition from analytical operations to experiential responses.
Theory and Decision, 71(2), 211–225. https://doi.org/10.1007/s11238-009-
9181-z.

Gawronski, B. (2004). Theory-based bias correction in dispositional inference: The
fundamental attribution error is dead, long live the correspondence bias.
European Review of Social Psychology, 15, 183–217. https://doi.org/10.1080/
10463280440000026.

Gertner, A., Zaromb, F., Schneider, R. & Matthews, G. (2016). The assessment of
biases in cognition: Development and evaluation of an assessment instrument
for the measurement of cognitive bias (Publication No. 2015-14120200002-
002). MITRE Corporation. https://www.mitre.org/publications/technical-
papers/the-assessment-of-biases-in-cognition.

Gilbert, D. T., & Malone, P. S. (1995). The correspondence bias. Psychological Bulletin,
117, 21–38. https://doi.org/10.1037/0033-2909.117.1.21.

Gilbert, D. T., Pelham, B. W., & Krull, D. S. (1988). On cognitive busyness: When
person perceivers meet persons perceived. Journal Of Personality And Social
Psychology, 54(5), 733–740. https://doi.org/10.1037/0022-3514.54.5.733.

Hancock, P. A. (2020). Science in court. Theoretical Issues in Ergonomics Science, 21,
266–284. https://doi.org/10.1080/1463922X.2019.1640312.

Hawkins, F. H. (1993). Human factors in flight, second edition. Ashgate Publishing
Company: Aldershot, UK. IATA, 2006. Safety Report.

Hirt, E., & Markman, K. (1995). Multiple Explanation: A Consider- an-Alternative
Strategy for Debiasing Judgments. Journal of Personality and Social Psychology,
69, 1069–1086. https://doi.org/10.1037/0022-3514.69.6.1069.

Holden, R. J. (2009). People or systems? to blame is human. the fix is to engineer.
Professional Safety, 54(12), 34–41.

Hofmann, D. A., & Stetzer, A. (1998). The role of safety climate and communication
in accident interpretation: Implications for learning from negative events.
Academy of Management Journal, 41(6), 644–657. https://doi.org/10.2307/
256962.

Hollnagel, E. (2012). FRAM : The functional resonance analysis method : Modelling
complex socio-technical systems. Surrey, Great Britian: Ashgate Publishing Ltd.

Hopkins, A., 2000. Lessons from Longford. ISBN 1 86468 422 4, CCH Australia Limited,
Australia.

Jolley, D., & Douglas, K. M. (2017). Prevention is better than cure: Addressing anti-
vaccine conspiracy theories. Journal of Applied Social Psychology, 47(8), 459–469.
https://doi.org/10.1111/jasp.12453.

Kahneman, D. (2011). Thinking, fast and slow. Toronto, Canada: Random House.
Kahneman, D., Sibony, O., & Sunstein, C. R. (2021). Noise: A flaw in human judgment.

Little Brown Spark.
LaCroix, D. V., & DeJoy, D. M. (1989). Causal attributions to effort and supervisory

response to workplace accidents. Journal of Occupational Accidents, 11, 97–109.
https://doi.org/10.1016/0376-6349(89)90012-6.

Leveson, N. (2004). A new accident model for engineering safer systems. Safety
Science, 42, 237–270. doi: 10.1.1.141.697.

Lord, C., Lepper, M., & Preston, E. (1984). Considering the opposite: A corrective
strategy for social judgment. Journal of Personality and Social Psychology, 47,
1231–1243. https://doi.org/10.1037/0022-3514.47.6.1231.

MacLean, C. L., Brimacombe, C. A. E., & Lindsay, D. S. (2013). The role of A Priori
knowledge and tunnel vision education. Law and Human Behavior, 37, 441–453.
https://doi.org/10.1037/lhb0000056.

MacLean, C. L. & Dror, I. E. (2016). A primer on the psychology of cognitive bias. In A.
Kesselheim and C. T. Robertson (Eds.), Blinding as a solution to bias in biomedial
science and the courts: A multidisciplinary approach.

MacLean, C. L., Smith, L., & Dror, I. E. (2020). Experts on trial: Unearthing bias in
scientific evidence. University of British Columbia Law Review, 53(1), 101–140.

MacLean, C. L., & Read, J. D. (2019). An illusion of objectivity in workplace
investigation: The cause analysis chart and consistency, accuracy, and bias in

judgments. Journal of Safety Research, 68, 139–148. https://doi.org/10.1016/j.
jsr.2018.12.008.

Meissner, C. A., & Kassin, S. M. (2002). ‘‘He’s guilty!”: Investigator bias in judgments
of truth and deception. Law and Human Behavior, 26(5), 469–480. https://doi.
org/10.1023/A:1020278620751.

Murrie, D. C., Boccaccini, M. T., Guarnera, L. A., & Rufino, K. A. (2013). Are forensic
experts biased by the side that retained them?. Psychological Science, 24(10),
1889–1897. https://doi.org/10.1177/0956797613481812.

Neal, T. M. S., & Grisso, T. (2014). The cognitive underpinnings of bias in forensic
mental health evaluations. Psychology, Public Policy, and Law, 20(2), 200–211.
https://doi.org/10.1037/a0035824.

Nickerson, R. S. (1998). Confirmation bias: A ubiquitous phenomenon in many
guises. Review of General Psychology, 2, 175–220. https://doi.org/10.1037/1089-
2680.2.2.175.

Nisbett, R. E., & Ross, L. D. (1980). Human inference: Strategies and shortcomings of
social judgment. Englewood Cliffs, NJ: Prentice-Hall.

Rubin, A. (2013). Statistics for evidence-based practice and evaluation (third ed.).
Belmont, CA: Cengage Learning.

Sklet, S. (2002). Methods for accident investigation. Norwegian University of Science
and Technology, 1–75.

Steensma, H., den Hartigh, E., & Lucardie, E. (1994). Social categories, just world
belief, locus of control, and causal attributions of occupational accidents. Social
Justice Research, 7, 281–299. https://doi.org/10.1007/BF02334835.

Tversky, A., & Kahneman, D. (1974). Judgment under uncertainty: Heuristics and
biases. Science, 185(4157), 1124–1131.

Vincoli, J. W. (1994). Basic guide to accident investigation and loss control. New York:
John Wiley and Sons.

Weinsheimer, C. C., Coburn, P. I., Chong, K., MacLean, C. L., & Connolly, D. A. (2017).
Perceptions of credibility for a memory report of a single versus repeated event.
Applied Cognitive Psychology, 31(4), 414–423. https://doi.org/10.1002/acp.3340.

Wickens, C. D., Rice, S., Keller, D., Hutchins, S., Hughes, J., & Clayton, K. (2009). False
alerts in air traffic control conflict alerting system: Is there a ‘‘Cry Wolf” Effect?.
Human Factors, 51(4), 446–462. https://doi.org/10.1177/0018720809344720.

Wilson, T. D., Centerbar, D. B., & Brekke, N. (2002). Mental contamination and the
debiasing problem. In T. Gilovich, D. Griffin, & D. Kahneman (Eds.), Heurisitics
and Biases: The Psychology of Intuitive Judgment. Cambridge, UK: Cambridge
University Press.

Woodcock, K. (1995). Bias in real-world accident cause-finding. In A. C. Bittner & P.
Champney (Eds.), Advances in industrial ergonomics and safety (pp. 907–914).
London, UK: Taylor & Francis.

Woodcock, K., Drury, C. G., Smiley, A., & Ma, J. (2005). Using simulated
investigations for accident investigation studies. Applied Ergonomics, 36(1),
1–12. https://doi.org/10.1016/j.apergo.2004.10.002.

Dr. Carla L. MacLean is a faculty member in Psychology at Kwantlen Polytechnic
University. Her background and publications consider the factors that affect
memory, as well as, judgement and decision making in worlds outside of the lab
(e.g., industrial incident investigation, forensic investigation, legal decision making,
workplace investigation). Her research has been funded by the Social Sciences and
Humanities Research Council of Canada, as well as, a number of other funding
agencies. Dr. Carla MacLean regularly speaks at both practitioner and academic
conferences.

Dr. Itiel Dror’s academic work relates to theoretical issues underlying human
performance and cognition. His research examines the information processing
involved in perception, judgment and decision-making. Dr. Itiel Dror has published
dozens of peer-reviewed scientific articles and serves as Associate Editor and on the
Editorial Boards of several scientific journals. His specialty is in taking the most
theoretical scientific understanding of the human mind, brain and cognition, and
translating it into practical and tangible ways to improve human performance in
real world domains. This applied research has primarily focused on enhanced
cognition through training, decision-making, and use of technology.

C.L. MacLean and I.E. Dror Journal of Safety Research 84 (2023) 108–116

116

http://refhub.elsevier.com/S0022-4375(22)00165-7/h0055
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0055
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0055
https://doi.org/10.1093/geronb/57.4.P312
https://doi.org/10.1007/s11238-009-9181-z
https://doi.org/10.1007/s11238-009-9181-z
https://doi.org/10.1080/10463280440000026
https://doi.org/10.1080/10463280440000026
https://www.mitre.org/publications/technical-papers/the-assessment-of-biases-in-cognition
https://www.mitre.org/publications/technical-papers/the-assessment-of-biases-in-cognition
https://doi.org/10.1037/0033-2909.117.1.21
https://doi.org/10.1037/0022-3514.54.5.733
https://doi.org/10.1080/1463922X.2019.1640312
https://doi.org/10.1037/0022-3514.69.6.1069
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0105
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0105
https://doi.org/10.2307/256962
https://doi.org/10.2307/256962
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0115
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0115
https://doi.org/10.1111/jasp.12453
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0130
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0135
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0135
https://doi.org/10.1016/0376-6349(89)90012-6
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0145
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0145
https://doi.org/10.1037/0022-3514.47.6.1231
https://doi.org/10.1037/lhb0000056
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0165
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0165
https://doi.org/10.1016/j.jsr.2018.12.008
https://doi.org/10.1016/j.jsr.2018.12.008
https://doi.org/10.1023/A:1020278620751
https://doi.org/10.1023/A:1020278620751
https://doi.org/10.1177/0956797613481812
https://doi.org/10.1037/a0035824
https://doi.org/10.1037/1089-2680.2.2.175
https://doi.org/10.1037/1089-2680.2.2.175
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0195
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0195
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0200
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0200
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0205
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0205
https://doi.org/10.1007/BF02334835
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0215
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0215
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0220
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0220
https://doi.org/10.1002/acp.3340
https://doi.org/10.1177/0018720809344720
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0235
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0235
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0235
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0235
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0240
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0240
http://refhub.elsevier.com/S0022-4375(22)00165-7/h0240
https://doi.org/10.1016/j.apergo.2004.10.002


Mobile phone penalties and road crashes: Are changes in sanctions
effective?

Jane M. Fry ⇑
Demography and Ageing Unit, University of Melbourne, Melbourne, Australia

a r t i c l e i n f o

Article history:
Received 6 July 2022
Received in revised form 17 August 2022
Accepted 1 December 2022
Available online 12 December 2022

Keywords:
Road crash severity
Fines
Policy intervention
Mobile phone
Britain

a b s t r a c t

Introduction: Road crashes are a major, preventable cause of death and serious injury. Being distracted by
a mobile phone while driving can increase the risk of a crash by three to four times and increase crash
severity. To reduce distracted driving, on 1 March 2017 the penalty for using a hand-held mobile phone
while driving in Britain doubled to ₤200 and six penalty points. Method: We examine the effects of this
increased penalty on numbers of serious or fatal crashes over 6 weeks either side of the intervention
using Regression Discontinuity in Time. Results: We find no effect of the intervention, suggesting the
increased penalty is not effective in reducing the more serious road crashes. Conclusions: We rule out
an information problem and an enforcement effect, concluding the increase in fines was insufficient to
change behaviour. With very low detection rates of mobile phone use, our result could occur if the per-
ceived certainty of punishment remained very low after the intervention. Practical application: Future
technology will increase the ability to detect mobile phone usage, and there may be fewer road crashes
if the solution is to raise awareness of such technology and publicise numbers of offenders caught.
Alternatively, a mobile phone blocking application could avert the problem.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction and background

As road crashes are a major, preventable cause of death and
serious injury, governments must address this public health prob-
lem through evidence-based interventions. One such intervention
is the laws and penalties to induce safe driving, as compared to
individual level safety programs (Tran, Hyder, Kulanthayan,
Singh, & Umar, 2009). Some motor-vehicle offenses can lead to sig-
nificant costs when individuals are injured or die. Driver behavior
affecting traffic violations is more important than other factors in
explaining numbers of crashes and their severity (Cardamone,
Eboli, Forciniti, & Mazzulla, 2017). It is for these reasons that the
link between penalties and road crashes stemming from driver
behavior should be explored.

While there is much literature in prominent journals linking
specific penalties to driver behavior through reductions in
expected utility that lessen the desire to offend (Bates, Soole, &
Watson, 2012; Gehrsitz, 2017; Traxler, Westermaier, &
Wohlschlegel, 2018) or similarly linking general driving bans to
crashes (Anderson & Rees, 2015; De Paola, Scoppa, & Falcone,

2013; DeAngelo & Hansen, 2014; Luca, 2015), there remains con-
siderable uncertainty about the best size and structure of incen-
tives needed to further reduce serious crashes and fatalities (see,
for example, Bourgeon & Picard, 2007; De Paola et al., 2013;
Hansen, 2015; Kantorowicz-Reznichenko, 2015; Montag, 2014).
Moreover, there does not generally seem to be a focus on evaluat-
ing the effect of specific changes in penalties on crash outcomes
(exceptions include Chang, Chang, & Fan, 2020; Cooper, Gehrsitz,
& McIntyre, 2018). This is important as there may be risk-
compensating behavior (whereby individuals drive in a more risky
manner in terms of non-targeted other behaviors) or a lack of
change in perceived risks associated with the targeted behavior
that affect this behavior but leave crash risk unchanged (Dionne,
Fluet, & Desjardins, 2007; Winston, Maheshri, & Mannering, 2006).

Deterrence theory postulates that to deter individuals from vio-
lating the law, punishments should be evaluated in terms of cer-
tainty, celerity (swiftness), and severity (Becker, 1968;
Tomlinson, 2016). In a reconceptualization of the theory, Stafford
and Warr (1993) incorporate punishment avoidance whereby
offending may increase if offenders go unpunished as individuals
perceive the probability of being caught is low (whether because
their own offending or that of others in general has gone unpun-
ished). This is important, as it may explain why increasing severity
alone does not always work.
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Experiments have shown that talking on a mobile phone
reduces reaction time for drivers (Farmer, Braitman, & Lund,
2010).1 Distractions take multiple forms, such as cognitive (conver-
sation to task related), visual (looking at the phone), auditory (listen-
ing to the phone), and manual (holding the phone or dialing/texting;
McEvoy, Stevenson, & Woodward, 2007). Being distracted by a
mobile phone while driving can have serious consequences for
health, increasing the risk of a crash by three to four times (Elvik,
2011; McEvoy et al., 2007; World Health Organization, 2018),
although most of the effect seems to work through use of hand-
held mobile phones (Backer-Grøndahl & Sagberg, 2011). Indeed,
experiments have shown that talking on a mobile phone reduces
reaction time for drivers (Farmer et al., 2010). A link has also been
established between smartphone use and crashes in California with
effects of about 2.9 % (Hersh, Lang, & Lang, 2022).

Based on survey data, U.S. drivers claimed to spend 6.7 % of
driving time talking on mobile phones, although actual rates may
be much higher (Farmer et al., 2010). In that study it was estimated
that some 19 % of fatal crashes could have been avoided if there
were no drivers talking on mobile phones. In a meta-analysis,
Elvik (2011) found crash risk to be about three times higher when
mobiles were used by drivers and McEvoy et al. (2007) and
Redelmeier and Tibshirani (1997) found a fourfold increase in
crash risk. Klauer et al. (2014) found a more than twofold increase
in crash risk among experienced drivers dialing a mobile phone,
but an eightfold increase among novice drivers. Using a mobile
phone while driving has also been found to increase crash severity
(Donmez & Liu, 2015).

One way of potentially reducing these crash numbers is to con-
trol driver behavior, but introducing laws governing mobile phone
use does not guarantee compliance (see, for example, Abouk &
Adams, 2013). Individuals may use a mobile phone for conve-
nience. A system of penalties for drivers caught using mobile
phones is therefore required to induce would-be offenders to obey
the laws and to penalize violations. This can be achieved to a
greater or lesser extent by changing incentives through introduc-
ing harsher penalties for errant driving behaviors.

Evidence on the effectiveness of mobile phone bans is limited to
studies of the United States and is mixed. Abouk and Adams (2013)
found reductions in fatal crashes involving single car/solo driver,
but only immediately following text messaging ban imposition in
the United States. Burger, Kaffine, and Yu (2014) found no effect
of a ban on hand-held mobile phone use in California. Ferdinand
et al. (2014) found fatal crashes were reduced in response to pri-
marily enforced but not secondarily enforced laws. Rocco and
Sampaio (2016) found reductions in fatalities in response to both
cell phone and texting bans in the United States. Therefore more
evidence is required to determine if penalties are effective in
Britain.

On 1 December 2003, a law was introduced prohibiting the use
of hand-held mobile phones while driving in Britain (UK
Department for Transport, 2018). Initially the penalty was a ₤30
fine. Subsequently there was an increase to ₤60 and three penalty
points introduced in 2007 and the fine increased to ₤100 in 2013
(UK Department for Transport, 2016a). However, it has been noted
that the fine increase alone was not sufficient to significantly affect
numbers of drivers using mobile phones and that only the intro-
duction of penalty points in 2007 saw a significant decline in
offenses (UK Department for Transport, 2016a). The efficacy of
these mobile penalties remains in doubt, as in 2016 there were still
11,961 offenders found guilty of using a hand-held mobile phone
while driving (UK Ministry of Justice, 2018).

Rather than focus on numbers of offenses committed, in this
paper the effects of a doubling of penalties were evaluated (both
fines – from ₤100 to ₤200 – and penalty points – from 3 to 6) on
1 March 2017 using data on numbers of serious or fatal crashes
reported to police in Britain. Raising these penalties was designed
to reduce distracted driving, which has a worse effect on driving
than being over the drink-drive limit (UK Department for
Transport, 2016a). In addition to these penalty increases, drivers
caught twice or accruing 12 penalty points faced going to court,
disqualification, and fines of up to ₤1000. Newly qualified drivers
(within two years of gaining a license) could also have their license
revoked and truck or bus drivers could be suspended. The doubling
of penalties were originally designed to reflect the seriousness of
the offense, to treat all drivers equally, and to increase the deter-
rent effect (UK Department for Transport, 2016a). Fines have a
direct link with foregone income, whereas penalty points have an
indirect link via license suspension if enough points are accrued.
License suspension may increase the cost of transport and in some
cases lead to job loss. These are the channels through which
changes in penalties should have been effective.

The intervention was well publicized, with some 699 related
newspaper articles published between 18 January and 12 April
2017 (Fig. A1). Internet searches related to the increased penalty
for mobile phone use also peaked at the time of the intervention
but there was sustained activity both before and after the interven-
tion (Fig. A2).

In this paper, it was hypothesized that there will be less use of
mobile phones in response to higher penalties, reducing driver dis-
traction and leading to fewer serious or fatal crashes. The focus on
these types of crashes is important as in 2017 the cost per fatal
crash was ₤2.1 m and the cost per serious crash was ₤244,000
(UK Department for Transport, 2018). To the authors’ knowledge
this is the first attempt to examine the effects of this road safety
intervention on number of serious or fatal crashes. In this respect,
this research question is unique as health outcomes are focused on
rather than general ‘road safety’ as an outcome of policy. Moreover,
‘there remains a dearth of evidence on the effectiveness of inter-
ventions to reduce distracted driving’ (World Health
Organization, 2018, p. 45) and with this analysis of the mobile
phone intervention this study seeks to partially fill this gap.

After accounting for longer term trends and seasonal/day of the
week effects, Regression Discontinuity in Time (RDiT) analysis was
used to see what happened in Britain before and after the interven-
tion and Difference-in-Difference (DiD) analysis was used to com-
pare crashes on different road types that may have been
differentially affected to identify ‘treatment’ effects. This investiga-
tion sheds light on the link between penalties and road crashes,
which, to date, has been missing from the literature. The results
provide critical evidence on the ultimate effectiveness of changes
in sanctions designed to improve road safety.

2. Data and summary statistics

British Stats19 data were used on all road crashes involving a
serious injury or fatality that are reported to police (UK
Department for Transport, 2019). Stats19 is a comprehensive
source of data on the number and characteristics of such road
crashes. Crash severity is determined by the most serious casualty
in the crash and is classified as fatal (death within 30 days), serious
(injuries typically requiring hospitalization), and slight (most other
injuries). In this analysis the focus is on serious or fatal crashes as
they account for over three-quarters of the total costs of injury
crashes (UK Department for Transport, 2018) and represent a
non-random subset of total crashes (Fry & Farrell, 2022). Moreover,
because police-reported crashes are used there will be less under-

1 Conversely, Papadimitriou, Argyropoulou, Tselentis, and Yannis (2019) find
mobile phone use is negatively correlated with speed, indicating there is compen-
satory behavior at play.
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reporting of serious or fatal crashes (UK Department for Transport,
2016b).

Crash numbers are aggregated by day and Local Authority area
for six weeks either side of the penalty introduction on 1 Mar 2017,
from 18 Jan 2017 to 12 Apr 2017. A six week window was adopted
as there is some evidence new habits are formed over that period
(Gardner & Lally, 2018; Lally, van Jaarsveld, Potts, & Wardle, 2010)
and this allows for the exclusion of any effects of a speeding fine
intervention introduced on 24 April in England and Wales. That
intervention involved permanently increasing the most serious
category of speeding fines from 100 % to 150 % of weekly income.

Any unusual climatic events surrounding the intervention are
controlled using UK Met Office Integrated Data Archive System
(MIDAS) data on local temperatures and precipitation (UK Met
Office, 2018). There is a small but not significant increase in mean
numbers of serious or fatal crashes after the intervention (Table 1).
However, as there may be other influences on these numbers, an
econometric model is used to estimate the true effect of the
intervention.

3. Models

To identify the treatment effect of the intervention (which
involved a doubling of fines and penalty points for using a mobile
phone while driving in England, Wales or Scotland) a two-step
Regression Discontinuity in Time (RDiT) procedure was adopted
similar to that used by Castriota and Tonin (2019), De Paola et al.
(2013) and Hausman and Rapson (2018). RDiT is a variant of
Regression Discontinuity Design – a technique that has been used
since the 1960 s (Imbens & Wooldridge, 2009) – in which time is
the running variable and treatment begins at a particular known
point in time, introducing a discontinuity in the series of interest
(Hausman & Rapson, 2018).2 When examining the effects of the
intervention, it was assumed that drivers involved in serious or fatal
crashes are treated (subject to the higher penalty regime) if the crash
occurs on or after 1 March 2017 and untreated if the crash occurs
earlier.

In the first step a fixed effects model is estimated for crashes in
which someone is killed or seriously injured (KSI) including con-
trols for trends, seasonality, weekdays, public holidays, and
weather conditions over a 10-year period to get precise estimates
of these effects. It is important to control for these factors in the
first step in order to minimize the potential for these factors to
result in spurious inferences regarding the treatment effect in the
second step. By including this rich set of controls, the first step
model is tightly identified (with narrower effects) by variations
in crashes by day within small geographic areas. This should allow
the authors to estimate the treatment effect among otherwise sim-
ilar LA-days.

ksiit ¼ b0
1Sit þ b0

2PHt þ b0
3Wit þ ai þ eit ði ¼ 1; � � � ; 380; t

¼ �3035; � � � ; 616Þ ð1Þ
where ksiit is the daily number of crashes in which someone is

killed or seriously injured in each LA, Sit is a vector of seasonal,
weekday and trend variables, PHt is a vector of public holiday dum-
mies (New Year’s day, Good Friday, Easter Monday, May bank hol-
iday, Spring bank holiday, August bank holiday, Christmas day,
Boxing day, 2011 Royal Wedding and 2012 Diamond Jubilee), Wit

is a vector of controls for daily minimum, maximum temperature
and precipitation, ai is an LA fixed effect and eit is a normal error
term.

In step two, the residuals from step one were used (adjusted

numbers of crashes, ksiit
�

) and estimate a RDiT model using pooled
OLS.

ksiit
�

¼ c0 þ c1Postt þ uit ði ¼ 1; � � � ; 380; t ¼ �T; � � � ; TÞ ð2Þ
Postt is a dummy variable identifying days post intervention

and c1 identifies the treatment effect averaged over the bandwidth
T, where T is set at 7, 28 and 42 days to explore how the effect may
change over time. The use of 42 days is to control for potential new
habit formation as drivers cease to use mobile phones while
driving.

This two-step RDiT approach – termed the augmented local lin-
ear approach by Hausman and Rapson (2018) – improves on the
usual one-step approach (in which trend, seasonal, holiday,
weather and treatment effects would be estimated from a single
model), as the former accounts for longer term trend, seasonal/
holiday and weather effects over 10 years rather than short
term effects estimated over a much shorter period under the
one-step approach. This allows for more precise estimates of these
controls.

Causal effects of the treatment on the outcome can be estimated
by assuming observations close to each other but either side of the
treatment ‘threshold’ are otherwise the same. By taking a relatively
short window either side of the threshold and controlling for other
factors (public holidays, weather and Local Authority fixed effects)
in the first step of this procedure, there is very little scope for other
factors to have changed and affected the results, so the estimate
identifies the causal effect, assuming the treatment is independent
of confounding factors. The result is interpreted as the average
treatment effect. Robust standard errors are estimated as there is
only one level in the treatment (all LAs under consideration are
subject to the treatment) and this precludes clustering the stan-
dard errors.

4. Results

Crash numbers vary around trend, seasonal, day of week, and
public holiday effects associated with traffic volumes, vehicle,
and environmental safety features and some aspects of driver
behavior (resulting from say fatigue or time pressure on different
types of days). Numbers also vary with weather conditions such
as temperature and rainfall (affecting driving speeds and stopping
distances and general road conditions). These factors are likely to
be long term phenomena, so their effects over a 10 year period
are estimated. For illustrative purposes, Fig. 1 shows serious or
fatal crash numbers for Britain, with predicted numbers of crashes
(conditional on long term (national) trend, monthly seasonal and
public holiday effects).3 Based on this picture, numbers of serious
or fatal crashes are expected to increase significantly immediately
after the policy intervention due to seasonality/public holidays. It
is therefore essential that these effects (together with day of the
week effects) be removed from the data in order to identify the
effects of the penalty increase. Numbers of more serious crashes
can also vary with weather conditions, so this study wants to ensure
any estimated effects of the intervention are not confounded by par-
ticularly good or bad weather conditions immediately after the
intervention.

Focusing on the period six weeks either side of the intervention,
Fig. 2 shows predicted numbers of crashes across Britain based on
trend, seasonal, weekday, and public holiday effects, as well as
actual number of crashes. From the chart there does not appear
to be an appreciable drop in actual number of serious or fatal2 The two step RDiT procedure is similar to the Interrupted Time Series (ITS)

approach, although ITS uses one step. Both procedures rely on the assumption of
smoothness of all confounders across the threshold. 3 For simplicity, weekday effects are not shown.
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Table 1
Summary statistics on daily serious or fatal crashes at Local Authority level.

Time Obs Mean Std. Dev. Min Max

18 Jan 2017–28 Feb 2017 15,960 0.1623 0.4276 0 5
1 Mar 2017–12 Apr 2017 16,340 0.1679 0.4318 0 4

Fig. 1. Serious or fatal crashes and predictions over 10 years, Britain. Predictions are based on a regression model incorporating a national trend, seasonal and public holiday
dummies over the period 1/1/2009 to 31/12/2018. The date of the intervention is indicated by the red line. For presentational simplicity, day of week effects are not included.

Fig. 2. Serious or fatal crashes and predictions for the main observation window, Britain. Predictions are based on a regression model incorporating a national trend, seasonal,
weekday and public holiday dummies over the period 1/1/2009 to 31/12/2018. The chart focuses on 42 days either side of the intervention.
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crashes after the intervention, so attention is now turned to the
results from the statistical analysis.

The RDiT results in Table 2 show the effects of the mobile phone
reform on serious or fatal crashes in Britain (coefficient Post) are
statistically insignificant and very small over 7, 28, and 42 days
post intervention, with longer periods allowing for habit formation
over time (Gardner & Lally, 2018; Lally et al., 2010). Results for step
one are available on request.4

Fig. 3 shows the adjusted numbers of serious or fatal crashes in
Britain, with predictions from the RDiT and indicates the effect of
the intervention is not statistically significant.

Effects of the intervention may change over time as individuals
adapt their driving behavior and crashes respond. Thus far a single
average treatment effect has been investigated. To investigate
whether there is an adjustment to the intervention, step two of
the RDiT is re-run over the 42-day window and the effect of the
intervention to vary by each of the 6 weeks post intervention is
allowed (Post week 1 – 6, Table 3). By comparing the effects over
time, the authors can gauge what type of behavioral change, if
any, has occurred. The intervention may have several effects on
driver behavior and therefore crashes. After the intervention, when
penalties increase, there might be a one-off change in behavior for
every-one that permanently lowers crashes but leaves them on the
same trend. Alternatively, there might be an increasing adjustment
to the new levels of fines as information about the policy change
spreads throughout the population and behavior adjusts perma-
nently. Yet again, there might only be a temporary change in
behavior, whereby crashes decline immediately following the pol-
icy change but then revert to pre-intervention levels, or there may
be no change in behavior. These results show no significant effect
on serious or fatal crashes for any of the six weeks post-
intervention.

With daily serious or fatal crashes by local authority being rel-
atively rare (ranging from 0 to 5), there may be a concern that
there is zero effect because at the daily level the crash count is zero
and the RDiT model is predominantly estimated across a range of
zeros. To address this concern, the authors re-estimate Eqs. (1)
and (2) aggregating over space (daily crashes from local authority
level to GOR and country level) and time (daily to weekly crashes
at local authority level). Table 4 shows results from the step 2
model.

The intervention may have different effects on motorways ver-
sus more minor roads if individuals have different expectations
about the probability of detection and therefore conviction on such
roads. If individuals perceive there is less chance of being caught

on minor roads (as there may be less police activity and poorer
lighting conditions), there may be a smaller effect on serious or
fatal crashes on B and C roads relative to motorways.

To gauge these effects, serious or fatal crashes by road type are
considered. While non-motorways are spread across Britain,
motorways are few and (often) far between. Table 5 reports results
of a DiD analysis comparing road types in England and Wales (mo-
torways and B/C roads) before and after the intervention. Only Eng-
land and Wales are considered to keep the analyses comparable
geographically. Crashes on B and C roads are used as a control
group relative to those on motorways as the treatment group,
hypothesizing there is greater certainty of detection and therefore
punishment for offenses on motorways than on B/C roads. Results
show serious or fatal crashes are significantly fewer on motorways
than on B/C roads, but that the trends remain parallel after the
intervention (no significant difference in the DiD interaction term).
Thus the authors cannot say there is a significant effect of the inter-
vention on one road type relative to the other.

5. Discussion

The aim of this paper is to examine the effects of the road safety
intervention (comprising doubling of penalties and drivers caught
twice or accruing 12 penalty points faced going to court, disquali-
fication, and fines of up to ₤1000) on number of serious or fatal
crashes. Allowing for immediate, intermediate, and longer-term
responses to the increased penalties by analyzing results for 7,
28, and 42 days post-intervention, no effect was found on serious
or fatal crashes. Since these first results estimate an average effect
over the window, the authors also allow for effects to differ within
the window by estimating weekly effects. However, no significant
effect of the intervention was found. There may be some concern at
the number of zeros in the data, so the authors aggregate over
space and time but again find no significant effects. Finally, differ-
ences by road type are investigated and no effect on the difference-
in-difference term was found.

Despite a lack of statistical significance, it is important to con-
sider ‘practical significance’ in terms of the magnitude of these
results. The data show there were 0.16 serious or fatal crashes
per LA per day before the intervention. The main results for the
7, 28, and 42 days post intervention periods showed effects on
numbers of crashes were in the region of just 2 % for a doubling
of penalties (and this effect was positive for the 28-day period).
To put this in context, with about 62 serious or fatal crashes across
Britain on an average day during the 42 days prior to the interven-
tion, the estimated effect would be equivalent to just 1.12 fewer of
these types of crashes.

Such a lack of effect was found by Burger et al. (2014) in relation
to a ban on mobile use for California. Additionally, no long term
effect was found between crashes and texting bans in the United
States (Abouk & Adams, 2013). The results of our study are consis-
tent with annual data on serious or fatal crashes where mobile
phone use was identified as a contributory factor, which show only
a small reduction and the share of crashes involving a mobile
phone has remained relatively high over the 2016/2017 period
compared to earlier (UK Department for Transport, 2017). A lack
of effect on behavior could result if individuals do not consider
the ₤100 increase in fine to be significant (low income elasticity),
if they deem the probability of conviction to be low, if the time
between violation and conviction is long (Li, Hu, Zhang, Ren, &
Liu, 2022), or if they are largely unaware of the change.

There is unlikely to be an information problem, as, at the time of
the intervention, 29 million people saw the promotional advertise-
ments and 12 million people saw related content on social media.
As a result, 90 % of people were likely aware of the increase in

4 To test the robustness of our results to the observation window for step one, we
re-estimated the 42-day effects based on a 5-year window and found no significant
effects (coef. 0.002; SE 0.005; p 0.706). We also estimated a traditional Regression
Discontinuity Design (i.e. two steps combined) with numbers of crashes as the
dependent variable and still found no significant effect of the intervention (coef.
�0.032; SE 2.92; p 0.991).

Table 2
RDiT (pooled) modelling results, step 2a.

Coefficient (SE)

Bandwidth 7 days 28 days 42 days

Post �0.0029 0.0040 �0.0029
(0.0111) (0.0058) (0.0048)

Constant 0.0107 0.0057 0.0113***
(0.0081) (0.0041) (0.0034)

Adjusted R-squared �1.64e-04 �2.41e-05 �1.96e-05
n 5,700 21,660 32,300

a Dependent variable is the residuals from the first step model. Robust standard
errors are shown in parentheses. Step one modelling results are available on
request. *** p < 0.01, ** p < 0.05, * p < 0.1.
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penalties (https://www.gov.uk/government/news/tens-of-thou-

sands-of-drivers-get-increased-fines-for-using-mobiles-at-wheel).
Survey data indicate there was a significant decline in stated
mobile use from 2016 to 2017 (UK Royal Automobile Club,
2017). A search of Newsbank newspaper articles and Google trends
data also showed there were some articles/searches about the
change published prior to the intervention, but that peak interest
occurred on the day.

Another factor that may contribute to the effectiveness of the
intervention is enforcement activity, which changes the expected
penalty that individuals respond to. Data from UK Home Office
(2019) suggests overall numbers of constables remained steady
about the time of the intervention, so we might expect drivers to

also consider enforcement activity to have remained fairly con-
stant and this would lower the expected penalty compared to a sit-
uation in which policing activity increased, thus increasing
incentives to offend. For England and Wales, fixed penalty notices
for using a hand-held mobile while driving were only 53,000 in

Fig. 3. Adjusted numbers of serious or fatal crashes and RDiT fitted values, Britain. The RDiT sample covers 42 days either side of the intervention (March 1, 2017). Dependent
variables are the residuals from the first step models.

Table 3
RDiT (pooled) modelling results allowing intervention effects to vary by week over
42 day bandwidth, step 2a.

Coefficient (SE)

Post week 1 �0.004
(0.008)

Post week 2 �0.007
(0.009)

Post week 3 �0.007
(0.008)

Post week 4 0.011
(0.009)

Post week 5 �0.008
(0.009)

Post week 6 �0.003
(0.009)

Constant 0.011***
(0.003)

Adjusted R-squared �5.43e-05
n 32,300

a Dependent variable is the residuals from the first step model. Post week X is a
dummy variable equal to 1 for all days in week X post-intervention and zero
otherwise. Robust standard errors are shown in parentheses. Step one modelling
results are available on request. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 4
RDiT (pooled) modelling results, aggregated data step 2a.

Coefficient (SE)

Aggregation GOR by day Country by day LA by week

Post �0.126 �0.463 �0.008
(0.205) (2.828) (0.040)

Constant 0.403*** 1.423 0.070**
(0.146) (1.991) (0.029)

Adjusted R-squared �6.66E-04 �3.85E-03 �2.11E-04
n 935 255 4560

a Dependent variable is the residuals from the first step model, aggregated to the
same level as step 2. Robust standard errors are shown in parentheses. Step one
modelling results are available on request. *** p < 0.01, ** p < 0.05, * p < 0.1.

Table 5
Step 2 DiD (pooled) modelling results, by road type, England and Walesa.

Variables Coefficient (SE)

T (1 = post) �0.001
(0.002)

G (1 = motorway) �0.004**
(0.002)

DiD 0.002
(0.003)

Constant 0.003**
(0.002)

a The DiD sample covers 42 days either side of the intervention (March 1, 2017).
Dependent variable is the residuals from the first step models. Robust standard
errors are shown in parentheses. Adjusted R-squared = 0.000. n = 45,390. Step 1
modelling results are available on request. *** p < 0.01, ** p < 0.05, * p < 0.1.
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2017: 34 % lower than 2016 (UK Department for Transport, 2020).
No significant change in serious or fatal crashes would be consis-
tent with deterrence theory in which certainty (related to enforce-
ment), celerity, and severity (linked to penalties) combine to deter
individuals from committing crimes (Becker, 1968; Tomlinson,
2016) if there was reduced enforcement offsetting the effects of
the change in penalties to leave the expected penalty unchanged.
This lack of result would also be consistent with the idea that cer-
tainty of punishment is more important than celerity or severity
(Tomlinson, 2016).

Moreover, for some individuals, risk preferences may be such
that the chances of detection remain too small to change behavior.
Enforcement may become easier and less costly in the future with
advances in technology substituting for additional police. For
example, extensive use of specialized cameras may be able to con-
stantly detect mobile phone usage across Britain. Were this to
occur, behavior may change in response to publicity about the
technology and associated infringements, as cameras have been
shown to be effective in reducing road crashes (Pineda-Jaramillo,
Barrera-Jiménez, & Mesa-Arango, 2022). Mobile phone and seat
belt cameras were introduced in New South Wales, Australia in
2020 and in Queensland in 2021. These cameras are a mix of fixed
and portable and were designed to take images of registration
plates and the front seats of the vehicle, using artificial intelligence
to detect mobile phone use by the driver (Queensland Government,
2021; Transport for NSW, 2020).

Another potential explanation proposed by Bar-Ilan and
Sacerdote (2004) is that an individual’s response to a financial pen-
alty might depend on how likely he or she is to comply with the
penalty imposed. For some individuals, the expected penalty may
be insufficient to deter offending behavior. For example, these indi-
viduals may have a very high value of time and therefore be pre-
pared to pay large fines for, say, the convenience of using a
mobile phone while driving. Perhaps individuals who offend the
most are also those who disregard penalties. Bourgeon and
Picard (2007) develop a theoretical model that shows fines are less
effective in deterring most drivers from committing driving
offenses than are penalty points (leading to license suspension/
withdrawal). In particular, some drivers are ‘chronically reckless’
and do not respond to fines, so incapacitation strategies such as
revoking their license (or imprisonment) is the only way to stop
such behavior – by keeping them off the roads (Bourgeon &
Picard, 2007). This is partly the idea behind increasing penalty
points for mobile phone use.

A final explanation is that there is compensatory behavior at
play and drivers reduce their speed when using a mobile phone
(Papadimitriou et al., 2019) or adopt other self-regulatory behav-
iors (Kaviani, Young, Robards, & Koppel, 2021), thereby reducing
numbers of fatal or serious crashes.

While punishments for mobile phone use may not be effective
for various reasons, one solution to the problem could be blocking
mobile phone use through an application deployed on smart-
phones that blocks use after detecting the vehicle is moving. Use
of such an application has been shown to be effective among teen
drivers in the United States (Creaser, Edwards, Morris, & Donath,
2015).

Despite the rigorous methodology and robust analysis of the
best available data, there remain limitations of this study. Firstly,
data on enforcement activity (ideally by day and local authority,
but at least as a before/after intervention metric) were not avail-
able and could have been used to explain our lack of treatment
effect if enforcement remained unchanged or declined. Such data
could have been in the form of policing levels and/or fines
issued. Secondly, the authors were unable to determine if the
amount of the fine was too low to have an impact on driving
behaviors and survey data on ‘willingness to pay’ could have

been used to assess the likely response of drivers to the level
of the penalty.

6. Conclusions

In analyzing the economics of crime, penalties are designed to
modify behavior according to the socially optimum outcome. One
type of crime that can have significant health impacts via road
crashes is behavioral driving offenses, such as using a mobile
phone while driving. Using data on crashes reported to police in
Britain, this study examined the effects of a penalty intervention
on numbers of serious or fatal crashes. By analyzing the link
between specific penalties and crashes, the contribution is unique.
As the literature considers the effects of penalties on infringement
notices or general bans in mobile phone use on crashes, there is no
point of comparison for these results.

Although economic theory suggests there should be an impact
on driver behavior and road safety literature indicates this should
reduce serious crashes, this analysis of serious or fatal crashes in
Britain reveals no significant effect of the doubling of fines and
penalty points for mobile phone use while driving. The authors
rule out an information problem and an enforcement effect. Thus
the remaining explanation is that the increase in fines was insuffi-
cient to change behavior. This could occur if the perceived cer-
tainty of punishment remained very low as mobile phone use is
currently relatively easy to do without detection. Future technol-
ogy will increase the ability to detect mobile phone usage. If so,
the solution may be to raise awareness of such technology and
publicize numbers of offenders caught, increasing certainty of pun-
ishment in line with deterrence theory. This may also be a lower
cost option than increasing enforcement through use of additional
police. Alternatively, a mobile phone blocking application could
avert the problem.
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a b s t r a c t

Introduction: In the unprecedented year of 2020, the rapid spread of COVID-19 disrupted everyday activ-
ities worldwide, leading the majority of countries to impose lockdowns and confine citizens in order to
minimize the exponential increase in cases and casualties. To date, very few studies have been concerned
with the effect of the pandemic on driving behavior and road safety, and usually explore data from a lim-
ited time span. Method: This study presents a descriptive overview of several driving behavior indicators
as well as road crash data in correlation with the strictness of response measures in Greece and the
Kingdom of Saudi Arabia (KSA). A k-means clustering approach was also employed to detect meaningful
patterns. Results: Results indicated that during the lockdown periods, speeds were increased by up to 6%,
while harsh events were increased by about 35% in the two countries, compared to the period after the
confinement. However, the imposition of another lockdown did not cause radical changes in Greek driv-
ing behavior during the late months of 2020. Finally, the clustering algorithm identified a ‘‘baseline,” a
‘‘restrictions,” and a ‘‘lockdown” driving behavior cluster, and it was shown that harsh braking frequency
was the most distinctive factor. Policy recommendations: Based on these findings, policymakers should
focus on the reduction and enforcement of speed limits, especially within urban areas, as well as the
incorporation of active travelers in the current transport infrastructure.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

In 2020, the COVID-19 pandemic dominated every aspect of life
globally by infecting around 100 million individuals, leading to
more than 2 million casualties (Dong et al., 2020). When the spread
of COVID-19 started increasing around the world, the majority of
governments imposed lockdowns as means of restricting non-
essential civilian movements, while all recreational, religious, cul-
tural, dining, and entertainment establishments were instructed to
cease operations.

With typical social activities interrupted, the transportation
ecosystem was disturbed as well. Recent studies have been mainly
focused on the effect of COVID-19 on travel behavior (e.g., Barbieri
et al., 2020; De Vos, 2020) but also on air travel operations (Hotle &
Mumbower, 2021) and shared mobility (Padmanabhan et al.,
2021). Αs can be anticipated, road traffic volumes were heavily
reduced (De Vos, 2020; Vingilis et al., 2020). This decline in traffic
volumes has led to higher speeds and more frequent harsh events
(Katrakazas et al., 2020) while large reductions in crashes have

been recorded (Aloi et al., 2020; Katrakazas et al., 2020; Saladié
et al., 2020).

During the year 2020, COVID-19 response measures varied from
country to country according to the fluctuation of the number of
cases and patients in the available Intensive Care Units (ICUs).
The harshness of the response measures has been captured by
the stringency index introduced by Hale et al. (2020), which
explores information on 19 indicators of COVID-19 government
responses and corresponds to the strictness of government policies
on the matter. Nevertheless, to date the strictness of government
policy on COVID-19 response measures has not yet been correlated
with driving behavior during the pandemic. Furthermore, an over-
all limited number of studies have been concerned with road safety
and driving behavior during the pandemic, and the majority of
those studies explore a limited timespan for data collection.

The aforementioned reasons form the motivation for the cur-
rent paper, which aims at providing a detailed overview of how
COVID-19 affected road safety indicators in Greece and the King-
dom of Saudi Arabia (KSA), while accounting for the strictness of
COVID-19 countermeasures. Although this paper does not employ
advanced statistical approaches to fulfil its aim, it is the first of its
kind to provide a detailed overview of highly disaggregated natu-
ralistic driving behavior data and provides result-based policy rec-
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ommendations. The rationale behind the two countries comes up
to the fact of naturalistic driving data provision.

In order to fulfill this aim, a descriptive exploration of
12 months of data regarding several driving behavior indicators
(i.e., average speed, speeding percentage, average driving speed,
harsh accelerations/100 km, harsh brakings/100 km, total duration,
total driven distance, and mobile phone usage duration/driving
duration) is initially presented to understand the effect of the pan-
demic on driving during 2020. It is worth noting that harsh accel-
eration refers to a driver event where more force than normal is
applied to the vehicle’s accelerator system. The term acceleration
used in the manuscript does not refer to lateral acceleration (hard
cornering), as the latter variable acts transversely to the direction
of travel of a car. Thus, particular emphasis was given to the harsh
accelerator variable as it can be an indicator of aggressive or unsafe
driving behavior. The exploratory analysis is supplemented by an
unsupervised pattern recognition algorithm, aiming at identifying
clusters of weeks according to driving behavior and the strictness
of COVID-19 response measures. Following the effect of the pan-
demic on driving behavior and road safety, policy recommenda-
tions are discussed in order to pave the way for post-pandemic
safer roads.

The paper is structured as follows: initially, the literature with
regards to driving behavior and road safety during the pandemic
is reviewed. This is followed by an overview of the data needed
for the exploratory analysis. The main part of this paper is dedi-
cated to depicting the changes in driving behavior during 2020
and is followed by a section on weekly pattern identification.
Finally, the results are discussed and helpful conclusions for
researchers and policymakers are provided.

2. Literature review

To be able to provide an overview of the effect of COVID-19 in
Greece and the KSA, the literature was reviewed for studies corre-
lating the pandemic and driving behavior or road safety. The search
took place in the databases Google Scholar and Scopus using the
Boolean terms {‘‘COVID-19” or ‘‘Pandemic” and ‘‘driving behavior”
or ‘‘driving behavior” or ‘‘road safety”}.

From the list of examined papers, it was observed that the
majority of studies on the effect of COVID-19 on transportation
were concerned with changes in travel behavior and mode choice
(e.g., Bhaduri et al., 2020; De Vos, 2020; Jenelius & Cebecauer,
2020; Parady et al., 2020; Shamshiripour et al., 2020). Only 10 of
the studies were concerned with the road safety effects of the pan-
demic and were chosen to be further reviewed for the purposes of
this research. The retrieved papers can be divided into three cate-
gories: (a) the ones focusing on epidemiological models and ana-
lyzing road safety as yet another health consequence of the
pandemic; (b) the ones providing descriptive evidence of the effect
of the pandemic; and (c) the ones utilizing advances statistical
tools to investigate crucial indicators and explain the impact of
COVID-19 on injuries, road crashes, and driving behavior.

With regards to epidemiological studies, a compensation effect
between damage from epidemic deaths and road crashes-related
deaths in Italy was examined (Colonna & Intini, 2020). It was
demonstrated that damage from loss of human capital and health
care costs could have been fulfilled if a lockdown was imposed
10 days earlier. Similarly, Lemke et al. (2020) promote syndemic
(i.e., population-level clustering of social and health problems, as
per Singer et al., 2017) frameworks for the evaluation of commer-
cial driver stress, health, and safety; but their work is limited to a
theoretical discussion on advantages of such frameworks and
potential enhancements these may offer in safety assessment dur-
ing the pandemic.

Descriptive results are presented in Saladié et al. (2020), where
the reduction in road crashes in the province of Tarragona was pre-
sented by comparing the frequency of crashes and checking statis-
tical significance using a chi-square test on weekdays and
weekends as well as different road types. A large reduction in
crashes (74% compared to February of 2020; 76% compared to
2019) was observed and was associated with the overall reduction
of traffic volumes. Likewise, Katrakazas et al. (2020) provided
descriptive evidence from Greece and the KSA with regards to
COVID-19 and driving behavior. It was observed that when a lock-
down was imposed, a slight increase by 6–11% in average driving
speed was observed, while harsh accelerations and brakings per
100 km were more frequent by up to 12% when compared to nor-
mal operations. Nevertheless, the results presented in the afore-
mentioned studies were purely descriptive, without significant
statistical analyses.

To date, only a few studies have conducted statistical analyses
with regards to the effect of COVID-19 on driving behavior both
using simple as well as more sophisticated models. These can be
further distinguished between simple modeling and hypotheses
testing and time-series regression modeling of the effect of the
pandemic. For instance, Prasetijo et al. (2021) used a simple linear
fit speed model and underlined the importance of road design to
incorporate sudden changes in traffic volumes with regards to
safety. On the same principle, using crowdsourced cycling data
from July 2019 to March 2020, Hong and Mcarthur (2020)
employed a simple linear regression model, but mixed results with
regards to the safety of cyclists are presented.

A more sophisticated approach is presented in Qureshi et al.
(2020), where a two-sample t-test was utilized to identify differ-
ences in road crashes before and after a lockdown in the United
States, as well as ARIMA modeling for autocorrelation and trend
analysis was implemented. The reduction of road crashes com-
pared to non-serious or injuries was found significant, but more
complex analyses would shed light on the influencing factors.
Stavrinos et al. (2020), using multi-level modeling, demonstrated
that after the appearance of COVID-19 driving days per week
decreased by 37%, while vehicle miles driven dropped by 35. Sim-
ilar results were presented by Roe et al. (2020) using within-
subjects general linear models on a sample of elderly drivers. It
was demonstrated that driving days as well as frequency of speed-
ing were reduced. Finally, a full time-series modeling approach
was employed by Inada et al. (2020). Using a seasonal ARIMA
model and data from January to May 2020, the authors concluded
that the lockdown was the crucial factor for speed-related traffic
violations, which consequently led to an increase of fatal road
crashes. It was further revealed that speeding increased by 52%
in March 2020 compared to March 2019.

Moreover, Sekadakis et al. (2021) analyzed the impact of
COVID-19 on the total number of road safety figures using time-
series forecasting in Greece. It was found that road collisions, fatal-
ities, and slightly injuries were decreased, mainly due to the
remarkable decrease of traffic volumes. Similarly, Seasonal
AutoRegressive Integrated Moving Average (SARIMA) and XGBoost
algorithms were implemented in order to identify the impact of
the COVID-19 on driving performance (Katrakazas et al., 2021).
Results revealed that average speed increased by 2.27 km/h on
average compared to the forecasted evolution, while harsh brak-
ings per distance (i.e. 100 km) increased to almost 1.51 on average.
Interestingly, road crashes in Greece were reduced by 49% during
the months of COVID-19 in comparison to the non-COVID-19 per-
iod. Another study was conducted aiming to provide a comparative
overview of the impact of COVID-19 on traffic safety behavior
(Michelaraki et al., 2021). It was revealed that speeding percentage,
average speed, and harsh accelerations or brakings increased dur-
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ing the lockdown period. Lastly, a reduction in traffic volumes (i.e.,
people driving and walking) was also observed.

From the aforementioned literature findings, it is evident that
no study has yet presented an overview of naturalistic driving data
throughout 2020, and the impact of the strictness of response mea-
sures as well as machine learning approaches are yet to be utilized
to investigate patterns correlating the pandemic with driving
behavior. As a result, the current paper is an attempt to fill this par-
ticular research gap.

3. Data overview

To present a descriptive overview of the impact of the pandemic
within 2020, four types of data are utilized both for Greece and the
KSA:

� COVID-19 data on cases and casualties
� Governmental response measures
� Naturalistic driving data captured from novel smartphone apps
by OSeven Telematics

� Traffic exposure data

These data are further overviewed in the following sections. It
should be noted that Greece and the KSA were chosen compared
to others, since only these countries had the appropriate sample
size for further investigation. In particular, trip data were collected
from a specific subset of the population of Greece and the KSA (i.e.,
users of OSeven mobile phone application) and additional informa-
tion (e.g., gender, age, educational level) was not provided due to
the anonymity of the drivers. No examination or analysis based
on any demographic or personal characteristics of the examined
sample was possible due to standing Greek and European data pro-
tection legislation (GDPR). As a consequence, this study retains a
scope of macroscopic examination of driver behavior, considering
the trips produced by the drivers collectively.

3.1. COVID-19 cases and casualties

Data on COVID-19 confirmed cases and casualties were
retrieved from the corresponding ministries of health and were
cross-checked with press releases and popular websites (e.g.,
Worldometer, 2020). The evolution of COVID-19 cases and casu-
alties in the two countries are presented in Fig. A1 in the Appendix.

3.2. COVID-19 response measures

Regarding COVID-19 response measures apart from govern-
mental press releases, the government response tracker for
COVID-19, put together by the University of Oxford (Hale et al.,
2020) was reviewed in order to obtain a homogenized set of vali-
dated response measures for Greece and the KSA. Table A1 gives
an overview of the response measures milestones for the two
countries, while Fig. A2 provides a timeline of the evolution of
the response measures stringency index (i.e., the strictness of the
measures), as shown in the Appendix.

With respect to Greece, the first lockdown of non-essential
movements refers to the period between 23/03/2020 and
04/05/2020. Then, after a 42-day lockdown, Greece began to grad-
ually lift restrictions on movement and restart business activities.
The second lockdown of restrictions refers to the period between
07/11/2020 and 31/12/2020, when Greece put in place new mea-
sures on movements. Thus, the 6-month framework, between
04/05/20 and 07/11/20, refers to the period between the first and
the second lockdown. KSA announced a lockdown of non-
essential movements along with the suspension of all domestic

and international travel on March 26. After the aforementioned
restrictions took place, the number of daily confirmed cases shrunk
dramatically and by June 21, all curfews were lifted. By the end of
2020, the KSA was seeing more daily recoveries than cases.

3.3. Naturalistic driving behavior data

For the purpose of the current research, OSeven has provided
trip data from its database for Greece and the KSA for a 12-
month timeframe from 01/01/2020 to 31/12/2020.The provided
dataset corresponds to the same set of random users so that the
data before and after the COVID-19 crisis are fully comparable. It
should be noted that OSeven Telematics (oseven.io) uses a smart-
phone application and a platform in order to explore data from
smartphone sensors (e.g., GPS, accelerometer, and gyroscope data).
State-of-the-art technology and algorithms, reliable metrics, and
novel gamification schemes are used in order to help drivers
understand their weak points and improve themselves. For each
trip, a vast quantity of data were collected and communicated
through Wi-Fi or cellular network, and valuable critical informa-
tion such as features, highlights, and driving scores was generated
in order to assess the driver’s profile and performance. Data were
then transferred to the OSeven backend infrastructure, where it
was analyzed with filtering, signal processing, machine learning
algorithms, and safety/eco rating models. The final outcome of
the analysis is risk-related driving events such as speeding, mobile
use, harsh accelerations, and harsh brakings, as well as safety/and
eco scores.

A standard procedure is followed every time a new trip is
retrieved by the application: the application collects in real-time
the data from the sensors of the mobile phone and then data pro-
cessing takes place. All the variables in the analyzed data were
derived from a combination of machine learning methods (data
fusion, clustering & classification). Since OSeven has strict data
sharing policies, further information cannot be provided at the
moment. Nevertheless, additional details for data extraction
regarding the OSeven application can be found in Papadimitriou
et al. (2019) and Kontaxi et al. (2021).

It should be clearly mentioned that the OSeven platform is able
to detect different driving patterns as well as recognize whether
the user is a driver or a passenger. Undoubtedly, drivers have their
own driving patterns, strongly affected by their personality and
daily routine and the recorded driving behavior is totally different
when they are passengers instead of drivers. To that end, OSeven
developed a set of machine learning algorithms that can reliably
determine if the user is the driver or a passenger, taking into con-
sideration all the above parameters. It is worth noting that this
specific driver/passenger recognition achieves over 92% accuracy.
However, in case of false alarms, users are able to confirm through
the app if there were drivers or passengers. For instance, if a person
who had the app on their phone was a passenger, driving data from
another driver during the specific trip were not collected by the
app and thus, these data were not included in the analyses. This
is also explicitly stated in the OSeven terms of use, and the drivers
understand that their smartphone becomes a driving recording
device when driving, thus becoming more mindful of it and limit-
ing false recording.

The OSeven application has been utilized for road safety
research, as described in several studies (Stavrakaki et al., 2019;
Tselentis et al., 2019; Yannis et al., 2017). A similar approach is fol-
lowed in the present paper. A large amount of data were recorded
using the aforementioned state-of-the-art platform, as described in
recent research utilized this specific scheme (Papadimitriou et al.,
2019). For instance, harsh events (i.e., harsh accelerations and
harsh brakings) are calculated via machine learning algorithms
and data fusion. There is not a rule-based approach, using as input
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the values of the accelerometer or values from additional sensors
(e.g., GPS, orientation, gyroscope). In addition, the outputs of the
OSeven algorithms have been evaluated both in the published
studies and used by major insurance companies in several coun-
tries (e.g., Greece, UK, Brazil, Qatar); this serves as evidence with
regards the acceptance of the proposed algorithms implemented.

It is worth mentioning that OSeven follows strict information
security procedures and privacy policies, which comply with the
General Data Protection Regulation (GDPR) and related European
Union directives. Therefore, all data have been provided by OSeven
in a completely anonymized format and no geolocation informa-
tion for the trips (apart from the related country) have been
included in the dataset. A similar dataset was utilized in previous
analysis by the authors (Katrakazas et al., 2020; 2021). Privacy pol-
icy statements cover the type of data that are collected, the reason
they were collected, the time that they are stored, and the mea-
sures that they have been taken to protect them based on encryp-
tion standards for data in transit and at rest. OSeven technology
has already been accepted and approved by several national
authorities and compliance officers of multinational brands and
it complies with the national regulation in EU and around the
world.

What is more, details on the data collected, the purpose of the
collection as well as information on the storage and retention of
data, are explicitly stated in compliance with the GDPR. In addi-
tion, OSeven is also audited for ISO 27001 by TÜV Hellas. The ISO
certification verifies the focus on meeting the highest security
and privacy standards by auditing and constantly improving their
policies, systems and procedures. Thus, customers can be reas-
sured that their data is treated within OSeven Platform with integ-
rity and confidentiality. It should be also mentioned that OSeven is
dedicated into maintaining high-security standards in the design,
implementation and delivery of its services and products and this
is an iterative approach subject to annual assessment.

It becomes evident that OSeven is compliant with international
and European privacy and security standards. As it was previously
mentioned, the data that have been used are fully anonymized and

their recording has been approved by users of the app through the
terms and conditions of the company. Moreover, since data from
the OSeven platform are high-level and aggregated, it was assumed
that they do not violate ethical concerns, since their use has
already been approved for use in several peer-reviewed publica-
tions (e.g., Papadimitriou et al., 2019; Yannis et al., 2017;
Tselentis et al., 2019; Stavrakaki et al., 2019; Kontaxi et al., 2021).

Overall, the authors state that the current study complied with
the Declaration of Helsinki’s ethical principles because no one was
harmed, physically or emotionally, during the driving measure-
ments, and because all of the drivers participated voluntarily.
The OSeven application is open-access and has no impact on dri-
vers when driving. The OSeven application aims to improve eco-
driving and road safety while tracking and evaluating the driver’s
performance. The director of the Department of Transportation
Planning and Engineering of the School of Civil Engineering at
the National Technical University of Athens also gave his approval
to the ethics rules.

The driving indicators included in the analysis are presented in
Table 1.

Table 2 presents the descriptive statistics (i.e., median, standard
deviation, max, min, interquartile range-IQR) with regards to the
entire database in both countries. The subset of trips provided by
OSeven for the aforementioned time framework included approxi-
mately 268,549 trips in Greece and 448,736 trips in the KSA. It was
revealed that driving performance indicators (i.e., speeding per-
centage, harsh brakings per 100 km, total/driving duration) for
the KSA appeared to have higher values compared to the corre-
sponding parameters for Greece.

In order to have an initial depiction of changes happening to
these indicators during the evolution of the COVID-19 pandemic,
Table 3 provides descriptive statistics for the lockdown periods
in both countries. It is evident that during the lockdown periods,
the total number of trips was much lower compared to the period
under normal circumstances. With regards to Greece, it was
demonstrated that during the first lockdown period, values for
the majority of available indicators were higher compared to the

Table 1
Description of the driving indicators of the analysis (Source: OSeven).

Indicator Unit Description

Total duration sec Total trip duration
Total distance km Total trip distance
Harsh accelerations/100 km - Number of harsh accelerations per distance (i.e. 100 km)
Harsh brakings/100 km - Number of harsh brakings per distance (i.e. 100 km)
Speeding duration sec Total duration of speeding in a trip
Average speeding km/h Average speed over the speed limit
Average driving speed km/h Average speed during driving with stops been excluded from the duration of the trip
Mobile phone usage duration sec Total duration of mobile usage
Speeding percentage % Ratio of speeding duration in a trip per total duration of driving
Mobile phone usage duration /driving duration % Ratio of total duration of mobile usage per total duration of driving

Table 2
Descriptive statistics for the available indicators of the entire database in Greece and the KSA.

Indicator Greece (268,549 Trips) KSA (448,736 Trips)

Median St. dev. Max Min IQR Median St. dev. Max Min IQR

Average speeding (km/h) 13.22 11.3 154.47 0.00 20.27 16.48 13.02 128.16 0.00 23.23
Speeding percentage 1.34% 11.06% 98.76% 0% 8.71% 2.14% 13.16% 100% 0% 10.79%
Average driving speed (km/h) 41.02 18.20 178.36 5.57 22.89 53.04 20.68 178.93 1.92 26.42
Harsh accelerations/100 km 0.00 22.04 299.40 0.00 14.44 0.00 16.79 282.92 0.00 12.27
Harsh brakings/100 km 6.33 22.89 293.08 0.00 23.05 11.94 23.83 299.04 0.00 27.20
Total duration (sec) 870 1153.17 25,549 300 908 1020 1580.27 36,138 300 1194
Total driven distance (km) 7.60 24.81 648.69 0.50 11.39 12.60 36.09 1006.69 0.61 19.65
Mobile phone usage duration/driving duration 0% 14.61% 99.86% 0% 1.74% 1.59% 19.76% 99.83% 0% 15.76%
Stringency index 53.3 27.3 84.3 0 32.4 55.9 27.6 94.4 0.0 21.3

E. Michelaraki, M. Sekadakis, C. Katrakazas et al. Journal of Safety Research 84 (2023) 41–60

44



second lockdown period. This is due to the fact that drivers observ-
ing empty roads were willing to undertake more risks and
appeared to have worse driving behavior in comparison to the sec-
ond wave of the COVID-19 pandemic. Furthermore, it should be
noted that during the lockdown period in the KSA, an overall
increase in average speeding, average total/driving speed, and
harsh events per distance was observed compared to the entire
database.

3.4. Traffic exposure data

In order to be able to provide a holistic overview of the COVID-
19 impact, exposure data were also extracted. As usually traffic
data acquisition from national authorities requires additional time,
it was chosen to use the Apple mobility report data as a proxy of
traffic exposure in the study areas. Similar data have been utilized
in previous work with regards to driving behavior and COVID-19
(Katrakazas et al., 2020). The aggregated data collected from Apple
showed the mobility trends for major cities and several countries
or regions. The information was generated by counting the number
of requests made to Apple for directions. Data availability in a par-
ticular city, country, or region was subject to a number of factors,
including minimum thresholds for direction requests made per
day.

3.4.1. Driving traffic volumes
The COVID-19 outbreak as well as government responses of

each country had a much more volatile effect on travel patterns.
To begin with, during the first lockdown period of COVID-19, a
great reduction in the volume of people driving was identified in
Greece. However, during the second lockdown period, driving traf-
fic volumes were much higher, roughly by 91% than the first one.
Actually, during the first lockdown, traffic virtually disappeared,
but ahead of a second one, there was a noticeable rise in people
traveling by road. Interestingly, Greece performed high congestion
levels throughout the summer. Traffic started to pick up signifi-
cantly during August 2020 when the peak-time congestion on
Greek roads hit a 400% increase, compared to the first lockdown.
According to the available data for November-December 2020,
driving traffic volumes decreased and a 62% reduction was identi-
fied compared to the period between the first and the second lock-
down. With regards to the KSA, when the curfew was lifted
throughout the country, driving traffic volumes started to increase
significantly and an 82% rise was observed compared to the period
of the first lockdown. Figs. 1 and 2 illustrate the volume of driving
sessions of Apple users from January 2020 to December 2020 along
with the number of COVID-19 cases in Greece and the KSA,
respectively.

4. Methodology

In order to provide a yearly overview of the impact of COVID-
19, the aforementioned data are presented descriptively in order
to identify critical changes throughout 2020. Comparisons were
made with regards to the lockdown periods as well as periods with
restrictions between the lockdown states, and explanatory figures
are provided to depict the status of driving behavior and road
safety indicators in relation to COVID-19 cases.

In order to identify patterns with regards to driving behavior
indicators and the strictness of response measures (stringency
index), clustering was utilized on weekly aggregated OSeven trip
data. Within the present study, clustering is a useful technique in
order to divide the trip sample into several distinct categories.
The evaluation of the cluster centroids describing these categories
can provide insights as to whether driving behavior differs system-Ta
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atically on a macroscopic scale during the periods of shifting mea-
sures due to the pandemic. A well-known and straightforward
technique is k-Means clustering, an algorithm used to divide data-
sets into clusters of similar magnitudes.

The k-means algorithm searches for a specific number of clus-
ters (k) in a given dataset. The algorithm first initiates by randomly
selecting centroids in the data. Each data-point is then assigned to
the nearest centroid, forming the requested k clusters. Centroids
are re-computed for the formed clusters, and thus their location
changes. Calculations are then performed to re-assign each data-
point to their new centroid. Afterwards, iterative calculations are
conducted until no reassignments are made and thus the centroids
have stabilized. The popularity of k-means algorithms presented in
the past (e.g., Hartigan & Wong, 1979) has led to several cus-
tomized approaches in the literature (e.g., Kanungo et al., 2002;
Likas et al., 2003). K-means has been used widely for clustering
purposes in several transport/road safety studies as well (e.g.,
Yannis et al., 2007; Mantouka et al., 2019).

5. Descriptive overview of the COVID-19 impact on driving
behavior

5.1. Trip characteristics

In this section, the impacts of COVID-19 on trip characteristics
and, more specifically, on total trip duration and distance are
discussed.

5.1.1. Total duration
From Fig. 3, it is evident that total duration during the periods of

lockdown is similar (i.e., a 1% reduction in total duration was
observed in Greece during the second lockdown compared to the
first one). When the restrictions on movement and business activ-
ities were gradually lifted, total duration increased by 22%, com-
pared to the first lockdown period. At the same time, total
duration dropped again roughly by 19% during the second lock-
down compared to the period between the first and second lock-

Fig. 1. Driving volumes per week along with the evolution of COVID-19 cases in Greece (Source: Apple, Data Processing: NTUA).

Fig. 2. Driving volumes per week along with the evolution of COVID-19 cases in the KSA (Source: Apple, Data Processing: NTUA).
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down. In the KSA, after the end of the lockdown, more vehicles on
city streets were observed; thus, a 10% rise in total duration was
identified. Overall, the total number of driving trips in the KSA
was significantly reduced due to the lockdown period, as depicted
in Fig. 4.

5.1.2. Total distance driven per trip
In accordance with the total distance driven, the COVID-19 pan-

demic also had a direct effect on active drivers on the roads. Specif-
ically, the second wave of COVID-19 pandemic led to a 10%
reduction in total distance driven in Greece, compared to the first
one. After the end of the first lockdown period, Greek drivers
started to increase weekly mileage, reaching an 18% increase in
total distance monitored in March and April compared to the per-
iod between the first and the second lockdown (i.e., from May to
early-November 2020). Total driving distance per week dropped
again by around 23% in November and December after the second
lockdown compared to the period from May to early November.
Similarly, the total distance driven per trip was also reduced during
the lockdown period in the KSA. After the end of the lockdown per-
iod, a 13% increase in miles driven was observed when comparing
data from March to June (i.e., COVID-19 lockdown period) with
data from the end of June to December (i.e., after the end of lock-
down of non-essential movements). Figs. 5 and 6 illustrate the
changes in the total distance driven per trip in Greece and the
KSA, respectively.

5.2. Driving behavior

5.2.1. Average driving speed
It is worth mentioning that during the first and second lock-

down periods, an overall increase in average driving speed was
identified compared to the period between the first and the second
lockdown (i.e., from May to early-November 2020). When a
decrease in driving traffic volumes was observed, drivers tended
to increase their average driving speed. In particular, after the
end of the first lockdown period, Greek drivers started to gradually
increase their average driving speed, while a 5% drop in average
driving speed monitored in March and April was identified com-
pared to the period between the first and second lockdown (i.e.,
from May to early-November 2020). Additionally, the second wave
of COVID-19 pandemic led to a 5% decrease in average driving
speed in Greece, compared to the first one. Interestingly, average
driving speed had not changed in November and December (i.e.,

after the second lockdown had been announced) compared to
the period before (i.e., between the first and the second lockdown
from May to early-November). Regarding the KSA, no change in
average driving speed was identified, when comparing data from
March to June (i.e., COVID-19 lockdown period) with data from
end-June to December (i.e., after the end of lockdown of non-
essential movement). Figs. 7 and 8 illustrate the changes in the
average driving speed in Greece and the KSA, respectively.

5.2.2. Average speeding
As shown in Figs. 9 and 10, both in Greece and the KSA, average

speeding was reduced due to the lockdown restrictions. In partic-
ular, during the second lockdown period, a negligible 1% reduction
in average speeding was identified in Greece compared to the first
one. Additionally, when Greece began to gradually lift restrictions
on movement and restart business activities, average speeding
decreased by 1% compared to the first lockdown period (i.e., March
and April 2020), while there was no change in the average speed-
ing during the second lockdown period compared to the period
between the first and the second lockdown. Regarding the KSA,
after the end of the lockdown period, a 9% decrease in average
speeding was observed.

5.2.3. Speeding percentage
The second wave of COVID-19 pandemic led to a 2% reduction

in the ratio of speeding duration/driving duration in Greece, com-
pared to the first one. After the end of the first lockdown period, a
9% drop in speeding percentage compared to the period between
the first and the second lockdown was identified. Furthermore,
the ratio of speeding duration/driving duration was increased by
around 8% in November and December after the second lockdown
had been announced compared to the period before (i.e., between
the first and the second lockdown from May to early-November).
Interestingly, the speeding percentage was also reduced after the
end of the lockdown period in the KSA. In particular, a 23% drop
was observed when comparing data from March to June (i.e.,
COVID-19 lockdown period) with data from end-June to December
(i.e., after the end of lockdown of non-essential movements).
Figs. 11 and 12 illustrate the changes in the ratio of speeding dura-
tion/driving duration in Greece and the KSA, respectively.

5.2.4. Harsh accelerations per 100 km
With regards to harsh accelerations per 100 km, during the first

phase of the lockdown and especially in April 2020, these were

Fig. 3. Total duration per week along with the evolution of COVID-19 cases in Greece (Source: OSeven, Data Processing: NTUA).
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increased compared to February (i.e., before the appearance of
COVID-19 pandemic), as shown in Fig. 13. It should be noticed that
during the second lockdown period, a 17% decrease in harsh accel-

erations per 100 km was identified in Greece compared to the first
one. When the restrictions on movement and business activities
were gradually lifted, harsh acceleration events per distance again

Fig. 4. Total duration per week along with the evolution of COVID-19 cases in the KSA (Source: OSeven, Data Processing: NTUA).

Fig. 5. Total distance per week along with the evolution of COVID-19 cases in Greece (Source: OSeven, Data Processing: NTUA).

Fig. 6. Total distance per week along with the evolution of COVID-19 cases in the KSA (Source: OSeven, Data Processing: NTUA).
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Fig. 7. Average driving speed per week along with the evolution of COVID-19 cases in Greece (Source: OSeven, Data Processing: NTUA).

Fig. 8. Average driving speed per week along with the evolution of COVID-19 cases in the KSA (Source: OSeven, Data Processing: NTUA).

Fig. 9. Average speeding per week along with the evolution of COVID-19 cases in Greece (Source: OSeven, Data Processing: NTUA).
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dropped by 18% compared to the first lockdown period. Interest-
ingly, a negligible 2% increase in harsh accelerations per 100 km
was observed during the second lockdown compared to the period

between the first and the second lockdown. With regards to the
KSA, it was revealed that drivers accelerated harshly during the
months of COVID-19. Overall, after the end of the lockdown period,

Fig. 10. Average speeding per week along with the evolution of COVID-19 cases in the KSA (Source: OSeven, Data Processing: NTUA).

Fig. 11. Speeding percentage per week along with the evolution of COVID-19 cases in Greece (Source: OSeven, Data Processing: NTUA).

Fig. 12. Speeding percentage per week along with the evolution of COVID-19 cases in the KSA (Source: OSeven, Data Processing: NTUA).
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a 34% decrease in harsh accelerations per 100 km and less harsh
accelerations per distance were observed, which indicates that dri-
vers improved their driving behavior after the COVID-19 pan-
demic, as depicted in Fig. 14.

5.2.5. Harsh brakings per 100 km
Similar to harsh acceleration patterns, harsh brakings per

100 km were decreased during the second lockdown period com-
pared to the first one. Additionally, when Greece began to gradu-
ally lift restrictions on movement and restart business activities,
harsh brakings per distance dropped by 33% compared to the first
lockdown period (i.e., March and April 2020), while there was a
10% increase in harsh brakings per 100 km during the second lock-
down period compared to the period between the first and the sec-
ond lockdown. With regards to the KSA, after the end of the
lockdown period, a 23% reduction in harsh brakings per distance
was identified. Figs. 15 and 16 depict the changes in harsh brakings
per 100 km in Greece and the KSA, respectively.

5.2.6. Mobile phone usage duration/driving duration
With regards to mobile phone use, a general increase in the

ratio of mobile phone usage duration per driving duration during
the lockdown periods, compared to the period between the first

and the second lockdown in Greece and the KSA, respectively, is
presented in Fig. A3 in the Appendix. In more detail, the second
wave of COVID-19 pandemic led to a 6% decrease in the ratio of
mobile phone usage duration per driving duration in Greece, com-
pared to the first one. After the end of the first lockdown period, a
9% reduction in the ratio of mobile phone usage duration per driv-
ing duration was identified compared to the period between the
first and the second lockdown. Interestingly, mobile phone usage
duration per driving duration increased by 4% in November and
December after the second lockdown had been announced com-
pared to the period between the first and the second (i.e., from
May to early-November 2020). Similarly, the ratio of mobile phone
usage duration per driving duration was also raised during the
lockdown period in the KSA. Afterwards, a 5% increase was
observed when comparing data from March to June (i.e., COVID-
19 lockdown period) with data from end-June to December (i.e.,
after the end of lockdown of non-essential movement).

5.3. Road crashes

A more comprehensive picture of the effects of COVID-19 pan-
demic on road safety can be drawn from the high-quality data on
the total number of road crashes. Fig. 17 illustrates the difference

Fig. 13. Harsh accelerations/100 km per week along with the evolution of COVID-19 cases in Greece (Source: OSeven, Data Processing: NTUA).

Fig. 14. Harsh accelerations/100 km per week along with the evolution of COVID-19 cases in the KSA (Source OSeven, Data Processing: NTUA).
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in the total number of road crashes from January to December
2020 in Greece. Specifically, during the second lockdown period,
a 46% increase in the total number of road crashes was observed
compared to the first one. After the end of the first lockdown per-
iod, driving volumes were gradually increased and a 116% rise in
the total number of road crashes was identified in the period
between the first and the second lockdown compared to the first
lockdown period. Interestingly, a 32% reduction in road crashes
was observed in November-December 2020 (i.e., during the second
lockdown) compared to the period before (i.e., between the first
and the second lockdown from May to early-November 2020).
Lastly, it should be noted that monthly data for road crashes are
available only for Greece, while there is no evidence for road
crashes in the KSA during 2020.

5.4. Overview

Table 4 summarizes the changes in exposure, driving behavior,
road crashes, and response measures strictness during and after
the lockdown periods for each country. It should be clarified that
the first lockdown period in Greece refers to the period from April
to May 2020, the second lockdown period refers to the period from

early-November to December 2020, while the period between the
first and the second lockdown refers to the period from May to
early-November 2020. With regards to KSA, the first lockdown per-
iod (i.e., from end-March to June 2020) is compared to the post-
lockdown period (i.e., from June to December 2020).

The total number of trips and traffic volumes in Greece reduced
by 70% for people driving, respectively, during the first lockdown
compared to the period before the appearance of COVID-19 pan-
demic. However, increased driving volumes, roughly by 100%, dur-
ing the second COVID-19 lockdown compared to the first one.
Exposure indicators (i.e., distance traveled, total duration, and driv-
ing duration) were also decreased during the first lockdown period
compared to the period before. Similarly, the aforementioned indi-
cators were also reduced during the second COVID-19 lockdown
compared to the first one and the period between the lockdowns.
A dramatic increase in total/driving duration and total distance
during the second lockdown period compared to the period
between the first and the second lockdown was also identified.

In Greece, during the first lockdown period, driving behavior
indicators (i.e., average speeds, speeding percentage, harsh acceler-
ations/ brakings per 100 km, mobile phone usage duration/driving
duration) increased to a great extent compared to the period

Fig. 15. Harsh brakings/100 km per week along with the evolution of COVID-19 cases in Greece (Source: OSeven, Data Processing: NTUA).

Fig. 16. Harsh brakings/100 km per week along with the evolution of COVID-19 cases in the KSA (Source: OSeven, Data Processing: NTUA).
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before. For instance, during the first lockdown, average speed,
speeding percentage, and mobile phone usage duration/driving
duration increased by 10%, 22%, and 21%, respectively, compared
to the period before and 1% (second lockdown) compared to the
pre-pandemic period. This indicates that with fewer vehicles on
city streets, slightly more drivers are blowing the speed limit. After
the end of lockdown periods, a significant drop in speeding per-
centage was identified. Harsh accelerations/100 km and harsh
brakings/100 km increased by 5% and 11% during the first lock-
down compared to the period before. Interestingly, during the sec-
ond lockdown, harsh events reduced by up to 17%.

It is worth mentioning that during the first lockdown period in
Greece, an overall 50% reduction in road traffic crashes was

observed compared to the period before the appearance of
COVID-19 pandemic. In addition, during the second lockdown per-
iod, a 26% decrease in the total number of road traffic crashes was
identified compared to the period between.

With regards to the KSA, similar patterns to Greece were also
observed for both exposure and driving behavior indicators. A
36% and 27% reduction of people driving was identified during
the lockdown period compared to the period before. After the lock-
down, people driving adapted immediately to baseline frequencies
and traffic volumes increased. In addition, a 2% spike in average
speed was identified during the lockdown period compared to
the period before. The speeding percentage increased by 17%, while
the number of harsh accelerations and brakings per 100 km

Fig. 17. Road crashes per month along with the evolution of COVID-19 cases in Greece (Source: ELSTAT, Data Processing: NTUA).

Table 4
Changes in traffic volumes, driving behavior and road safety during and after the COVID-19 lockdown period in Greece and the KSA.

*Road crashes data for the KSA are not available.
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increased by 11% and 7%, respectively. Lastly, it should be noted
that monthly data for road traffic crashes were not available for
KSA.

6. Pattern identification according to driving characteristics
and stringency index

This section presents the results of cluster analysis conducted
on weekly aggregated data for Greece and the KSA. The process
of selection of the final number of clusters is initially explained,
followed by the presentation and interpretation of the centroid
values.

In the current study, the elbow method is followed, which
defines clusters by minimizing the total intra-cluster variation,
expressed by the Within Cluster Sum of Squares (WCSS)
(Kodinariya & Makwana, 2013). For the purpose of choosing the
optimal number of clusters, the elbow method using WCSS was
applied as shown in Fig. 18 for Greece (left) and the KSA (right).
These figures depict the optimal number of clusters (i.e., the k
value to be applied for the examined data set. The optimal value
is extracted by the ‘‘elbow” or ‘‘knee” of the depicted curve
(Kodinariya & Makwana, 2013). Consequently, the optimal number
of clusters is three for both countries. In addition, the average sil-
houette method was tested in order to validate the outcomes of
the elbow method. The average silhouette score for three clusters
was equal to 0.47 in the Greek dataset and 0.58 in the KSA dataset,
denoting acceptable k-means algorithm fits.

The added value of the k-means clustering approach is the con-
firmation of systematic differences in the data. In other words,
after applying this unsupervised method, it is observed that the
weeks can be consistently organized in distinct categories with dif-
ferent centroid values. Centroid differences are observed across all
driver performance metrics and for the Stringency Index as well.
Therefore, this machine learning algorithm provides added valida-
tion of the differences already perceived by descriptive statistics
for the examined data.

6.1. Greece

For Greece, the clustering results of weekly aggregated data for
2020 are shown on Table 5. The practical meaning of each category
is to provide a grouping for similar week types of 2020. In the clus-
tering analysis, seven variables (i.e., total duration, total distance,

harsh brakings/100 km, driving volume, driving speed, speeding
percentage, and stringency index of lockdown) were included.
The presented values of the variables were the mean value of each
centroid along with the corresponding standard deviation enclosed
in parentheses.

Based on centroid values, the weekly data of 2020 can be clas-
sified into the following three distinct categories:

� Cluster 1 – ‘Baseline’: Comprises 29 weeks with a centroid strin-
gency index of 36.99. These can be considered as the ‘‘baseline”
weeks, before the existence of lockdown measures (January and
February) and time periods with the loosest restrictions (June,
the second half of September and October). The baseline cluster
is depicted in green in Fig. 19.

� Cluster 2 – ‘Restrictions’: Comprises 10 weeks with a centroid
stringency index of 54.33. This group of weeks belongs to the
summer of 2020 (specifically in July, August and half of Septem-
ber) when modest restriction measures were in place. As
restrictive measures were not as strict or extensive as a full
lockdown, this category is distinct from the lockdown category.
These months formed a separate category probably due to the
increased stringency index compared to June and October. At
that time, all the examined variables (driving behavior and driv-
ing volume indicators) present peaks according to the descrip-
tive statistics. The descriptive average stringency index of
these two months is 55, which is quite close to the stringency
index presented by the clustering analysis. The restrictions clus-
ter is depicted in red in Fig. 19.

� Cluster 3 – ‘Lockdown’: Comprises 14 weeks with a centroid
stringency index of 82.13. This group of weeks represents the
periods where full lockdown measures were in place. The
descriptive average stringency index for both lockdowns is 85,
which is quite similar to the calculated centroid value. The lock-
down cluster is depicted in blue in Fig. 19.

When examining the centroid values of these categories, the
differences in driver behavior parameters become apparent. The
restrictions cluster shows increased distance and trip duration
from the baseline cluster, indicating that trips are longer and far-
ther after the lockdown period. Driving volume appears to be con-
siderably increased, probably due to two factors: (a) the
anxiousness of people to travel after the lockdown period and (b)
the large tourism-related traffic volumes generated during the

Fig. 18. Optimal number of clusters according to Elbow method for (a) Greece and (b) the KSA.
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summer in Greece. Harsh brakings/100 km appear to be reduced
from the baseline, possibly due to more careful driving or dispro-
portionately increased travel distances. Since the temporal per-
centage of speeding duration seems elevated, the second
explanation appears more credible.

As expected, the lockdown cluster is the one with the most lim-
ited travel, with reductions in trip duration, total distance, and
driving volume. Interestingly, a peak of harsh brakings/100 km is
also observed, indicating that this category comprises weeks with
increased road safety risk. Drivers may have been more aggressive
overall due to encountering less traffic and more available space on
the roads, and taking advantage of this new situation. The ratio of
speeding to driving duration appears similar to that of the restric-
tions cluster.

Despite these observed differences, driving speed appears
mostly unaffected between clusters; this is perhaps due to the
large number of trips, which leads to the absorption of fluctuations
for this parameter. It is worth highlighting that in R-studio, clusters
are represented by conducting an internal Principal Component
Analysis (PCA) and then visualizing the results with the two most
prominent components serving as � and y axis. In other words,
PCA is conducted primarily in order to supply distinguishable clus-
ters for easier visualization.

The obtained cluster categories are also illustrated in the plots
of Fig. 19. In the upper part of Fig. 19, a 2-dimensional cluster plot
is used to depict all the clusters and centroids of the analysis. It
should be noted that week numbering starts by considering the
first lockdown week as week 1, the following week as week 2,
and so on until week 53. As per standard process, cluster plot axes
are described by the two most prominent PCA components of the
sample (Dimension 1 and 2). In the lower part of Fig. 19, an
explanatory plot with all the clusters was created in order to con-
trast the clustering results with the observed stringency index,
plotted with a separate curve. The outcome of the clustering can
be regarded as satisfactory based on the fact that both lockdowns
were defined precisely enough by the k-means algorithm. Only one

week (week 19; from 2020-05-03 until 2020–05-10) appears to
have been erroneously classified.

For the purpose of confirming the clustering analysis, a linear
discriminant analysis (LDA) was conducted with a train/test data-
set ratio of 80%/20%. Results indicated correct classification in 100%
of the test dataset cases for Greece.

6.2. KSA

Regarding the KSA, the clustering centroids of weekly aggre-
gated data for 2020 are presented in Table 6, with standard devia-
tions reported in parentheses. The process and interpretation of
the centroids follows the same logic as the one followed for
Greece:

� Cluster 1 – ‘Baseline’: Comprises 12 weeks with a centroid strin-
gency index of 13.59. These can be considered as the ‘‘baseline”
weeks, referring to the time period before the enforcement of
lockdown measures (January, February, and three weeks of
March). The baseline cluster is depicted in green in Fig. 20.

� Cluster 2 – ‘Restrictions’: Comprises 30 weeks with a centroid
stringency index of 59.89. This group of weeks refers to the time
period after the end of lockdown restrictions, when certain
looser restrictions remained with an average stringency index.
The restrictions cluster is depicted in red in Fig. 20.

� Cluster 3 – ‘Lockdown’: Comprises 11 weeks with a centroid
stringency index of 88.92. These can be considered as the weeks
with full lockdown measures in effect. The lockdown cluster is
depicted in blue in Fig. 20.

As previously stated, the examination of clusters reveals the dif-
ferences in driver behavior parameters. The ‘restrictions’ cluster
shows decreased distance and trip duration from the baseline clus-
ter, indicating that trips are shorter in distance and duration after
the lockdown period, indicating a different reaction compared to
Greece. Driving volume appears to be considerably increased, pos-

Table 5
Clustering centroid mean values per week type for Greece.

Number Category Total Duration Total Distance Harsh Brakings /100 km Driving Volume Driving Speed Speeding percentage Stringency Index

1 Baseline 989.23 (38.35) 11.77 (0.90) 16.71 (1.40) 97.59 (43.74) 42.25 (1.83) 5.36% (0.72%) 36.99 (27.02)
2 Restrictions 1052.78 (30.84) 13.93 (0.94) 13.42 (0.75) 195.43 (26.07) 43.61 (1.17) 6.36% (1.01%) 54.33(5.01)
3 Lockdown 825.72 (46.92) 10.04 (0.94) 18.23 (1.74) 44.47 (15.26) 43.68 (2.69) 6.29% (0.79%) 82.13(3.00)

Fig. 19. (a) Cluster plot and (b) Annual distribution of cluster categories and stringency index (Greece).
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sibly due to the same reasons for Greece, anxiousness of people to
travel and tourism during these months. Harsh brakings/100 km
appear to be once again reduced from the baseline. Since the tem-
poral percentage of speeding duration appears close to the base-
line, and total distance is reduced, innate more careful driving of
drivers is a likely explanation.

As expected, once again the lockdown cluster is the one with
the most limited travel, with the largest reductions in trip duration,
total distance, and driving volume. Interestingly, a peak of harsh
brakings/100 km is also observed, indicating that this category
comprises weeks with increased road safety risk. Once again, dri-
vers may have been more aggressive and taking advantage of emp-
tier roads. The ratio of speeding to driving duration appears to be
the highest between clusters. Consistently with Greece, driving
speed appears mostly unaffected between clusters; this is perhaps
due to the large number of trips, which leads to the absorption of
fluctuations for this parameter.

The obtained cluster categories are also illustrated in the upper
and lower plots of Fig. 20. The quality of the clustering can be con-
sidered adequate, as the lockdown period was defined sufficiently
by the clustering analysis. Contrary to Greece, the KSA clusters
were separated into three continuous time periods (before, during,
and after the lockdown); it should be noted, however, that there
were five erroneously grouped weeks this time. For both countries,
the sample size utilized as input for the k-means algorithm, com-
prising of the 52 weeks of 2020, can be considered marginally ade-
quate. While there is no precise definition in the literature, values
of 2n are cited as appropriate (Formann, 1984), with n being the
number of included variables. With the present data, five variables
would be the maximum permissible, requiring 25 = 32 data points.
Since it was not possible to obtain more weekly average data
within the framework of this study, the k-means algorithmwas fit-
ted for five and six variables only in addition to the previous anal-
yses. The clustering results and categories were not affected. The
cohesion as well as the reasonable centroid value interpretations

of three clusters across two different countries allowed for the
seven variable variants to be retained as the selected analyses.

The linear discriminant analysis (i.e., LDA) on the KSA clustering
indicated correct classification in 90% of the test dataset cases for
the KSA.

7. Discussion on the impact of the pandemic on road safety

The paper presents evidence of the impact of COVID-19 and
constitutes a first attempt to understand the relationship between
the strictness of corresponding response measures and the effect
on driving behavior and crash frequency. The paper builds upon
previous work (Katrakazas et al., 2020), which provided an over-
view of the effect on driving behavior and road safety during the
first wave of the pandemic. The overview is completed with the
current paper, which for the first time describes the effect of the
pandemic using data from the entire 2020 year.

With ‘‘normal” everyday life disrupted, it was evident that driv-
ing behavior would be significantly affected. The first wave of the
pandemic took governments and citizens by surprise, but at pre-
sent, one year into the pandemic, signs of adjustment to the new
reality are becoming apparent. For example, data showed that
when lockdown states were lifted, a dramatic change in traffic by
up to 400% in Greece was observed. In the KSA the corresponding
change rose to 82%, an increase which is still considerably high.
Following the same pattern, traffic volumes were substantially
increased when comparing the first and second lockdowns. This
finding is interesting when put into the perspective of the strin-
gency of response measures and COVID-19 cases and casualties,
since the lockdown periods (i.e., the first and second lockdown in
Greece as well as the single lockdown in the KSA) are characterized
by strict measures and a high number of COVID-19 cases and casu-
alties. As a result, it can be tentatively assumed that drivers
adjusted to these new conditions and behaved as if no restrictions
were applied.

Table 6
Clustering centroid mean values per week type for the KSA.

Number Category Total Duration Total Distance Harsh Brakings /100 km Driving Volume Driving Speed Speeding percentage Stringency Index

1 Baseline 1382.19 (49.66) 20.49 (0.98) 20.94 (1.74) 68.71 (41.91) 52.76 (2.53) 7.24% (0.45%) 13.59 (18.36)
2 Restrictions 1164.09 (38.72) 18.44 (0.79) 18.48 (0.9) 94.67 (10.27) 53.83 (1.20) 6.96% (0.86%) 59.89 (9.63)
3 Lockdown 1052.90 (41.48) 16.22 (0.88) 24.20 (1.08) 48.25 (10.63) 53.90 (1.07) 9.07% (0.69%) 88.92 (9.63)

Fig. 20. (a) Cluster plot and (b) Annual distribution of cluster categories and stringency index (KSA).
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For Greece, driving after the shock of the first lockdown, all
driving behavior indicators pointed towards safer attitudes. Harsh
accelerations and brakings were reduced by up to 33% after lifting
the response measures, while speeding and mobile phone use per
driving duration were reduced by up to 9%. This positive outcome
with regards to driving behavior, however, lasted until the imposi-
tion of the second lockdown in Greece, where it was demonstrated
that drivers speeded more in relation with the average driving
duration and also increased their harsh acceleration, harsh braking,
and mobile phone usage frequency. On the contrary, in the KSA all
driving indicators except mobile phone use, demonstrated a reduc-
tion after the end of the lockdown and thus hinted toward safer
driving.

Unfortunately, the positive attitudes of Greek drivers immedi-
ately after the first lockdown and until the imposition of a second
one, were not reflected in the frequency of road crashes. For exam-
ple, crashes increased in Greece after the first lockdown by 116%
when comparing the period between the first and second lock-
down with time spent under confinement in March and April
2020. This is in contrast with other studies regarding the effect
of COVID-19 on crash frequency (Inada et al., 2020; Muley et al.,
2021; Saladié et al., 2020) although previous studies used a more
limited time span for their data collection. The fluctuation in
crashes and injuries during the period where lockdowns are
imposed or resolved is something that is expected, however, due
to the rapid changes in social and behavioral patterns during the
pandemic (Calderon-Αnyosa & Kaufman, 2021). Nevertheless, fur-
ther in-depth crash research during the pandemic in Greece is
needed in order to discover contributing and causal factors that
led to the crashes in question.

Taking into account the stringency index of the response mea-
sures, it was demonstrated that driving behavior can be clustered
into three categories: (a) baseline, which represents the period
before restrictions or lockdowns, (b) restriction, which comprises
periods where response measures start to get stricter, and (c) lock-
down, which represents the strictest measures taken in form of a
lockdown. From Table 6, it is evident that harsh brakings are one
of the most representative indicators between clusters for Greece
(together with driving volume and the stringency index), as large
differences between the three groups are observed. Moreover,
the most interesting finding from Table 6 is that in periods where
restrictions are tightened in Greece, traffic volume is significantly
higher, probably due to the good weather, as the ‘‘Restrictions”
cluster includes the summer months and because of a potential
fear of more strict measures that might come, which led people
to more outdoor activities such as shopping when it was still
allowed (2020). Similarly, with regards to the KSA, distinctions
between clusters can be more clearly observed for harsh brakings
and driving volume as well as the ratio between speed and driving
duration, probably due to the fact that during strict response mea-
sures, streets were emptier. It should also be mentioned that the
stress imposed by confinement conditions around the world (Lee
& You, 2020; Lemke et al., 2020; Singh & Tech, 2020) might have
also affected the increase of traffic volumes after the lift of the
lockdown, as well as more dangerous behavior when streets were
emptier due to stay-at-house governmental instructions.

One of the added contributions of this study was the continuous
monitoring of smartphone metrics, which provide naturalistic
driving data in a seamless and non-intrusive manner. These met-
rics disclose valuable information on the safety profiles of drivers
and their fluctuations during times of the pandemic. The one-
year span provides an opportunity to witness the effects of differ-
ent lockdown or other restriction policies as they are not instanta-
neous in their inception, application, enforcement, and removal.
The combination of these two features is also an advantage of

the study; few naturalistic experiments are conducted in new-
found conditions for such a duration.

One limitation of the present study is that the evidence pre-
sented by the authors majorly consists of descriptive statistics
and explanatory figures, whereas a small part is dedicated to clus-
ter analysis with regards to driving behavior and the contingency
of response measures. The sample limitations with regards to the
k-means application have also been mentioned and therefore an
extended dataset should be explored in the future to confirm the
present results. Building upon the previous limitation, syndemic
or homeostatic compensations of the impacts of different pan-
demic periods or different types of travel (e.g., ‘‘familiar” and
‘‘non-familiar” travel) are not taken into account in the current
approach. With respect to the distraction variable, a limitation of
the analyzed data is that the application cannot recognize if a pas-
senger uses the mobile phone of the driver. Nevertheless, this is
typically not the case as the drivers understand that their phones
become driving monitoring devices when using the application.
Additionally, no data were available for the exposure indicator
for crashes per kilometer driven. Moreover, it was not possible to
include road type, time of day, and driving under the influence of
alcohol or drugs in the analysis due to personal data protection leg-
islation. Finally, regarding the driving behavior, data collection
data were provided in their final format by OSeven Telematics,
but the actual algorithms of obtaining the indicators (e.g., speeding
or harsh events) from smartphone sensors are intellectually pro-
tected and unknown to the authors; therefore a ‘‘black-box” effect
exists.

As a final remark, the unconventional truth is that, in Greece,
the period after the first lockdown was imposed presents more
similarities than differences with a ‘‘normal” situation regarding
driving behavior. Differences between the period between the
lockdowns in terms of driving behavior showed that speeds were
similar between the two periods and the greatest effect was an
increase by 10% of harsh brakings per 100 km of driving, during a
period where stricter measures by 45% were imposed. On the con-
trary, in the KSA, although exposure increased in terms of traffic
volumes and distance traveled, drivers were more careful while
on the road.

8. Policy recommendations

The COVID-19 pandemic showcased the fragility that mobility
patterns face in cases of unpredicted health or societal emergen-
cies. Policymakers in the road safety domain should act proactively
in the years to come to incorporate safety lessons from the pan-
demic period. As it was demonstrated in this paper, driving speed
was significantly increased during the periods when lockdowns
were imposed, due to the heavily reduced traffic volumes for
motorized traffic. Towards that end, the paradigm of reducing
speed limits inside urban areas to 20 or 30 km/h, as declared by
the Stockholm Declaration of the 3rd global ministerial conference
on road safety (Trafikverket | Swedish Transport Administration,
2021) should be extended. With lower speeds, crash risk, severe
injuries, and harsh events will be apprehended. Such policies have
already been applied in Paris, Brussels, and Bilbao1 and could be
extended to major metropolitan areas worldwide.

Although active traveling increased during the pandemic per-
iod, due to the avoidance of crowding and public transportation,
mortality of pedestrians and cyclists was generally increased,
when considering the increase in exposure (ONISR - French Road
Safety Observatory, 2021). As a result, measures to incorporate or
increase VRUs and active travelers in the present ‘car-dominated’

1 https://etsc.eu/30km-h-limits-set-to-spread-in-2021/.
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infrastructure are needed. For example, new recovery and resili-
ence funds directed to road safety (both infrastructure and policy)
need to be created in order to timely adapt to potential infrastruc-
ture changes for more active traveling. Finally, state-wide policies
that enforce social responsibility, as well as boost smart speed and
traffic safety enforcement are also encouraged. In that principle,
data with regards to the pandemic (e.g., countermeasures in effect
along with COVID-19 cases and casualties) could be integrated
with safety data (e.g., speed limits and current traffic conditions)
within mobile applications to inform drivers to proactively take
care of their speed and driving behavior while driving on different
urban and suburban areas.

9. Conclusions

The present research aimed at presenting descriptive evidence
of the impact of COVID-19 and the corresponding response mea-
sures on driving behavior and road safety for the entire year of
2020. For the first time to date, data from two countries (i.e.,
Greece and the KSA) were explored and were correlated with the
stringency of COVID-19 response measures. To fulfil that aim, fol-
lowing the presentation of the representative figures and overview
tables, a clustering approach (i.e., k-Means) was utilized in order to
identify patterns correlating the stringency of government mea-
sures with driving behavior indicators. By examining the statistics
of the entire year, it was evident that the dissolution of imposed
lockdown led to an increase in traffic volumes, but also to
smoother driving behavior. This difference was found to be more
prominent when the first lockdown in Greece and the KSA was
lifted, where speeds were reduced by up to 6% in Greece and by
9% in the KSA.

Using the k-means clustering technique, it was revealed that
2020 can be split into three clusters of driving behavior: (a) base-
line, one depicting driving behavior when no or light response
measures apply, (b) restrictions, when COVID-19-related cases
and casualties increase and thus stringency of measures increases,
and (c) lockdown. The clustering results validated that the most
significant differences in driving behavior of Greek drivers were
found between the ‘‘Restrictions” and ‘‘Lockdown” phases in terms
of exposure (total distance, total duration, and driving volume) as
well as harsh braking frequency. On the contrary, negligible differ-
ences were found for speeds and speeding for all three clusters.

With regards to the policy implications of the findings, the rel-
evant stakeholders should focus on the reduction of driving speeds,
as these are indicated in the Stockholm declaration as well as the
safe incorporation of active traveling modes in the current infras-

tructure by utilizing resilience funds and social responsibility
measures.

Finally, additional crash research is needed to analyze the com-
position of traffic exposure, psychology, and COVID-19 as con-
tributing factors for road safety during the pandemic period in
Greece and other countries. Data for crashes per kilometer driven
were inaccessible in the current research; hence, a future study
could take the aforementioned indicator into consideration. As a
result, future research should be directed toward analyzing crash
frequency and the captured driving behavior indicators from a
time-series perspective. Furthermore, a future study could expand
the scope of the findings by classifying the distraction types (e.g.,
texting, calls, navigation) and providing insights into this topic.
Psychological factors (e.g., fatigue, sadness) during the pandemic,
socio-demographic characteristics (e.g., gender, age, educational
level), as well as the overall effect on human psychology of the
unknown future could also be taken into account. This direction
will assist in better understanding the influence of the response
measures as exogenous factors as well as the inter-relationship
between the evolution of COVID-19 in terms of cases or casualties
and the progression of driving behavior or road safety indicators.
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Appendix A

See Table A1 and see Figs. A1–A3.

Table A1
Timeline of COVID-19 response measures in Greece in Greece and KSA.

Greece

1st Lockdown of non-essential movements 23/03/2020
End of the 1st lockdown 04/05/2020
Closure of bars, cafes, restaurants, theatres and concert halls 02/11/2020
travel Lockdown of non-essential movements 07/11/2020
Closure of primary schools and kindergartens 14/11/2020
Opening of shops and hairdressers 14/12/2020
KSA
Closure of educational institutions 09/03/2020
Lockdown of non-essential movements in Qatif 09/03/2020
Closure of shops, restaurants, coffee shops and public parks 15/03/2020
Lockdown of non-essential movements in Mecca, Medina, Riyadh 26/03/2020
End of Lockdown 21/06/2020
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a b s t r a c t

Introduction: Hundreds of adults are killed or injured each year while operating off-highway vehicles.
Four common risk-taking behaviors were identified on off-highway vehicles in the literature and exam-
ined intention to engage in such behaviors within the context of the Theory of Planned Behavior. Method:
One hundred and sixty-one adults completed measures of experience on off-highway vehicles and injury
exposure followed by a self-report created according to the predictive structure of the Theory of Planned
Behavior. Behavioral intentions to engage in the four common injury risk behaviors on off-highway vehi-
cles were predicted. Results: Similar to research on other risk behaviors, perceived behavioral control and
attitudes emerged as consistently significant predictors. Subjective norms, the number of vehicles oper-
ated, and injury exposure showed varying relationships to the four injury risk behaviors. Results are dis-
cussed in the context of similar studies, intrapersonal predictors of injury risk behaviors, and with regard
to implications for injury prevention efforts.

� 2022 National Safety Council and Elsevier Ltd. All rights reserved.

1. Introduction

Unintentional injury during off-highway vehicle (OHV) use is a
significant transportation safety problem. In 2016, there were esti-
mated 591 fatalities during OHV use and 101,200 injuries requiring
treatment among users of all ages (U.S. Consumer Product Safety
Commission, 2020). A total of 15,744 fatalities among users of all
ages were reported from 1982 to 2018, or an average of 438 each
year (U.S. Consumer Product Safety Commission, 2020). OHV-
related injuries are especially a problem among younger users.
For example, according to one source, an estimated 361,161 chil-
dren under age 16 were treated for OHV-related injuries in 2013
(Shults, West, Rudd, & Helmkamp, 2013). The large annual number
of injuries requiring medical attention highlights the need for
understanding the etiology of risk-taking behaviors while using
OHVs. The goal of this study was to identify common risk-taking
behaviors on OHVs reported in the literature, then examine inten-
tion to engage in such behaviors within the context of the Theory
of Planned Behavior.

1.1. Injury risk behaviors on off-highway vehicles

OHVs comprise various vehicles such as off-road motorbikes
(i.e., dirt bikes), three-wheelers, four-wheelers, and utility vehicles.
Many OHVs are powerful and capable of reaching speeds compara-
ble to those of a regular automobile. Further still, off-highway vehi-
cles generally do not afford protection during a crash. Injuries
sustained while using an OHV can be significant, including frac-
tures of lower limbs and intracranial damage (Helmkamp,
Furbee, Coben, & Tadros, 2008). Despite the risk potential, several
types of risk behaviors while operating OHVs remain common.

The literature on OHVs is primarily epidemiological and lacking
in theoretically-driven research but has identified clear risk factors
for severe injury. Evidence suggests three of the leading behaviors
contributing to fatal crashes are lack of helmet use, having passen-
gers on an OHV built for only one person to use, and riding while
impaired by alcohol or other substances (Balthrop, Nyland, &
Roberts, 2009). For example, one study examined 112 OHV crashes
and found 85 % of operators who experienced a fatal injury were
not wearing a helmet, and 50 % were intoxicated (Hall, Bixler,
Helmkamp, Kraner, & Kaplan, 2009). A fourth common risk behav-
ior associated with injury while operating OHVs is riding on roads
intended for regular vehicle use (Williams, Oesch, McCartt, Teoh, &
Sims, 2014). Research suggests operating an OHV on any road,
paved or unpaved, increases injury risk significantly beyond that
associated with off-road riding (Denning & Jennissen, 2016). OHV
crashes on roads may involve a second vehicle, significantly
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increasing the severity of trauma (Denning, Jennissen, Harland,
Ellis, & Buresh, 2013).

Riding on roads often occurs in conjunction with other risk fac-
tors such as carrying passengers and intoxication (Denning,
Harland, Ellis, & Jennissen, 2013). For example, one study found
92 % of OHV riders carried passengers, 81 % operated their OHV
on public roads, 64 % rode without a helmet, but 60 % reported
engaging in all three risk behaviors at the same time (Jennissen
et al., 2014). Risk behaviors while operating OHVs are therefore
likely to co-occur.

Despite evidence pointing to a common set of risk factors, little
is known about why OHV users engage in such risk behaviors. The
lack of knowledge of the reasons behind recurring risk behaviors
among OHV users can be addressed by examining the underpin-
ning of such behaviors. One useful theoretical structure for exam-
ining health and injury risk behaviors is the Theory of Planned
Behavior.

1.2. Theory of planned behavior

The Theory of Planned Behavior examines the intention to
engage in behaviors by examining subjective norms, attitudes,
and perceived behavioral control and has been used extensively
in health research (Sleet, Diekman, Ikeda, & Carlson Gielen,
2010). Eating habits, exercise, lifestyle, sexual health, drug and
alcohol use, and hygiene all have been studied using the Theory
of Planned Behavior as a framework (Albarracin, Johnson,
Fishbein, & Muellerleile, 2001; Armitage, Armitage, Conner,
Loach, & Willetts, 1999; Blue, 1995; Conn, Tripp-Reimer, & Maas,
2003; Courneya & McAuley, 1995; Downs & Hausenblas, 2005;
Fila & Smith, 2006; French et al., 2005; Godin & Kok, 1996; Guo
et al., 2007; Norman & Conner, 2006; O’Boyle, Henly, & Larson,
2001; Rhodes & Courneya, 2003; Schifter & Ajzen, 1985; Sheeran
& Taylor, 1999). One meta-analytic review showed at least 185
studies have employed the theory (Armitage & Conner, 2001),
and many more have applied the Theory of Planned Behavior in
the 17 years since the last meta-analytic investigation.

In practice, the Theory of Planned Behavior employs self-report
questionnaire measures of attitudes, subjective norms, and per-
ceived behavioral control as predictors of intentions to engage in
health risk behaviors (Ajzen, 1985, 1991). A review of studies sug-
gested attitudes and subjective norms accounted for approxi-
mately 27 % of the variance in behavior and 39 % in intention,
and perceived behavioral control explained a significant additional
amount of variance (Armitage & Conner, 2001). Behavioral inten-
tion, taken to be the antecedent of actual risk behaviors, makes
the theory valuable for understanding psychological processes
leading to increased risk regardless of the health topic in question.

The Theory of Planned Behavior has been applied repeatedly in
studies of injury etiology (e.g., Trifiletti, Gielen, Sleet, & Hopkins,
2005). Topics such as bike safety, seatbelt usage, and other driving
violations have been examined (Conner et al., 2007; Forward,
2009; Lajunen & Rasanen, 2004; Parker, Manstead, Stradling,
Reason, & Baxter, 1992; Quine, Rutter, & Arnold, 1998, 2001;
S�ims�ekoğlu & Lajunen, 2008; Warner & Åberg, 2006). A more
recent study examined pedestrians’ intentions to cross streets
under conditions of distraction (Barton, Kologi, & Siron, 2016).

The pattern of predictive utility of the three components in the
Theory of Planned Behavior appears to vary across studies. Previ-
ous inquiries suggest perceived behavioral control is the strongest
predictor of behavioral intentions (Armitage & Conner, 2001), and
this was found in at least three studies of risk behaviors (Johnson &
Hall, 2005; Evans & Norman, 1998; Zhou, Horrey, & Yu, 2009).
However, several other studies found all three components pre-
dicted behavioral intentions (Diaz, 2002; Malekpour, Moeini,
Tapak, Sadeghi-Bazargani, & Rezapur-Shahkolai, 2021; Zhou &

Horrey, 2010). Still other research on injury behavior found only
attitude (Holland & Hill, 2007) or both attitude and perceived
behavioral control predicted behavioral intention (Barton et al.,
2016). One explanation for the variability of the component’s pre-
dictability may be the differences in behaviors being examined.

The application of the Theory of Planned Behavior suggests
great utility for examining health and safety topics. Research from
the past two decades also suggests the components in the theory
may perform differently across behavior types. Although the use-
fulness of the theory has been demonstrated in studies of other
topics, the theory has never been applied to risk behaviors on
OHVs. To our knowledge, the present study is the first to use any
theoretical framework in research addressing risk behaviors during
OHV use.

1.3. Aim and hypotheses

The aim of this study was to examine intentions to engage in
risky behaviors on OHVs guided by the Theory of Planned Behavior
framework. The expected results aligned both with the structure of
the theory and with applications of the theory in other studies.
Attitudes, subjective social norms, and perceived behavioral con-
trol were expected to significantly predict intentions to engage in
four common types of risky behavior identified by the literature:
riding without a helmet, riding with passengers, riding on paved
roads, and riding while intoxicated. Consistent with the literature,
perceived behavioral control was expected to emerge as a signifi-
cant and positive predictor of intention to engage in risk behaviors
on OHVs.

Research using the Theory of Planned Behavior to examine
other kinds of injury risk behaviors has found an inconsistent pre-
diction pattern among the theory’s components. In addition, the
theory has never been used to help explain risk behaviors on OHVs.
Therefore, it was expected that the pattern of the predictive utility
of the three components may differ from other research or may
change across the four risk behaviors.

2. Method

2.1. Sample

One hundred and sixty-one adults ages 18 to 48 (M = 19.70;
SD = 3.50; 35 % male) were recruited from the undergraduate pop-
ulation at a university in the Pacific Northwest. Corresponding to
the demographic characteristics of the local population, the sample
was primarily Caucasian (81 %) but also included participants iden-
tifying as Hispanic (10 %), Asian (5 %), African American (2 %), and
Native American (2 %). All participants had experience operating
some form of OHV. The study was approved by the university’s
Institutional Review Board.

2.2. Measures and Procedure

Demographic information and OHV experience. Participants
first reported age, sex, and ethnicity. Next, participants reported
their frequency of use of OHVs, types of vehicles operated, and
the first age at which they operated an OHV. Third, participants
reported injury experience related to operating OHVs: whether
they had been injured or had a ‘‘close call” (nearly being injured)
while operating an OHV; whether they knew anyone who had been
injured while operating an OHV requiring a stay in a hospital;
whether they knew anyone who had been injured while operating
an OHV who was treated and released; or whether they knew any-
one who had been injured while operating an OHV and received
only untreated scrapes and bruises. The number of ‘‘yes” answers
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to the five questions was tallied to create an injury experience
score.

Theory of Planned Behavior Questionnaire. Consistent with the
literature, a self-report instrument was used to measure risky
behaviors guided by the structure of the Theory of Planned Behav-
ior. The questionnaire was organized following published guideli-
nes (Ajzen, 2013). Preparation of a questionnaire typically
involves creating hypothetical scenarios and new response items
(e.g., Barton et al., 2016; Evans & Norman, 1998, Holland & Hill,
2007; Zhou & Horrey, 2010). In this study, participants read and
responded to scenarios depicting risk behaviors identified in the
literature: riding without a helmet (A), riding with unsecured pas-
sengers (B), riding on paved roads (C), and riding while intoxicated
(D). All scenarios are presented in Appendix A. Twelve questions,
based on the three predictor variables (attitudes, subjective norms,
and perceived behavioral control) followed the presentation of
each scenario to the participant. Responses to all questions were
scored on a Likert scale ranging from one to seven. The descriptive
statistics for the Theory of Planned Behavior components, includ-
ing behavioral intention, can be found in Table 1.

The first four questions measured attitudes toward the behavior
presented in the scenario. Questions measuring attitudes were
constructed in two pairs (i.e., 1 & 2, 3 & 4), with the first question
in each pair measuring strength of response and the second ques-
tion measuring evaluation of the behavior. Questions 5–8 mea-
sured subjective norms (i.e., the participant’s indication of what
they thought other relevant individuals would want them to do).
As with attitudes, questions in this section were organized in pairs,
with the first question in each pair measuring the strength of
response and the second question measuring motivation to com-
ply. Reference groups chosen for subjective norms were friends
and other OHV users. Questions 9 and 10 measured perceived
behavioral control. Finally, responses to the last two questions indi-
cated behavioral intention. Similar to previous versions of TPB mea-
sures (e.g., Ajzen, 2013), a larger number of items were employed
for the constructs of attitude and subjective norms.

Scores were calculated generally by multiplying items, with
some items being reverse scored prior to multiplication. Calcula-
tion for attitudes and subjective norms proceeded in two steps.
First scores from questions concerning the strength of response
and evaluation of the behavior were multiplied, yielding two
sub-scores for attitudes and two for subjective norms. For atti-
tudes, question 1 multiplied by question 2 reverse-scored; 3 mul-
tiplied by 4 reverse-scored. For subjective norms, question 5
multiplied by question 6; 7 multiplied by 8. Second, the two sub-
scores were averaged within each measure to create an attitude
and a subjective norm score. The perceived behavioral control
score was calculated by reverse-scoring item 9, then multiplying
item 9 by item 10. Items 11 and 12 were multiplied to calculate
a score for behavioral intention.

Calculations were performed separately for the four scenarios.
Aggregate variables were then created by averaging across vari-
ables generated in the four scenarios. For example, attitude scores
across the four scenarios were averaged. Final aggregates repre-
sented belief-based measures of attitudes and subjective norms
in which higher scores indicated greater strength. Higher scores
for perceived behavioral control indicated greater perception of
control if the behavior were to be attempted. Higher scores for
the aggregate behavioral intention represented greater intention
to engage in the type of behaviors outlined in the four scenarios.

Procedure. Participation proceeded in two steps. First, the
informed consent process began. Second, participants completed
the Theory of Planned Behavior questionnaire.

Analyses. Analyses comprised four steps. First, sex differences
were examined across all Theory of Planned Behavior components
in a series of ANOVA to determine if sex would be included in sub-

sequent analyses. Second, participant OHV experience and injury
exposure were examined. Third, a set of correlation matrices were
performed to determine what variables should be retained as pre-
dictors for the final regression. Finally, a regression analysis exam-
ined significantly correlated variables as predictors of behavioral
intention.

3. Results

3.1. Sex differences

Sex differences were examined across all Theory of Planned
Behavior components from each OHV scenario in a series of ANO-
VAs. No statistically significant differences between males and
females were found. Sex was excluded from further analyses.

3.2. Self-Reported OHV experience and exposure to injury

All participants reported having used OHVs. Among the partic-
ipants, 118 reported riding once or twice per year, 29 reported rid-
ing once per month, 9 reported riding once per week, and 5
participants reported riding daily. Participants reported using a
variety of OHVs: four-wheelers (131), dirt bikes (68), snowmobiles
(35), three-wheelers (14), rhinos (15), snow cats (6), dune ATV’s
(20), rally cars (6), and side-by-sides (21). Participants reported
being an average age of 10.78 years (SD = 4.11) the first time they
operated an OHV, ranging from 3 years of age to 21.

Some participants reported first-hand experience with injury on
an OHV. Forty participants reported having been injured, and 90
reported having had a ‘‘close call.” One hundred and twenty-
three reported knowing someone who had been hospitalized fol-
lowing an injury on an OHV, 113 reported knowing someone
who was treated and released, and 154 reported knowing someone
who experienced minor injuries not requiring treatment.

3.3. Theory of Planned Behavior prediction of behavioral intention

Examination of predictors of intentions to engage in risky
behaviors on OHVs proceeded in several stages. First, correlations
between potential predictors and behavioral intentions were
examined within each scenario to identify predictors for regression
analyses. Variables were retained for examination as predictors if
significantly correlated to behavioral intentions within each sce-
nario. Correlations between predictors and behavioral intentions
by scenario are reported in Table 2. Second, selected predictors
were regressed on behavioral intentions for each risk behavior sce-
nario using data from the entire sample.

Behavioral intentions were regressed on relevant predictors
identified in Pearson correlations. Regression results are shown
in Table 3. Predictors in each model accounted for 37 % of the vari-
ance in behavioral intention concerning helmet use, 40 % in riding
with passengers, 41 % in riding on paved roads, and 15 % in riding
while intoxicated.

Perceived behavioral control and attitudes again emerged as
statistically significant positive predictors of behavioral intentions
in all scenarios except for helmet use, in which the predictions
were negative. Subjective norms presented as a significant positive
predictor of behavioral intentions in all the scenarios except for
helmet use, in which the predictive nature was non-significant.
Finally, the number of vehicles operated was found to be a signif-
icant positive predictor of behavioral intention.
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4. Discussion

The framework provided by the Theory of Planned Behavior was
used to examine intentions to engage in four common risk behav-
iors on OHVs: riding without a helmet, riding with passengers, rid-
ing on paved roads, and riding while intoxicated. Consistent with
the literature, a questionnaire was constructed and used to assess
behavioral intention. It was expected that all components of the
Theory of Planned Behavior would be useful in predicting inten-
tions to engage in risky behavior but perceived behavioral control
would emerge as a strong and consistent predictor. It was also
expected that experience operating OHVs and exposure to OHV-
related injury might be predictive of behavioral intention.

Components of the Theory of Planned Behavior proved useful
for predicting intentions to engage in the risk behaviors that was
identified in the literature. However, as suggested by other studies,
the usefulness of each component varied by risk behavior. Per-

ceived behavioral control emerged as a consistently significant
predictor. Attitudes also significantly predicted behavioral inten-
tions across all of the common risk behaviors. Subjective norms
were also significantly predictive of behavioral intention across
all scenarios, except helmet use. Injury exposure was not signifi-
cantly predictive of behavioral intention in any scenario. Finally,
OHV experience was significantly predictive of behavioral inten-
tion while riding on paved roads and riding with passengers.

4.1. Perceived Behavioral Control

Perceived behavioral control significantly predicted behavioral
intentions across scenarios. The results are similar to other studies
that have used the Theory of Planned Behavior in the examination
of pedestrian behavior (Evans & Norman, 1998, 2003; Holland &
Hill, 2007; Zhou et al., 2009, 2010; Xu, Li, & Zhang, 2013). The
strong and consistent relation of perceived behavioral control to

Table 1
Descriptive statistics for Theory of Planned Behavior components for each scenario.

A B C D Total

Component M (SD) M (SD) M (SD) M (SD) M (SD)

Attitudes 20.84 (11.97) 23.51 (11.31) 28.97 (12.57) 10.20 (8.54) 20.88 (7.70)
Subjective Norms 19.19 (10.89) 19.74 (11.22) 17.65 (9.77) 6.00 (5.51) 15.64 (6.98)
Perceived Behavioral Control 11.42 (12.32) 17.08 (14.92) 15.48 (13.92) 6.39 (7.83) 12.59 (8.97)
Behavioral Intention 35.16 (16.26) 21.40 (17.79) 21.70 (17.72) 3.63 (7.60) 20.47 (8.14)

Table 2
Pearson Correlations between potential predictor variables and components of Theory of Planned Behavior.

Variables 2 3 4 5 6 7 8

Scenario A B C D A B C D A B C D A B C D
1. Age 0.02 0.06 -0.17* 0.21y/-0.08/-0.01/-0.06 0.21y/0.19*/0.08/-0.04 0.26y/0.10/0.04/-0.08 -0.14/0.01/0.05/-0.06
2. Number of vehicles operated 0.34y -0.18* -0.04/-0.11/0.04/-0.04 -0.03/0.11/0.13/0.20y -0.21y/-0.14/-0.13/0.16* 0.11/0.11/0.30y/0.04
3. Injury exposure -0.04 -0.04/0.02/0.01/-0.07 -0.07/0.13/0.11/0.05 0.11/0.11/0.19*/-0.07 -0.01/0.15/0.28y/-0.08
5. Attitude 0.11/0.07/0.15/0.13 0.38y/0.31y/0.25y/0.08 -0.49y/0.42y/0.43y/0.20y
6. Subjective norms 0.12/0.17*/0.13/0.17* -0.19*/0.27y/0.35y/0.22y
7. Perceived control -0.51y/0.54y/0.35y/0.30y
8. Behavioral intentions

Note. N = 161. * p <.05. y p <.01. A = helmet use, B = paved roads, C = passengers, D = intoxication.

Table 3
Linear regression predicting behavioral intentions by scenario.

Predictors B SE b R2

Scenario A: Helmet use
Attitudes -0.46 0.09 -0.34**
Subjective norms -0.17 0.10 -0.11
Perceived control -0.48 0.09 -0.36** 0.37**

Scenario B: Riding with passengers
Attitudes 0.43 0.10 0.27**
Subjective norms 0.28 0.10 0.18**
Perceived control 0.52 0.08 0.43** 0.40**

Scenario C: Riding on paved roads
Number of vehicles operated 3.26 0.88 0.25**
Injury Exposure 1.44 0.89 0.11
Attitudes 0.46 0.09 0.33**
Subjective norms 0.40 0.12 0.22**
Perceived control 0.32 0.09 0.25** 0.41**

Scenario D: Riding while intoxicated
Attitudes 0.14 0.07 0.16*
Subjective norms 0.21 0.10 0.16*
Perceived control 0.25 0.07 0.26** 0.15**

Note. N = 161. * p <.05. ** p <.01.
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behavioral intentions in these data may be due to the nature of the
types of OHV use described in the scenarios in this study. All four
scenarios described common behaviors on OHVs. Previous
researchers (Barton et al., 2016; Evans & Norman, 1998) have pos-
ited perceived behavioral control is a significant predictor of inten-
tion to engage in mundane types of behavior, partly because such
behaviors are perceived to be easier to execute and thus any asso-
ciated risk is minimal. Alternatively, perceived behavioral control
could tap into a sense of efficacy concerning the risk behavior
(Barton, Davis, & Pugliese, 2021).

The results of this study concerning perceived behavioral con-
trol are consistent with other research concerning risky behavior
while operating vehicles. For example, other researchers have
found perceived behavioral control to be predictive of speeding
(Conner et al., 2007; Parker et al., 1992; Warner & Åberg, 2006),
intent to commit violations such as intoxicated driving, close fol-
lowing, and risky passing (Parker et al., 1992). Collectively, our
results and evidence in the literature highlight the importance of
perceived behavioral control as a predictor of unsafe operation of
vehicles and for transportation safety.

Perceived behavioral control significantly and negatively pre-
dicted behavioral intention in the helmet use scenario. Participants
who responded that they would have no problem riding without a
helmet and that wearing a helmet was largely up to them tended
to rate their intention to wear a helmet in our scenario as lower.
Two previous studies that used the Theory of Planned Behavior
found perceived behavioral control to be positively predictive of
wearing a helmet while bicycling (Lajunen & Räsänen, 2004;
O’Callaghan & Nausbaum, 2006). At first glance, our result seems
unusual. However, previous work concerned bicycling among
teenagers, and no evidence exists to which we might directly com-
pare our results concerning OHV use. A greater sense of control or
agency may very well be predictive of not using a helmet for this
form of transportation. Regardless, our result suggests perception
of control is indeed a relevant factor for helmet use among OHV
operators.

4.2. Attitudes

Attitudes were significantly predictive of behavioral intention
across all scenarios, negatively predictive of riding without wear-
ing a helmet and positively predictive of behaviors in all other sce-
narios. We offer a few interpretations of this result. OHV operators
may view some use of roads as necessary depending on how vast
an area of the terrain is being crossed. Roads also afford opportuni-
ties to ride faster, constituting an important environmental context
for injury risk behavior of this type (Barton, Davis, & Pugilese
2021). Perhaps operators viewed riding on paved roads as an
opportunity to have fun by riding faster than they can on rough
terrain. In fact, other research found the attitude component of
the Theory of Planned Behavior was a significant predictor of
speeding (Conner et al., 2007). More broadly speaking, use of OHVs
may simply be often used in a social context supporting riding on
paved roads, with passengers, or while intoxicated. Future work
could investigate the social context surrounding OHV use for evi-
dence of such social support.

4.3. Subjective Norms

Subjective norms was a significant positive predictor of behav-
ioral intention for all examined risk behaviors, except helmet use.
Similar to the predictive pattern of attitudes, subjective norms
showed a different pattern only in relation to riding without wear-
ing a helmet. We posit that perhaps the broader social context is at
play, as suggested above for the pattern of results for attitudes. The
four risk behaviors in our scenarios were chosen because they are

statistically common. Research suggested that, while participants
understand certain behaviors are unsafe, the behaviors are not
seen as deviating from moral or ethical standards (Barton et al.,
2016; Evans & Norman, 2003). OHV operators may know the
behaviors are unsafe, but the behaviors are common and seen as
excusable, thus reducing the importance of subjective norms for
predicting intention to engage in risk behaviors. Perhaps riding
without wearing a helmet is the exception to the influence of the
social context surrounding OHV use (i.e., engaging in the other
three behaviors is acceptable to some degree, but riding without
a helmet is not).

4.4. Injury Exposure and OHV Experience

Injury exposure was not significantly related to any of the
examined risk behaviors. As with some of our findings, no context
exists in which to evaluate injury exposure on OHVs in relation to
behavioral intention (i.e., in the context of the Theory of Planned
Behavior). However, we may offer at least one explanation. Perhaps
users who have been injured or have seen friends injured associ-
ated the other three risk behaviors more strongly with injury like-
lihood. A roadway may appear a less likely context for potential
injury. At least in our scenario, the terrain would be assumed to
be level or smooth, no passengers are present, and one is not intox-
icated. The user would simply be traveling between points and
need only be wary of other vehicles.

OHV experience was significantly predictive for riding on paved
roads among only those with OHV experience. One reason experi-
ence may not have been a useful predictor of intended risk behav-
iors in our data is the nature of our measure. Our measure of
experience was blunt; merely the self-reported number of vehicles
operated. A more comprehensive measure of OHV experience
might include not only the number of vehicles operated but also
how much training a person has had (if any), the types of terrain
on which the person usually rides, and the purpose behind OHV
use (e.g., farm, recreational riding, hunting). Another more compre-
hensive measure of experience might also include some report of
successes versus failures concerning the risk behavior (Barton,
Davis, & Pugliese, 2021). Alternatively, another explanation might
be the social context surrounding OHV use overrides the effect of
previous experience (including injury) on avoidance of certain risk
behaviors.

4.5. Limitations

Several limitations are worth mentioning. First, a questionnaire
was used which, although common in the literature, is not predic-
tive of actual behavior on OHVs. Extending intention to behavior is
conjecture. The frequency of risk behaviors on OHVs and actual risk
of injury among participants could not be determined. However,
the intention was to apply the Theory of Planned Behavior to com-
mon risk behaviors among OHV users, not to predict risk behaviors
or measure increments in actual risk.

Second, the sample did not comprise demographic variations in
the national population or include participants under the age of 18.
The usefulness of the components in the Theory of Planned Behav-
ior as predictors of risk taking among OHV operators may vary
somewhat in a nationally representative sample. Evidence also
may vary between samples drawn from various rural areas or
between samples of operators who use OHVs for specific purposes
(e.g., farm or law enforcement use). Operators under age 18 are at
significant risk for injury on OHVs. More research is needed to
demonstrate any predictive utility of perception of behavioral con-
trol (or other predictors) among juvenile operators.

Third, future work might investigate how much perceived risk
or danger participants associate with the tasks in the question-
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naire. Previous work (Barton et al., 2016) examined the rather
mundane task of street crossing, and yet the Theory of Planned
Behavior predicted intention to engage in risky behavior. Percep-
tion of associated injury risk might be much higher for other types
of risk behaviors and could moderate predictive utility of the The-
ory of Planned Behavior.

Finally, scenarios in this study did not include co-occurring risk
behaviors. The four risk behaviors predominant in the literature
occur together in real settings (Jennissen et al., 2014). Our assess-
ment focused on each risk behavior separately, but future efforts
should consider the additive or interactive implications of co-
occurring risk behaviors on OHVs.

4.6. Implications

Theoretical guidance is missing from the study of risk behaviors
on OHVs. These results offer a glimpse of the usefulness afforded
by the guidance of theoretical structures applied to OHV safety.
To our knowledge, no other studies have yet applied any theoreti-
cal framework to risk taking behaviors on OHVs. Many avenues of
inquiry into OHV safety remain to be explored, and implications for
injury prevention wait to be developed. The primary suggestion for
using knowledge gained from the application of the Theory of
Planned Behavior concerns the role of perceived behavioral
control.

Researchers might consider the greater implications of percep-
tion of behavioral control as a predictor of risk taking on OHVs for
injury prevention efforts and creation of policy. Efforts to reduce
risk taking behaviors may take many forms. One possible method
is to target the perception of control over injury risk through
efforts such as public service announcements about common risk
behaviors during peak months of OHV usage. Citizen contacts by
law enforcement (e.g., traffic stops and regular patrol activities)
are another method. The Alive at 25 program already uses traffic
stops as one way to advertise the availability of safety courses.
Similarly, points of contact between law enforcement and citizens
offer a way to convey safety messages about OHV use. For example,
fish and game officers often encounter people using OHVs for hunt-
ing and recreation. Finally, yet another suggestion is packaging
OHV safety training as part of courses citizens are generally
required to take, such as hunter safety. Through these, and poten-
tially other methods, stakeholders in OHV safety may more effec-
tively raise awareness among the public about OHV risk
behaviors, their outcomes, and simple ways to prevent serious
injury.
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Appendix A

A. You and several friends are going out to ride trails in the
woods for the afternoon. Some people wear helmets when
they ride, some don’t. You have only a moment to decide
whether to wear your helmet, and you choose to leave it
at home.

B. You’re visiting family who live outside of town. You and sev-
eral family members, including two children under 10, want
to spend the afternoon riding the skid roads in the woods
near the family home. There are only two ATV’s and five peo-

ple who want to ride. Although the seat on your ATV is made
for only one person, you decide to let one or two of the chil-
dren ride with you.

C. You and your friend live several miles out of town. Your
homes are about a mile apart. This afternoon, you are about
to go to your friend’s house to hang out. The road to your
friend’s house is paved and you see traffic on the road every
day. Even though the road is used by motorists, you decide
to ride your ATV and take the road to your friend’s house.

D. You and some friends are camping. Every-one was up late
last night drinking and some are still intoxicated. Now it’s
8:00am and you’re thinking about going into town for break-
fast. A couple of people brought ATV’s along. You can still
feel the effects of drinking last night, but you can walk and
speak with no problem. You decide to ride into town.
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